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Higher regularity for the fractional
thin obstacle problem

Herbert Koch, Angkana Rüland and Wenhui Shi

Abstract. In this article we investigate the higher regularity proper-
ties of the regular free boundary in the fractional thin obstacle problem.
Relying on a Hodograph-Legendre transform, we show that for smooth
or analytic obstacles the regular free boundary is smooth or analytic,
respectively. This leads to the analysis of a fully nonlinear, degenerate
(sub)elliptic operator which we identify as a (fully nonlinear) perturba-
tion of the fractional Baouendi-Grushin Laplacian. Using its intrinsic
geometry and adapted function spaces, we invoke the analytic implicit
function theorem to deduce analyticity of the regular free boundary.
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1. Introduction

In this article we study higher regularity properties of the regular free
boundary associated with the “fractional thin obstacle problem”. More
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precisely, given an obstacle φ : B′1 → R and assuming that s ∈ (0, 1), we
consider local minimizers of the functional

J(w̃) =

∫
B+

1

(
1

2
|∇w̃|2 + w̃f̃

)
x1−2s
n+1 dx,

in the convex, constrained set

K := {w̃ ∈ H1(B+
1 , x

1−2s
n+1 dx) : w̃ ≥ φ in B′1}.

Here B+
1 := {x ∈ Rn+1 : |x| ≤ 1, xn+1 ≥ 0} denotes the upper half-ball and

B′1 := B+
1 ∩ {xn+1 = 0} is the co-dimension one ball on the boundary of

Rn+1
+ . If the obstacle φ and the inhomogeneity f̃ are assumed to be in a

suitable class, classical arguments involving variational inequalities ensure
the existence of local minimizers.
The relation of a minimizer with the co-dimension one (hence “thin”) set, on
which it is constrained to lie above the obstacle, gives rise to three sets which
are of importance in the sequel: The contact set Λw̃ := {x ∈ B′1 : w̃ = φ},
in which the obstacle is attained by the minimizer, the non-coincidence set
Ωw̃ := {x ∈ B′1 : w̃ > φ}, on which the minimizer is strictly larger than
the obstacle, and the free boundary Γw̃ := ∂Ωw̃ ∩ B′1, which separates the
previous two sets.
Carrying out variations of the functional J around minimizers, yields that a
minimizer of J in the class K solves a Signorini problem for the degenerate
elliptic operator ∇ · x1−2s

n+1 ∇:

∇ · x1−2s
n+1 ∇w̃ = x1−2s

n+1 f̃ in B+
1 ,

w̃ ≥ φ on B′1,

lim
xn+1→0+

x1−2s
n+1 ∂n+1w̃ ≤ 0 on B′1,

lim
xn+1→0+

x1−2s
n+1 ∂n+1w̃ = 0 on B′1 ∩ {u > φ}.

(1)

Relying on previous work on the fractional thin obstacle problem (in partic-

ular on [4, 21]) and on regularity assumptions for the inhomogeneity f̃ , these
equations will be understood in a pointwise sense in the sequel. In particular
this holds for the complementary (or Signorini) boundary conditions on B′1.

In investigating the higher regularity properties of solutions to the frac-
tional thin obstacle problem, we build on the seminal work on the obstacle
problem for the fractional Laplacian by Caffarelli, Salsa and Silvestre [4].
As explained in Section 1.3.1 there is a close connection between the above
Signorini problem (1) and the obstacle problem for the fractional Laplacian
(c.f. [5, 4] and Section 1.3.1). Due to this reason we refer to the problem
(1) as the “fractional thin obstacle problem”. This close relationship also
allows us to exploit the results from [4] in our context.

Let us briefly recall the, to us, most relevant results from [4] (for a more
detailed summary we refer to Section 1.3.1). Firstly, optimal regularity of
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the solutions is established: Assuming that f̃ ∈ C0,1(B+
1 ) and that φ ∈

C2,1(B′1), and assuming that the free boundary Γw̃ is compactly contained
in B′1/2 (which permits us to extend the local problem for the fractional

Laplacian (1) into a global problem, c.f. Section 1.3.1), the solution w̃ to
(1) has the optimal regularity (up to the boundary B′1)

∂iw̃ ∈ C0,s(B+
1/2) for i ∈ {1, . . . , n},

x1−2s
n+1 ∂n+1w̃ ∈ C0,1−s(B+

1/2).
(2)

The optimality of this can be seen by noting that the function

w1,s(x) :=
1

s2 − 1

(√
x2
n + x2

n+1 + xn

)s(
s
√
x2
n + x2

n+1 − xn
)
, (3)

which will play the role of a model solution for us, satisfies (1) for f̃ = φ = 0.
Furthermore, the free boundary Γw decomposes as

Γw̃ = Γ1+s(w̃) ∪
⋃
κ≥2

Γκ(w̃), (4)

where Γκ(w̃) :=
{
x0 ∈ Γw̃ :

Φw̃,x0
(0+)−n−(1−2s)

2 = κ
}

and Φw̃,x0(r) denotes a

truncated frequency function associated with the function w̃(x) − φ(x) −
∆′φ(x0)+f̃(x0)

2(2−2s) x2
n+1 at the point x0 ∈ Γw̃ (c.f. Section 1.3.1 for more details).

The set Γ1+s(w̃), which is denoted as the regular free boundary, is an open
subset of Γw̃. Locally, it is a C1,α graph for some α > 0.

1.1. Main result. In this article we seek to derive an improved under-
standing of the higher regularity properties of the regular free boundary
Γs+1(w̃). Similar as in [4] we first reduce the setting to the zero obstacle
problem by considering the equation for w = w̃ − φ. This function then
solves the Signorini problem

∇ · x1−2s
n+1 ∇w = x1−2s

n+1 f̃ in B+
1 ,

w ≥ 0 on B′1,

lim
xn+1→0+

x1−2s
n+1 ∂n+1w ≤ 0 on B′1,

lim
xn+1→0+

x1−2s
n+1 ∂n+1w = 0 on B′1 ∩ {w > 0}.

(5)

Considering obstacles and inhomogeneities of suitably high regularity, we
may assume that the resulting inhomogeneity f̃ is at least C3,1(B+

1 ) regular.
In this set-up our main result asserts the smoothness and even analyticity
of the regular free boundary.

Theorem 1.1. Let w : B+
1 → R be a solution to ( 5) with inhomogeneity

f̃ . Assume that ∂iw ∈ C0,s
loc (B

+
1 ) for i ∈ {1, . . . , n} and x1−2s

n+1 ∂n+1w ∈
C0,1−s
loc (B+

1 ). Then, if f̃ is smooth, the regular free boundary Γs+1(w) is
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locally smooth. If f̃ is real analytic, the regular free boundary Γs+1(w) is
locally real analytic.

Here the assumption on the smoothness of the inhomogeneity is due to the
desire of avoiding technicalities as far as possible. We however emphasize
that the situation of smooth inhomogeneities is not the only case in which
our arguments hold (c.f. Remark 7.5 in Section 7). Also, the assumption on
the regularity of the solution w is not a major restriction. For example, it
covers the problem studied in [4].

1.2. Strategy of the proof. In order to infer the result of Theorem 1.1,
we rely on a partial Hodograph-Legendre transform, a precise analysis of
the resulting fully nonlinear, degenerate (sub)elliptic equation, and the im-
plicit function theorem. We discuss these ingredients in greater detail in the
sequel.

Definition of the Hodograph-Legendre transform. Seeking to fix and
straighten the free boundary, we carry out a (partial) Hodograph-Legendre
transform [13] of the problem at hand. In this context, the choice of the
dependent and independent variables requires certain care: In contrast to
the case s = 1

2 , which corresponds to the classical thin obstacle problem,
the choice

y′′ = x′′, yn = ∂nw, yn+1 = x1−2s
n+1 ∂n+1w,

of which one would hope that it suffices to fix the free boundary, is not ideal.
Indeed, considering the model solution w1,s from (3) yields

∂nw1,s(x) =

(√
x2
n + x2

n+1 + xn

)s
,

x1−2s
n+1 ∂n+1w1,s(x) =

s

s− 1

(√
x2
n + x2

n+1 − xn
)1−s

.

This indicates that

y′′ = x′′, y2s
n = ∂nw, y

2(1−s)
n+1 = −csx1−2s

n+1 ∂n+1w, (6)

for some cs > 0 provides a better choice of dependent and independent vari-
ables. Simplifying, we see that this change of coordinates then corresponds
to the square root mapping

y′′ = x′′,

yn = Re(xn + ixn+1)1/2,

yn+1 = Im(xn + ixn+1)1/2,

which was already used in the analysis of [15]. The Hodograph-Legendre
transformation hence maps the upper half-plane into the upper quarter space
Q+ := {y ∈ Rn+1 : yn ≥ 0, yn+1 ≥ 0} and maps the free boundary into the
co-dimension two hyperplane P := {y ∈ Rn+1 : yn = yn+1 = 0}.
Indeed, this heuristic argument for using (6) is made rigorous by a careful



THE FRACTIONAL THIN OBSTACLE PROBLEM 749

analysis of solutions to (5), for which we prove a leading order asymptotic
expansion around the free boundary in terms of the model solution w1,s

(c.f. Proposition 3.6). As in [15] this analysis plays a central role, since
general solutions to (5) are not regular enough to prove the invertibility of
the Hodograph-Legendre transform (6) by means of the classical implicit
function theorem. Instead, we use the asymptotics at the free boundary
combined with elliptic estimates in annuli around it to deduce the invert-
ibility of the transformation (c.f. Proposition 4.2).

Fractional fully nonlinear subelliptic equation. As in [15] a second main
step consists of analyzing the transformed equation. Defining the Legendre
function as

v(y) := w(x)− xny2s
n +

1

2(1− s)
x2s
n+1y

2(1−s)
n+1 ,

where w is a solution to (5), we note that the free boundary is parametrized
as

xn = − 1

2s
y1−2s
n ∂nv(y)|y=(y′′,0,0).

Hence, seeking to deduce regularity of the regular free boundary, we study
the regularity of the Legendre function v. However, while the Hodograph-
Legendre transform allows us to fix the free boundary, it comes at the ex-
pense of transforming our linear equation (5) into a fully nonlinear, degen-
erate (sub)elliptic Monge-Ampère type equation. Yet, as in the case of the
thin obstacle problem, it is possible to deduce a certain structure for this
equation and to view it as a perturbation of a fractional Baouendi-Grushin

Laplacian ∆G,s =
n+1∑
i=1

Yiω(y)Yi, where Yi, i ∈ {1, . . . , n + 1}, denote the

classical Baouendi-Grushin vector fields (c.f. Definition 5.1) and where the
weight ω(y) = (ynyn+1)1−2s for s ∈ (0, 1) belongs to Muckenhoupt class A2.
To avoid a bootstrap argument in proving the higher (partial) regularity
result, we apply the implicit function theorem as in [17] (relying on the
observation that the subelliptic structure is translation invariant in the tan-
gential variables y′′). Here the definition of suitable function spaces (such
that conditions of the Banach implicit function theorem are satisfied) plays
a pivotal role. These function spaces can be viewed as weighted generaliza-
tions of the generalized Hölder spaces from [17]. Compared with [17] the
fractional character of the equation poses additional difficulties in construct-
ing the spaces. The correct choice of the weights is of central importance
(c.f. next point below).

