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A description of the assembly map for the
Baum-Connes conjecture with coefficients

Mario Velásquez

Abstract. In this note we set a configuration space description of the
equivariant connective K-homology groups with coefficients in a unital
C*-algebra for proper actions. Over this model we define a connective
assembly map and prove that in this setting is possible to recover the
analytic assembly map.
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1. Introduction

Let G be a discrete group and B a separable G-C∗-algebra. The purpose
of this note is to give a configuration space description of G-equivariant con-
nective K-homology groups with coefficients in B on the category of proper
G-CW-complex. We use that model to give a description of the analytic
assembly map for the Baum-Connes conjecture with coefficients. This work
is a continuation of [18], and most of the results and proofs in Section 2 are
generalizations of this paper.

The Baum-Connes conjecture with coefficients predicts that the assembly
map

µGi : RKKG
i (C0(EG), B)→ KKi(C, B or G)
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is an isomorphism. The space EG is the classifying space for proper actions
(see [3], Def. 1.6). The group RKKG

i (C0(EG), B) can be defined as

RKKG
i (C0(EG), B) = lim−→

X⊆EG,Xco-compact

KKG
i (C0(X), B).

And B or G is the reduced crossed product.
We give a description of the group KKG

i (C0(X), B) in terms of configura-
tion spaces. It is described as a limit of G-equivariant connective K-homology
groups of X with coefficients in B, see Definition 3.6.

The idea to use configuration spaces to describe homology theories ap-
pears in [6], there the authors prove that the reduced singular homology
groups can be described as the homotopy groups of the symmetric prod-
uct, moreover the symmetric product can be described as the configuration
space with labels on natural numbers, later Graeme Segal in [16] extend this
idea to describe connective K-homology. In this case one should consider
configuration spaces with labels on the set of mutually orthogonal finite di-
mensional subspaces of a fixed Hilbert space. We generalize this idea taking
coefficients in a separable unital G-C*-algebra.

Results obtained here are related with descriptions of the assembly map
using controlled categories as in [7], where we use configuration spaces in-
stead of geometric modules.

This note is organized as follows:
In Section 2 we introduce the configuration space and relate it with

some space of operators. In Section 3 we prove that equivariant connec-
tive K-homology groups with coefficients can be represented as the homo-
topy groups of the orbits of the configuration space defined in Section 2. In
Section 4 we reformulate the analytic assembly map for the Baum-Connes
conjecture with coefficients in terms of configurations spaces.

2. Preliminaries

Let G be a discrete group. Let X and Y be (left) G-spaces. There is a
canonical (left) G-action on the set of continuous maps from X to Y defined
by

G×Maps(X,Y ) −→ Maps(X,Y )

(g, f) 7−→ (x 7→ g(f(g−1x))).

A G-CW-pair (X,Y ) is a pair of G-CW-complexes. It is called proper if
all isotropy groups of X are finite. Information about G-CW-pairs can be
found in [11, Section 1 and 2].

Given a G-CW-pair (X,Y ) we denote by C0(X,Y ) the C*-algebra of
continuous maps from X to C that vanish at Y and at infinity. When
Y = ∅ we set C0(X, ∅) = C0(X

∐
{+}, {+}) where G acts trivially on + and

X
∐
{+} has the topology of the one point compactification. We denote
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by ΣX the reduced suspension of X, and define Σ∅ as S0 with the trivial
G-action.

Definition 2.1. A G-C∗-algebra is a Z/2Z-graded C∗-algebra equipped with
a G-action by ∗-automorphisms.

Definition 2.2. Let B be a G-C*-algebra. A (Z/2Z-graded) pre-Hilbert G-
module over B is a left B-module E with a G-action and a B-valued inner
product 〈, 〉 : E × E → B satisfying:

(1) g · (ηb) = (g · η)a.
(2) g 7→ g · η is continuous.
(3) 〈g · η, g · ξ〉 = g · 〈η, ξ〉.

For η, ξ ∈ E, g ∈ G, and b ∈ B. If E is complete respect to the norm
||x|| = ||〈x, x〉||1/2 we say that E is a Hilbert G-module over B. Details
about Hilbert G-modules can be found in [13].

B is itself a Hilbert G-module over B, we can of course also form Bn.
We denote by B∞ the pre-Hilbert G-module over B given by the algebraic
direct sum

B∞ =

∞⊕
n=0

Bn.

