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Almost flat bundles and homological
invariance of infinite K-area

Benedikt Hunger

Abstract. We extend the notion of an almost flat bundle over a closed
Riemannian manifold to bundles over simplicial complexes, and prove
that up to a constant factor, this notion is invariant under pullback
via maps which induce isomorphisms on fundamental groups. As an
application, we show that the property of having infinite K-area only
depends on the image of the fundamental class under the classifying
map of the universal cover.
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1. Introduction and statement of results

Connes, Gromov and Moscovici [CGM90] introduced the notion of al-
most flat K-theory classes in order to give a unified approach to different
special cases of the Novikov conjecture. We first recall the definition of an
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asymptotically flat K-theory class1 as introduced by Connes, Gromov and
Moscovici.

Let M be a differentiable manifold (not necessarily closed). The curvature
of a smooth vector bundle E →M with connection ∇ is the endomorphism-
valued 2-form R∇ ∈ Ω2(M ; End(E)) given by the formula

R∇(X,Y )s = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s.

Suppose in addition that E is a Hermitian vector bundle (i. e. a complex
vector bundle where the fibres are equipped with a smoothly varying Her-
mitian inner product) and the connection ∇ is compatible with the metric
(i. e. parallel transport is an isometry). Then End(E) is a bundle of normed
spaces where the norm over each fibre is simply the operator norm. If, ad-
ditionally, M is a Riemannian manifold with metric g, the norm of the
curvature of E is defined by

‖R∇‖g = sup
x∈M

sup
X∧Y ∈Λ2TxM
‖X∧Y ‖g≤1

‖R∇(X,Y )‖op.

Here the norm on Λ2TM is given by ‖X ∧ Y ‖2g = ‖X‖2g‖Y ‖2g − g(X,Y )2.

Now a class η ∈ K0(M) is asymptotically flat if there are sequences

(En,∇n) and (Ẽn, ∇̃n) of Hermitian vector bundles with compatible con-

nection over M , such that η = [En]− [Ẽn] for every n ∈ N, and such that

lim
n→∞

‖R∇n‖g = lim
n→∞

‖R∇̃n‖g = 0.

A priori, this notion of asymptotic flatness depends on the choice of metric
on M . However, if M is compact, then any two metrics are bi-Lipschitz
equivalent. Thus, given metrics g and g̃ on a compact manifold M , there is
a constant c > 0 such that

‖R∇‖g ≤ c‖R∇‖g̃
for all Hermitian bundles (E,∇) with compatible connection. In particular,
K-theory classes are asymptotically flat with respect to g if and only if they
are almost flat with respect to g̃.

Now suppose that (E,∇) is a Hermitian vector bundle with compatible
connection over M which satisfies ‖R∇‖g ≤ ε. We will call such a bundle
an ε-flat bundle (or an ε-almost flat bundle) over M . A fundamental result
from classical Riemannian geometry states that if we are given a bundle
with small curvature then parallel transport along a nullhomotopic curve γ
is cε-close to the identity, where c is a constant depending only on M and
γ. In fact, c may be chosen as the area of a disk filling γ.

1The term in [CGM90] is “fibré presque plat”, while the standard term is “almost flat
K-theory class”. However, following Manuilov and Mishchenko [MM01], we will use the
word almost for notions depending on a parameter ε > 0, and asymptotic for any kind of
limit as ε→ 0.
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We may use this to construct a map f : π1(M,x0) → U(l) as follows:
We fix a trivialization of the fibre over the base-point x0. For each class
c ∈ π1(M,x0), we choose a representing loop γ. We define f(c) to be the
parallel transport along γ with respect to the trivialization of the fibre over
the base-point. Then f might not be a group homomophism, but ‖f(gh)−
f(g)f(h)‖ ≤ c(g, h)ε, where c(g, h) > 0 is a constant depending only on g
and h, but not on the bundle E. Such data constitute a quasi-representation
of M , and in fact, almost flat bundles and quasi-representations of the fun-
damental group turn out to be two sides of the same coin. This relationship
between almost flat bundles and quasi-representations was already noted by
Connes, Gromov and Moscovici [CGM90] and was made precise by Carrión
and Dadarlat [CD18]. However, their exposition seems to be a bit ad hoc,
while similar results will be natural consequences of the results presented in
this paper.

There is another important consequence of the fact that parallel transport
along contractible curves is close to the identity. Namely, suppose that M
is smoothly triangulated, and σ is a simplex of M . Then, after a choice
of basis for the fibre over the barycentre of σ, we can trivialize the bundle
E over σ by parallel transporting this basis from the barycenter outwards.
Now if ρ is another simplex then the transition functions between those
two trivializations turn out to be Lipschitz functions, where the Lipschitz
constant is small if ε is small.

This idea enabled Mishchenko and Teleman [MT05] to show that every
ε-flat bundle can be pulled back from a bundle over Bπ1(M) along the
classifying map of the universal cover of M if ε is sufficiently small. In the
course of the proof of this statement, they introduced the concept of small
bundles over a simplicial complex: An ε-flat bundle is a vector bundle such
that the transition functions with respect to some family of trivializations
over the simplices are ε-Lipschitz. We will adapt to this definition in this
paper and show that it is, in fact, more or less equivalent to the old one
if we consider bundles over a triangulated manifold. Also, our results will
prove a generalization of the theorem of Mishchenko and Teleman, namely
that every ε-flat bundle is the pull-back of a cε-flat bundle over a finite
subcomplex of Bπ1(M) if ε is small enough.

Dual to the concept of almost flat K-theory classes is the notion of infinite
K-area introduced by Gromov [Gro96]. Namely, a Riemannian manifold M
has infinite K-area if, for every ε > 0, there is an ε-flat bundle (E,∇) over
M with at least one non-vanishing Chern number. Infinite K-area is one of
several important largeness properties of Riemannian manifolds introduced
by Gromov and Lawson [Gro86, GL80]. Brunnbauer and Hanke [BH10]
showed that other largeness properties, including enlargeability, are homo-
logically invariant in the sense that they only depend on the image of the
fundamental class under the classifying map of the universal cover. Their
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proof proceeds as follows: First they define enlargeability of an arbitrary ho-
mology class of a simplicial complex in such a way that a closed Riemannian
manifold M is enlargeable if and only if its fundamental class [M ] is enlarge-
able. Then they use an extension lemma to show that if a map f : X → Y
induces an isomorphism on fundamental groups, then a class η ∈ H∗(X) is
enlargeable if and only if f∗η ∈ H∗(Y ) is. Since, by definition, the classify-
ing map of the universal cover Φ: M → Bπ1(M) induces an isomorphism of
fundamental groups, this implies homological invariance of enlargeability.

Motivated by this scheme, we will define a homology class to have infinite
K-area if, for every ε > 0, there is an ε-flat bundle whose Chern classes
detect the given homology class. An extension result for ε-flat bundles will
then be used to show that infinite K-area is homologically invariant. This
also implies that the infinite K-area is invariant under p-surgery with p 6= 1,
a fact which has been proven directly by Fukumoto [Fuk15].

Hanke and Schick [Han12, HS08] used a notion of almost flat bundles of
Hilbert-A-modules for arbitrary C*-algebra to prove a special case of the
Novikov conjecture. It turns out that one needs precisely the Lipschitz con-
dition on the transition functions in order to prove their results. Therefore,
it makes sense not only to consider Hermitian vector bundles, but also bun-
dles of Hilbert A-modules for arbitrary C*-algebras A.

We conclude the introduction by giving an outline of the following sections
and the main results.

In section 2 we will give the precise definition of an ε-flat bundle of Hilbert
A-modules, and show that examples are given by Hilbert module bundles
with compatible connection having small curvature.

Section 3 provides the most important technical result of this paper, the
trivialization lemma 3.6. This states that every ε-flat bundle over a simply-
connected space is trivial if ε is small enough. As a corollary, one can
extend almost flat bundles defined on the boundary of a disk Dk to the
whole disk, since they are trivial on the boundary. The main ingredients in
the proof of the trivialization lemma are an extension statement for unitary-
valued Lipschitz functions (lemma 3.5) and a combinatorial version of the
statement that parallel transport along boundaries of small disks is close to
the identity (theorem 3.4).

In section 4, we will give first applications of the trivialization lemma:
Firstly, we show that almost flat bundles on the barycentric subdivision
of a finite-dimensional complex are almost flat with respect to the original
complex. Secondly, we give conditions under which an almost flat bundle
can be extended to an almost flat bundle over a larger subcomplex.

The rest of this paper will consist of rather easy applications of the triv-
ialization lemma, beginning with section 8, where we relate the concepts of
almost representations and quasi-representations to the concept of almost
flat K-theory classes.
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In section 5 we will use this to show that our definition of an almost
flat bundle corresponds to the definition via smooth connections of Connes,
Gromov and Moscovici [CGM90]. This will make use of an extension theo-
rem for connections with small curvature which is mainly due to Fukumoto
[Fuk15] in his proof of invariance of infinite K-area under certain surgeries.
This will be used later in order to show that our definition of infinite K-area
is a generalization of Gromov’s [Gro96] definition.

Next, in section 6, we use our results on extensions of almost flat bundles
in order to show the following functoriality result: Given a map f : X → Y ,
almost flat bundles over Y pull back to almost flat bundles over X, and if
the map f induces an isomorphism on fundamental groups, the pull-back
map is in fact surjective (in a certain sense) on almost flat bundles. This
gives the generalization of the theorem of Mishchenko and Teleman [MT05]
cited before. This section is independent of section 5.

We will put all those results together in section 7 to define a notion of
infinite K-area for arbitrary homology classes of simplicial complexes, and
to prove homological invariance, i. e. a class has infinite K-area if and only
if its image under the classifying map of the universal cover has infinite
K-area. This will directly imply that, for a Riemannian manifold, having
infinite K-area only depends on the image of the fundamental class under
the classifying map of the universal cover. We will show how to use this to
regather the theorem of Fukumoto [Fuk15] about the invariance of infinite
K-area under surgeries in codimension not equal to one.

Finally, in section 8, we relate the notions of almost and asymptotic rep-
resentations [MM01], of almost flat bundles, and of asymptotically flat K-
theory. This section only uses material from sections 3 and 4, and may be
read independently of the rest of this paper.

This work is based on the author’s Master’s thesis at Universität Augs-
burg. The author would like to thank his thesis advisor Bernhard Hanke for
his invaluable help and support, and the referee for their helpful remarks.

2. Almost flat bundles

2.1. Preliminaries and main definition. The principal aim of this sec-
tion is to give the definition of an almost flat bundle over an arbitrary
simplicial complex. It seems to be useful to consider not only Hermitian
bundles, but rather bundles of Hilbert C*-modules [Han12, Sch05]. We will
work in this more general setting, since it does not require any more work.

Let A be a C*-algebra. Recall that a Hilbert A-module is a right A-module
V together with an inner product V × V → A, (v, w) 7→ 〈v, w〉, satisfying

certain conditions [JT91], for instance that ‖v‖ =
√
‖〈v, v〉‖ defines a com-

plete norm on V . For example, a Hilbert C-module is the same thing as a
complex Hilbert space.

Given two Hilbert A-modules V and W , a map f : V → W is called
adjointable if there is another map f∗ : W → V (the adjoint of f) such that
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〈f(v), w〉 = 〈v, f∗(w)〉 for all v ∈ V , w ∈W . It follows from the axioms of a
Hilbert A-module that an adjointable map is a bounded linear operator, and
that it commutes with the action of A. We write LA(V,W ) for the set of all
adjointable maps V →W . In particular, LA(V,W ) is a normed vector space,
equipped with the operator norm. It turns out that LA(V ) = LA(V, V ) is a
C*-algebra with involution f 7→ f∗.

An isometry of Hilbert A-modules V and W is an adjointable bijection
f ∈ LA(V,W ), satisfying 〈f(v), f(v′)〉 = 〈v, v′〉 for all v, v′ ∈ V . Obviously,
a map f ∈ LA(V,W ) is an isometry if and only if f∗f = id and ff∗ = id. In
particular, for any Hilbert A-module V , the isometries V → V are precisely
the unitary elements of LA(V ). More generally, we write U(A) = {u ∈ A :
u∗u = uu∗ = 1} for the set of unitaries in an arbitrary C*-algebra A.

Example 2.1.

• Every C*-algebra A is a Hilbert A-module with respect to the inner
product 〈x, y〉 = x∗y.
• If V,W are Hilbert A-modules, then also V ⊕W is a Hilbert A-module,

with inner product 〈v + w, v′ + w′〉 = 〈v, v′〉 + 〈w,w′〉 for v, v′ ∈ V ,
w,w′ ∈W .
• If V is a Hilbert A-module, and p ∈ LA(V ) is a projection, i. e. p2 =
p = p∗, then also pV is a Hilbert A-module, and V ∼= pV ⊕ (1− p)V .