Analyticity of the functional, function spaces. Compared to the situa-
tion s = 1

2 , we encounter a further complication related to the additional
“fractional weight” in our fully nonlinear operator: Due to our choice of
dependent and independent coordinates in (6), the fully nonlinear equation
for the Legendre function v involves non-integer powers of (derivatives) of
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v. Seeking to prove analyticity of the Legendre function by means of the an-
alytic implicit function theorem as in [17], therefore requires a careful choice
of the function spaces to ensure that the resulting operator still yields an
analytic mapping from the domain into the image space.
To this end, we introduce weighted versions of the generalized Hölder spaces
from [17]. We recall that the generalized Hölder spaces in [17] were con-
structed in order to mimic the asymptotic expansion of our Legendre func-
tions at the straightened boundary P = {y ∈ Rn+1 : yn = yn+1 = 0} and
were motivated by Campanato type norms [6]. In the setting of the frac-
tional Baouendi-Grushin operator, spaces which only reflect the asymptotic
behavior at P do not suffice: Due to the presence of the weight (ynyn+1)1−2s,
which is singular for s > 1/2 and degenerate for s < 1/2, our spaces
also have to capture the asymptotic behavior at the planes {yn = 0} and
{yn+1 = 0} where the weights degenerate. By interpolating between the
asymptotics at P and the asymptotics at {yn = 0}∪{yn+1 = 0}, we construct
weighted Hölder spaces with respect to the intrinsic Baouendi-Grushin ge-
ometry which are adapted to our problem. We show that with these choices
the nonlinear operator is an analytic map from its domain into the image
space. Moreover, by deducing “Schauder type” apriori estimates for the
fractional Baouendi-Grushin operator in our generalized Hölder spaces, we
prove that the linearization of the nonlinear operator at v is invertible. Thus,
the analytic implicit function theorem can be applied in our spaces, which
then yields our main result.

1.3. Context and literature. In this section we relate the fractional thin
obstacle problem to the obstacle problem for the fractional Laplacian and
provide some background on the literature on these problems.

1.3.1. Relation to the fractional obstacle problem. Let us consider
the obstacle problem for the fractional Laplacian (−∆)s, s ∈ (0, 1): Given
a function ϕ : Rn → R with rapid decay at infinity, one seeks a function u
with limx→∞ u(x) = 0 which satisfies

min{(−∆)su(x), u(x)− ϕ(x)} = 0, x ∈ Rn. (7)

Here (−∆)s is the fractional Laplacian, which for s ∈ (0, 1) can be defined
as an integral operator

(−∆)su(x) := cn,s p.v.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy,

and cn,s denotes a universal constant depending on n, s. In [21] Silvestre
considered the existence and regularity of the solution to the obstacle prob-
lem (7). For φ ∈ C2(Rn) he proved that there exists a solution u which is
C1,β(Rn) regular for all β ∈ (0, s) and (−∆)su ∈ C0,γ for all γ ∈ (0, 1− s).

The relationship between the obstacle problem for the fractional Lapla-
cian (7) and the Signorini problem (5) is established by the Dirichlet-to-
Neumann map for the degenerate elliptic operator Ls := ∇ · x1−2s

n+1 ∇. More
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precisely, given u : Rn → R with limx→∞ u(x) = 0, we extend it to the upper
half space Rn+1

+ = Rn × R+ by solving the Dirichlet problem

Lsw̃(x) = 0 in Rn+1
+ , w̃(x′, 0) = u(x′) on Rn × {0}.

Then w̃ satisfies

lim
xn+1→0+

cn,sx
1−2s
n+1 ∂n+1w̃(x′, xn+1) = −(−∆)su(x′),

where cn,s > 0 is an only dimension and s dependent constant (c.f. [5]).
Using this characterization, the obstacle problem for the fractional Laplacian
(−∆)s can be reformulated as a Signorini problem for the degenerate elliptic
operator Ls:

Lsw̃ = 0 in Rn+1
+ ,

w̃ ≥ ϕ,
lim

xn+1→0+

x1−2s
n+1 ∂n+1w̃ ≤ 0,

(w̃ − ϕ)( lim
xn+1→0+

x1−2s
n+1 ∂n+1w̃) = 0 on Rn × {0}.

Localizing the above problem by considering w := w̃η, where η is a radial
cut-off function which is equal to one in B+

1 , we obtain the problem (1) with
obstacle φ = ϕη.

Conversely, assume that w̃ ∈ L∞(B+
1 ) is a solution to (1) with suffi-

ciently regular obstacle φ : B′1 → R and sufficiently regular inhomogeneity

f̃ . Following the argument of Lemma 4.1. in [4], we can transform the local
problem (1) into a global problem of the form (7). Let us explain this re-
duction: As in Lemma 4.1 of [4], we consider the function w̃−φ and extend
it globally by defining w := (w̃− φ)η, where η denotes a radial cut-off func-
tion which is supported in B+

3/4 and which is equal to one in B+
1/2. Then,

w satisfies Lsw = x1−2s
n+1 g̃ for a compactly supported function g̃ (which is

computed in terms of f̃ , η, φ) with unchanged Neumann data (which is a
consequence of the radial dependence of η). In particular, the inhomogene-
ity is non-trivial in general. To remedy this and to reduce the situation to
that of the Caffarelli-Silvestre extension, we consider an auxiliary function
w which solves the equation Lsw = x1−2s

n+1 g̃ in Rn+1
+ with w = 0 on Rn×{0}.

Then the function w − w satisfies

Ls(w − w) = 0 in Rn+1
+ ,

w − w = η(w̃ − φ) on Rn × {0},
lim

xn+1→0+

x1−2s
n+1 ∂n+1(w − w) ≤ − lim

xn+1→0+

x1−2s
n+1 ∂n+1w on Rn × {0},

lim
xn+1→0+

x1−2s
n+1 ∂n+1(w − w) = − lim

xn+1→0+

x1−2s
n+1 ∂n+1w

on (Rn × {0}) ∩ {w̃ − φ > 0}.
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Thus, the function ũ(x′) := (w − w)(x′, 0) solves the following problem in
Rn:

ũ ≥ 0, (−∆)sũ ≥ ψ in Rn,
(−∆)sũ = ψ in Rn ∩ {ũ(x′) > 0},

(8)

Here ψ(x′) := cn,s limxn+1→0+ x
1−2s
n+1 ∂n+1w. Setting ϕ := (−∆)−sψ and

u(x′) := ũ(x′) − ϕ(x′) then turns this into an obstacle problem (7) for the
fractional Laplacian:

min
{

(−∆)su(x′), u(x′) + ϕ(x′)
}
≥ 0, x′ ∈ Rn.

In this (slightly restricted) sense the fractional thin obstacle problem (1) and
the thin obstacle problem for the fractional Laplacian (7) can be regarded
as equivalent.

Motivated by the available regularity results for the obstacle problem for
the fractional Laplacian (c.f. [21], [5]) and the described (slightly restricted)
equivalence of the local and nonlocal problems (1) and (7), it can be expected
that solutions to (1) enjoy analogous optimal regularity results as the ones
described in (2). Indeed, using the (generalized) frequency function, the
characterizations of global homogeneous solutions in two-dimensions (and a
reduction to this following the argument of Remark 16 in [16]) and regularity
estimates as in [22] allows us to prove this optimal regularity result by purely
local means. As in the sequel we are however mainly interested in higher
regularity properties, we do not further elaborate on the details of this point,
but will instead always assume some initial regularity (c.f. assumption (A2)
in Section 2.1).

1.3.2. Almgren frequency function and blow-ups. In analyzing solu-
tions to the fractional thin obstacle problem, a key tool in [4] consists of
a truncated frequency function: Assuming that w is a solution to (5) with

w(0) = 0, we reflect w evenly about xn+1, set w̃(x) := w(x) − f̃(0)
2(2−2s)x

2
n+1

and consider

Fw,0(r) :=

∫
∂Br

|w̃(x)|2|xn+1|1−2sdσ.

This function is related to the classical frequency function from [5],

r 7→ Nw,0(r) :=

r
∫
Br

|∇w̃|2|xn+2|1−2sdx∫
∂Br

|w̃|2|xn+1|1−2sdσ
,

which for a solution to the thin obstacle problem with zero obstacle and
zero inhomogeneity measures its growth and homogeneity at free boundary
points, by the identity

r
d

d r
logFw,0(r) = 2Nw,0(r) + n+ (1− 2s).
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Based on this, but dealing with situations in which inhomogeneities are
present, the authors of [4] then define the modified frequency function at 0

r 7→ Φw,0(r) := (r + C0r
2)

d

d r
log max(Fw,0(r), r4+n+(1−2s)).

Its relevance stems from the fact that it is a monotone quantity (also in the
presence of inhomogeneities, c.f. Theorem 3.1 in [4]) and that it relates the
value of Φw,0(0+) to the growth of w̃ at free boundary points (which in turn
can be translated into regularity properties; c.f. Lemmas 6.5 and 6.6 in [4]):
More precisely, assuming that x = 0 is a free boundary point, we have that
for all |x| ≤ 1/2

|w̃(x)| ≤ C|x|
Φw,0(0+)−n−(1−2s)

2 .

Hence, a central ingredient in [4] is the derivation of the following dichotomy
(Lemma 6.1 in [4]):

Either Φw,0(0+) = 2(1 + s) + n+ (1− 2s) or Φw,0(0+) ≥ 4 + n+ (1− 2s).

In particular, this yields the decomposition into the regular free bound-
ary Γ1+s(w) and the remaining free boundary (c.f. (4)). Furthermore,
for each x0 ∈ Γ1+s(w), and each blow-up sequence wrj ,x0(x) = w(x0 +

rjx)/(r−(n+1−2s)Fw,x0(rj))
1/2, the following convergences hold (c.f. Propo-

sition 6.3 in [4])

wrj ,x0 → wx0 uniformly in B+
1/2,

∇′wrj ,x0 → ∇′wx0 uniformly in B+
1/2,

x1−2s
n+1 ∂n+1wrj ,x0 → x1−2s

n+1 ∂n+1wx0 uniformly in B+
1/2.

Here wx0(x) := cn,sw1,s(Qx) and Q is a rotation which might depend on
the choice of the converging subsequence, cn,s is a normalization constant
and w1,s is the (1 + s)-homogeneous function from (3). This in particular
exemplifies the role of w1,s as a model solution: It is the unique blow-up
profile at the regular free boundary and it has a flat free boundary. With
this at hand, regularity of the regular free boundary is shown in [4] by
means of the comparison principle and a boundary Harnack inequality (c.f.
Theorem 7.7 in [4]).

Building on the these results in [4], our main statement, Theorem 1.1,
translates into the analyticity (smoothness) of the regular free boundary of
the obstacle problem for the fractional Laplacian:

Theorem 1.2. Let u : Rn → R be a solution of the obstacle problem for the
fractional Laplacian ( 7) with obstacle ϕ : Rn → R. Then if ϕ is smooth,
the regular free boundary Γ1+s(u) is locally smooth. If moreover ϕ is real
analytic, the regular free boundary Γ1+s(u) is locally real analytic.
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1.3.3. Literature. After the seminal articles of Silvestre [21] and of Caf-
farelli, Salsa and Silvestre [4], the thin obstacle problem has been studied
by various authors with different focuses: For instance, Barrios, Figalli and
Ros-Oton [2] study the regularity of the free boundary in the obstacle prob-
lem for the fractional Laplacian under the assumption that the obstacle ϕ
satisfies ∆ϕ ≤ 0 near the contact region. Petrosyan and Pop [20] investigate
the effects of the presence of drift terms on the the optimal regularity of
solutions to the fractional obstacle problem. A further analysis of the free
boundary regularity in this situation including drifts has been carried out
in [9]. Recently, fully nonlinear versions of the fractional obstacle have been
addressed by Caffarelli, Ros-Oton and Serra [3].