LetHB be the completion of B∞ with respect to the norm defined in [10, Pg.
6] . We denote by Mn(B) the C*-algebra of endomorphism of Bn.

On the other hand let E be a pre-Hilbert B-module, we denote by B(E)
to the set of all continuous module homomorphisms T : E → E for which
there is an adjoint continuous module homomorphism T ∗ : E → E with
〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ E. The Hilbert B-module K(E) is defined
as the closure of the pre-Hilbert B-module of finite-rank operators on E
(defined as in [10, pg. 9-10]), when E = HB we denote K(HB) simply by
KB. Let B be a G-C*-algebra, then

Cc(G,B) = {f : G→ B | f is continuous with compact support}

becomes a *-algebra with respect to convolution and the usual involution.
Similarly one can define

l2(G,B) =

χ : G→ B |
∑
g∈G

χ(g)∗χ(g) converges in B

 .

Endowed with the norm

||χ|| = ||
∑
g∈G

χ(g)∗χ(g)||

l2(G,B) is a Banach space. The left regular representation λG,B of Cc(G,B)
on l2(G,B) is given by
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(λG,B(f)χ)(h) =
∑
g∈G

h−1f(g)χ(g−1h)

for each f ∈ Cc(G,B) and χ ∈ l2(G,B)

Definition 2.3. The reduced crossed product B or G is the operator norm
closure of λG,B(Cc(G,B)) in B(l2(G,B)).

In order to define the configuration space we need to recall the symmetric
product.

Definition 2.4. Let (X,x0) be a based CW-complex. Consider the natural
action of the symmetric group Sn over Xn. The orbit space of this action

SPn(X) = Xn/Sn

provided with the quotient topology is called the n-th symmetric product of
X. We denote elements in SPn(X) as formal sums

n∑
i=1

xi,

where xi ∈ X.

3. Equivariant connective K-homology and configuration
spaces

Let (X,Y ) be a properG-CW-pair andB a unital separableG-C*-algebra.
In this section we construct a configuration space DG(X,Y,B) represent-
ing the equivariant connective K-homology groups with coefficients in B.
First we will prove that the homotopy groups of DG(−,−, B)/G form an
equivariant homology theory in the sense of [12], then we define a natural
transformation from this functor to equivariant KK-theory groups that is
an isomorphism in proper orbits over positive indexes.

3.1. Configuration space.

Definition 3.1. Let (X,Y ) be a G-CW-pair (non-necessarily proper). Let B
be a separable unital G-C*-algebra. We say that a bounded *-homomorphism

F : C0(X,Y )→Mn(B)

is strongly diagonalizable if there are finitely generated mutually orthogonal
submodules M0, . . . ,Mk of Bn with

Bn =

k⊕
i=0

Mi

and characters xi : C0(X,Y ) → C, for i = 0, . . . k, with x0 ≡ 0 (the zero
character) such that for every f ∈ C0(X,Y ) and vi ∈Mi

F (f)(vi) = xi(f)vi.
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The space of the strongly diagonalizable operators from C0(X,Y ) to Mn(B)
with the compact-open topology is denoted by

CnG(X,Y ;B)

Note that each Mi in the above definition is a projective B-Hilbert mod-
ule.

Definition 3.2. Let G be a discrete group, B be a separable G-C∗-algebra
and (X,Y ) be a G-connected G-CW-pair. There is a natural inclusion

CnG(X,Y ;B) ⊆ Cn+1
G (X,Y ;B).

Let CG(X,Y ;B) be the G-space defined as

CG(X,Y ;B) =
⋃
n≥0

CnG(X,Y ;B),

with the weak topology. The G-action is defined as follows

G× CG(X,Y ;B)→ CG(X,Y ;B)

(g, F ) 7→ g · F = (f 7→ g[F (gf)]g−1),

for every f ∈ C0(X,Y ).

Now we will describe the space CG(X,Y ;B) as a configuration space.

Definition 3.3. Let B be a separable G-C*-algebra. Let M be a Hilbert
B-module, we say that M free of rank n if M is isomorphic to Bn.

Let L be a pre-Hilbert G-module over B, define the topological partial
monoid MODBL whose elements are closed, finitely generated projective
B-submodules of L, with the operation ⊕ defined only when the B-modules
are orthogonal in L. We have a natural topology on MODBL, considering
it as a as a subspace of B(L) (viewed as the space of projections). The
canonical base point is the zero operator 0.