Now a finitely generated projective Hilbert A-module is a Hilbert A-
module which is isomorphic to pAk, where Ak = A ⊕ · · · ⊕ A and where
p ∈ LA(Ak) is a projection. Of course, finitely generated projective Hilbert
C-modules are nothing but finite-dimensional complex vector spaces with
Hermitian inner product.

Definition 2.2. [Sch05] A Hilbert A-module bundle over a space X is a
fibre bundle E → X with typical fibre a finitely generated projective Hilbert
A-module V , and with structure group U(LA(V )).

In particular, such a bundle may be described by local trivializations such
that the transition functions take values in U(LA(V )). This gives a well-
defined A-valued inner product on every fibre, such that every fibre is a
Hilbert A-module isomorphic to V . A Hilbert C-module bundle is the same
thing as a Hermitian vector bundle, since U(LC(V )) ∼= U(n) is the classical
group of unitary matrices.

In order to fix notations, recall that an (abstract) simplicial complex
consists of a set VX , the vertices, and a set X of non-empty finite subsets of
VX , the simplices, such that every one-element set {p} (p ∈ VX) is contained
in X, and such that ∅ 6= ρ ⊂ σ ∈ X implies that also ρ ∈ X, i. e., X is
closed under taking non-empty subsets. By abuse of notation, we will refer
to these data as the simplicial complex X. The dimension of a simplex
σ ∈ X is dim(σ) = #σ− 1 ∈ N. We denote by Xn the set of all simplices of
dimension n, called the n-simplices.
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If X is a simplicial complex and k ≥ 0 is a natural number, then X(k)

is the simplicial complex having the same set of vertices as X, and the
simplices of X(k) are precisely the simplices of X which have dimension at
most k.

The geometric realization of a simplicial complex X is the topological
space whose underlying set |X| is the set of all real linear combinations∑

p∈VX λp · p, such that

• the set of those p ∈ VX with λp 6= 0 is a simplex of X (and in
particular, there are only finitely many non-zero λp), and
•
∑

p∈VX λp = 1,
• λp ≥ 0 for all p ∈ VX .

For every simplex σ ∈ Xn, after a choice of ordering σ = {p0, . . . , pn} of its
vertices, there is an injective map

jσ : ∆n → |X|, (λ0, . . . , λn) 7→
n∑
i=0

λi · pi.

Here the standard n-simplex ∆n ⊂ Rn+1 is the convex hull of the stan-
dard unit vectors in Rn+1, i. e. the set of all tuples (λ0, . . . , λn) such that∑n

i=0 λi = 1 and λi ≥ 0 for all i. Now |X| is equipped with the weakest
topology such that all jσ are continuous. This means that a set U ⊂ |X| is
open if and only if all j−1

σ U are open. In particular, the maps jσ are embed-
dings of topological subspaces. We denote by |σ| = jσ(∆n) the geometric
realization of the simplex σ ∈ Xn. Thus, the elements of |σ| are convex
combinations of the vertices of σ.

Now let X be a simplicial complex, and let E → |X| be a Hilbert A-
module bundle modelled on the finitely generated projective Hilbert A-
module V , for instance V = Cn. Suppose that for each simplex σ ∈ Xn, we
have a trivialization Φσ : |σ| × V → j∗σE, i. e. Φσ|{x}×V is an isometry of
Hilbert A-modules for each x ∈ ∆n. For ordinary Hermitian bundles, this
simply means that Φσ respects the inner product in every fibre.

Now consider a simplex σ ∈ Xn and some sub-simplex ρ ⊂ σ ∈ Xk. We
define the transition function

Ψρ⊂σ : |ρ| → U(LA(V )), x 7→ Φρ(x, ·)−1 ◦ Φσ(x, ·).

Definition 2.3. An ε-flat family of trivializations (where ε > 0 is a number)
of a Hilbert A-module bundle E → |X| consists of trivializations Φσ : |σ| ×
V → j∗σE, such that the transition functions Ψρ⊂σ : |ρ| → U(LA(V )) are
Lipschitz functions with Lipschitz constant at most ε. Here |ρ| carries the
metric such that jρ : ∆k → |ρ| is an isometry. An ε-flat bundle is a Hilbert
A-module bundle together with an ε-flat family of trivializations. An almost
flat bundle is an ε-flat bundle for some ε.

Naturally, the isomorphism class of E is uniquely determined by the tran-
sition functions. Therefore, an equivalent formulation of an ε-flat bundle
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could simply specify a family of ε-Lipschitz transition functions satisfying
appropriate cocycle conditions.

2.2. Hilbert module bundles with connections. An important class of
examples for ε-flat bundles comes from Riemannian geometry. Namely, let
E →M be a smooth Hilbert A-module bundle over a Riemannian manifold
M . This means that M can be covered by open sets Ui such that E can
be trivialized over each Ui, and such that the transition functions Ui ∩
Uj → U(LA(V )) are smooth. A connection on E [Sch05] is a linear map
∇ : C∞(TM)⊗ C∞(E)→ C∞(E), X ⊗ s 7→ ∇Xs, such that

• ∇X(s · f) = s · (Xf) + (∇Xs) · f , and
• ∇gXs = g∇Xs

for every X ∈ C∞(TM), f ∈ C∞(M ;A), g ∈ C∞(M) and s ∈ C∞(E). Such
a connection is called compatible (with the metric) if X〈s, s′〉 = 〈∇Xs, s′〉+
〈s,∇Xs′〉 for all X ∈ C∞(TM), s, s′ ∈ C∞(E).

Example 2.4. If E = M × V is trivial, then a compatible connection ∂ on
E is given by partial derivative ∂Xs = d

dt

∣∣
t=0

s(γ(t)) where γ is a curve with

γ′(0) = X.

For any C*-algebra A, we consider the subspace of skew-adjoint elements
u(A) = {x ∈ A : x∗ + x = 0}. Then there is the following analogue of a
classical statement from Riemannian geometry:

Proposition 2.5 ([Sch05, Lemma 4.3]). Every compatible connection ∇ on
a trivial bundle E = M × V is of the form ∇Xs = ∂Xs + Γ(X)s where
Γ ∈ C∞(T ∗M ⊗ u(LA(V ))) is a smooth u(LA(V ))-valued 1-form. �

Now the curvature induced by ∇ is defined by the formula

R∇(X,Y )s = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s

for X,Y ∈ C∞(TM), s ∈ C∞(E). As in the case of vector bundles E, one
immediately sees that R∇ is tensorial in all three entries, i. e. R∇(gX, Y ) =
gR∇(X,Y ) = R∇(X, gY ) and R∇(X,Y )(s ·f) = (R∇(X,Y )s) ·f for X,Y ∈
C∞(TM), s ∈ C∞(E), f ∈ C∞(M ;A) and g ∈ C∞(M). This implies that
R∇ defines a LA(E)-valued 2-form.

Given a smooth Hilbert module bundle E → M and a smooth map
f : N → M , the bundle f∗E is obviously also a smooth Hilbert module
bundle over N . We denote the canonical bundle map by f̂ : f∗E → E. Of
course, every section s ∈ C∞(E) induces a section f∗s ∈ C∞(f∗E) which

is determined uniquely by the property that f̂ ◦ f∗s = s ◦ f . Now if E is
equipped with a connection ∇ then a connection f∗∇ on f∗E is determined
uniquely by the property that (f∗∇)X(f∗s) = f∗(∇f∗Xs).

Let γ : (a, b) → M be a smooth curve. A section s of E along γ is a
section of the pullback bundle γ∗E, and such a section is called parallel if
(γ∗∇)∂ts = 0 on (a, b). As for ordinary vector bundles, for every t ∈ (a, b)
and every s(t) ∈ (γ∗E)t, there exists a parallel section s along γ which



ALMOST FLAT BUNDLES AND INFINITE K-AREA 695

coincides with s(t) at point t. Thus, if γ : [0, 1] → M is a smooth curve
connecting p = γ(0) and q = γ(1), we may define a parallel transport map
Tγ : Ep → Eq by mapping an element v ∈ Ep to γ̂(s(1)) where s : [0, 1] →
γ∗E is the unique parallel section along γ which satisfies γ̂(s(0)) = v.

Now if M is triangulated (in this paper, a triangulated manifold will
always be smoothly triangulated in the sense that the simplices are smoothly
embedded) and if |σ| ⊂ M is the embedding of a simplex, then we may
trivialize E||σ| over |σ| by choosing an isometry of the Hilbert module V with
the fibre over the barycenter bσ ∈ |σ| and composing this isometry with the
parallel transport outwards along curves of the form t 7→ tx + (1− t)bσ for
x ∈ |∂σ|. Here the barycenter bσ ∈ |σ| is the point bσ =

∑
v∈σ

1
#σ · v. This

procedure then gives a trivialization Φσ : |σ| × V → j∗σE, and it is easy to
see that this trivialization via parallel transport preserves the inner product
if ∇ is compatible and if the isomorphism at b preserves the inner product.
Thus, in this case the transition functions take their values in U(LA(V )).

Theorem 2.6. Let M be a closed triangulated Riemannian manifold. Then
there is a constant c(M) > 0 such that the following holds. Let E → M be
a Hilbert A-module bundle over an arbitrary C*-algebra A. Assume that E
is equipped with a compatible connection, and let Φσ be trivializations via
parallel transport as defined above. Assume that

‖R∇‖g = sup
x∈M

sup
X∧Y ∈Λ2TxM
‖X∧Y ‖g≤1

‖R∇(X,Y )‖op ≤ ε.

Then the Φσ constitute an c(M)ε-flat family of trivializations on E.

For the proof of theorem 2.6, we will need that parallel transport along
loops which bound a small area is close to the identity. The proof of this
statement is not so easily found in the literature, in particular not for Hilbert
module bundles, so I will give it in appendix A. The precise formulation is
the following.

Proposition 2.7. Let f : [0, 1] × [0, 1] → M be a smooth map. We denote
parallel transport in E along the curve f(∂([0, 1]× [0, 1])) by the symbol T∂f .
Further, we consider a Hilbert A-module bundle E → M with compatible
connection ∇, and the associated curvature tensor R∇. Then

‖T∂f − id‖ ≤
∫ 1

0

∫ 1

0
‖R∇(∂sf(s, t) ∧ ∂tf(s, t))‖ ds dt.

Using this, we can prove theorem 2.6.

Proof of theorem 2.6. Let ρ ⊂ σ be simplices of M . We want to show
that the transition function Ψρ⊂σ : |ρ| → U(LA(V )) is Lipschitz with Lip-
schitz constant bounded by a multiple of ε. Since multiplication with a
constant unitary does not change the Lipschitz constant of a map, we may
assume that Φρ(bρ, v) is given by parallel transport of Φσ(bσ, v) along the
curve t 7→ tbρ + (1− t)bσ.
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For every pair of points a, b ∈ |σ| we denote by Ta,b : Ea → Eb the parallel
transport map along the straight line segment t 7→ tb+ (1− t)a. Note that
Ta,b preserves the inner product since the connection is compatible, and that

T−1
a,b = Tb,a. Then we have that

Φσ(p, v) = Tbσ ,pΦσ(bσ, v),

Φρ(p, v) = Tbρ,pTbσ ,bρΦσ(bσ, v)

for every point p ∈ |ρ|. This immediately implies that

Ψρ⊂σ(p) = Φρ(p, ·)−1Φσ(p, ·) = Φσ(bσ, ·)−1Tbρ,bσTp,bρTbσ ,pΦσ(bσ, ·).

Now consider arbitrary points x, y ∈ |ρ|. The above equations imply that

‖Ψρ⊂σ(x)−Ψρ⊂σ(y)‖ = ‖Ψρ⊂σ(x)Ψρ⊂σ(y)−1 − id‖
= ‖Φσ(bσ, ·)−1Tbρ,bσTx,bρTbσ ,xTy,bσTbρ,yTbσ ,bρΦσ(bσ, ·)− id‖
= ‖Tx,bρTbσ ,xTy,bσTbρ,y − id‖
= ‖Tbρ,yTx,bρTbσ ,xTy,bσ − id‖
= ‖(Tbρ,yTx,bρTy,x)(Tx,yTbσ ,xTy,bσ)− id‖
= ‖Tbρ,yTx,bρTy,x − Tbσ ,yTx,bσTy,x‖
≤ ‖Tbρ,yTx,bρTy,x − id‖+ ‖Tbσ ,yTx,bσTy,x − id‖

since Tbρ,bσ and Φσ(bσ, ·) preserve the norm. Thus, we have to show that
transport along triangles of the form ∆(y, x, bρ) is close to the identity when-
ever x and y are close. This is true because those triangles obviously bound
disks of a small area, so we may use proposition 2.7 to obtain the result.