In spite of these activities to the best of our knowledge the higher regu-
larity of the regular free boundary has not yet been addressed in the case of
the fractional thin obstacle problem with general s ∈ (0, 1), but has up to
now been restricted to the case s = 1/2: In the case that s = 1/2 the analyt-
icity of the regular free boundary was proved by Koch, Petrosyan and Shi in
[15] by relying on the Legendre-Hodograph transform. Simultaneously, but
building on higher order boundary Harnack estimates, De Silva and Savin [7]
showed the C∞ smoothness of the free boundary. Finally, in [17] the higher
regularity properties of the regular free boundary are studied depending on
the (potentially low regularity) of the present variable coefficient metrics
and inhomogeneities.1

1.4. Organization of the article. The remainder of the article is orga-
nized as follows: After briefly summarizing and explaining our main as-
sumptions and notations in Section 2, we deduce the asymptotic behavior
of solutions (around the regular free boundary) in Section 3. Here we argue
in two steps and first construct barrier functions, prove a comparison result
and a boundary Harnack inequality. Then we apply these tools to infer a
leading order asymptotic expansion of solutions around the free boundary
(Proposition 3.6) and a priori regularity estimates around the free boundary
(Proposition 3.10). Building on these, in Section 4 we then introduce the
Hodograph-Legendre transform, show its invertibility (c.f. Proposition 4.2)
and deduce the fully nonlinear equation which is satisfied by the Legendre
function (c.f. Proposition 4.3). In Section 4.3, we translate the asymptotic
behavior which was deduced in Section 3 in the original variables into the
Legendre variables (c.f. Propositions 4.10, 4.11). Motivated by the struc-
ture of the model solution in Legendre variables (c.f. Example 4.12), we
then define a suitable intrinsic geometry adapted to the nonlinear operator
in Section 5. Based on this, we introduce the function spaces which we are
using to describe the mapping properties of the nonlinear equation and its
linearization (c.f. Definition 5.8). With the aid of the new geometry we in

1Shortly after placing this paper at arXiv, the preprint [11] by Yash Jhaveri and Robin
Neumayer became available, in which the authors prove smoothness of the free boundary
by the approach initiated by De Silva and Savin [7].
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particular conclude that the Legendre function lies in these function spaces
(c.f. Corollary 5.16). Relying on this observation, in Section 6 we discuss the
mapping properties of the nonlinear and linearized operators (c.f. Propo-
sitions 6.2, 6.3), which in Section 7 is used to invoke the implicit function
theorem and to prove Theorem 1.1.
Finally in two appendices, we discuss various auxiliary results. Here the
appendices are structured such that in Appendix A, c.f. Section 8, various
regularity results are collected and proved which might be of independent
interest (c.f. Propositions 8.1, 8.2, 8.10 and the eigenfunction characteriza-
tion in Section 8.1). This in particular includes the explicit computation of
the higher order eigenfunctions to the fractional Laplacian in the (flat) slit
domain with mixed Dirichlet-Neumann data (c.f. Lemma 8.4 and Propo-
sition 8.8 in Section 8.1). In Appendix B (c.f. Section 9), we provide the
proofs of various results which are used in the main body of the text (e.g.
Propositions 5.12, 5.14 and 5.15), but which we decided to prove later, in
order to clarify the structure of our main argument in Sections 3-6.

2. Preliminaries

2.1. Set-up. In this paper, we will study the higher regularity of the free
boundary around regular free boundary points. We start with the following
observation:

Proposition 2.1. Let w̃ be a solution of (5) with f̃ ∈ C3,1(B+
1 ). Then,

w̄(x) := w̃(x)− 1

2(2− 2s)
f̃(x′, 0)x2

n+1 −
1

3(3− 2s)
∂n+1f̃(x′, 0)x3

n+1

is a solution to the Signorini problem

∇ · x1−2s
n+1 ∇w̄ = x3−2s

n+1 f in B+
1 ,

w̄ ≥ 0, lim
xn+1→0+

x1−2s
n+1 ∂n+1w̄ ≤ 0, w̃ lim

xn+1→0+

x1−2s
n+1 ∂n+1w̄ = 0 on B′1,

where f(x) ∈ C0,1(B+
1 ) and

f(x) :=
(
f̃(x)− f̃(x′, 0)− ∂n+1f̃(x′, 0)xn+1

)
x−2
n+1

− 1

2(2− 2s)
∆′f̃(x′, 0)− 1

3(3− 2s)
∆′∂n+1f(x′, 0)xn+1.

In particular, the free boundary of w remains unchanged, i.e. Γw̄ = Γw̃.

Proof. The statement follows from a direct computation and a Taylor ex-
pansion of f̃ at {xn+1 = 0}. �

Compared to the problem (5), the change from w̃ to w̄ provides additional
decay of the order x2

n+1 for the inhomogeneity. This has the advantage
that we can treat the cases s ∈ (0, 1/2] and s ∈ (1/2, 1) simultaneously
in our analysis (c.f. Remark 7.5). In particular, we can work with the
same function spaces (c.f. Section 5) in both cases. As in this article we
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are primarily interested in smooth or analytic inhomogeneities, the loss in
the derivatives which is involved in this reformulation does not pose any
restrictions onto our framework. Since we are primarily interested in the
regularity of the free boundary, and since Γw̄ = Γw̃, in the sequel we mainly
consider (9) instead of (5).

We recall that our equation enjoys the following scaling and multiplication
symmetries:

Lemma 2.2 (Scaling and multiplication symmetries). Let w : B+
1 → R be

a solution to ( 5) and consider constants c > 0, λ > 0 and a point x0 ∈ B′1.
Then in B+

r with r ∈ (0, λ−1(1− |x0|)) the function

x 7→ wc,λ,x0(x) := cw(x0 + λx),

is a solution of

∇ · x1−2s
n+1 ∇wc,λ,x0 = x1−2s

n+1 fc,λ,x0 ,

with Signorini boundary conditions. Here fc,λ,x0(x) := cλ2f(x0 + λx).

Proof. This follows from a simple computation. �

Relying on these properties, throughout the paper we will assume that:

(A1) w ∈ C2
loc(B

+
1 ∩ {xn+1 > 0}) is a solution of the Signorini problem

∇ · x1−2s
n+1 ∇w = x3−2s

n+1 f in B+
1 ,

w ≥ 0 on B′1,

lim
xn+1→0+

x1−2s
n+1 ∂n+1w ≤ 0 on B′1,

lim
xn+1→0+

x1−2s
n+1 ∂n+1w = 0 on B′1 ∩ {w̃ > 0},

(9)

with f : B+
1 → R satisfying assumption (A4). The boundary condi-

tions are attained in a pointwise sense (c.f. (A2)).
(A2) w is sufficiently close to the blow-up limit w1,s in the sense that

‖∇′w −∇′w1,s‖C0(B+
1 ) + ‖x1−2s

n+1 ∂n+1w − x1−2s
n+1 ∂n+1w1,s‖C0(B+

1 ) ≤ ε0,

for some small ε0 > 0. Here ∇′ denotes the gradient with respect to
the tangential directions only and w1,s is defined in (3).

(A3) The free boundary Γw in B′1 only consists of regular free boundary
points and is a C1,α graph for some α ∈ (0, 1), i.e.

Γw ∩B′1 = {(x′′, g(x′′), 0) : g ∈ C1,α(B′′1 )}.

Moreover, we assume that g(0) = |∇′′g(0)| = 0.
(A4) The inhomogeneity f is C0,1(B+

1 ) regular and it satisfies

‖f̃‖C0,1(B+
1 ) ≤ µ0 for a small, positive constant µ0.
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Let us comment on these assumptions. By Proposition 2.1, assumption
(A1) does not pose any restrictions, as we are interested in the regular-

ity of the free boundary in the presence of smooth inhomogeneities f̃ . If
the conditions of the equivalence of the local problem (9) and the nonlocal
problem (7) are satisfied (c.f. Section 1.3.1), the assumptions (A2)-(A3) are
consequences of the regularity results for w and the regular free boundary
from [4]: Since our result is local, we can always assume these by using the
scaling and multiplication symmetries from Lemma 2.2 combined with the
identification of the blow-up limits of solutions w of (5) at the regular free
boundary (c.f. Section 1.3.2). Finally, a further application of Lemma 2.2
with a suitable rescaling allows us to always assume the smallness condition
for f̃ from (A4).

Remark 2.3 (Optimal regularity). We stress that we do not assume that w
has the optimal regularity ∂iw ∈ C0,s(B+

1 ), i ∈ {1, . . . , n} and x1−2s
n+1 ∂n+1w ∈

C0,1−s(B+
1 ). We will see later (c.f. Proposition 3.6) that this optimal regu-

larity is a consequence of our assumptions (A2)-(A4).

Remark 2.4. We remark that by the boundary Harnack inequality (Theorem

7.7 in [4]) we have that ∂jg(x′′) = − ∂jw
∂nw

∣∣
(x′′,g(x′′),0)

, j ∈ {1, . . . , n − 1}
(where the right hand side is understood as a Hölder continuous extension
up to the boundary). Therefore, in this situation we can always assume that
[∇′′g]C0,α(B+

1/2
) is sufficiently small by choosing the constant ε0 from (A3)

sufficiently small (by noting that the size of the Hölder norm is controlled
by ‖∇′w −∇′w1,s‖C0(B+

1 ), c.f. for instance the proof of Theorem 2 in [16]).

Remark 2.5. Sometimes we extend the solution w and the inhomogeneity
f̃ evenly about xn+1. Here we use that by the complementary boundary
conditions it holds that lim

xn+1→0+

x1−2s
n+1 ∂n+1w = 0 on B′1 \ Λw. Thus, after

the extension, w solves

∇ · |xn+1|1−2s∇w = |xn+1|3−2sf̃ in B1 \ Λw,

w = 0 on Λw.

With a slight abuse of notation, we still use the symbol Ls to refer to the
evenly reflected fractional Laplacian, i.e. Ls = ∇ · |xn+1|1−2s∇.

2.2. Notation. In the sequel we use the following notations:

• Rn+1
+ := {(x′′, xn, xn+1) ∈ Rn+1 : xn+1 ≥ 0},

Rn × {0} := {(x′′, xn, xn+1) ∈ Rn+1 : xn+1 = 0}.
• Euclidean balls:

Br(x0) := {x ∈ Rn+1 : |x− x0| ≤ r},
B+
r (x0) := Br(x0) ∩ Rn+1

+ ,

B′r(x0) := Br(x0) ∩ (Rn × {0}).
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If x0 is the origin, we also write Br, B
+
r and B′r for simplicity.

• We use C ′η(en) to denote the cone in Rn × {0} with axis en and
opening angle η.
• For s ∈ (0, 1), Ls := ∇ · x1−2s

n+1 ∇ is the degenerate elliptic operator
associated with the fractional Laplacian (−∆)s. To abbreviate the
associated weight function we introduce ω̄(x) := x1−2s

n+1 .

• Weighted L2 space: For a measurable set Ω ⊂ Rn+1, L2
ω̄(Ω) =

L2(Ω, x1−2s
n+1 dx) is the Banach space of measurable functions u : Ω→

R such that

‖u‖L2
ω̄(Ω) :=

(∫
Ω
|u(x)|2ω̄(x)dx

) 1
2

<∞.

Weighted Sobolev space: H1
ω̄(Ω) = H1(Ω, x1−2s

n+1 dx) is the Banach

space of functions u ∈ L2
ω̄(Ω) whose distributional derivatives exist

and |∇u| ∈ L2
ω̄(Ω). We define the norm

‖u‖H1
ω̄(Ω) := ‖u‖L2

ω̄(Ω) + ‖∇u‖L2
ω̄(Ω).