Let (X,Y ) be a G-CW-pair, let B be a separable G-C*-algebra and L
a pre-Hilbert module over B, define the sets DG,n(X,Y ;B,L) as follows.
Here we follows ideas of [14]. Notice that in this we do not endow to the
sets DG,n(X,Y ;B,L) with a topology, this will be done in Theorem 3.4.

Let Wn ⊆ SPn((X/Y ) ∧MODBL, ({Y },0)) whose elements are sums
n∑
i=1

(xi,Mi)

such that every pair of elements in {M1, . . . ,Mn} are composable. W0 is
defined as a point.

The set DG,n(X,Y ;B,L) is the quotient of Wn by the relations

(x,M ′1) + (x,M ′2) +W = (x,M ′1 ⊕M ′2) +W,

for every W ∈ Wn. And

(x,0) = (+,0) = ({Y },M),
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for every x ∈ X/Y and for every M ∈MODBL.
There is a natural inclusion of DG,n(X,Y ;B) on DG,n+1(X,Y ;B) given

by add (+,0).
Over the set DG,n(X,Y ;B,L) we have a G-action induced from the G-

actions of G over X and B, defined as follows:

g ·

(
n∑
i=1

(xi,Mi)

)
=

n∑
i=1

(gxi, gMi),

for every g ∈ G and
∑n

i=1(xi,Mi) ∈ DG,n(X,Y ;B).
Endowed with that action DG,n(X,Y ;B,L) is a G-invariant closed sub-

space of DG,n+1(X,Y ;B,L).
Define the configuration space as the increasing union

DG(X,Y ;B,L) =
⋃
n≥0

DG,n(X,Y ;B,L).

When L = B∞ we denote DG(X,Y ;B,L) just by DG(X,Y ;B).
As the elements in CG(X,Y ;B) can be diagonalized we have the following

result

Theorem 3.4. Let (X,Y ) be a G-connected, G-CW-pair, then there is a
natural bijection of G-sets

CG(X,Y ;B) −→ DG(X,Y ;B).

Proof. Let F ∈ CnG(X,Y ;B), then there are characters xi : C0(X)→ C for
i = 0, . . . , n (with x0 ≡ 0) and mutually orthogonal submodules M0, . . . ,Mn

such that

F (f)(vi) = xi(f)vi,

for all vi ∈ Mi. Note that each Mi is a closed finitely generated projective
B-submodule of Bn, then we can define a G-map

CnG(X,Y ;B)
Φn−−→ DG,n(X,Y ;B)

F 7→
n∑
i=1

(xi,Mi).

On the other hand, let

n∑
i=1

(xi,Mi) ∈ DG,n(X,Y ;B)

one can associate a unique operator F ∈ CNG (X,Y ;B) for N large enough,
such that its eigenvalues are given by the corresponding characters xi :
C0(X)→ C, and where each xi has associated the eigenspace Mi.
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We define

Ξn : DG,n(X,Y ;B)→ CNG (X,Y ;B)
n∑
i=1

(xi,Mi) 7→ F.

Then Ξn is well defined being the quotient of the following map.

Wn
χ−→ CNG (X,Y ;B)

n∑
i=1

(xi,Mi) 7→ F

that satisfy the following conditions

• χ((x,M ′1) + (x,M ′2) +W ) = χ((x,M1 ⊕M2) +W )
• χ(x, 0) = χ(+,M).

It is clear that when we take colimits
⋃
n Φ and

⋃
n Ξ are inverse maps,

then
⋃
n Φ is a bijection.

�

Remark 3.5. We endow to the set DG(X,Y ;B) with the topology that be-
comes the map

⋃
n Φn a G-homeomorphisms.

From now on we identify CG(X,Y ;B) and DG(X,Y ;B).

Note that there is a canonical base point in DG(X,Y ;B) associated to
the zero map, we denote it by 0.

3.2. Connective K-homology.

Definition 3.6. We define a covariant functor from the category of G−CW -
pairs to the category of Z-graded abelian groups.

kGn (X,Y,B) = πn+1(DG(ΣX,ΣY ;B)/G,0).

In particular

kGn (X,B) = πn+1(DG(Σ(X+),+;B)/G,0).

We denote the elements in DG(X,Y ;M)/G by

n∑
i=1

(xi,Mi).

Now we will prove that kG∗ (−;B) satisfies the axioms for a G-homology
theory in the sense of [12].