To make this precise, let ι : ∆dimσ → |σ| be the embedding of the simplex
|σ|, where ∆dimσ is equipped with the standard metric as a subset of Eu-
clidean space. Since the simplex |σ| is compact and ι is a diffeomorphism,
there is a constant C1(σ) > 0 such that ι is C1(σ)-Lipschitz and ι−1 expands
areas by a factor of at most C1(σ). Since M is compact, and hence has only
finitely many simplices, we may choose C1(M) = C1(σ) independently of
σ. Now the filled triangle ∆̄(y, x, bρ) (which may be defined as the image,
under ι−1, of the convex hull conv(ι(y), ι(x), ι(bρ))) satisfies

area(∆̄(y, x, bρ)) ≤ C1(M) · 1

2
d(ι(x), ι(y)) · diam(∆dimσ)

≤ 1

2

√
2 · C1(M)2 · d(x, y).

Now proposition 2.7 implies that

‖Tbσ ,yTx,bσTy,x − id‖ ≤ area(∆̄(y, x, bρ)) · ‖R∇‖g

≤ 1

2

√
2 · C1(M)2 · ‖R∇‖g · d(x, y).
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Since the same calculation holds for ρ as well, the calculation above proves
that Ψρ⊂σ is Lipschitz with constant at most

√
2 · C1(M)2 · ‖R∇‖g. Thus,

we may take c(M) =
√

2 · C1(M)2. �

3. The trivialization lemma

The goal of this section is to prove the trivialization lemma which states
that an ε-flat bundle over a simply connected space is trivial if ε is small
enough. This is the basic result which enables us to extend ε-flat bundles to
larger ∆-sets under certain conditions. Namely, one can apply the trivial-
ization lemma to the sphere Sn−1 if n > 2 to trivialize the bundle over the
boundary ∂∆n of a simplex and thus to extend the bundle over the whole
simplex ∆n.

3.1. Transport in the 1-skeleton. We first want to show that for ε-flat
bundles, transport along contractible simplicial loops is close to the identity,
in analogy with proposition 2.7. This will be one of the main ingredients in
the proof of the trivialization lemma.

For any simplicial complex X, we define the simplicial path category PX
as follows: Objects of PX are the vertices of X, and morphisms from v0 to
vk are simplicial paths, i. e. tuples (v0, . . . , vk) such that {vi, vi+1} ∈ X1.
One should imagine simplicial paths as concatenations of the paths t 7→
(1 − t)vi + tvi+1. The composition of two simplicial paths Γ = (v0, . . . , vk)
and Γ′ = (vk, . . . , vk+l) is to be the path Γ ∗ Γ′ = (v0, . . . , vk+l).

Let E → |X| be an ε-flat bundle, and let σ = {v0, v1} ∈ X1 be an edge.
Then transport along (v0, v1) is the isometry of Hilbert A-modules

T(v0,v1) = Φσ(v1, ·)Φσ(v0, ·)−1 : Ev0 → Ev1 .

If Γ = (v0, . . . , vk) is a simplicial path then transport along Γ is defined as

TΓ = T(vk−1,vk) · · ·T(v0,v1) : Ev0 → Evk .

Of course, if Γ = Γ1 ∗ Γ2 then TΓ = TΓ2TΓ1 , so the associations v 7→ Ev,
Γ 7→ TΓ define a functor PX →MA into the category of Hilbert A-modules
and Hilbert A-module isometries.

We want to analyse the transport along contractible simplicial loops Γ.
We first consider the special case that Γ is the boundary curve of a 2-simplex.

Proposition 3.1. Let Γ = (v0, v1, v2, v0) be the simplicial loop along the
boundary of a 2-simplex σ = {v0, v1, v2} ∈ X2. If E is an ε-flat bundle over
X with ε ≤ 1/

√
2, then

‖TΓ − id‖ ≤ ε · 7
√

2.

Proof. By definition of the transition function we have that

Φρ(x, ·) = Φσ(x, ·) ◦Ψρ⊂σ(x, ·)−1
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for ρ = {vi, vj} ⊂ σ. It follows that

T(vi,vj) = Φσ(vj , ·)Ψρ⊂σ(vj)
−1Ψρ⊂σ(vi)Φσ(vi, ·)−1.

By definition we have that TΓ = T(v2,v0)T(v1,v2)T(v0,v1). Together it follows
that

TΓ = Φσ(v0, ·) · (Ψ{v2,v0}⊂σ(v0)−1Ψ{v2,v0}⊂σ(v2)) ·
· (Ψ{v1,v2}⊂σ(v2)−1Ψ{v1,v2}⊂σ(v1)) ·
· (Ψ{v0,v1}⊂σ(v1)−1Ψ{v0,v1}⊂σ(v0)) · Φσ(v0, ·)−1

holds. Since the Ψρ⊂σ are ε-Lipschitz maps and the vertices have distance√
2 we conclude that

‖Ψρ⊂σ(vj)
−1Ψρ⊂σ(vi)− id‖ ≤ ε

√
2.

Now we apply the following very useful lemma.

Lemma 3.2. Let 0 < ε ≤ 1. Let V1, . . . , Vn be Hilbert A-modules. Let
furthermore

P = AnBnAn−1Bn−1 · · ·A1B1 : V1 → V1

where all Ai : Vi → Vi+1 are isometries of Hilbert A-modules, Vn+1 = V1,
An · · ·A1 = id, and where all the Bi : Vi → Vi are linear with ‖Bi − id‖ < ε.
Then also ‖P − id‖ < cε, and c = c(n) = 2n − 1 depends only on n.

Proof. Replace Bi by (Bi− id)+id in the definition of P and expand. Then
one sees that P − id is the sum of 2n − 1 linear maps having norm bounded
by ε, since ε ≤ 1. The claim follows using the triangle inequality. �

To finish the proof of proposition 3.1 we can use the lemma with n = 3,
applied with V1 = V2 = V3 = V (the fibre of E), all Ai = id, and

Bi = Ψ{vi−1,vi}⊂σ(vi)
−1Ψ{vi−1,vi}⊂σ(vi−1)

(with indices modulo 3). Thus we get ‖TΓ − id‖ ≤ cε
√

2 with c = 23 − 1 =
7. �

Of course, the constants used in lemma 3.2 and proposition 3.1 are some-
what arbitrary: If we require other bounds for ε, then we get other constants.
However, since we will only consider ε-flat bundles when ε is small, this extra
flexibility is not important here.

We recall the following well-known description of the fundamental group
of X. The homotopy simplicial path category P ′X is the quotient category
of PX modulo the congruence relation generated by identifying (v0, v1, v0)
and (v0) for every {v0, v1} ∈ X1, and by identifying (v0, v1, v2, v0) and (v0)
for every {v0, v1, v2} ∈ X2.

The path groupoid of a space X is the category ΠX which has as objects
the points in X and as morphisms homotopy classes of paths [0, 1] → X
relative to the endpoints, where composition is given as concatenation. In
particular, π1(X,x0) = ΠX(x0, x0).
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Proposition 3.3. If X is a simplicial complex, the natural functor PX →
ΠX descends to a fully faithful functor P ′X → ΠX . In particular, π1(X,x0) ∼=
P ′X(x0, x0) for every vertex x0. �

This implies that if Γ ∈ PX(x0, x0) is a contractible simplicial loop then
Γ arises by a finite sequence of omissions or insertions of pieces of the form
(v0, v1, v0) where {v0, v1} ∈ X1, or of pieces of the form (v0, v1, v2, v0) where
{v0, v1, v2} ∈ X2. Note that omissions or insertions of the first type do
not change the transport map. The homotopical complexity hc(Γ) of such
a contractible simplicial loop Γ is the minimum number of insertions or
omissions of the second form which is needed to obtain Γ from the empty
loop.

Theorem 3.4. Let Γ be a contractible simplicial loop in X and n = hc(Γ)
its homotopical complexity as defined above. Then there exist constants
c(n), δ(n) > 0, depending only on n, such that for every ε-flat bundle over
X with ε ≤ δ(n) the transport along Γ satisfies the inequality

‖TΓ − id‖ ≤ c(n)ε.

Proof. We prove the claim by induction over n. If n = 0 there is nothing
to do, since insertions or omissions of the first type do not alterate the
transport map. Thus we assume that Γ = Γ1 ∗ Γ̂∗Γ2 with Γ̂ = (v0, v1, v2, v0)
and hc(Γ1,Γ2) = n− 1. Since the transport maps are isometries of Hilbert
A-modules, we get that

‖TΓ − id‖ = ‖TΓ2TΓ̂TΓ1 − id‖ = ‖TΓ̂TΓ1TΓ2 − id‖ = ‖TΓ̂TΓ2∗Γ1 − id‖.

By proposition 3.1, ‖TΓ̂−id‖ ≤ c(1)ε where c(1) = 7
√

2, and by induction we

may assume that ‖TΓ2∗Γ1− id‖ ≤ c(n−1)ε if ε ≤ min{1/
√

2, δ(n−1)}. If we
now let δ(n) = min{c(1)−1, c(n−1)−1, δ(n−1)} then max{c(1), c(n−1)}ε ≤
1, so we may use lemma 3.2 to show that

‖TΓ − id‖ ≤ 3 max{c(1), c(n− 1)}ε.

If, on the other hand, Γ = Γ1 ∗ Γ2 and hc(Γ1, Γ̂,Γ2) ≤ n− 1, then transport

along Γ is the same thing as transport along the curve Γ1∗(v0, v2, v1, v0)∗Γ̂∗
Γ2 and we may use the same proof to show that ‖TΓ−id‖ ≤ 3 max{c(1), c(n−
1)}ε. The claim of the theorem follows with c(n) = 3 max{c(1), c(n−1)}. �

3.2. The trivialization lemma. Now we can use the previous results to
prove the trivialization lemma. This states that ε-flat bundles over simply
connected spaces are trivial if ε is small enough. We can further achieve that
the transition functions from the ε-flat family to the global trivialization are
Lipschitz with small Lipschitz constant.

This is to say that if E → |X| is an almost flat Hilbert A-module bundle
with global trivialization ΦX : |X| × V → E, then, as before, we obtain the
transition function

Ψρ∈X : |ρ| → U(LA(V )), x 7→ Φρ(x, ·)−1 ◦ ΦX(x, ·).
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Now ΦX is a global ε-trivialization if the maps Ψρ∈X are ε-Lipschitz for every
simplex ρ ∈ X.

The proof of the trivialization lemma relies heavily on the following ex-
tension property for maps into the unitaries of a C*-algebra, for which we
give a proof in appendix B.

Lemma 3.5. There is a number C > 0 with the following property. Let A
be a C*-algebra with unit, and denote U(A) the set of unitary elements of A.
Let further α0 : Sn−1 → U(A) be a λ-Lipschitz map. If diamα0(Sn−1) ≤ 1

2 ,
there exists an extension α : Dn → U(A) with Lipschitz constant at most
Cλ. Here, the constant C is independent of A.

For the statement of the trivialization lemma, recall that a tree in a
simplicial complex X is a contractible subcomplex of the 1-skeleton of X.
Every simplicial complex contains a maximal tree, and it is a basic fact that
a tree is maximal in X if and only if it contains all the vertices of X.

Theorem 3.6 (Trivialization lemma). Let X be a finite-dimensional sim-
plicial complex. Then there are constants C(X), δ(X) > 0 such that the
following holds: Let T ⊂ X be a maximal tree in X. Let E → X be
an ε-flat bundle where ε ≤ δ(X). Suppose further that for every simplex
σ = {x, y} ∈ X1, there is a simplicial loop Γσ = (x, y) ∗Γ0

σ such that Γ0
σ is a

simplicial path in T and such that ‖TΓσ − id‖ ≤ ε. Then E admits a global
C(X)ε-trivialization.