• Given u ∈ L2
ω̄(Ω), we denote the L2

ω̄ average by

‖u‖L̃2
ω̄(Ω) :=

(
1

ω̄(Ω)

∫
Ω
|u(x)|2ω̄(x)dx

) 1
2

, ω̄(Ω) :=

∫
Ω
ω̄(x)dx.

• Let w be a solution to the thin obstacle problem (associated to Ls)
in B+

1 . Then

Λw := {x ∈ B′1 : w(x) = 0} (contact set),

Ωw := {x ∈ B′1 : w(x) > 0} (positivity set),

Γw := ∂B′1Λw (free boundary).

• Model solution:

w1,s(x) :=
1

s2 − 1

(√
x2
n + x2

n+1 + xn

)s(
−xn + s

√
x2
n + x2

n+1

)
is a model solution to the free boundary problem with flat free
boundary Γw1,s = {xn = xn+1 = 0}. We let

w0,s(x) = w0,s(xn, xn+1) :=

(√
x2
n + x2

n+1 + xn

)s
.

Note that for some, only s dependent constant cs

∂nw1,s(x) = csw0,s(x),

x1−2s
n+1 ∂n+1w1,s(x) = cs

s

s− 1
w0,1−s(−xn, xn+1).

• We use ε0 > 0 to quantify the closeness of w and the model solution
w1,s in the C1(B+

1 ) norm (c.f. assumption (A3)).



THE FRACTIONAL THIN OBSTACLE PROBLEM 759

We usually use x to denote the original coordinates and y to denote the
coordinates after the partial hodograph-Legendre transformation. In the
following we collect the notation which we use after the change of coordi-
nates:

• Quarter space:

Q+ := {(y′′, yn, yn+1) ∈ Rn+1 : yn ≥ 0, yn+1 ≥ 0}.

Edge of the quarter space:

P := {(y′′, yn, yn+1) ∈ Rn+1 : yn = yn+1 = 0}.

• Baouendi-Grushin metric dG(x, y) (c.f. Definition 5.1).
• Baouendi-Grushin balls:

BR(y0) := {y ∈ Rn+1 : dG(y, y0) ≤ R},
B+
R(y0) := BR(y0) ∩Q+.

If y0 is the origin, we write BR and B+
R for simplicity.

• Fractional Baouendi-Grushin operator: For s ∈ (0, 1)

∆G,s := (ynyn+1)1−2s(y2
n + y2

n+1)∆′′ + ∂n(ynyn+1)1−2s∂n

+ ∂n+1(ynyn+1)1−2s∂n+1,

where ∆′′ =
∑n−1

i=1 ∂ii.
The associated weight function is also abbreviated as
ω(y) := (ynyn+1)1−2s.
• Similarly, as above, we define the weighted Banach spaces L2

ω(Ω) =
L2(Ω, ω(y)dy) and H1

ω(Ω) = H1(Ω, ω(y)dy). Given u ∈ L2
ω(Ω), we

use ‖u‖L̃2
ω(Ω) to denote the L2

ω average of u.

• Function spaces: We use the global function spaces Xα,ε, Yα,ε and
their local analogues Xα,ε(B+

R), Yα,ε(B+
R) (c.f. Definitions 5.8, 5.11).

• Given u ∈ Xα,ε(B+
1 ) or u ∈ Xα,ε, we denote the r−neighborhood of

u in the corresponding Banach space by

Ur(u) := {v ∈ Xα,ε(B+
1 ) : ‖v − u‖Xα,ε(B+

1 ) < r}, 0 < r <∞.

• Model solution w1,s in the Grushin coordinates:

v0(y) = − s

2(1 + s)
y2s+2
n + y2s

n y
2
n+1.

• F is the nonlinear function in (28). Lv denotes the linearized oper-
ator of F at v.

We also rely on the following convention:

• We denote the derivative with respect to the x′′ (or y′′) components
of x (or y) by ∇′′.
• We use the Landau symbol f(x) = Os(g(x)) as x→ 0 to denote that

lim
x→0

f(x)
g(x) = Cs, where the constant Cs is allowed to depend on s.
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• Without specific notice a constant C is assumed to be universal, i.e.
it is assumed to only depend on the dimension n.

3. Asymptotics

In this section we derive a leading order asymptotic expansion for solu-
tions of the fractional thin obstacle problem around the regular free bound-
ary (c.f. Proposition 3.6). Moreover, we prove regularity results for solutions
to the fractional thin obstacle problem (c.f. Proposition 3.10). To achieve
these objectives, we construct upper and lower barrier functions (c.f. Lem-
mas 3.2, 3.3), which allow us to prove a non-degeneracy result on solutions
by means of the comparison principle (c.f. Proposition 3.4). Then a suit-
able boundary Harnack inequality (c.f. Proposition 3.5) yields the desired
asymptotic expansion around the free boundary.

This section is divided into two parts: In the first part (Section 3.1), we
provide the necessary technical tools (e.g. the construction of barrier func-
tions, comparison results, a boundary Harnack inequality), which are then
applied to the setting of the thin obstacle problem in the second part of the
section (Section 3.2). We use similar ideas as in [16], where these technical
tools are developed for the variable coefficient thin obstacle problem.

3.1. Barrier functions, comparison results and the boundary Har-
nack inequality. We recall and provide some necessary tools of dealing
with the fractional thin obstacle problem. As the results of this section are
also of interest in a more general framework, we use the following conven-
tions in this part of the section.

Assumption 3.1. In the sequel, we consider the slit domain B1 \Λ, where

Λ := {(x′, 0) : xn ≤ g(x′′)},

for some C1,α function g. Moreover, we define its boundary as

Γ := {(x′, 0) : xn = g(x′′)}.

For convenience and normalization purposes, we assume that

g(0) = |∇′′g(0)| = 0.

We also recall that Ls := ∇ · |xn+1|1−2s∇.
These assumptions are clearly motivated by the application of the follow-

ing results to the fractional thin obstacle problem. In providing the tools
which will later be applied to solutions of the fractional thin obstacle prob-
lem, we begin with the construction of a lower barrier function.

Lemma 3.2 (Lower barrier function). Let s ∈ (0, 1), α ∈ (0, 1), τ ∈(
0,min{αs ,

1−s
s }
)

and let B1 \Λ be as in Assumption 3.1. Then, if [∇′′g]Ċ0,α

is sufficiently small depending on n, s, τ , there exists a function h ∈ C0,s(B1),
h(x) > 0 in B1 \ Λ and h(x) = 0 on Λ, such that:
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(i) h is a subsolution to Ls which satisfies

Lsh(x) ≥ Cn,sτx1−2s
n+1 dist(x,Γ)−2+s+sτ in B1 \ Λ.

(ii) h satisfies the non-degeneracy condition:

h(x) ≥ cn dist(x,Γ)s
(

dist(x,Λ)

dist(x,Γ)

)2s

for x ∈ B1.

(iii) h has the following leading order asymptotic expansion at x0 ∈ Γ ∩
B1/2:

h(x) =

(√
((x− x0) · νx0)2 + x2

n+1 + (x− x0) · νx0

)s
+ [∇′′g]Ċ0,αOs

(
(
√

((x− x0) · νx0)2 + x2
n+1

+(x− x0) · νx0)s|x− x0|α) .

Here Γ 3 x0 7→ νx0 = (−∇′′g(x0),1,0)√
1+|∇′′g(x0)|2

is the in-plane, outer unit nor-

mal of Λ at x0. The symbol ∇′′ denotes the gradient with respect to
the x′′ components of x = (x′′, xn, xn+1).

Proof. We construct the desired barrier function by patching together suit-
ably rotated profile functions. These profile functions are given by the de-
rivative of the model solution to the fractional thin obstacle problem. By
a slight convexification, it is possible to control the error terms that arise
from the patching procedure.

Let

w0,s(x) =

(√
x2
n + x2

n+1 + xn

)s
.

For τ ∈ (0, 1−s
s ], a direct computation shows that

Lsw
1+τ
0,s = τ(1 + τ)|xn+1|1−2s|∇w0,s|2wτ−1

0,s

= τ(1 + τ)|xn+1|1−2s2s2(x2
n + x2

n+1)−
1
2w

1− 1
s

+τ

0,s

≥ s2τ(1 + τ)|xn+1|1−2s(x2
n + x2

n+1)
1
2

(s+sτ−2).

(10)

Here we used that 1 − 1
s + τ ≤ 0 by the definition of τ , and w0,s(x) ≤

2s(x2
n + x2

n+1)s/2.
Let {Qj}j be a Whitney decomposition of B1 \ Γ and let {ηj}j be a

partition of unity associated to {Qj} such that ηk satisfies ∂n+1ηk = 0 on
{xn+1 = 0}. Let x̂j be the center of the Whitney cube Qj and let xj ∈ Γ
realize the distance of x̂j to Γ. Let rj = diam(Qj), which (by definition
of a Whitney decomposition) is equivalent to dist(Qj ,Γ). Let νj be the
(in-plane) outer unit normal to Λ at xj and set

wk(x) := w0,s((x− xk) · νk, xn+1).
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Furthermore, define

hτ (x) :=
∑
j

ηk(x)(wk(x))1+τ .

Then

Lshτ =
∑
k

(Lsηk)w
1+τ
k + 2(1 + τ)

∑
k

|xn+1|1−2s(∇ηk · ∇wk)wτk

+
∑
k

ηk(Lsw
1+τ
k ).

We estimate the above three sums separately. Firstly, by using
∑

k ηk = 1,
we observe that

∑
k Lsηk = 0. Thus, for any x ∈ Q` with ` fixed,∑

k

(Lsηk(x))w1+τ
k (x) =

∑
k

(Lsηk)(w
1+τ
k (x)− w1+τ

` (x)).

By the assumption that ∂n+1ηk = 0 on {xn+1 = 0} and by the regularity of
ηk, we further conclude that |∂n+1ηk(x)| ≤ C|xn+1|. Combining this with
the fact that

|νk − ν`| ≤ C[∇′′g]Ċ0,αr
α
` , Qk ⊂ N (Q`),

yields ∑
k

(Lsηk)w
1+τ
k ≤ Cn,s[∇′′g]Ċ0,α |xn+1|1−2sr

−2+s(1+τ)+α
` .

Similarly, the second sum can be estimated by

2(1 + τ)
∑
k

|xn+1|1−2s(∇ηk · ∇wk)wτk

≤ Cn,s[∇′′g]Ċ0,α |xn+1|1−2sr
−2+s(1+τ)+α
` .

Using (10), the last sum can be bounded from below by∑
k

ηk(x)(Lsw
1+τ
k (x)) ≥ Cs2τ(1 + τ)|xn+1|1−2sr

−2+s(1+τ)
` ,

for x ∈ Q`. Combining all these observations, leads to

Lshτ (x) ≥ Cs,nτ |xn+1|1−2sr
−2+s(1+τ)
` , (11)

for a fixed τ ∈ (0, 1−s
s ] and s ∈ (0, 1), if [∇′′g]Ċ0,α is sufficiently small

depending on τ, s and n. Thus, setting

h(x) = h0(x) + hτ (x) =
∑
k

ηk(wk(x) + wk(x)1+τ ),

for fixed τ ∈ (0,min{αs ,
1−s
s }), yields a function which satisfies h(x) ≥ 0.

Moreover, by similar considerations as above (with τ = 0) we have

Lsh0(x) ≤ Cn,s[∇′′g]Ċ0,α |xn+1|1−2sr−2+s+α
` . (12)
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Combining this with (11) gives

Lsh(x) ≥ Cn,sτx1−2s
n+1 r

−2+s(1+τ)
` .