Theorem 3.7. The functor kG∗ (−;B) is a G-homology theory.
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Proof. (1) Homotopy axiom
Let ft : (X,Y ) → (X ′, Y ′) (t ∈ [0, 1]) be G-homotopy, then the

map ft∗ : DG(X,Y ;B) → DG(X ′, Y ′;B) is a G-homotopy (because
the topology is the compact-open topology). Hence the functor
kG∗ (−;B) is G-homotopy invariant.

(2) Long exact sequence axiom
For a proper G-CW pair (X,Y ) we have an inclusion

DG(Y ;B)→ DG(X;B),

and a canonical projection

p∗ : DG(X;B)→ DG(X,Y ;B)

given by neglecting the points in Y .
To prove the long exact sequence axiom for kG∗ we will show that

p∗ : DG(X;B)/G→ DG(X,Y ;B)/G

is a quasifibration.

Theorem 3.8. The map

p∗ : DG(X;B)/G→ DG(X,Y ;B)/G

is a quasifibration.

Proof. The proof is similar to given in [18] and then we give only a
sketch. For this proof we need to recall the following lemma.

Lemma 3.9 ([6]). A map p : E → B is a quasifibration if any one
of the following conditions is satisfied:
(a) The space B can be decomposed as the union of open sets V1 and

V2 such that each of the restrictions p−1(V1) → V1, p−1(V2) →
V2, and p−1(V1 ∩ V2)→ V1 ∩ V2 are quasifibrations.

(b) The space B is the union of an increasing sequence of subspaces
B1 ⊆ B2 ⊆ · · · with the property that each compact set in B
lies in some Bn, and such that each restriction p−1(Bn) → Bn
is a quasifibration.

(c) There is a deformation Γt of E into a subspace E0, covering a
deformation Γ̄t of B into a subspace B0, such that the restriction
E0 → B0 is a quasifibration and Γ1 : p−1(b) → p−1(Γ̄1(b)) is a
weak homotopy equivalence for each b ∈ B.

Note that we have a filtration of DG(X,Y ;B) by closed G-spaces
in the following way

DnG(X;Y ;B) ={
m∑
i=1

(xi,Mi)

∣∣∣∣ m⊕
i=1

Mi is contained in a free submodule of B∞ of rank n

}
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The idea is to proceed by induction on n, using property (b) in
Lemma 3.9.

First we want to find a open set U ⊆ Dn+1
G (X,Y ;B)/G containing

DnG(X,Y ;B)/G and such that DnG(X,Y ;B)/G is a deformation re-
tract of U satisfying the condition (c) in Lemma 3.9. In other words
we have to find an open set U such that we have a commutative
diagram

DnG(X;B)/G
p
//

i '
��

DnG(X,Y ;B)/G

'i

��

p−1(U)

i
��

p
// U

i
��

Dn+1
G (X;B)/G

p
// Dn+1

G (X,Y ;B)/G

where i denotes the inclusion, such that U satisfy condition (c) on
Lemma 3.9.

Let ft : (X,Y ) → (X,Y ) a G-homotopy such that f0 = idX
and N ⊆ f−1

1 (Y ) is an open neighborhood of Y in X. Let U ⊆
Dn+1(X;B)/G be the orbit set of configurations with at least one
point in N , let U = p(U). Both sets are open. Consider the induced
maps

ft∗ : Dn+1
G (X;B)/G→ Dn+1

G (X;B)/G and,

f̄t∗ : Dn+1
G (X,Y ;B)/G→ Dn+1

G (X,Y ;B)/G,

The homotopy ft∗ is a weak deformation of U into DnG(X;B)/G
covering the weak deformation f̄t∗ of U into DnG(X,Y ;B)/G. To
apply Lemma 3.9 we only need to verify that

f1∗ : p−1(b)→ p−1(f1∗(b))

is a weak homotopy equivalence for every b ∈ p(U).
Let b ∈ U , then one can suppose that b does not contain elements

in Y with

b =
n∑
i=1

(xi,Mi) and f1∗(b) =
l∑

k=1

(f1(xik),Mik) with l ≤ n,

where {xik} is the subset of {xi} whose elements are in X − f1(Y ).
Then the set p−1(b) can be described as the set whose elements have
the form

b +
m∑
j=1

(yj ,M ′j)
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where yj ∈ Y and M ′j are composable elements in MODB(⊕Mi)
⊥.