Proof. Firstly, we want to prove that such a trivialization exists in the
case that X is a graph, i. e. 1-dimensional. First note that it is trivial to
construct a global 0-trivialization over the tree T . Now let σ = {x, y} ∈ X1

be a simplex, and let Γσ = (x, y)∗Γ0
σ be a simplicial loop as in the assumption

of the theorem. Consider the transition function

Ψσ,T : {x, y} → U(LA(V )), x 7→ Φσ(x, ·)−1 ◦ ΦT (x, ·).
Then we have that

‖Ψσ,T (x)−Ψσ,T (y)‖ = ‖ΦT (y, ·)−1T(x,y)ΦT (x, ·)− id‖
= ‖ΦT (y, ·)−1T−1

Γ0
σ

ΦT (x, ·)ΦT (x, ·)−1TΓσΦT (x, ·)− id‖
= ‖TΓσ − id‖ ≤ ε

by assumption and using that ΦT (y, ·)−1T−1
Γ0
σ

ΦT (x, ·) = id because ΦT is a

0-trivialization. Now by lemma 3.5, the map Ψσ,T posseses a Cε-Lipschitz
extension Ψ′σ,T . Of course, we have that ΦT (p, ·) = Φσ(p, ·) ◦ Ψ′σ,T (p) for

p ∈ {x, y}, so we can extend ΦT by the same formula onto |σ|, and the
transition function for σ will be Cε-Lipschitz.

In the general case, we proceed by induction on the dimension of Y .
Thus, we may assume that we already have a global ε-trivialization over
the k-skeleton of Y , where k ≥ 1, and we want to extend it to the (k + 1)-

skeleton. Let S = Y (k) =
⋃
i≤k Yi, and let ΦS be the corresponding global
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trivialization. Given a (k + 1)-simplex ρ, the map

Ψρ,S : |∂ρ| → U(LA(V )), x 7→ Φσ(x, ·)−1 ◦ ΦS(x, ·)

is ε-Lipschitz on every simplex of |∂ρ|. By connectedness of |∂ρ|, it is globally
ε-Lipschitz, and we may use lemma 3.5 again to find a Lipschitz extension on
the whole of |ρ|. As above, this completes the proof in the general case. �

Corollary 3.7. Let X be a finite simply connected simplicial complex. Then
there are constants C(X), δ(X) > 0 such that the following holds: Let E →
X be an ε-flat bundle where ε ≤ δ(X). Then E admits a global C(X)ε-
trivialization.

Proof. Choose a tree T ⊂ X, and arbitrary paths Γσ = (x, y)∗Γ0
σ for every

simplex σ = {x, y} ∈ X1 − T , such that Γ0
σ is a simplicial path in T . Then

these curves satisfy the assumptions from theorem 3.6 because of theorem
3.4. �

4. Applications of the trivialization lemma

4.1. Subdivision. As a first application of the trivialization lemma, we
show that almost flatness is invariant under barycentric subdivision.

The barycentric subdivision of a simplicial complex X is the simplicial
complex S(X) whose vertices are VS(X) = X and whose simplices are
S(X) = {{σ0, . . . , σk} : σi ⊂ σi+1}. This deserves the name subdivision,
as the following shows.

Lemma 4.1 ([Spa12]). For any simplicial complex X, there is a natural
homeomorphism ΞX : |S(X)| → |X| which is given on vertices by ΞX(σ) =∑

v∈σ
1

#σv, and which is affine linear on every simplex of S(X). �

Thus, we may identify |S(X)| and |X|, and in particular, a bundle E →
|X| is the same thing as a bundle E → |S(X)|. Now suppose that we have
an ε-flat bundle E → |X| (with respect to the triangulation X). If ρ is a
simplex of S(X) then the image of |ρ| in |X| is contained in the realization
of a simplex

⋃
ρ ∈ X,2 and the embedding ΞX : |ρ| → |

⋃
ρ| induces a

trivialization

Φρ = Φ⋃
ρ ◦ (ΞX × id) : |ρ| × V → E||ρ|.

Now if ρ′ ⊂ ρ, then Ψρ′⊂ρ = Ψ⋃
ρ′⊂

⋃
ρ ◦ ΞX .

This shows that almost flat bundles over X induce almost flat bundles
over S(X). The opposite statement is also true, as we will see momentarily.
For the proof of this statement, we will need the following useful observation.

2The reason for this notation is the following: If ρ ∈ S(X) is any simplex then ρ =
{σ0, . . . , σk} with σi ⊂ σi+1. Thus,

⋃
ρ =

⋃
σ∈ρ σ = σk. Now it follows from the formula

for ΞX that indeed ΞX(|ρ|) ⊂ |σk|. However, it is not important for the argument to know
what exactly

⋃
ρ is. It suffices that ΞX(|ρ|) ⊂ |

⋃
ρ|.
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Lemma 4.2. Let X be a metric space and let f, g : X → U(LA(V )) be
ε-Lipschitz maps for some ε > 0. Then the map X → U(LA(V )), x 7→
f(x) ◦ g(x), is 3ε-Lipschitz.

Proof. If x, y ∈ X, then

‖f(x)g(x)− f(y)g(y)‖ = ‖f(y)−1f(x)g(x)g(y)−1 − id‖ ≤ 3ε

by lemma 3.2. �

Proposition 4.3. Consider a finite-dimensional simplicial complex X and
its barycentric subdivision S(X). Then there are constants C1, C2, δ > 0,
depending only on the dimension of X, such that:

• every ε-flat bundle over X is canonically a C1ε-flat bundle over S(X),
and
• if ε ≤ δ, then every ε-flat bundle over S(X) admits a C2ε-flat family

of trivializations with respect to the triangulation X.

Proof. The first assertion follows from the discussion above since ΞX ||ρ| is
C1ε-Lipschitz with some constant C1 which depends only on the dimension
of ρ. In fact, C1 is the Lipschitz constant of the map ΞX defined above.

For the second assertion, let E → S(X) be an ε-flat bundle, and let ρ
be a simplex of X. Then |ρ| is the geometric realization of a contractible
sub-complex of S(X). Thus, by the trivialization lemma, there is a global
C(ρ)ε-trivialization Φρ on |ρ| whenever ε ≤ δ(ρ). Note that the constants
Cn = C(ρ) and δn = δ(ρ) in fact only depend on the dimension n = dim(ρ)
of the simplex, so that there are constants C ′ = max{Cn : n ≤ dimX} and
δ = min{δn : n ≤ dimX} which only depends on the dimension of X, such
that C(ρ) ≤ C ′ and δ(ρ) ≤ δ for every simplex ρ.

Now consider another simplex σ ⊂ ρ, and simplices σ′ ⊂ ρ′ of S(X) with
|σ′| ⊂ |σ| and |ρ′| ⊂ |ρ|. Then, for every x ∈ |ρ′|, we have that

Ψσ⊂ρ(x) = [Φσ(x, ·)−1Φσ′(x, ·)] · [Φσ′(x, ·)−1Φρ′(x, ·)] · [Φρ′(x, ·)−1Φρ(x, ·)].
This means that Ψσ⊂ρ is (locally) the product of three maps

|σ′| → U(LA(V ))

which are max(C ′, 1)ε-Lipschitz. Now a two-fold application of lemma 4.2
shows that Ψσ⊂ρ is 9 max(C ′, 1)ε-Lipschitz. Thus, we may take C2 =
9 max(C ′, 1). �

4.2. Extensions of almost flat bundles. We give another application of
the trivialization lemma, which will be the key observation for most of this
paper. Namely, we show that one may extend ε-flat bundles in an essentially
unique way.

Consider a simplicial complex X, and an ε-flat bundle E → |X(k)| over the

k-skeleton of X. We want to extend E to a Cε-small bundle E → |X(k+1)|
over the (k + 1)-skeleton of X. Such an extension is the same thing as a
global Cε-trivialization over the boundary |∂ρ| of every simplex ρ ∈ Xk+1.
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Now if k ≥ 2, then |∂ρ| ∼= Sk is simply connected, so that the trivialization
lemma (or rather: corollary 3.7) provides a constant C such that global Cε-
trivializations over all |∂ρ| exist if ε is small enough. If k = 0, then there
are trivially global 0-trivializations over all |∂ρ|. Thus, we have:

Theorem 4.4. For every k ∈ N − {1}, there are constants C = C(k), δ =
δ(k) > 0 with the property that for every simplicial complex X and every

ε-flat bundle E → |X(k)| with ε ≤ δ, there exists an extension of E to a

Cε-flat bundle over |X(k+1)|. �

For k = 1, the existence of such an extension implies that parallel trans-
port along the boundary of every simplex is small. In turn, this is also a
sufficient condition for the existence of an extension by the trivialization
lemma. This gives the following statement.

Theorem 4.5. There are constants C, δ > 0 such that the following holds:
Let E → |X(1)| be a bundle with trivializations Φσ : |σ| × V → E. Assume
that transport along the boundary of every 2-simplex of X is ε-close to the
identity where ε ≤ δ. Then there is an extension of E to a Cε-flat bundle
over |X(2)|. �

On the other hand, such extensions are unique in the following sense.

Theorem 4.6. Let X be a simplicial complex of dimension n. Then there
are constants C = C(n), δ = δ(n) > 0, depending only on the dimension of
X, such that the following holds: Let E,E′ → |X| be two ε-small bundles
modeled on the same projective Hilbert A-module A, where ε ≤ δ. We denote
the trivializations by Φρ,Φ

′
ρ, respectively. Assume that for every 1-simplex

{p, q} ∈ X1, we have that

‖Φq(q, ·)−1T[p,q]Φp(p, ·)− Φ′q(q, ·)−1T ′[p,q]Φ
′
p(p, ·)‖ < ε.

Then there is an isometry of bundles Ξ: E → E′ with the property that the
map

|σ| → U(LA(V )), x 7→ Φ′ρ(x, ·)−1ΞΦρ(x, ·)
is Cε-Lipschitz for every simplex σ ∈ X.

Proof. We prove the statement by induction on the dimension n. We begin
with the base case n = 1. For every vertex v ∈ X0, we let

Ξv = Φ′v(v, ·)Φv(v, ·)−1 : Ev → E′v.

If ρ = {p, q} ∈ X1 is an edge, then

‖Φ′ρ(p, ·)−1ΞpΦρ(p, ·)− Φ′ρ(q, ·)−1ΞqΦρ(q, ·)‖
= ‖Φ′q(q, ·)−1Φ′ρ(q, ·)Φ′ρ(p, ·)−1Φ′p(p, ·)− Φq(q, ·)−1Φρ(q, ·)Φρ(p, ·)−1Φp(p, ·)‖
= ‖Φ′q(q, ·)−1T ′[p,q]Φ

′
p(p, ·)− Φq(q, ·)−1T[p,q]Φp(p, ·)‖ < ε

by assumption.
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Now we may use lemma 3.5 to construct a C(1)ε-Lipschitz map f : |ρ| →
U(LA(V )) extending the map |∂ρ| → U(LA(V )), x 7→ Φ′ρ(x, ·)−1ΞxΦρ(x, ·),
provided that ε is small enough. Obviously, the map

Ξx = Φ′ρ(x, ·)f(x)Φρ(x, ·)−1 : Ex → E′x

extends the maps Ξv defined before, and they fit together to an isometry of
bundles Ξ1 : E|X(1) → E′|X(1) which satisfies the Lipschitz property stated
in the theorem.

Thus, consider n ≥ 2. We assume that we already have a bundle isometry
Ξn−1 : E|X(n−1) → E′|X(n−1) satisfying the demanded Lipschitz property. Let
ρ ∈ Xn be a simplex. By assumption, the map

|∂ρ| → U(LA(V )), x 7→ Φ′ρ(x, ·)−1ΞΦρ(x, ·)
is locally (thus, globally) C(n − 1)ε-Lipschitz, and if C(n − 1)ε is small
enough, we may use lemma 3.5 again to produce a C(n)ε-Lipschitz extension
f : |ρ| → U(LA(V )). As before, we may put Ξx = Φ′ρ(x, ·)f(x)Φρ(x, ·)−1,
which gives the desired extension of Ξn−1 to a bundle isometry Ξn. �

5. Almost flat bundles over Riemannian manifolds

In this section, let X be a triangulated closed Riemannian manifold, and
let E → X be an ε-flat bundle. We want to show that E may be equipped
with a smooth structure, a smooth Hermitian metric, and a compatible
connection ∇, such that the curvature R∇ satisfies ‖R∇‖ ≤ Cε for some
constant C > 0 which depends only on X and on the choice of triangulation.
Thus, for triangulated Riemannian manifolds, our definition of an almost flat
bundle strongly corresponds to the definition via the curvature tensor.

Here the idea is that one may define the connection inductively over neigh-
borhoods of the skeleta of X. Those neighborhoods will be constructed as
subsets of the union of the open stars of the skeleta in the barycentric sub-
division of X. The trivialization lemma will give a trivialization over those
open stars, by the following lemma.