Here we have used that τ < α/s (as there is no gain of the form τs in the
lower bounds for patching errors originating from h0) and we have chosen
[∇′′g]Ċ0,α sufficiently small depending on n, α, s. Finally, h(x) satisfies the
non-degeneracy condition

h(x) ≥ cn dist(x,Γ)s
(

dist(x,Λ)

dist(x,Γ)

)2s

.

This concludes the proof. �

Using a similar proof, we can also construct an upper barrier function:

Lemma 3.3 (Upper barrier function). Let s ∈ (0, 1), α ∈ (0, 1), τ ∈(
0,min{αs ,

1−s
s }
)

and let B1 \Λ be as in Assumption 3.1. Then, if [∇′′g]Ċ0,α

is sufficiently small depending on n, s, τ , there exists a function ĥ ∈ C0,s(B1),

ĥ(x) > 0 in B1 \ Λ and ĥ(x) = 0 on Λ, such that:

(i) ĥ is a supersolution to Ls with

Lsĥ(x) ≤ −Cn,sτx1−2s
n+1 dist(x,Γ)−2+s+sτ in B1 \ Λ.

(ii) ĥ satisfies

0 ≤ ĥ(x) ≤ dist(x,Γ)s
(

dist(x,Λ)

dist(x,Γ)

)2s

for x ∈ B1.

Proof. Let ĥ(x) = h0(x)− hτ (x), where h0 and hτ are the same functions
as in the proof of Lemma 3.2. The claims of the lemma follow analogously
as in the proof of Lemma 3.2. �

With the lower barrier function at hand, we can proceed to the following
comparison principle.

Proposition 3.4 (Comparison principle). Let s ∈ (0, 1) and let B1 \Λ be as
in Assumption 3.1. Suppose that u ∈ C(B1) ∩H1(B1, |xn+1|1−2sdx) solves

Lsu = |xn+1|1−2sf in B1 \ Λ, u = 0 on Λ,

where for some s0 > 0 and δ0 > 0 the function f satisfies,∥∥dist(·,Γ)2−s−s0f
∥∥
L∞(B1\Λ)

≤ δ0.

Moreover, suppose that u satisfies the following non-degeneracy conditions

u(x) ≥ 1 on B1 ∩

{
|xn+1| ≥ ` =

√
1− s

2(n+ 1)

}
,

u(x) ≥ −2−8 on B′1 × (−`, `).
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Then, if δ0 = δ0(n, s, s0, α) is sufficiently small, there exists a constant
cn > 0 such that

u(x) ≥ cn dist(x,Γ)s
(

dist(x,Λ)

dist(x,Γ)

)2s

, x ∈ B′1/2 × (−`, `).

Proof. The proof follows from the construction of a suitable comparison
function (which relies on our barrier function from Lemma 3.2) and the
comparison principle.
For x0 ∈ B′1/2 × (−`, `), let

P (x) = |x′ − x′0|2 −
n+ 1

2− 2s
x2
n+1.

Note that LsP (x) = 0. Let h(x) be the barrier function constructed in
Lemma 3.2 with τ = τ(s, s0, α) satisfying the condition τ ∈

(
0,min{αs ,

1−s
s }
)

from Lemma 3.2 and chosen such that sτ ≤ s0 (e.g. it would be possible to
set τ := 1

2 min{αs ,
1−s
s , s0s }). We define our comparison function to be

ū(x) = u(x) + P (x)− 2−8h(x).

Using the non-degeneracy conditions from the assumptions of the proposi-
tion, it follows that

ū ≥ 1

2
on {|xn+1| ≥ `},

ū ≥ 0 on ∂B′1 × (−`, `),
ū ≥ 0 on Λ.

Moreover, for δ0 = δ0(n, s, s0, α) > 0 sufficiently small,

Lsū = |xn+1|1−2sf − 2−8Lsh

≤ δ0|xn+1|1−2s dist(x,Γ)−2+s+s0 − 2−8Cn,sτ |xn+1|1−2s dist(x,Γ)−2+s+sτ

≤ 0 in B1 \ Λ.

Thus, by the comparison principle, ū(x0) ≥ 0. This implies that

u(x0) ≥ 2−8h(x0) ≥ 2−8cn dist(x,Γ)s
(

dist(x,Λ)

dist(x,Γ)

)2s

.

Since x0 is an arbitrary point in B′1/2 × (−`, `), we infer the desired lower

bound for u. �

Combining the comparison principle from Proposition 3.4 with the result-
ing non-degeneracy property gives the following boundary Harnack inequal-
ity.

Proposition 3.5 (Boundary Harnack). Let Λ,Γ be as in Assumption 3.1.
Suppose that u1, u2 ∈ C(B1) ∩H1(B1, |xn+1|1−2sdx) are positive in B1 \ Λ,
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even in the xn+1-variable and that they solve

Lsu1 = |xn+1|1−2sf1 in B1 \ Λ, u1 = 0 on Λ,

Lsu2 = |xn+1|1−2sf2 in B1 \ Λ, u2 = 0 on Λ,

where the inhomogeneities fi, i = 1, 2, satisfy the following bound: For some
s0 > 0 ∥∥dist(·,Γ)2−s−s0fi

∥∥
L∞(B1\Λ)

≤ δ0.

Then, if [∇′′g]Ċ0,α and δ0 are sufficiently small depending on n, s, s0 and α,
there exists a constant C0 = C0(n, s) > 0, such that

C0
u2(1

2en+1)

u1(1
2en+1)

≤ u2(x)

u1(x)
≤ C−1

0

u2(1
2en+1)

u1(1
2en+1)

in B1/2 \ Λ. (13)

Moreover, u2/u1 extends to a C0,β function in B1/4 for some β ∈ (0, 1).
More precisely, there exist constants β = β(n, s, s0) ∈ (0, 1) and C =
C(n, s) > 0, such that for all x0 ∈ Λ ∩B′1/4∣∣∣∣u2

u1
(x)− u2

u1
(x0)

∣∣∣∣ ≤ Cu2(1
2en+1)

u1(1
2en+1)

|x− x0|β, x ∈ B1/4(x0). (14)

Proof of Proposition 3.5. Step 1: Proof of ( 13). The inequality (13) is
a consequence of the comparison principle: Without loss of generality we
assume that u1(en+1) = u2(en+1) = 1. By the Harnack inequality, for any
Br(x̄0) b B1 \ Λ, there exists a constant C = C(n, s) > 0 such that

sup
Br/2(x̄0)

ui ≤ C inf
Br/2(x̄0)

ui + Cr2 sup
Br(x̄0)

|fi|, i = 1, 2.

Hence, if δ0 = δ0(n, s, s0) is sufficiently small, there exist constants c̃, C̃ >

0 depending on n, s such that c̃ ≤ ui(x) ≤ C̃ in {x ∈ B3/4 : |xn+1| ≥
` =

√
1−s

2(n+1)} (note that |fi(x)| ≤ δ0`
s+s0−2 if |xn+1| ≥ `). Thus, by a

comparison argument, using the upper/lower barrier function (c.f. Lemma
3.3 and Proposition 3.4), we have that for all x ∈ B1/2

u1(x) ≤ C̃ dist(x,Γ)s
(

dist(x,Λ)

dist(x,Γ)

)2s

,

u2(x) ≥ c̃dist(x,Γ)s
(

dist(x,Λ)

dist(x,Γ)

)2s

,

if δ0 = δ0(n, s, s0, α) is sufficiently small. Here the constants C̃ and c̃ might
be different from the equally denoted ones from above. They however also
only depend on n, s. Hence, there exists a constant C0 = C0(n, s) ∈ (0, 1)
with

u2(x)− C0u1(x) ≥ 0.

As the roles of u1, u2 can be reversed, this results in (13).
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Step 2: Proof of the Hölder continuity. The proof of the Hölder continuity
of the quotient follows from a scaling argument. Since the proof is very
similar to the one given in Lemma 3.24 in [16], we only give a short outline
here: Without loss of generality we assume that x0 = 0. As in [16] we prove
that there exist sequences of constants {ak}k∈N, {bk}k∈N such that

(i) it holds C0 ≤ ak ≤ 1 ≤ bk ≤ C−1
0 and bk−ak ≤ Cµk1 with µ1 ∈ (0, 1),

(ii) bk − ak ≥ Cµk2 with µ2 ∈ (0, µ1] and C > 1 being an absolute
constant,

(iii) aku1 ≤ u2 ≤ bku1 in B2−k .

The sequences are constructed inductively by a scaling argument and an
application of Step 1: We set

w̃1(x) :=
u2(2−kx)− aku1(2−kx)

bk − ak
, w̃2(x) :=

bku1(2−kx)− u2(2−kx)

bk − ak
.

As these functions are a convex combination of u2(2−kx), we may without
loss of generality assume that

w̃1

(en+1

2

)
≥ 1

2
u1

(
2−ken+1

2

)
.

We rescale this and define

w1(x) :=
w̃1(x)

u1

(
2−ken+1

2

) , ū(x) :=
u1(2−kx)

u1

(
2−ken+1

2

) .
This in particular implies that 2w1(en+1/2) ≥ 1. In order to prove the
existence of the sequence ak, bk with the desired properties (i)-(iii), we seek
to apply Step 1 to the functions w1, ū. To this end, we have to check the
size assumption on the respectively associated inhomogeneities and the non-
degeneracy condition. We only provide the proof for the scaling argument:
We have

Lsw1 =
2−2k

(bk − ak)u1

(
2−ken+1

2

)x1−2s
n+1 f1|2−kx =: x1−2s

n+1 f̃1(x).

Setting Γ2−k := {x ∈ B1 : 2−kx ∈ Γ} and recalling that dist(x,Γ2−k) =
2k dist(2−kx,Γ), thus yields

‖ dist(·,Γ2−k)2−s−s0 f̃1‖L∞(B1)

=
2−2k

(bk − ak)u1

(
2−ken+1

2

)2(2−s−s0)k‖dist(·,Γ)2−s−s0f1‖L∞(B
2−k )

≤ 2(−s−s0)k

Cµk22−ks
δ0 ≤ C−12−s0kµ−k2 δ0.
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Thus, if µ2 ≥ C−14−12−s0 , Step 1 is applicable and it results in

2w1

ū
≥ C0.

Spelling this out, leads to

(ak +
C0

2
(bk − ak))u1 ≤ u2 ≤ bku1 in B2−k−1 .

Setting ak+1 := ak + C0
2 (bk − ak) and bk+1 := bk therefore implies that

bk+1 − ak+1 =
(
1− C0

2

)
(bk − ak), which inductively yields bk+1 − ak+1 =

C̄
(
1− C0

2

)k
, where C̄ = C−1

0 −C0. This leads to a Hölder exponent β which

is less than or equal to min{s0, 1, | log2

(
1− C0

2

)
|} and a constant C in (14)

with C . C−1
0 − C0. �

3.2. Application to the fractional thin obstacle problem. With the
results of Section 3.1 at hand, we now turn to the fractional thin obstacle
problem. In this context and in the whole of the remaining text, we as-
sume that the conditions (A1)-(A4) from Section 2.1 hold. In particular,
we note that Λw and Γw satisfy the requirements of Assumption 3.1. Thus,
applying the results from the previous section allows us to infer a leading
order asymptotic expansion (c.f. Proposition 3.6) and regularity results (c.f.
Proposition 3.10).

We begin with a particularly relevant consequence of the boundary Har-
nack inequality and derive the following leading order asymptotic expansion
of solutions to (9) with inhomogeneities which satisfy the condition (A4).
We remark that by Proposition 2.1, this asymptotic expansion transfers to
the solution of (5).