Then we have a homeomorphism that collapses the part of a config-
uration contained in X − Y , given by

p−1(b)
hb−→DG(Y ;B, (⊕Mi)

⊥)/G

b +
m∑
j=1

(yj ,M ′j) 7→
m∑
j=1

(yj ,M ′j)

On the other hand the map f1∗ is defined as

f1∗ : p−1(b)→ p−1(f1∗(b))

b +
∑
j

(yj ,M ′j) 7→ f1∗(b) +
∑
j

(yj ,M ′j)

Note that although b does not have elements in Y , the image f̄1∗(b)
could have elements in Y . Then the map

p−1(f̄1∗(b))
hf̄1∗(b)−−−−→DG(Y ;B, (⊕Mik)⊥)/G

b +
m∑
j=1

(yj ,M ′j) 7→
m∑
j=1

(yj ,M ′j)

can be described as sending f1∗(b) +
∑

j(yj ,M
′
j) to b′+

∑
j(yj ,M

′
j),

where b′ is the part of f1∗(b) contained in N − Y . We have the
following commutative diagram

p−1(b)
hb

//

f1∗
��

DG(Y ;B,⊕(Mi)
⊥)/G

χ

��

p−1(f1∗(b))
hf1∗(b)

// DG(Y ;B,⊕(Mik)⊥)/G.

The map χ can be described as sending∑
j

(yj ,M ′j) 7→
∑
j

(yj ,M ′j) + b′.

As f1 is G-homotopic to the identity and one can deform b′ to 0
using a continuous path, the map χ is a homotopy equivalence and
then the same is true for f1∗. By part (c) in Lemma 3.9 we have
p : U → p(U) is a quasifibration.

The second part consist to prove that p |Qn+1 and p |Qn+1∩p−1(U)

are quasifibrations, where

Qn+1 = p−1(Dn+1
G (X,A;G)/G−DnG(X,A;G)/G),

and then use part (a) in Lemma 3.9. The argument is similar to the
given in Thm. 3.15 in [18].
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�

(3) Excision
It is a consequence of the isomorphism of G-C*-algebras between

C0(X1 ∪f X2, X2) and C0(X1, Y1) induced by the inclusion

i : (X1, Y1)→ (X1 ∪f X2, X2).

(4) Disjoint union axiom
We have a natural isomorphism of G-C∗-algebras

C0(
∐
i∈I

Xi) ∼=
⊕
i∈I

C0(Xi),

then we have a G-homeomorphism

DG(
∐
i∈I

Xi, B) ∼=
∐
i∈I
DG(Xi, B)

taking homotopy groups on orbit spaces we have the desired isomor-
phism.

�

In order to relate the homology theory kGi (−;B) with G-equivariant K-
homology groups with coefficients in B we will use the machinery of equi-
variant KK-theory, let us recall some necessary notions for our work, we
follow the treatment in [4].

Definition 3.10. Let C and B be Z/2-graded G-C∗-algebras. The set of
Kasparov G-modules for (C,B), that is the set of triples (E, φ, F ) such that

(1) E is a graded countably generated Hilbert B-module with a continu-
ous G-action.

(2) φ : C → B(E) is a G-equivariant graded *-homomorphism.
(3) F is a G-continuous operator in B(E) of degree 1, such that for

every c ∈ C and g ∈ G
(a) Fφ(c)− φ(c)F ,
(b) (F 2 − Id)φ(c),
(c) (F − F ∗)φ(c) and
(d) (g · F − F )φ(c)

are all in K(E).

There is a very general homotopy relation defined over Kasparov G-
modules (see for example Def. 17.2.2 in [4]). We denote a homotopy class of
a Kasparov G-module by [E, φ, F ] and by KKG(C,B) to the set of equiva-
lence classes of Kasparov G-modules for (C,B) under the homotopy relation.

We will define a natural transformation A∗(−) from kG∗ (−;B) to the equi-
variant KK-theory groups KKG

∗ (C0(−), B) such that

kGi (G/H,B) = [Si+1,DG(Σ(G/H+),+;B)/G]
An(G/H)−−−−−−→ KKi

G(C0(G/H), B)
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is an isomorphism for i ≥ 0 when H is a finite subgroup of G. The crucial
step is to assign to the G-orbit of a configuration over Σ(X+) a G-equivariant
*-homomorphism

C0(Σ(X+),+)→ KB.