Lemma 5.1. Let X be a simplicial complex, let σ ∈ Xk be a simplex, and
consider the barycentric subdivision S(X) of X. Then there is a contractible
subcomplex S ⊂ S(X), such that |S| is a neighborhood of |σ|.

Proof. Let S0 ⊂ X be the set of those simplices ρ which intersect σ. Since
the vertices of S(X) are in a bijective correspondence with the simplices
of X, we may define S ⊂ S(X) to be the subcomplex consisting of those
simplices whose vertices lie in S0.

Then |S| deformation retracts onto |σ|: Namely, if ρ ∈ S0 is a vertex of S,
then the mapping t 7→ t(ρ∩ σ) + (1− t)ρ is a well-defined linear curve in S,
since by definition of S0 we have that ρ∩σ 6= ∅. This map may be extended
linearly to a homotopy |S| × I → |S| from the identity to a retraction onto
|σ| because the realization of a simplex {σ0, . . . , σk} is contained in |σ| if
and only if all σi ⊂ σ. This implies that |S| is contractible.
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It is clear that |S| is a neighborhood of |σ|, since for every vertex ρ ∈ S0

with |ρ| ∈ |σ|, the open star of ρ is also contained in S0. �

Now the first step in constructing the smooth bundle with connection is
the following:

Proposition 5.2. Let X be a closed triangulated Riemannian manifold.
Then there is a constant C > 0, depending only on X, and a family of open
sets Uσ, one for every simplex σ ∈ X, such that |σ| ⊂ Uσ, with the following
property:

Let E → |X| be an ε-flat bundle. Then there are trivializations Θσ : Uσ ×
V → E|Uσ , such that the transition functions

Ψσ,ρ : Uσ ∩ Uρ → U(LA(V )), x 7→ Φσ(x, ·)−1Φρ(x, ·)

are all smooth and Cε-Lipschitz.

Proof. By proposition 4.3, we may assume that E is an C1ε-flat bundle
with respect to S(X). Let σ be any simplex, and consider the subcomplex
S ⊂ S(X) of the barycentric subdivision which was described in lemma 5.1.
Then, over |S|, we have a global C2ε-trivialization Θσ of E by theorem 3.6.
Thus, we may define Uσ to be the interior of |S|. The Lipschitzness is a
consequence of lemma 4.2.

Up to now, there is no reason for the transition functions to be smooth.
However, if we replace the sets Uσ by smaller open subsets, it is possible to
smoothen the transition functions using the following lemma.

Lemma 5.3. Let U0, U1, . . . , Uk ⊂ X be open subsets, and let Φi : Ui ×
V → E|Ui be trivializations such that the transition functions Ψi,j : Ui ∩
Uj → U(LA(V )), x 7→ Φi(x, ·)−1Φj(x, ·) are all λ-Lipschitz. Let Ki ⊂ Ui be
compact subsets which are completely contained in the image of some chart.
Suppose further that all Ψi,j are smooth if i, j ≥ 1.

Then there is a constant C > 0, depending on the sets Ui but not on
E nor V , and open subsets V0, . . . , Vk ⊂ X satisfying Ki ⊂ Vi ⊂ Ui, and a
trivialization Φ̃0 : V0×V → E|V0 such that the transition functions Ψ̃0,j : V0∩
Vj → U(LA(V )), x 7→ Φ̃0(x, ·)−1Φj(x, ·) are all smooth and Cλ-Lipschitz.

Now we may complete the proof of proposition 5.2. Namely, since the
simplices of X are smoothly embedded, they are all contained in a coordi-
nate chart, so we may apply the lemma iteratively to get smooth transition
functions which are still Lipschitz with controlled Lipschitz constant. �

Proof of lemma 5.3. Inductively, we may assume that Ψ0,i is smooth if
i < j. Restricting U0 to the image of a bi-Lipschitz chart around K0, we
may consider U0 to be a subset of Rn with the induced metric. Let V0 be
an open neighborhood of K0 in U0 such that V 0 ⊂ U0. For every natural
number k ∈ N, consider smooth functions φk : Rn → R≥0 having support
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in the k−1-ball around the origin, such that
∫
Rk φk = 1. Then, if k is large

enough, the map

Ψ′0,j : V0 ∩ Uj → LA(V ), x 7→
∫
Rn

Ψ0,j(y)φk(y − x) dy

is a well-defined smooth map, and it is easily seen to have the same Lipschitz
constant λ as Ψ0,j . Furthermore, ‖Ψ′0,j−Ψ0,j‖sup ≤ λ

k . We choose k so large

that λ
k <

1
3 .

Now choose an open neighborhood Vj ⊂ Uj of Kj such that V j ⊂ Uj , and
let χ : V0 → [0, 1] be a smooth map satisfying χ|V0∩Vj = 1 and χ = 0 on a
neighborhood of V0 − Uj . Let

Ψ′′0,j : V0 ∩ Vj → LA(V ), x 7→ χ(x)Ψ′0,j(x) + (1− χ(x))Ψ0,j(x).

Then we have that

Ψ′′0,j(x)−Ψ′′0,j(y) = χ(x)Ψ′0,j(x) + (1− χ(x))Ψ0,j(x)

− χ(y)Ψ′0,j(y)− (1− χ(y))Ψ0,j(y)

= χ(x)(Ψ′0,j(x)−Ψ′0,j(y)) + (χ(x)− χ(y))Ψ′0,j(y)

+ (1− χ(x))(Ψ0,j(x)−Ψ0,j(y))− (χ(x)− χ(y))Ψ0,j(y).

Now, using that 0 ≤ χ ≤ 1, the triangle inequality shows that

‖Ψ′′0,j(x)−Ψ′′0,j(y)‖ ≤ ‖Ψ′0,j(x)−Ψ′0,j(y)‖+ ‖Ψ0,j(x)−Ψ0,j(y)‖
+ ‖χ(x)− χ(y)‖‖Ψ′0,j(y)−Ψ0,j(y)‖,

so we see that Ψ′′0,j is C1λ-Lipschitz for C1 = 2 + L(χ)k−1. Finally, we

set Ψ̃0,j(x) = (Ψ′′0,j(x)Ψ′′0,j(x)∗)−1/2Ψ′′0,j(x). Because of lemma B.4, Ψ̃0,j is
Cλ-Lipschitz for some constant which does not depend on E nor on V .

Now let Φ̃0(x, ·) := Ψ̃0,j(x)−1Φj(x, ·) for every x ∈ V0∩Uj , and Φ̃0(x, ·) :=
Φ0(x, ·) outside of Uj . �

Now the idea is to construct a connection with small curvature inductively
on open neighborhoods of the skeleta of X. In order to extend this connec-
tion, we will need the following extension lemma for connections mainly due
to Fukumoto [Fuk15].

Lemma 5.4. Let B be a (not necessarily closed) Riemannian manifold with-
out boundary. Write X = B× [0, 5] equipped with the product metric. Then
there is a constant C > 0 with the following property:

Let E = X × V be a trivial Hilbert module bundle over X, and let E be
equipped with a connection ∇ which is compatible with the canonical Her-
mitian metric on E. We may write ∇ = ∂ + Γ, where ∂ denotes taking
directional derivatives and where Γ is a section of T ∗X ⊗ End(E). Assume
that ‖Γx‖ ≤ ε‖x‖ for every x ∈ TX, and that ‖R∇‖ ≤ ε, where ε ≤ 1.

Then there exists another compatible connection ∇̃ on E with the following
properties:
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• ‖Γ̃x‖ ≤ Cε‖x‖ for every x ∈ TX if ∇̃ = ∂ + Γ̃.

• ‖R∇̃‖ ≤ Cε,
• ∇̃ = ∇ over B × [0, 1], and

• ∇̃ = ∂ over B × [4, 5].

Proof. Let χ1 : [0, 5] → [0, 5] be a smooth map satisfying χ1|[0,1] = 1 and
χ1|[2,5] = 5. Consider the map Φ = id × χ1 : X → X. We define a new
connection∇′ = ∂+Γ′ by Γ′v = ΓΦ∗v for every v ∈ TX. In particular, ‖Γ′v‖ =

‖ΓΦ∗v‖ ≤ ε‖Φ∗v‖ ≤ cε‖v‖ where c = ‖(id × χ1)∗‖sup ≤
√

1 + ‖χ̇1‖2sup. Of

course, ∇′ = ∇ over B×[0, 1], but now Γ′(x,τ) = Γ(x,0) if x ∈ TB, τ ∈ Tt[2, 5].

It is easy to calculate that

R∇(x, y) = (∂xΓy − ∂yΓx) + [Γx,Γy] (1)

if x and y are vector fields on X such that [x, y] = 0. In particular, by a
calculation in local coordinates (or alternatively by the fact that ∇′ equals

the pullback connection Φ∗∇), this easily implies that R∇′ = Φ∗R∇, and

therefore ‖R∇′‖ ≤ c′ε for another constant c′. Thus, we may replace ∇ by
∇′, and in particular assume that Γ(x,τ) = Γ(x,0) over B × [2, 5].

Let χ2 : [2, 5] → [0, 1] be a smooth map which satisfies χ2|[2,3] = 1 and
χ2|[4,5] = 0. We let

Γ̃(x,τ) = χ2(t)Γ(x,0)

if τ ∈ Tt[2, 5]. Then Γ̃ = 0 on B× [4, 5] (and therefore ∇̃ = ∂ over B× [4, 5]

if we let ∇̃ = ∂+Γ̃), and Γ̃(x,τ) = Γ(x,τ) if τ ∈ Tt[2, 3], so Γ̃ may be extended

to B × [0, 5] by letting Γ̃ = Γ on B × [0, 2]. Obviously, still ‖Γ̃x‖ ≤ ε‖x‖. It

only remains to show that ‖R∇̃‖ ≤ Cε.
Now let q = (t, p), x = (v1, τ1) and y = (v2, τ2) with v1, v2 ∈ TpB and

τ1, τ2 ∈ Tt[0, 5]. Assume in addition that ‖x‖, ‖y‖ ≤ 1. Then (1) becomes

R∇̃(x, y) = (∂τ1χ2)Γy − (∂τ2χ2)Γx + χ2R∇(x, y) + (χ2
2 − χ2)[Γx,Γy].

We have ‖Γx‖, ‖Γy‖ ≤ ε, χ2 ≤ 1, |χ2
2 − χ2| ≤ 1

4 , ‖R∇(x, y)‖ ≤ ε and
∂τiχ2 ≤ ‖χ̇2‖sup. Therefore,

‖R∇̃(x, y)‖ ≤ 2‖χ̇2‖supε+ ε+
1

2
ε2 ≤ Cε

if C = 2‖χ̇2‖sup + 3
2 . Then ‖R∇̃‖ ≤ Cε because every vector α ∈ Λ2TM

with ‖α‖ ≤ 1 can be written as α = x ∧ y with ‖x‖, ‖y‖ ≤ 1. �

We have gathered all the technical details to prove the main theorem of
this section.

Theorem 5.5. Let X be a smoothly triangulated closed Riemannian man-
ifold. Then there are constants C, δ > 0 such that for every ε-flat bundle
E → X with ε ≤ δ there exists a compatible connection ∇ on E satisfying
‖R∇‖ ≤ Cε.
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Proof. Let Uσ, Θσ and Ψσ,ρ be as in proposition 5.2. Assume that ∇ has
already been constructed on a neighborhood N of the (k − 1)-skeleton of
X. We will also assume that if we write ∇ = ∂ + Γ with respect to any
of the trivializations Θσ, then ‖Γx‖ ≤ Ck−1ε for all x ∈ TUσ. We have to
construct ∇ on a neighborhood of the k-skeleton.

Let Xk denote the union of all the interiors of k-simplices of X. This is a
smooth submanifold, so it is the zero section in a tubular neighborhood Xk×
Rn−k ⊂ X. Now let σ be a simplex of dimension k, and let Tσ := ∆̊σ×Rn−k.
Note that for distinct σ, ρ of dimension k, Tσ and Tρ are disjoint. We may
assume that Tσ ⊂ Uσ. Since N is a neighborhood of the (k − 1)-skeleton,

we can identify ∆̊σ with Rk in such a way that {x ∈ Rk : ‖x‖ ≥ 1} × Rn−k
is contained in N .