Proposition 3.6. Let w : B+
1 → R be a solution to (9) and assume that

the conditions (A1)-(A4) hold. Then, if ‖f‖C0,1(B+
1 ) and [∇′′g]Ċ0,α are suf-

ficiently small depending on n, s, α, there exist a constant β ∈ (0, 1 − s), a
function c : Γw → R with Γw 3 x0 7→ c(x0) being C0,β regular, such that at
each x0 ∈ Γw

(i)

w(x) = c(x0)w1,s(Qx0(x), xn+1) +Os

(
|x− x0|1+s+β

)
,

where x ∈ B1/4(x0), Qx0(x) = (x − x0) · νx0 is an affine transfor-
mation at x0, and νx0 is the in-plane outer unit normal of Λw at
x0.

(ii) For i ∈ {1, . . . , n}, x ∈ B1/4(x0) and Qx0(x) as in (i),

∂iw(x) = c(x0)(ei · νx0)w0,s(Qx0(x), xn+1)

+Os

(
w0,s(Qx0(x), xn+1)|x− x0|β

)
.
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(iii) For x ∈ B1/4(x0) and Qx0(x) as in (i),

x1−2s
n+1 ∂n+1w(x) = c(x0)

s

s− 1
w0,1−s(−Qx0(x), xn+1)

+Os

(
w0,1−s(−Qx0(x), xn+1)|x− x0|β

)
.

Here the notation Os in (ii) means that there exists positive C = C(n, s)
universal, such that

|∂iw(x)− c(x0)(ei · νx0)w0,s(Qx0(x), xn+1)|

≤ C(n, s)|x− x0|βw0,s(Qx0(x), xn+1)

holds for any x0 ∈ Γw and x ∈ B1/4(x0). The same applies to the use of Os
in (i) and (iii).

Remark 3.7. Proposition 2.1 implies that the asymptotic expansion from
Proposition 3.6 also yields an analogous asymptotic expansion around the
regular free boundary of a solution w to (5) with inhomogeneity f̃ ∈ C3,1(B+

1 )
(i.e. without the modifications of Proposition 2.1). We also note that the
asymptotic expansion for tangential derivatives ∂iw, i ∈ {1, . . . , n}, only re-

quires that f̃ ∈ C0,1(B1). The higher regularity assumption on f̃ is only
needed for the asymptotic expansion of ∂n+1w (and hence of w).

Proof. We first show property (ii). This follows by applying the boundary
Harnack inequality (Proposition 3.5) to ∂ew and h0, where e ∈ C′η(en) and
h0(x) is the barrier function from Lemma 3.2 with τ = 0. Here C′η(en)
denotes a cone with opening angle η in Rn × {0}. More precisely, by the
proof of Lemma 3.2 (c.f. (12)) we have that on the one hand

Lsh0 = |xn+1|1−2sk(x) in B1 \ Λw,

where the function k satisfies∥∥dist(·,Γw)2−s−αk
∥∥
L∞(B1\Λw)

≤ Cn,s[∇′′g]Ċ0,α .

Moreover, h0 satisfies the non-degeneracy conditions and the asymptotics
stated in Lemma 3.2 (ii), (iii). Thus, h0 satisfies the assumptions of Propo-
sition 3.5. On the other hand, by the assumption (A2) and Proposition 3.4,
if ε0 is sufficiently small, then ∂ew with e ∈ C′η(en) is positive in B1 \ Λw.
Moreover, it solves

Ls(∂ew) = |xn+1|1−2s∂ef in B1 \ Λw, ∂ew = 0 on Λw,

where by (A4) ‖∂ef‖L∞ ≤ µ0. Thus, by Proposition 3.5, if µ0 = µ0(n, s, α)
and [∇′′g]Ċ0,α are sufficiently small, the quotient ∂ew/h0 is C0,β regular up

to Λw for some β = β(n, s). More precisely, there exists a C0,β function
be : Λw → R and a constant C = C(n, s) such that for each x0 ∈ Λw,∣∣∣∣∂ew(x)

h0(x)
− be(x0)

∣∣∣∣ ≤ C|x− x0|β.
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Multiplying by h0 on both sides of the estimate, we obtain that

∂ew(x) = be(x0)h0(x) +Os(h0(x)|x− x0|β).

Using the asymptotics of h0 (c.f. (iii) in Lemma 3.2) and restricting b to
Γw, we therefore deduce that around x0 ∈ Γw

∂ew(x) = be(x0)w0,s(Qx0(x), xn+1) +Os(w0,s(Qx0(x), xn+1)|x− x0|β).

For τ /∈ C′η(en), we express τ = c1en + c2e for some e ∈ C′η(en) and write
∂τw = c1∂nw + c2∂ew (c.f. Theorem 7.7 of [4]).
In order to obtain the leading order asymptotic expansion for the (weighted)
normal derivative x1−2s

n+1 ∂n+1w, we note that it satisfies the conjugate equa-

tion with respect to w (c.f. [5]): More precisely, let w̄(x) := |xn+1|1−2s∂n+1w.
We reflect w and f oddly about xn+1 (thus w̄ is even about xn+1). From
the equation we have |xn+1|2s−1∂n+1w̄ = 0 on Λw. Thus, w̄ solves

Lsw̄ = ∂n+1f̄ in B1 \ Ωw, w̄ = 0 on Ωw,

where

f̄(x) :=

{
x2
n+1f(x, xn+1) for xn+1 ≥ 0,
−x2

n+1f(x,−xn+1) for xn+1 < 0.

We note that the inhomogeneity ∂n+1f̄ is of the form |xn+1|h(x) with h(x) ∈
L∞. Moreover, by assumption (A4) the smallness condition for f implies a
smallness condition for h. As a consequence, we may apply the comparison
result of Proposition 3.4 to w̄ with s being replaced by 1−s. This concludes
the proof on the asymptotic expansion for w̄.
To obtain the asymptotic expansion of w at x0 ∈ Γw which is claimed in (i),
we use an argument relying on path integration as in Corollary 4.8 in [16].
We obtain that

w(x) = c(x0)w1,s(Qx0(x), xn+1) +Os(|x− x0|1+s+β),

where c(x0) = s−1
s bn+1(x0). Thus, c(x0) > 0 for any x0 ∈ Γw and c ∈

C0,β(Γw).
In the end, we express be(x0) in terms of c(x0) and νx0 , and infer that
be(x0) = c(x0)(e ·νx0) for any e ∈ Sn∩{en+1 = 0}. This completes the proof
of property (i). �

For convenience of notation we introduce the following convention:

Convention 3.8. Let α ∈ (0, 1) be the exponent from assumption (A3) and
let β ∈ (0, 1) be the Hölder exponent from Proposition 3.6. Then in the
sequel, we assume that β = α.

We stress that this does not cause severe restrictions on our set-up, as we
did not specify the explicit form of the exponent α (therefore we can always
reduce its size appropriately) and as the regularity of the free boundary is
also inferred from a boundary Harnack inequality (c.f. Theorem 7.7 in [4]).
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Convention 3.9. Without loss of generality we assume that c(0) = 1, i.e.
the blow-up of ∂nw at 0 is w0,s. Moreover, without loss of generality we
will assume that 1

2 ≤ c(x0) ≤ 3
2 for any x0 ∈ Γw. This can be achieved by a

scaling w(λ0x)/λ1+s
0 for a sufficiently small λ0 = λ0(n, s).

Invoking interior regularity estimates for the fractional Laplacian in non-
tangential regions (c.f. Propositions 8.1 and 8.2), we also obtain the leading
order asymptotic expansion for higher derivatives of w. To this end, we
compare the derivatives of w with their blow-up at a given free boundary
point x0. More precisely for x0 ∈ Γw and λ ∈ (0, 1/2), we consider

wx0,λ(x) :=
w(x0 + λx)

λ1+s
. (15)

We denote the associated blow-up of wx0,λ by wx0(x) := lim
λ→0

wx0,λ(x) and

note that by the asymptotics from Proposition 3.6

wx0(x) = c(x0)w1,s(x · νx0 , xn+1). (16)

Using interior estimates in non-tangential regions around each x0 ∈ Γw, we
obtain the following (higher order) asymptotic expansion:

Proposition 3.10. Let w : B+
1 → R be a solution to (9) and assume that

the conditions (A1)-(A4) hold. Let α be the constant from Proposition 3.6.

Then in a non-tangential cone N0 = {x : |x| ≤ 1
2

√
x2
n + x2

n+1} we have:

(i) In A− := N0 ∩ {xn < xn+1, 1/4 ≤ |x| ≤ 2}, there exists a constant
Cs > 0 such that for any γ ∈ (0, 1) and λ ∈ (0, 1/4)

‖x−2s
n+1(wx0,λ − wx0)‖C0,γ(A−) +

n∑
i=1

‖x−2s
n+1∂i(wx0,λ − wx0)‖C0,γ(A−)

+ ‖x1−2s
n+1 ∂n+1(wx0,λ − wx0)‖C0,γ(A−)

+

n+1∑
i,j=1

∥∥∂ix1−2s
n+1 ∂j(wx0,λ − wx0)

∥∥
C0,γ(A−)

≤ Csλα.

(ii) In A+ := N0 ∩ {xn > −xn+1, 1/4 ≤ |x| ≤ 2} there exists a constant
Cs > 0 such that for any γ ∈ (0, 1) and λ ∈ (0, 1/4)

‖wx0,λ − wx0‖C2,γ(A+) ≤ Csλα.

Proof. We note that since the regular free boundary in B1 is a C1,α graph,
Γw = {x : xn = g(x′′)} with g(0) = |∇′′g(0)| = 0, we have

Q0(x) = xn, |Qx0(x)−Q0(x)| ≤ C[∇′′g]Ċ0,α |x|1+α. (17)
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Thus, for [∇′′g]Ċ0,α sufficiently small, Γwx0,λ
∩ {x ∈ N0 : 1/4 ≤ |x| ≤ 2} is

empty for every λ ∈ (0, 1/2). Hence,

Ls(wx0,λ − wx0) = x1−2s
n+1 fx0,λ in A+ ∪A−,

wx0,λ − wx0 = 0 on B′1 ∩A−,
lim

xn+1→0+

x1−2s
n+1 ∂n+1(wx0,λ − wx0) = 0 on B′1 ∩A+,

where

fx0,λ(x) = λ1−sx2
n+1f(x0 + λx)

with

[fx0,λ]Ċ0,1(B+
1 ) = λ2−s[f ]Ċ0,1(Bλ(x0)).

Moreover, by property (i) of Proposition 3.6

|wx0,λ − wx0 | ≤ Csλα.

Then (i)-(ii) follow immediately from the up to the boundary a priori es-
timates for the operator Ls = ∇ · x1−2s

n+1 ∇ with Dirichlet and Neumann
boundary conditions, respectively (c.f. Propositions 8.1 and 8.2). �

4. Hodograph-Legendre transformation

Relying on the asymptotic expansion from the previous section, in this
section we carry out a Legendre-Hodograph transformation to fix and flatten
the regular free boundary (c.f. Proposition 4.2). While this fixes the free
boundary, it comes at the expense of transforming the fractional Laplacian
into a fully nonlinear, degenerate elliptic, fractional Baouendi-Grushin type
operator (c.f. Proposition 4.3 and Example 4.12). As in the previous section,
we assume throughout the section that the conditions (A1)-(A4) are valid.

We consider a partial Hodograph transformation which is adapted to the
fractional thin obstacle problem:

T : B+
1 → Q+ := {y ∈ Rn+1 : yn ≥ 0, yn+1 ≥ 0},
x 7→ T (x) =: y,

y′′ = x′′, (yn)2s = ∂nw(x), (yn+1)2(1−s) = −1− s
s

x1−2s
n+1 ∂n+1w(x).