This result is proved in the following lemmas that are inspired in Sections
2.2 and 2.3 in [17].

Lemma 3.11. Let b ∈ DG(Σ(X+),+;B)/G, then if F is a representing of
the orbit b, we define a ∗-homomorphism

A(F ) : Cc(Σ(X+),+)→ KB

f 7→
∑
g∈G

(g · F )(f).

Then

(1) The sum
∑

g∈G(g · F )(f) converges in the norm topology.

(2) A(F ) is continuous.
(3) A(F ) only depends on the orbit b and A(F ) is G-equivariant.

Proof. Let f ∈ Cc(Σ(X+),+) with support A ⊆ Σ(X+) = (I ×X+)/ ∼. If
F has eigenvalues given by characters

+, (t1, x1), . . . , (tn, xn) ∈ Σ(X+),

then for every g ∈ G, g · F has eigenvalues

+, (t1, gx1), · · · , (tn, gxn) ∈ Σ(X+).

As X is G-proper, the set {gxi | g ∈ G} is discrete for every i, then A∩{gxi |
g ∈ G} is finite, it implies that the sum

∑
g∈G(g · F )(f) only has finite

terms for each f ∈ Cc(Σ(X+,+)), it implies (1) and (2), on the other hand
statement (3) is obvious. �

As KB is complete there is a continuous extension of A(F ) to C0(Σ(X+),+),
as A(F ) only depends on b we can denote by A(b) the extension of A(F ) to
C0(Σ(X+),+).

Given a G-equivariant ∗-homomorphism

φ : C0(Σ(X+),+)→ KB,

one can assign an element in KKG(C0(Σ(X+),+), B), namely [KB, φ, 0].
Then we have a map

A : π0(DG(X+,+;B)/G,0)→ KK0
G(C0(Σ(X+,+)), B)

[b] 7→ [KB,A(b), 0)].

This map is well defined because homotopy of *-homomorphism is a spe-
cial case of the homotopy relation of the Kasparov cycles. Moreover, this
association is really a natural transformation A from π0(DG(−;B)/G) to
KK0

G(C0(−), B). To extend this natural transformation to all n ≥ 0 we
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need the following form of the Bott periodicity theorem. For a proof consult
[4, Corol. 19.2.2].

Theorem 3.12. For any G-C∗-algebras A and B , we have natural isomor-
phisms

KK1
G(A,B)

β−→ KKG(A,SB)

KK1
G(SA,B)

α−→ KKG(A,B)

where the suspension of B is

SB := {f : S1 → B | f is continuous and f(1) = 0}.

with the supremum norm.

Given a based continuous map l : S1 → DG(Σ(X+),+;B)/G, and f ∈
C0(Σ(X+,+)), we can induce a continuous map

A(l)(−)(f) : S1 →KB

θ 7→A(l(θ))(f),

it is an element of S(KB), that means that we have a map

Map0(S1,DG(Σ(X+),+;B)/G)→ Hom∗(C0(Σ(X+),+), S(KB))G,

and to every element in φ ∈ Hom∗(C0(X), S(KB)G we can associate the
Kasparov module (S(KB), φ, 0). Taking homotopy classes we have a homo-
morphism

kG0 (X,B)→ KKG(C0(Σ(X+),+), SB) ∼= KKG(C0(X), B),

where the last isomorphism is given by Theorem 3.12 identifying C0(Σ(X+),+)
with S(C0(X)). The transformation A0(X) is defined as the composition of
the above maps.

For every n ≥ 1 the transformation An(A) is defined in an analogue way
using Theorem 3.12 repeatedly.

Remark 3.13. As kG∗ is a G-homology theory it satisfies the suspension
axiom, moreover the same argument proves that we have a canonical iden-
tification

kG0 (pt;B) ∼= Groth(π0(CG(pt;B)/G)),

where Groth denotes the Grothendieck group associated to the monoid

π0(CG(pt;B)/G)

with direct sum.