Now {x ∈ Rk : 1 ≤ ‖x‖ ≤ 2} × {x ∈ Rn−k : ‖x‖ ≤ 1} is canonically
diffeomorphic to ([1, 2]×Sk−1)×{x ∈ Rn−k : ‖x‖ ≤ 1} and we may assume
that this space has the product metric with respect to the latter product
decomposition since any two metrics are in bi-Lipschitz correspondence on a
compact set. Now by lemma 5.4 we may assume that ∇ = ∂ on a neighbor-
hood of {1}×Sk−1×{x ∈ Rn−k : ‖x‖ < 1} with respect to Θσ, and therefore
can be extended by ∇ = ∂ on {x ∈ Rk : ‖x‖ ≤ 1} × {x ∈ Rn−k : ‖x‖ < 1}.
By 5.4, the induction hypotheses are fulfilled for the new connection, and
since the Tσ are all disjoint, this construction may be performed for all k-
simplices σ simultaneously. If now ρ is another simplex such that Uρ and
Uσ intersect, we may write ∇ = ∂ + Γρ with respect to Θρ. Using the Cε-
Lipschitzness of Ψσ,ρ and the fact that ΓρX = ∂XΨσ,ρ + ΓXΨσ,ρ and that Ψ
is unitary, it follows that ‖ΓρX‖ ≤ Ckε‖X‖. �

6. Pullbacks of almost flat bundles

In this section, we investigate pullbacks of almost flat bundles. It is
rather easy to see that pullbacks of almost flat bundles are still almost flat.
However, if a map induces an isomorphism on fundamental groups, there is
also a sort of converse for this statement which we will prove. The following
statement asserts that almost flat bundles are pulled back to almost flat
bundles.

Proposition 6.1. Let f : X → Y be a continuous map between simplicial
complexes, and suppose that X is finite-dimensional. Then there are con-
stants C, δ > 0 such that for all ε-flat bundles E → |Y | with ε ≤ δ the bundle
f∗E → |X| admits trivializations making it an Cε-flat bundle.

Proof. By proposition 4.3, we may replace X by a repeated barycentric
subdivision of itself, and therefore we may assume that f is simplicial. Now
the first statement immediately follows by pulling back the trivializations
over the simplices of Y , because a simplicial map is 1-Lipschitz on every
simplex. �
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In particular, the property of being an almost flat bundle does not depend
very much on the choice of triangulation, as wee see if we take f = id in
proposition 6.1:

Corollary 6.2. Suppose X and X ′ are finite-dimensional triangulations of
the same space, i. e. |X| ∼= |X ′|. Then there are constants C, δ > 0 such that
for every ε ≤ δ, every ε-flat bundle with respect to X admits the structure
of a Cε-flat bundle with respect to X ′. �

Conversely, if f induces an isomorphism of fundamental groups, and if X
and Y are finite, then every K-theory class of |X| which is represented by
ε-flat bundles for all ε > 0 is the pullback of a K-theory class of |Y | with the
same property. This clarifies a point left open in [MT05]. In fact, we are
going to prove a slightly stronger statement.

For the formulation of this statement, we give a few auxiliary definitions.
Recall from [BH10] that a π1-surjective subcomplex of a simplicial complex
Y is a subcomplex X ⊂ Y such that the inclusion induces an epimorphism
π1(X,x0)→ π1(Y, x0) for every vertex x0 ∈ X0. Denote by ΩX⊂Y the set of
all simplicial loops in X which are nullhomotopic as loops in Y . Consider a
map c : ΩX⊂Y → R>0. Now a (c, ε)-flat bundle is an ε-flat bundle E → |X|
such that ‖TΓ − id‖ ≤ c(Γ)ε for every Γ ∈ ΩX⊂Y . We shall prove a special
case first.

Lemma 6.3. Let X ⊂ Y be a finite connected π1-surjective subcomplex, let
X ′ ⊂ Y be another subcomplex containing X, and let c : ΩX⊂Y → R>0 be
a map as described above. Then there are constants C, δ > 0 and a map
c′ : ΩX′⊂Y → R>0 such that every (c, ε)-flat bundle E → |X| is isomorphic
to the restriction of a (c′, Cε)-flat bundle E′ → |X ′| provided that ε ≤ δ.
Proof. Suppose first that X ′ arises from X by adding a single vertex p and
an edge σ = {p, q} where q ∈ X0. In this case, we may choose arbitrary
trivializations over p and over σ. If Γ ∈ ΩX′⊂Y , transport along Γ is the same
thing as transport along the curve Γ′ which arises from Γ by elimination of
all occurences of the piece (q, p, q). Thus, we may set c′(Γ) = c(Γ′), C = 1
and δ arbitrary.

This shows that we may assume that X ′ and X have the same set of
vertices. By induction on the number of simplices in X ′ − X, we may
further assume that X ′ arises from X by adding a single simplex σ.

If σ = {p, q} is a 1-simplex, consider a simplicial path Γ from p to q in X.
Then Γ′ = Γ∗(q, p) is a simplicial loop in X ′, based at p. Since X ⊂ Y is π1-
surjective, there is another simplicial loop Γ′′, based at p, which is contained
in X and which is homotopic to Γ′ in Y . In particular, the path Γ̄′′ ∗ Γ′ is
nullhomotopic in Y , where Γ̄′′ is the path which traverses Γ′′ in the opposite
direction. Thus, we may assume that already Γ′ is nullhomotopic in Y . We
choose an extension of the bundle E, and a trivialization over σ such that
transport along Γ′ equals the identity map. In particular, transport along
Γ and along the path (p, q) are equal. Now suppose Γ̃ is an arbitrary loop



710 BENEDIKT HUNGER

in X ′ which is contractible in Y . Denote by Γ̃′ the path which arises from
Γ̃ by substituting every occurence of (p, q) by Γ, and every occurence of

(q, p) by the opposite Γ′. Since (p, q) and Γ are homotopic in Y , also Γ̃′ is

nullhomotopic in Y , and transport along Γ̃′ and along Γ̃ are equal. Thus, the
statement of the lemma follows with c′(Γ̃) = c(Γ̃′), C = 1 and δ arbitrary.

If the dimension of σ is 2, the statement follows using theorem 4.5. If
the dimension of σ is at least 3, we may use theorem 4.4 to get the desired
conclusion. �

We are now able to prove the statement in full generality.

Theorem 6.4. Let X ⊂ Y and X ′ ⊂ Y ′ be finite connected π1-surjective
subcomplexes, and let c : ΩX⊂Y → R>0 be a map. Suppose f : Y → Y ′

is a map which induces an isomorphism on fundamental groups, and where
f(X) ⊂ X ′. Then there are constants C, δ > 0 and a map c′ : ΩX′⊂Y ′ → R>0

such that every (c, ε)-flat bundle E → |X| is isomorphic to the pullback of a
(c′, Cε)-flat bundle E′ → |X ′| along f |X provided that ε ≤ δ.

Proof. Passing to a subdivision of X, we may assume that f |X is simplicial.
Consider the mapping cylinder M = X × [0, 1] t Y ′/ ∼, where ∼ is the
equivalence relation generated by the identification (x, 1) ∼ f(x). Now M
contains Y ′ as a deformation retract, and the composition X ⊂ M → Y ′

equals f |X . This implies that X × {0} is a π1-surjective subcomplex of M ,
and that ΩX⊂Y = ΩX⊂M . On the other hand, also M ′ = X × [0, 1]tX ′/ ∼
is a finite connected π1-surjective subcomplex of M which contains both
X × {0} and X ′. Thus, the statement of the theorem follows from lemma
6.3, applied to X × {0} and M ′ as subcomplexes of M . �

7. Homological invariance of infinite K-area

In this chapter, we will explain how to generalize the concept of infinite
K-area of closed Riemannian manifolds to homology classes of simplicial
complexes. The obvious definition is that a homology class η ∈ H∗(X;G)
is to be of infinite K-area if for every ε > 0 there are ε-flat bundles whose
Chern classes detect η. However, in view of the finiteness assumption of
theorem 6.4 it turns out that it is more useful to consider bundles which are
defined only on finite π1-surjective subcomplexes.

Definition 7.1. Let X be any simplicial complex with finitely generated
fundamental group, and let η ∈ H2∗(X;G). Consider a finite connected π1-
surjective subcomplex S ⊂ X. Suppose that there is a class ηS ∈ H2∗(S;G)
such that η = ι∗ηS . Now η is said to have infinite K-area if there is a
function c : ΩS⊂X → R>0 such that for every ε > 0 there is an (c, ε)-flat
Hermitian bundle E → S such that if f : S → BU classifies the bundle E,
then f∗ηS 6= 0 ∈ Hn(BU ;G).

Suppose S and S′ are two different finite connected π1-surjective subcom-
plexes and that there are classes ηS ∈ H2∗(S;G) and ηS′ ∈ H2∗(S

′;G) both
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mapping to η. Then there is a larger finite connected π1-surjective subcom-
plex T containing both S and S′, such that ηS and ηS′ map to the same
class in H2∗(T ;G). Thus, lemma 6.3 immediately implies that the definition
of infinite K-area is independent of the choice of S.

We now have the following immediate consequences of proposition 6.1 and
theorem 6.4.

Theorem 7.2. Let f : X → Y be a map between simplicial complexes, and
consider η ∈ H2∗(X;G).

• If f∗η has infinite K-area, then so has η,
• If η has infinite K-area and f∗ : π1X → π1Y is an isomorphism, then

also f∗η has infinite K-area. �

Theorem 7.3. An even-dimensional closed oriented manifold M2n has infi-
nite K-area if and only if its fundamental class [M ] ∈ H2n(M ;Q) has infinite
K-area.

Proof. This follows directly from theorem 2.6 and theorem 5.5. �

Corollary 7.4. A closed oriented Riemannian manifold M has infinite K-
area if and only if φ∗[M ] ∈ H2n(Bπ1(M);Q) has infinite K-area, where
φ : M → π1(M) is the classifying map of the universal bundle. �

Definition 7.5. A closed oriented manifold M is called essential if φ∗[M ] 6=
0, where φ : M → π1M classifies the universal bundle.

Corollary 7.6. A closed oriented manifold of infinite K-area is essential.
�

Finally, we may reprove the theorem of Fukumoto on the invariance of
infinite K-area under surgery. Let Mn be a differentiable manifold. If Sp ×
Dq ⊂M is an embedding, we consider the manifold

M# = (M − Sp × int(Dq)) ∪Sp×Sq−1 Dp+1 × Sq−1.

We say that M# is obtained from M by p-surgery.

Theorem 7.7 ([Fuk15]). Let M2n be a closed oriented manifold with infinite
K-area, and let M# be obtained from M by surgery of index p 6= 1. Then
also M# has infinite K-area.

Proof. Consider the trace

B = M × I ∪Sp×Dq×{1} Dp+1 ×Dq.

This is a bordism between M and M#, so [M ] and [M#] define the same
class in B. Now let f : M → Bπ1(M) be the classifying map of the universal
cover ofM . By theorem 7.2, f∗[M ] has infinite K-area. However, since p 6= 1,
we have that f |Sp×Dq is null-homotopic because πp(Bπ1(M)) = 0. Thus, f

can be extended to B, and f∗[M
#] = f∗[M ] has infinite K-area. Thus, by

theorem 7.2, also [M#] has infinite K-area. �
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In [Lis13] Listing gave the following definition of infinite K-area for ho-
mology classes of manifolds M . A class η ∈ H2∗(M ;G) has infinite K-area if
for every ε > 0 there exists a smooth Hermitian vector bundle E →M with
compatible connection ∇ such that ‖R∇‖ ≤ ε and f∗η 6= 0 if f : M → BU
classifies the bundle E. It is clear that our definition generalizes the defini-
tion of Listing. In the case G = Q the condition f∗η 6= 0 simply means that
some polynomial in the Chern classes of E detects η.

One could obviously change this definition by demanding that a particular
polynomial in the Chern classes, for instance the Chern character, should
detect η, which corresponds to f∗η lying in a particular vector subspace of
H2∗(BU ;Q). All statements in this section hold equally well for this kind
of definition.

On the other hand, one could also consider K-homology classes η ∈
K0(M), as was done by Hanke [Han12]. Here the condition on the bundles
would simply be that their class pairs non-trivially with η. Furthermore, in
this case one could consider arbitrary Hilbert A-module bundles E →M . In
this case, their index 〈[E], η〉 would be an element of K0(A), and one could
still demand it to be nonzero. All theorems in this section hold equally well
for this definition of infinite K-area.

Finally, one could consider classes of finite K-area as in [Lis13]. Here, the
K-area of a class η would be the largest number a ∈ [0,∞] such that there
is a function c as above with the property that for every ε > a−1 there is
a (c, ε)-flat bundle detecting η. Of course, proposition 6.1 and theorem 6.4
imply that there are appropriate generalizations of theorem 7.2. However,
since this notion of K-area strongly depends on the choice of triangulation,
it is not clear how this might be of any use.