(18)

Here w : B+
1 → R is a solution to the thin obstacle problem (9) satisfying

the assumptions (A1)-(A4). We note that by the asymptotic expansions in
(ii) and (iii) of Proposition 3.6, the Hodograph transform has the following
mapping properties

T (int(B+
1 )) ⊂ int(Q+), T (Λw) ⊂ {yn = 0, yn+1 ≥ 0},

T (int(Ωw)) ⊂ {yn+1 = 0, yn > 0}, T (Γw) ⊂ {yn = 0, yn+1 = 0}.
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Associated with the transformation T , we define the Legendre function, v,
associated with w

v(y) := w(x)− xny2s
n +

1

2(1− s)
x2s
n+1y

2(1−s)
n+1 , (19)

where y = T (x). With this definition, the function v satisfies the following
dual conditions

∂iv(y) = ∂iw(x), i ∈ {1, . . . , n− 1},
y1−2s
n ∂nv(y) = −(2s)xn,

y2s−1
n+1 ∂n+1v(y) = x2s

n+1.

(20)

In particular, the free boundary is parametrized by

xn = − 1

2s
y1−2s
n ∂nv(y)

∣∣
y=(y′′,0,0)

.

Thus the study of the free boundary reduces to the analysis of the regularity
properties of v and its (weighted) derivatives (c.f. Sections 4.3-7).

4.1. Invertibility. In this section we show that the Hodograph-Legendre
transform which was defined in (18) and (20) maps B+

δ0
invertibly onto its

image (c.f. Proposition 4.2) if the radius δ0 = δ0(s) is chosen small enough.
To this end, we observe that, if T is the Hodograph-Legendre transform with
respect to a solution w of the thin obstacle problem (9), the regularity of w
(c.f. Remark 2.3) and the asymptotic expansion of w (c.f. Proposition 3.6))
immediately imply that T is continuous up to B′1. Moreover, by using the

asympototics of ∂nw and x1−2s
n+1 ∂n+1w from Proposition 3.6, we also obtain

the asymptotics of y = T (x) in a neighborhood of x0 ∈ Γw:

y′′ = x′′,

yn = c(x0)1/(2s)(en · νx0)1/(2s)w0,1/2(Qx0(x), xn+1)

+Os
(
w0,1/2(Qx0(x), xn+1)|x− x0|α

)
,

yn+1 = c(x0)1/2(1−s)w0,1/2(−Qx0(x), xn+1)

+Os
(
w0,1/2(−Qx0(x), xn+1)|x− x0|α

)
.

(21)

Here Qx0(x) = (x − x0) · νx0 . We note that in deducing (21) we have
implicitly used that c(x0) ≥ 1

2 , (en · νx0) ≥ δ for some δ > 0 (in order to
expand the corresponding roots). These lower bounds are consequences of
the assumptions (A2)-(A4).

Using the asymptotic expansions from (21), we obtain improved regularity
properties for the Hodograph transform:

Proposition 4.1. Assume that w : B+
1 → R is a solution of ( 9). Let wx0,λ

and wx0 be the associated rescalings and the blow-up limit from (15) and
(16). Denote by Twx0,λ and Twx0 their respective Hodograph transformations
and use A+, A− to denote the non-tangential sets from Proposition 3.10.
Then Twx0,λ ∈ C1(A+ ∪A−) for any λ ∈ (0, 1/2). Moreover:
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(i) For any γ ∈ (0, 1) and λ ∈ (0, 1/4),

‖DTwx0,λ −DTwx0‖C0,γ(A+∪A−) ≤ Cλα. (22)

(ii) There exist constants cs, Cs > 0 and λ0 = λ0(s) > 0, such that for
any λ ∈ (0, λ0) and x0 ∈ Γw it holds

cs ≤ ‖det(DTwx0,λ)‖C0(A+∪A−) ≤ Cs. (23)

Proof. Using (18), the Jacobian matrix (DTw)ij can be computed to read

∂iT
w
j = δij , i, j ∈ {1, . . . , n− 1},

∂nT
w
i = 0, ∂n+1T

w
i = 0,

∂iT
w
n =

1

2s
y1−2s
n ∂niw, ∂iT

w
n+1 = − 1

2s
y2s−1
n+1 ∂i(x

1−2s
n+1 ∂n+1w),

(DTw)i,j=n,n+1 =(
1
2sy

1−2s
n ∂nnw

1
2sy

1−2s
n ∂n,n+1w

− 1
2sy

2s−1
n+1 ∂n(x1−2s

n+1 ∂n+1w) − 1
2sy

2s−1
n+1 ∂n+1(x1−2s

n+1 ∂n+1w)

)
.

(24)

Here y = Tw(x) = (Tw1 (x), . . . , Twn+1(x)). We note that by the asymptotic
expansions from (21), there exists a constant c ∈ (0, 1) such that

1− c ≤
∣∣∣∣yn(x)

xn+1

∣∣∣∣ , |yn+1(x)| ≤ 1 + c, on A−,

1− c ≤
∣∣∣∣yn+1(x)

xn+1

∣∣∣∣ , |yn(x)| ≤ 1 + c, on A+.

(25)

Thus, using the asymptotics in (21) in combination with the regularity of
νx0 , we infer that

‖Twx0 − Twx0,λ‖L∞ ≤ Cλα.

We proceed with the Hölder estimates. Here we seek to reduce the esti-
mates to already known bounds on the function w (c.f. the estimates from
Proposition 3.10). Hence, we have to control the terms in (24) which involve
expressions in y by comparable expressions in x. To this end we write(

yn(x)

xn+1

)1−2s

= (x−2s
n+1∂nw)

1−2s
2s ,

yn+1(x)2s−1 =

(
−1− s

s
x1−2s
n+1 ∂n+1w

) 2s−1
2(1−s)

, if x ∈ A−,

and

yn(x)1−2s = (∂nw)
1−2s

2s ,(
yn+1(x)

xn+1

)2s−1

=

(
−1− s

s
x−1
n+1∂n+1w

) 2s−1
2(1−s)

, if x ∈ A+.
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By (25) and Proposition 3.10, if [∇′′g]Ċ0,α is sufficiently small, we have

‖(x−2s
n+1∂nwx0,λ)

1−2s
2s − (x−2s

n+1∂nwx0)
1−2s

2s ‖C0,γ(A−) ≤ Csλα.

Here we used that x−2s
n+1∂nwx0 is uniformly bounded away from zero in A−

for each λ ∈ (0, 1/2). As a consequence, combining the above estimates with
the estimates in Proposition 3.10 (which controls x1−2s

n+1 ∂in(wx0,λ−wx0)), we

infer a bound for ‖∂iT
wx0,λ
n − ∂iT

wx0
n ‖C0,γ(A−) with i ∈ {1, . . . , n− 1}.

Similarly,∥∥∥∥∥
(
−1− s

s
x1−2s
n+1 ∂n+1wx0,λ

) 1−2s
2(1−s)

−
(
−1− s

s
x1−2s
n+1 ∂n+1wx0

) 1−2s
2(1−s)

∥∥∥∥∥
C0,γ(A−)

+

∥∥∥∥∥
(
−1− s

s
x−1
n+1∂n+1wx0,λ

) 2s−1
2(1−s)

−
(
−1− s

s
x−1
n+1∂n+1wx0

) 2s−1
2(1−s)

∥∥∥∥∥
C0,γ(A+)

+
∥∥∥(∂nwx0,λ)

1−2s
2s − (∂nwx0)

1−2s
2s

∥∥∥
C0,γ(A+)

≤ Csλα.

Invoking Proposition 3.10 once more, then yields the Hölder bounds. Finally,
we note that by (21)

Tw0(x) =
(
x′′, w0,1/2(xn, xn+1), w0,1/2(−xn, xn+1)

)
, (26)

which in the xn, xn+1 variables is the square root mapping. Moreover,

Twx0 (x) =
(
x′′, c(x0)

1
2s (en · νx0)

1
2sw0,1/2(x · νx0 , xn+1),

c(x0)
1

2(1−s)w0,1/2(−x · νx0 , xn+1)
)
.

Computing the explicit expression for det(DTwx0 ) and using Convention 3.9,
we conclude that there exist constants cs, Cs > 0 which only depend on s,
such that

cs ≤ |det(DTwx0 )| ≤ Cs, ∀x0 ∈ Γw ∩B1, (27)

if [∇′′g]Ċ0,α is sufficiently small. Combining this with the first estimate from
(22) yields the desired result. �

As a consequence of the previous proposition the Hodograph-Legendre
transformation satisfies the same properties as the one in [17]. Arguing along
the lines of Proposition 3.8 of [17], we therefore obtain the invertibility of
the Hodograph-Legendre transform:

Proposition 4.2. Let w : B+
1 → R be a solution to (9) and assume that

the conditions (A1)-(A4) hold. If [∇′′g]Ċ0,α is sufficiently small, then there
exists a radius δ0 = δ0(s) > 0 such that T := Tw is a homeomorphism from
B+
δ0

to T (B+
δ0

) ⊂ {y ∈ Rn+1 : yn ≥ 0, yn+1 ≥ 0}. Moreover, away from Γw,

T is a C1-diffeomorphism.
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Proof. The proof follows as in [15] and [17]; thus we do not repeat it here.
�

4.2. Nonlinear PDE. In this section we compute the equation which is
satisfied by the Legendre function associated with a solution w of the thin
obstacle problem (9) such that the assumptions (A1)-(A4) are satisfied. As
our main result of this section we show that the Legendre function v solves
a Monge-Ampère type PDE. A first example (c.f. Example 4.12) indicates
that this equation should be interpreted as a perturbation of a fractional
Baouendi-Grushin equation.

Proposition 4.3. Let w : B+
1 → R be a solution to (9) and assume that the

conditions (A1)-(A4) hold. Let y = Tw(x) and let v be a Legendre function
associated with w (c.f.(19)). Then in Tw(B+

δ0
) (where δ0 = δ0(s) is the same

constant as in Proposition 4.2) the function v satisfies the fully nonlinear
equation

F (D2v,Dv, y) =

n−1∑
i=1

xn+1(y)2−4s·

· det

 ∂iiv ∂inv ∂i,n+1v
1
2s∂i(y

1−2s
n ∂nv) − 1

2s∂n(y1−2s
n ∂nv) − 1

2s∂n+1(y1−2s
n ∂nv)

− 1
2s∂i(y

2s−1
n+1 ∂n+1v) 1

2s∂n(y2s−1
n+1 ∂n+1v) 1

2s∂n+1(y2s−1
n+1 ∂n+1v)


+ ∂n(y1−2s

n y1−2s
n+1 ∂nv) + xn+1(y)2−4s∂n+1(y2s−1

n y2s−1
n+1 ∂n+1v)

− xn+1(y)3−2sJ(v)f(y′′, xn(y), xn+1(y)) = 0,
(28)

with mixed Dirichlet-Neumann boundary condition

v(y) = 0 on {yn = 0}, lim
yn+1→0+

y1−2s
n y1−2s

n+1 ∂n+1v(y) = 0 on {yn+1 = 0}.

Here

xn(y) = − 1

2s
y1−2s
n ∂nv(y),

xn+1(y) = (y2s−1
n+1 ∂n+1v)

1
2s ,

J(v) = det

(
− 1

2s∂n(y1−2s
n ∂nv) − 1

2s∂n+1(y1−2s
n ∂nv)

1
2sx

1−2s
n+1 ∂n(y2s−1

n+1 ∂n+1v) 1
2sx

1−2s
n+1 ∂n+1(y2s−1

n+1 ∂n+1v)

)
.