Theorem 3.14. Let H be a finite group. The homomorphism

An(pt) : kHn (pt,B)→ KKn
H(C, B)

is an isomorphism for every n ≥ 0.
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Proof. The argument is similar to given in [18], we will give here for
completeness. Let α = (E, φ, F ) be a (C, B)-Kasparov H-module, for
n = 0 we will prove that α is homotopic to a module with the form
(M,1, 0) where M is a projective submodule of Bm for some m ≥ 1 with
1 : C → B(M) the canonical inclusion. The Hilbert B-module E is
Z/2Z-graded and the map φ is a projection of degree 0, which means that
E = E0⊕E1 and φ(1) = diag(P,Q) for projections P and Q. The operator

F has the form F =

(
0 S
T 0

)
. The Kasparov module is KK- equivalent to

β =

(
Im(P )⊕ Im(Q), 1, F̃ =

(
0 S̃

T̃ 0

))
(see [4, Ex. 17.3.4]). By Prop. 3.27

in [8] we can suppose that β is homotopic to (ker(F̃ )⊕ ker(F̃ ∗), 1, 0), where

ker(F̃ ) ⊕ ker(F̃ ∗) is a finitely generated projective H-equivariant Hilbert
B-submodule of Bn. The map

[α] 7→ [ker(F̃ )]− [ker(F̃ ∗)]

gives us an inverse for A0(pt) (here we are using the identification on Remark
3.13).

Note that we have a canonical identification between

Map0(Sn, CG(X,B)/G)

and

CG(X,SnB)/G

given by

Map0(Sn, CG(X,B)/G)→ CG(X,SnB)/G

f 7→ (ξ 7→ (θ 7→ f(θ)(ξ))

For f ∈ Map0(Sn, CG(X,B)/G), ξ ∈ C0(X) and θ ∈ Sn. Then we have an
isomorphism

Bott : kHn (pt,B)→ kH0 (pt, SnB)

such that the following diagram is commutative

kHn (pt,B)
Bott

//

An(pt)
**

kH0 (pt, SnB)

A0(pt)

��

KKH(C, SnB)

As A0(pt) is an isomorphism and Bott is an isomorphism then An(pt) is an
isomorphism also. �

In a similar way as in Thm. 5.5 in [18] it can be proved that k?
∗(−, B)

has an induction structure in the sense of [12], moreover using Theorem 3.14
and cellular induction it can be proved the following result.
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Theorem 3.15. The functor kG∗ (−, B) is naturally equivalent to the G-
equivariant connective homology theory associated to the functor
KKG(C0(−), B) over the category of proper G-CW pairs.

3.3. Recovering K-homology. Now we know that k∗G is a homology the-
ory is represented by the connective cover kG

B of the proper G-spectrum
associated to equivariant K-theory (with coefficients in B) as is defined for
example in Section 2 in [5].

Using the Bott periodicity is possible to define a natural transformation

β : kGi (−, B)→ kGi+2(−, B)

(in this case it is not an equivalence). With this β it is possible to recover
the (non-connective) equivariant K-homology from its connective version.

Proposition 3.16. For every proper G-CW-complex X there is a natural
isomorphism

lim−→
n

kGi+2n(X,B) ∼= KKG
i (C0(X), B).

The direct limit is taken over the maps β defined above.

Proof. We already know that kG
B is a proper G-spectrum representing

equivariant connective K-homology, as the periodicity maps β commutes
with the structure maps of kG

B then lim−→n
kG
B is a proper G-spectrum, then

lim−→n
kG∗+2n(−, B) is a G-homology theory, moreover lim−→n

A∗+2n is a natu-

ral transformation from lim−→n
kG∗+2n(−, B) to KK∗+2n

G (C0(−), B), such that

is an isomorphism on proper orbits G/H, then the natural transformation
is an equivalence. �

4. The analytic assembly map

In this section we will describe a version of the assembly map for the
Baum-Connes conjecture with coefficients, in terms of configuration spaces.

First we briefly recall the descent morphism of Kasparov. For details the
reader can consult [9, Lemma 3.9].

Let (E, φ, F ) be a G-equivariant (A,B)-Kasparov module. We can con-
sider Cc(G,E) as a pre-Hilbert B or G-module.

The operator norm closure of Cc(G,E) as a pre-Hilbert B or G-module
is denoted by E or G. It is a Hilbert B or G-module.

On the other hand, the natural Z/2Z-graded *-homomorphism

φ∗ : Cc(G,A)→ Cc(G,E)

can be extended to a Z/2Z-graded *-homomorphism

φ̃ : Aor G→ B(E or G).

Finally we define F̃ ∈ B(E or G) by

F̃ (α)(g) = F (α)(g) for α ∈ Cc(G,E).
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Let us denote by

jG([E, φ, F ]) = [E or G, φ̃, F̃ ].