8. Almost representations and quasi-representations

Let X be a simplicial complex with finitely presented fundamental group.
In this section, we will exhibit the relation between so-called almost repre-
sentations of π1X and almost flat bundles over X. Specifically, we will show
that an ε-almost representation of π1X gives a Cε-flat bundle over X and
vice versa. While similar statements have already been shown in [CD18],
and this relation has already been suggested in [CGM90], it will follow easily
from the ideas developped in this paper.

8.1. Almost representations of finitely presented groups. A group
Π is generated by a set L ⊂ Π if every element of Π can be written as
a product of elements of L and their inverses. Here we view the identity
element of Π as the empty product. Given such a generating set L ⊂ Π, we
may form the free group Fr(L) generated by the elements of L. Then there
is a natural surjective group homomorphism π : Fr(L)→ Π induced by the
inclusion map L ⊂ Π.
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Now a set of relations is a subset R ⊂ Fr(L) such that the kernel of π is
the smallest normal subgroup of Fr(L) which contains R. Thus, elements of
R are words in L∪L−1. A presentation of a group Π is a choice of such sets
L and R. In this situation, we write Π = 〈L | R〉. This means that every
element of Π may be written as a product of elements of L ∪ L−1. Such a
presentation is called finite if both L and R are finite.

Example 8.1. Consider a simplicial complex X, and let T ⊂ X be a max-
imal tree in X. Then there is the following presentation of π1(X):

For every edge σ = {v0, v1} ∈ X1 − T , we choose a loop Γσ = Γ1 ∗
(v0, v1)∗Γ2, where Γ1 and Γ2 are completely contained in T . Now the set of
generators L consists of the homotopy classes of the Γσ for all σ ∈ X1 − T .
The set of relations is indexed by the two simplices ρ ∈ X2, and implements
the fact that a curve along the boundary of ρ is null-homotopic. For instance,
if ρ = {v0, v1, v2} and neither of the edges of ρ is contained in T , then the
relation associated to ρ is [Γ{v0,v1}][Γ{v1,v2}][Γ{v2,v0}]. Note that this is a
finite presentation if X is finite.

Definition 8.2. A (unitary) ε-almost representation [MM01] of Π on the
Hilbert A-module V with respect to the presentation Π = 〈L | R〉 is a group
homomorphism φ : Fr(L)→ U(LA(V )) with the property that ‖φ(r)− id‖ <
ε for every r ∈ R. We denote the set of such ε-almost representations by
Rε(L | R).

Two almost representations φ, ψ : Fr(L)→ U(LA(V )) are δ-close if

‖φ(g)− ψ(g)‖ ≤ δ
for all g ∈ L ⊂ Fr(L).

The following proposition lists a few elementary properties of almost rep-
resentations.

Proposition 8.3. Let Π = 〈L | R〉 and Π′ = 〈L′ | R′〉 be two finite presen-
tations of groups, and let f : Π′ → Π be a group homomorphism. Denote the
canonical projections by π : Fr(L)→ Π and π′ : Fr(L′)→ Π′.

a) Let s : Fr(L′)→ Fr(L) be a homeomorphism satisfying π ◦ s = f ◦ π′.
Then there is a constant C1 > 0, depending on the presentations
and the choice of section, such that φ ◦ s ∈ RC1ε(L

′ | R′) whenever
φ ∈ Rε(L | R).

b) In the same situation, there is a constant C2 > 0, such that φ ◦ s and
ψ ◦ s are C2δ-close whenever φ, ψ ∈ Rε(L | R) are δ-close.

c) If s1, s2 : L′ → Fr(L) satisfy π ◦ s1 = f ◦ π′ = π ◦ s2, then there is a
constant C3 > 0, such that the almost representations φ◦s1 and φ◦s2

are C3ε-close whenever φ ∈ Rε(L | R).
d) Suppose that f is an isomorphism. If s : L′ → Fr(L) and s′ : L →

Fr(L′) are such that π ◦ s = f ◦ π′ and π′ ◦ s = f ◦ π, then there is
a constant C4 > 0, such that φ is C4ε-close to φ ◦ s ◦ s′ whenever
φ ∈ Rε(L | R).
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Proof. a) For the first statement, note that π ◦ s = f ◦ π′ implies that
s(R′) ⊂ kerπ. Since R′ is finite, there is a number N ∈ N such
that every element of s(R′) can be written as a product of at most
N conjugates of elements of R ∪ R−1. Thus, if r ∈ R′, there are
elements r1, . . . , rk ∈ R ∪ R−1 and w1, . . . , wk ∈ Fr(L) such that
s(r) = (w−1

1 r1w1) · · · (w−1
k rkwk), and therefore ‖φ ◦ s(r) − id‖ =

‖(φ(w1)−1φ(r1)φ(w1)) · · · (φ(wk)
−1φ(rk)φ(wk))− id‖ ≤ C1ε by lemma

3.2, where C1 = C1(N) depends only on the maximum number of
factors needed.

b) Consider g ∈ L′, and let s(g) = g1 · · · gn where each gi ∈ L ∪ L−1.
Write φi = φ(gi), ψi = ψ(gi). Then, by assumption, ‖φi − ψi‖ ≤ δ,
φ ◦ s(g) = φ1 · · ·φn, and ψ ◦ s(g) = ψ1 · · ·ψn. We have to show that
‖φ1 · · ·φn − ψ1 · · ·ψn‖ ≤ Cδ. By induction, we only have to consider
the case where n = 2, where the claim follows from lemma 3.2 because
‖φ1φ2 − ψ1ψ2‖ = ‖(ψ−1

1 φ1)(φ2ψ
−1
2 )− id‖.

c) Note that φ(s1(g))−1φ(s2(g)) ∈ kerπ for every g ∈ L′, and proceed
as above to show that ‖φ(s1(g))− φ(s2(g))‖ = ‖φ(s1(g))−1φ(s2(g))−
id‖ ≤ C3ε.

d) Since (s ◦ s′(g))−1g ∈ kerπ, the same argument as above shows that
‖φ(s ◦ s′(g)) − φ(g)‖ = ‖φ((s ◦ s′(g))−1g) − id‖ ≤ C4ε for every g ∈
L. �

Definition 8.4 ([MM01]). Let Π = 〈L | R〉 be a finitely presented group,
and A a C*-algebra. An A-asymptotic representation of Π with respect to
this presentation is a series φ = (φn : Fr(L)→ U(LA(Vn)))n∈N, such that:

• every Vn is a projective sub-module of some Ak,
• for every ε > 0, there is a number N ∈ N, such that φn is an ε-almost

representation whenever n ≥ N ,
• for every δ > 0, there is a number N ∈ N, such that φn and φm are
δ-close whenever n,m ≥ N , where φn and φm are considered to have
values in some large enough U(LA(Ak)).

Two asymptotic representations φ = (φn) and ψ = (ψn) are equivalent if
for every δ > 0, there is a number N ∈ N, such that φn and ψm are δ-close
whenever n,m ≥ N .

We denote by Ras(L | R;A) the set of equivalence classes of A-asymptotic
representations.

Now proposition 8.3 immediately implies the following:

Proposition 8.5. a) Suppose Π has two finite presentations Π = 〈L |
R〉 and Π = 〈L′ | R′〉. Then the sets Ras(L | R;A) and Ras(L

′ |
R′;A) are in canonical 1-to-1-correspondence. We will simply write
Ras(Π;A) for any choice of finite presentation.

b) Every group homomorphism f : Π→ Π′ induces a map Ras(Π
′;A)→

Ras(Π;A). �
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8.2. Almost representations and almost flat bundles. Let X be a
simplicial complex with finitely presented fundamental group

Π = π1(|X|, x0) = 〈L | R〉.
Choose representing simplicial loops Γg for every element g = [Γg] ∈ L.
Then every r ∈ R is a word in L ∪ L−1, so these choices associate to r a
contractible simplicial loop Pr.

Proposition 8.6. Suppose that E → |X| is an ε-flat bundle. Then transport
along the curves Γg gives a Cε-almost representation of π1(|X|, x0), where
C is a constant depending only on X, the presentation, and the choices of
the Γg’s.

Proof. Apply theorem 3.4 to the curves Pr. Since there are only finitely
many of them, the constant from the theorem may be chosen for all Pr
simultaneously. �

We are going to prove that the reverse also holds true, i. e. an ε-almost
representation of π1(|X|, x0) with respect to the given presentation induces
a Cε-small bundle E → |X| (for another constant C) such that transport
along the curves Γg induces an ε-almost representation which is close to the
one we started with.

Theorem 8.7. Let X be a finite simplicial complex, and choose a finite
presentation π1(|X|, x0) = 〈L | R〉 of the fundamental group of X. In
addition, choose representing curves Γg for the generators g = [Γg] ∈ L.
Then there are constants δ, C > 0, depending on X, the presentation of the
fundamental group, and the choices of the representing curves, such that the
following holds:

Suppose φ : Fr(L)→ U(LA(V )) is an ε-almost representation of the fun-
damental group π1(|X|, x0) where ε ≤ δ. Then there exists a Cε-flat bundle
E → |X| with the property that transport along the curves Γg gives an almost
representation which is Cε-close to φ.

Proof. We will first restrict to the case where the presentation π1(|X|, x0) =
〈L0 | R0〉 is the one described in example 8.1, and we assume that the
representing curves are precisely the loops Γe described there. Now we take
E|X(1) to be the trivial bundle X(1) × V → X(1), and let the trivializations
Φρ : |ρ| × V → E||ρ| be the identities (x, v) 7→ (x, v) if ρ ∈ T is contained in
the maximal tree. Now we may trivialize E||e| over every edge e ∈ X1 − T
such that transport along e equals φ([Γe]). We may extend this bundle with
trivializations to a Cε-flat bundle E → |X| using theorems 4.4 and 4.5. In
turn, this extended bundle obviously induces the almost representation φ.

Next we want to reduce the general case to the one described above.
Thus, consider an arbitrary finite presentation π1(|X|, x0) = 〈L | R〉, and
simplicial loops Γg associated to the elements g ∈ L. We may now choose
a homomorphism s0 : Fr(L0) → Fr(L) such that πs0 = π0. This defines a
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C0ε-almost representation φ ◦ s0 : Fr(L0) → U(LA(V )) by proposition 8.3.
Now we may construct the bundle E → |X| as above, for the representation
φ ◦ s̃0.

We have to show that transport along the curves Γg gives an almost
representation which is close to φ. Every Γg is of the form

Γg = γ0
g ∗ e1 ∗ γ1

g ∗ e2 ∗ . . . ∗ ekg ∗ γ
kg
g

where each ei is an edge in X1−T , and each γig is completely contained in T .
This defines a homomorphism s : Fr(L) → Fr(L0) via g 7→ [Γekg ] · · · [Γe1 ].

Here again, the Γei are the loops associated to the edges ei in example
8.1. Now transport along Γg equals transport along the compositions of the
curves Γekg , i. e., it equals φ ◦ s0 ◦ s(g). Thus, transport along the curves Γg
gives the almost representation φ◦s0◦s, which is Cε-close to φ by proposition
8.3. �

It also turns out that the isomorphism class of the bundle is uniquely
determined by the almost representation induced by the transport, as the
following theorem shows.

Theorem 8.8. Let X be a finite simplicial complex, and let π1(|X|, x0) =
〈L | R〉 be a finite presentation of the fundamental group of X. Suppose that

we have two choices Γg, Γ̃g for the generators in L. Then there is a constant
δ > 0, depending on X, the presentation, and the choices Γg and Γ′g such
that the following holds:

If E → |X| and E′ → |X| are δ-flat bundles such that transport in E
along the curves Γg and transport in E′ along the curves Γ′g give almost
representations which are δ-close, then E and E′ are isomorphic bundles.

Proof. As in example 8.1, we choose a maximal tree T ⊂ X, and 0-
trivializations of E and E′ over T . Thus, parallel transport along edges
in T becomes trivial with respect to these choices of trivializations.

Again, we consider the standard presentation π1(|X|, x0) = 〈L0 | R0〉 from
example 8.1. As in the proof of theorem 8.7, parallel transport along the
edges in X1 − T gives almost representations φ0, φ

′
0 : Fr(L0) → U(LA(V )).

The choices of Γg and Γ′g induce group homomorphisms s, s′ : Fr(L) →
Fr(L0), such that φ0 ◦ s and φ′0 ◦ s′ are the almost representations given
by parallel transporting along the curves Γg and Γ′g, respectively.

Choose a homomorphism s : Fr(L0) → Fr(L) satisfying πs = π0. By
assumption, φ◦s and φ◦s′ are δ-close, so that φ◦ s̃◦ s̃0 and φ◦ s̃◦ s̃0 are C0δ-
close by proposition 8.3. On the other hand, these almost representations are
C1δ-close to φ0 and φ′0, respectively, again by proposition 8.3. This implies
that φ0 and φ′0 are C2δ-close. However, this C2δ-closeness is precisely the
condition for theorem 4.6 to work, so the bundles are isomorphic if δ is small
enough. �
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8.3. Asymptotically flat K-theory. A class η ∈ K0(X;A) can be rep-
resented as the difference η = [E1]− [E2] of two Hilbert A-module bundles
Ei → |X|. We denote by K0

ε (X;A) ⊂ K0(X;A) the set of those classes such
that E1 and E2 may be chosen to be ε-flat. In addition, we define the sub-
set of asymptotically flat K-theory classes by K0

af(X;A) =
⋂
ε>0K

0
ε (X;A).

That is, a class η ∈ K0(X;A) is asymptotically flat if for every ε > 0, there
exist ε-flat Hilbert A-module bundles E1, E2 → |X| such that η = [E1]−[E2].

Note that there is an obvious notion of direct sum for asymptotic rep-
resentations, which makes Ras(π1X;A) into a semi-group. Now theorems
8.7 and 8.8 show that there is a well-defined semi-group homomorphism
Ras(π1X;A)→ K0

af(X;A) which induces a group homomorphism

α : Gr(Ras(π1X;A))→ K0
af(X;A).

Furthermore, one can show that α is compatible with the pullback maps
of asymptotic representations and asymptotically flat K-theory, so it gives
a natural transformation. It is not quite clear if α is surjective. Namely,
it might be that an almost flat K-theory class is represented by almost
representations which are not close. In any case, α is certainly not an
isomorphism (Ras(π1X;A) is not even abelian), so it would be interesting
to examine the kernel and cokernel of α.

Appendix A. Parallel transport and curvature

In this section, we will prove proposition 2.7 which states that parallel
transport along curves which bound a small area is small. This proof follows
ideas from [Ran09] and an unpublished proof by Jost-Hinrich Eschenburg,
who in turn learned the idea from Hermann Karcher.

In the course of the proof we will need the following lemma:

Lemma A.1. Let E → [0, 1] be a smooth Hilbert A-module bundle with (not
necessarily compatible) connection ∇. We denote parallel transport along γ
by Tγ(t) : Et → E1 and consider a section s : [0, 1]→ E. Then

∂t(Tγ(t)s(t)) = Tγ(t)∇∂ts(t)

for all t ∈ [0, 1].

Proof. If E is modeled on a free Hilbert A-module, the statement is easily
shown by writing both sides in a parallel frame. In the general case, one
has to consider another bundle E′ such that E ⊕ E′ is modeled on a free
Hilbert A-module. It is easily possible to extend the connection on E to a
connection on E ⊕ E′, so the general case follows from the free case. �

Proof of proposition 2.7. Take x ∈ Ef(0,0) with ‖x‖ = 1, and let x′ =
P∂fx. For s ∈ [0, 1], let X(s, 0) ∈ Ef(s,0) be the parallel translate of x along
the curve s 7→ f(s, 0), and for (s, t) ∈ [0, 1] × [0, 1], let X(s, t) ∈ Ef(s,t) be
the parallel translate of X(s, 0) along the curve t 7→ f(s, t).
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Furthermore, let P(s,t) : Ef(s,t) → Ef(1,1) be defined by first parallel trans-
lating along t 7→ f(s, t) and then along s 7→ f(s, 1). Now, by definition,
P(0,0)x

′ = X(1, 1), and P(0,0)x = P(0,1)X(0, 1), so that

P(0,0)(x
′ − x) = P(1,1)X(1, 1)− P(0,1)X(0, 1) =

∫ 1

0
∂s
(
P(s,1)X(s, 1)

)
ds.

Since P(s,1) is parallel transport along the curve s 7→ (s, 1), lemma A.1 im-
plies that ∂s(P(s,1)X(s, 1)) = P(s,1)∇∂sf(s,1)X(s, 1). Now X(s, 0) is parallel
along s 7→ f(s, 0) by definition, so that ∇∂sfX(s, 0) = 0. Again with lemma
A.1, it follows that

P(s,1)∇∂sfX(s, 1) =

∫ 1

0
∂t(P(s,t)∇∂sfX(s, t)) dt

=

∫ 1

0
P(s,t)∇∂tf∇∂sfX(s, t) dt

for all s ∈ [0, 1]. In addition, we have that∇∂tfX(s, t) = 0 since X is parallel

in the t-direction by definition. Therefore, R∇(∂tf ∧ ∂sf)X = ∇∂tf∇∂sfX.
Since ∇ is compatible with the metric, one can easily show that paral-

lel transport preserves the metric and in particular the norm. Thus, the
equations combine to give

‖x′ − x‖ ≤
∫ 1

0

∫ 1

0
‖R∇(∂tf ∧ ∂sf)‖ dt ds. �

Appendix B. Unitary elements of C*-algebras

In this section, we will give a proof of lemma 3.5, which states that ε-
Lipschitz maps from the sphere Sn−1 into the unitary elements U(A) of an
arbitrary C*-algebra A may be extended to Cε-Lipschitz maps on the whole
disk Dn whenever ε is small enough. Here C is some universal constant
which depends neither on the C*-algebra A, nor on the dimension of the
sphere Sn−1. The result will be important even for the classical case of
Hermitian vector bundles since it shows that maps into the set of unitary
matrices can be extended as above with a constant C independent of the
size of the matrices.

We begin with a statement which allows the extension of Lipschitz maps
Sn−1 → V to Lipschitz maps on Dn if V is a normed vector space.

Lemma B.1. There is a universal constant C0 > 0 with the following
property: Let β0 : Sn−1 → V be a λ-Lipschitz map into a normed vec-
tor space V . Assume additionally that β0(Sn−1) ⊂ BR(0) for a number
R > 0 and β0(s0) = 0 for some s0 ∈ Sn−1. Then there is an extension
β : Dn → BR(0) ⊂ V which is Lipschitz with constant at most C0λ.

Proof. A first idea would be to define the extension by β(t ·x) = tβ0(x) for
x ∈ ∂Dn, t ∈ [0, 1]. This certainly gives a continuous extension, but it turns
out that the problem of calculating the Lipschitz constant for the resulting
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map is not as easy as it looks. However, one can simply do the contraction
on a ring and extend constantly by zero on the interior, i. e.

β(t · x) =

{
(2t− 1)β0(x), t ≥ 1

2 ,

0, t ≤ 1
2 .

Then, using that {x ∈ Rn : 1
2 ≤ ‖x‖ ≤ 1} and Sn−1 × [0, 1] are bi-Lipschitz

equivalent (and that, by an explicit calculation, the Lipschitz constants do
not depend on n), one can easily deduce the statement. �

We will need the statement that every function given by holomorphic
functional calculus is Fréchet differentiable.

Lemma B.2. Let f : Uε → C be a holomorphic map where Uε = {z ∈ C :
‖z‖ < ε} is a ball of radius ε > 0 around 0 ∈ C. Let f(z) =

∑∞
n=0 λnz

n be
the power series expansion of f around 0. Furthermore, consider the power
series f̂(z) =

∑∞
n=0 |λn|zn. If A is a Banach algebra, then the map

f̃ : {x ∈ A : ‖x‖ < ε} → A, x 7→
∞∑
n=0

λnx
n

is well-defined and Fréchet differentiable, and the operator norm of the
Fréchet differential of f̃ at x ∈ A is bounded by f̂ ′(‖x‖). For every x in

the domain of f̃ , we have that xf̃(x) = f̃(x)x. This is a special case of the
so-called functional calculus.

Proof. For every point x in the domain of f̃ , it is easy to see that the series

∆x : A→ A, h 7→
∞∑
n=1

λn

n−1∑
k=0

xkhxn−k−1

converges and gives a linear map with operator norm bounded by f̂ ′(‖x‖).
Now a straightforward calculation shows that this is the Fréchet differential
of f̃ at x. �

Now let A be a C*-algebra. We write U(A) = {u ∈ A : uu∗ = u∗u = 1},
u(A) = {v ∈ A : v∗ = −v} and HA = {v ∈ A : v∗ = v}. Elements of
U(A) are called unitary, elements of u(A) are called skew-Hermitian, and
elements of HA are called Hermitian. Obviously A = u(A)⊕HA as a vector
space. We denote by π : A → u(A) the projection onto the first summand
with respect to this decomposition

If v ∈ u(A), we have that v2 ∈ HA. Now we consider the map f : {z ∈ C :

‖z‖ < 1
2} → C which is given by f(z) = (1 + z2)1/2. Since f(z) = f(−z), f

is really a power series in z2. so if we define f̃ as in lemma B.2, we see that
f̃ maps elements of u(A) into HA.
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Lemma B.3. There is a constant L > 0, independent of A, such that the
so-defined map

f̃ :

{
v ∈ u(A) : ‖v‖ < 1

2

}
→ HA, v 7→ (1 + v2)1/2

is Lipschitz with constant at most L.

Proof. By lemma B.2, the map f is Fréchet differentiable, and the operator
norm of the differential is bounded by a differentiable map f̂ ′ : (−1, 1)→ R
which is independent of A. This map is bounded by some constant L > 0
if it is restricted to the closed interval [0, 1

2 ], so the operator norm of the
Fréchet differential of f is bounded by L on its whole domain. Now the
result immediately follows immediately using the convexity of the domain
of f . �

Now let v ∈ u(A) with ‖v‖ < 1
2 and w = f̃(v) ∈ HA. Since w arose from

v by functional calculus, the elements v and w commute, so

(v+w)(v+w)∗ = (v+w)(−v+w) = −v2 +[v, w]+w2 = −v2 +(1+v2) = 1,

and, similarly, (v + w)∗(v + w) = 1. Therefore, v + w ∈ U(A).
On the other hand, the projection π : A → u(A) is a linear map with

operator norm equal to 1 because π(a) = 1
2(a−a∗). Thus, ‖π(x)‖ = ‖π(x)−

π(1)‖ = ‖π(x − 1)‖ ≤ ‖x − 1‖ for all x ∈ A where we used that 1 ∈ HA.
Now we can prove the announced extension result for maps into U(A).

Proof of lemma 3.5. We consider the map

g :

{
v ∈ u(A) : ‖v‖ < 1

2

}
→ U(A), v 7→ v + (1 + v2)1/2

and the projection π : U(A) ⊂ A = u(A) ⊕HA → u(A). Using lemma B.3,
one easily shows that g is (1 + L)-Lipschitz, where L > 0 is independent of
A. We have already noted that π is 1-Lipschitz.

Now let α0 : Sn−1 → U(A) be as in the statement of the theorem. We
choose s0 ∈ Sn−1 and consider the map

α1 : Sn−1 → u(A), x 7→ π(α0(s0)−1α0(x)).

Since α0(s0)−1 ∈ U(A) and multiplication by unitary elements is an isometry
in C*-algebras, we have that α1(Sn−1) ⊂ {v ∈ u(A) : ‖v‖ < 1

2}. Further-
more, α1 is Lipschitz with constant at most λ. We may now extend α1 to
a (C0λ)-Lipschitz map α2 : Dn → {v ∈ u(A) : ‖v‖ < 1

2} using lemma B.1.
Now we let

α : Dn → U(A), x 7→ α0(s0) · gα2(x).

Then the Lipschitz constant of α is at most C0(1+L)λ, and it is rather clear
that α|Sn−1 = α0. This shows the statement of the lemma with constant
C = C0(1 + L), which is in fact independent of A. �
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Note that the condition on diam(α0) is immediate if λ ≤ 1
4 .

The methods in this chapter can also be used to prove the following
statement, which is used in the proof of lemma 5.3.

Lemma B.4. The map

f :

{
x ∈ GL(A) : dist(x, U(A)) <

1

3

}
→ U(A), x 7→ (xx∗)−1/2x

is well-defined, equals the identity on U(A), and is Lipschitz with some Lip-
schitz constant L which does not depend on A.

Proof. Consider an element x in the domain of f . Then ‖xx∗ − 1‖ =
‖(x − u)x∗ + u(x − u)∗‖ ≤ ‖x − u‖(‖x‖ + ‖u‖) < 1

3(2 + 1
3) = 7

9 . Because

of lemma B.2, the map HA → HA sending h to h−1/2 is well-defined and
L1-Lipschitz on the set of all h ∈ HA with ‖h − 1‖ ≤ 7

9 . Using this, the
Lipschitzness of f is straightforward. The other assertions of the lemma are
clear. �
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