Lemma 4.1. For any G-C*-algebras A and B there is a functorial mor-
phism

jG : KK∗G(A,B)→ KK∗(Aor G,B or G).

The map jG is called the descent morphism.

As X is proper and G-compact there is a non-negative h ∈ Cc(X) such
that

∑
g∈G h(g−1x) = 1 for all x ∈ X.

Define p ∈ Cc(G,Cc(X)) by

p(g, x) =
√
h(x)h(g−1x),

p is a projection in Cc(G,Cc(X)) and hence in C0(X)orG. Consider the
homomorphism

θ : C→ C0(X) or G

λ→ λp,

it induces a morphism

θ∗ : KKi(C0(X) or G,B or G)→ KKi(C, B or G).

We define the analytic assembly map as the composition

µGi = θ∗ ◦ jG : KKi
G(C0(X), B)→ KKi(C, B or G).

We proceed to define a version of the assembly map for the configuration
space description of equivariant K-homology.

Note that when G = 1 the natural transformation A defined on Lemma
3.11 can be described as

A(b) = [(b(1),1, 0)],

where 1 : C→ B(b(1)) is the canonical inclusion.

Definition 4.2. Let X be a proper, co-compact G-CW-complex, define the

connective assembly map µGi , as the map that complete the following com-
mutative diagram

kGi (X,B)
Ai
G(X)

//

µGi
��

KKG
i (C0(X), B)

µGi
��

ki({pt}, B or G)
Ai({pt})

// KKi(C, B or G)

By Theorem 3.14, we know that Ai({pt}) is an isomorphism, then

µGi =
(
Ai({pt})

)−1 ◦ µGi ◦ AiG(X).
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Remark 4.3. The map µG0 can be described as the map sending a configu-
ration to the reduced crossed product of the norm closure of the direct sum
of the orbits of the labels.

Proof. Let b ∈ DG(X,B)/G, as we know b can be identified with the G-
orbit of a configuration

∑
i(xi,Mi) where each xi corresponds to eigenvalues

and each Mi corresponding to eigenspaces. On the other hand

µG0 (A(b)) : C→ KBorG,

is completely determined by the image of 1 ∈ C, that in this case is the
reduced crossed product of the Hilbert B-module

⊕
i(G · Mi) ⊆ HBorG

(here we consider the topological direct sum) with the natural G-action.
Then one can define a version of the assembly map for configuration spaces

as

DG(X,B)/G
µG0−−→ D(pt,B or G)

n∑
i

(xi,Mi) 7→

(
pt,

n⊕
i=1

(G ·Mi) or G

)
.

�

It is clear that µGi commutes with the periodicity map β, then applying
Prop. 3.16 we have that the analytic assembly map µGi can be recovered in
the following way.

Theorem 4.4. Let X be a proper, co-compact G-CW-complex, there is a
commutative diagram where the horizontal arrows are isomorphism

lim−→n
kGi+2n(X,B)

lim−→n
Ai+2n
G (X)

//

lim−→n
µGi+2n

��

KKG
i (C0(X), B)

µGi
��

lim−→n
ki+2n({pt}, B or G)

lim−→n
Ai+2n({pt})

// KKi(C, B or G)

.

Finally we can define an assembly map equivalent to the analytic assembly
map as follows.

Theorem 4.5. Let G be a discrete group, and let B be a separable G-C*-
algebra, there is a commutative diagram

lim−→X⊆EG lim−→n
kGi+2n(X,B)

lim−→X⊆EG
lim−→n

Ai+2n
G (X)

//

lim−→X⊆EG
lim−→n

µGi+2n

��

RKKG
i (C0(EG), B)

µGi
��

lim−→n
ki+2n({pt}, B or G)

lim−→n
Ai({pt})

// KKi(C, B or G).

Where X varies over the co-compact subsets of EG.
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5. Final remarks

The above description of the assembly map is similar to the obtained in
[7], it will be good to explore how to use techniques of controlled categories
in the context of configuration spaces.

Note that in this model every element in (connective) equivariant K-
homology groups is represented by a diagonalizable operator, and the as-
sembly is described just by taking the reduced product of the image of the
operator. That description looks convenient to study the Baum-Connes con-
jecture in specific cases. For example by results in [15], [1] and [2] we have
explicit computations of the equivariant K-homology groups of SL(3,Z),
one can try to describe that elements in terms of operators appearing in this
work ans compute the assembly map. We will explore that question in a
future work.
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