Remark 4.4 (Boundary data). We point out that the boundary condition
for v is not uniquely determined. In particular, this holds for the Neumann
condition. By (20) we know that ∂n+1v(y) = y1−2s

n+1 x
2s
n+1(y), which by (30)

is of the magnitude O(y2s
n yn+1) as yn+1 → 0+. Thus, the Legendre function

for instance also satisfies the condition lim
yn+1→0+

∂n+1(y−2s
n v) = 0. In the

formulation of Proposition 4.3 we have chosen boundary conditions which
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“fit” to the linearized operator and come handy in proving approximation
results in Sections 8.2. However, in the definition of our function spaces
Xα,ε we will use the flexibility which we have at this point (c.f. Definition
5.8, Proposition 5.12 and its proof in Section 9.2.1).

Remark 4.5 (Relation to s = 1/2). We remark that for s = 1/2 the above
expression simplifies to the equation from [17] with aij = δij.

Remark 4.6 (Divergence structure of leading terms). We remark that it is
possible to rewrite all terms of the form

xcn+1(y)∂j(y
2s−1
n+1 ∂n+1v), j ∈ {1, . . . , n+ 1},

into divergence form:

xcn+1(y)∂j(y
2s−1
n+1 ∂n+1v) =

4s2 + c

4s2
∂j(x

c
n+1(y)y2s−1

n+1 ∂n+1v).

This demonstrates that we may view the leading order part of the equation
either as a divergence or as a non-divergence form operator.

Proof. We compute the corresponding expressions for w and its derivatives
in terms of v. We first observe that the following relations hold between
D2w and D2v:

∂iiw = ∂iiv + (∂inv, ∂i,n+1v) ·

(
∂yn
∂xi
∂yn+1

∂xi

)
,

(xn+1)1−2s∂nnw = (2s)(xn+1)1−2sy2s−1
n

∂yn
∂xn

,

∂n+1(x1−2s
n+1 ∂n+1w) = (−2s)y1−2s

n+1

∂yn+1

∂xn+1
.

Let

J(v) := det

(
∂xn
∂yn

∂xn
∂yn+1

∂xn+1

∂yn

∂xn+1

∂yn+1

)

= det

(
− 1

2s∂n(y1−2s
n ∂nv) − 1

2s∂n+1(y1−2s
n ∂nv)

1
2sx

1−2s
n+1 ∂n(y2s−1

n+1 ∂n+1v) 1
2sx

1−2s
n+1 ∂n+1(y2s−1

n+1 ∂n+1v)

)
.

Using (
∂yn
∂xn

∂yn
∂xn+1

∂yn+1

∂xn

∂yn+1

∂xn+1

)
=

1

J(v)

(
∂xn+1

∂yn+1
− ∂xn
∂yn+1

−∂xn+1

∂yn
∂xn
∂yn

)
,

we write

(xn+1)1−2s∂nnw = (2s)(xn+1)1−2sy2s−1
n

1

J(v)

∂xn+1

∂yn+1
,

∂n+1(x1−2s
n+1 ∂n+1w) = (−2s)y1−2s

n+1

1

J(v)

∂xn
∂yn

.
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By virtue of (20),

∂xn
∂yn

= − 1

2s
∂n(y1−2s

n ∂nv),
∂xn+1

∂yn+1
=

1

2s
x1−2s
n+1 ∂n+1(y2s−1

n+1 ∂n+1v).

Thus,

(xn+1)1−2s∂nnw =
1

J(v)
y2s−1
n x2−4s

n+1 ∂n+1(y2s−1
n+1 ∂n+1v),

∂n+1(x1−2s
n+1 ∂n+1w) =

1

J(v)
y1−2s
n+1 ∂n(y1−2s

n ∂nv).

In order to express ∂iiw in terms of v, we use(
∂yn
∂xi
∂yn+1

∂xi

)
=

1

J(v)

(
∂xn+1

∂yn+1
− ∂xn
∂yn+1

−∂xn+1

∂yn
∂xn
∂yn

)
·

(
∂xn
∂yi

∂xn+1

∂yi

)

=
1

J(v)

(
1
2sx

1−2s
n+1 ∂n+1(y2s−1

n+1 ∂n+1v) 1
2s∂n+1(y1−2s

n ∂nv)

− 1
2sx

1−2s
n+1 ∂n(y2s−1

n+1 ∂n+1v) − 1
2s∂n(y1−2s

n ∂nv)

)
·

·
( −1

2s y
1−2s
n ∂inv

1
2sx

1−2s
n+1 y

2s−1
n+1 ∂i,n+1v

)
.

Recalling the equation of w

(xn+1)1−2s∆′w + ∂n+1

(
x1−2s
n+1 ∂n+1w

)
= (xn+1)3−2sf in B+

1 ,

the equation of w is transformed into a nonlinear equation for v:

x1−2s
n+1

n−1∑
i=1

∂iiv +
1

J(v)
y2s−1
n x2−4s

n+1 ∂n+1(y2s−1
n+1 ∂n+1v) +

1

J(v)
y1−2s
n+1 ∂n(y1−2s

n ∂nv)

+
x1−2s
n+1

J(v)

n−1∑
i=1

(
∂inv ∂i,n+1v

)
·(

1
2sx

1−2s
n+1 ∂n+1(y2s−1

n+1 ∂n+1v) 1
2s∂n+1(y1−2s

n ∂nv)

− 1
2sx

1−2s
n+1 ∂n(y2s−1

n+1 ∂n+1v) − 1
2s∂n(y1−2s

n ∂nv)

)( −1
2s y

1−2s
n ∂inv

1
2sx

1−2s
n+1 y

2s−1
n+1 ∂i,n+1v

)
= (xn+1)3−2sf(T−1(y)).

Multiplying by J(v) on both sides and rearranging, yields (28).
In order to deduce the form of the boundary data, we note that by the
mapping properties of Tw and by Proposition 4.2 we have that {yn =
0} ∩ Tw(B+

1/2) = Tw(Λw ∩ B+
1/2). Thus the statement on the Dirichlet

data then follows from the definition of v(y) in terms of w(x). In order to
infer the result on the Neumann data, we observe that by (20) and Propo-
sition 4.2 {yn+1 = 0} ∩ Tw(B+

1/2) = Tw(Ω̄w ∩B+
1/2). The result then follows

by recalling that x2s
n+1 = y2s−1

n+1 ∂n+1v(y) and by consulting the asmptotics

from (21) (c.f. also the asymptotics of x2s
n in terms of y from Lemma 4.8):

(ynyn+1)1−2s∂n+1v ∼ (ynyn+1)2−2s, which vanishes as yn+1 → 0+. �
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4.3. Asymptotics of the Legendre Function. In this section we derive
the asymptotics of the Legendre function by exploiting the corresponding
bounds for the solution to the fractional thin obstacle problem (c.f. Propo-
sitions 3.6, 4.1). In order to achieve this, we first derive a relation between
the rescalings of the Legendre and the respective original functions (Lemma
4.7). With this at hand, we deduce an asymptotic formula for x in terms of
y. This then allows to transfer the results from Propositions 3.6 and 3.10 to
results on the Legendre function (c.f. Propositions 4.10, 4.11).

Lemma 4.7. Let v be the Legendre function associated to a solution w of
the fractional thin obstacle problem ( 9) satisfying the assumptions (A1)-
(A4). Let y0 ∈ Tw(Γw ∩B′δ0), where B+

δ0
is as in Proposition 4.2. Then the

function

vy0,λ(y) :=
v(y0 + δλ(y))− ( 1

2sy
1−2s
n ∂nv)(y0)(δλ(y))2s

n

λ2+2s
,

with δλ(y) = (λ2y′′, λyn, λyn+1) is the Legendre function of

wx0,λ2(x) :=
w(x0 + λ2x)

λ2(1+s)
, x0 = (T

wx0,λ
2 )−1(y0)

with the Hodograph transformation y = T
wx0,λ

2 (x). In particular, vy0(y),
y = Twx0 (x), is the Legendre function of wx0, where vy0 and wx0 denote the
respective blow-ups of vy0,λ, wx0,λ2 as λ→ 0+.

Proof. Consider the Hodograph transformation associated with wx0,λ2 and

let y(x) := T
wx0,λ

2 (x) (c.f. (18)). Then,

(λyn)2s = ∂nw(z)|z=x0+λ2x,

(λyn+1)2(1−s) = −1− s
s

(λ2xn+1)1−2s∂n+1w(z)|z=x0+λ2x.

Let ṽy0,λ be the Legendre function of wx0,λ2 associated with the Hodograph

transformation T
wx0,λ

2 . Then by the definition of the Legendre function in
(19),

ṽy0,λ(y) = wx0,λ2(x)− xny2s
n +

1

2(1− s)
x2s
n+1y

2(1−s)
n+1

=
w(x0 + λ2x)

λ2+2s
− λ2xn(λyn)2s

λ2+2s
+

1

2(1− s)
(λ2xn+1)2s(λyn+1)2(1−s)

λ2+2s

=
w(x0 + λ2x)

λ2+2s
− (x0 + λ2x)n(λyn)2s

λ2+2s
+

(x0)n(λyn)2s

λ2+2s

+
1

2(1− s)
((x0 + λ2x)n+1)2s(λyn+1)2(1−s)

λ2+2s
.
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Since v is the Legendre function of w associated with the Hodograph trans-
formation Tw, equations (4.3) and (20) yield

x0 + λ2x = (z′′,− 1

2s
z1−2s
n ∂nv(z), (z2s−1

n+1 ∂n+1v(z))
1
2s )
∣∣
z=y0+δλ(y)

= (Tw)−1(y0 + δλ(y)).
(29)

Using this in the expression of ṽy0,λ and invoking again the definition of v
in (19) we have

ṽy0,λ(y) =
v(y0 + δλ(y))

λ2+2s
+

(x0)n(λyn)2s

λ2+2s
.

Finally, recalling that

(x0)n = g(x′′0) = − 1

2s
(y1−2s
n ∂nv)(y0),

we obtain ṽy0,λ = vy0,λ. �

Next, we reverse the asymptotic expansion of Tw which yields the fol-
lowing explicit formulae. We recall that g is the parametrization of the
regular free boundary, i.e. Γw ∩ B′1 = {(x′′, xn, 0) ∈ B′1 : xn = g(x′′)} with
g ∈ C1,α(B′′1 ).

Lemma 4.8. Suppose that w : B+
1 → R is a solution of (9) such that the

assumptions (A1)-(A4) hold. Let Tw be the associated Hodograph transform
and let y0 ∈ Tw(Γw ∩Bδ0), x0 = (Tw)−1(y0). Then,

(i) the following asymptotic expansions hold:

xn(y) = g(y′′) + a0(y′′)y2
n − a1(y′′)y2

n+1 +Os
(
(y2
n + y2

n+1)1+α
)
,

x2s
n+1(y) = 2a1(y′′)y2s

n y
2s
n+1 +Os

(
y2s
n y

2s
n+1(y2

n + y2
n+1)α

)
.

(30)

Here,

a0(y0) =
1

2c(x0)1/s(en · νx0)(1+s)/s
, a1(y0) =

1

2c(x0)1/(1−s)(en · νx0)
,

are positive C0,α functions which are uniformly bounded away from
zero.

(ii) We have that

v(y) = −g(y′′)y2s
n −

s

1 + s
a0(y′′)y2s+2

n + a1(y′′)y2s
n y

2
n+1

+ y2s
n y

2
n+1Os

(
(y2
n + y2

n+1)α
)
,

vy0(y) = −∇′′g(y′′0) · (y′′ − y′′0)y2s
n −

s

1 + s
a0(y′′0)y2s+2

n

+ a1(y′′0)y2s
n y

2
n+1.
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Proof. We begin by deriving the asymptotics in (i). Reversing the asymp-
totics (21) of y = T (x) around x0 ∈ Γw, we compute that in a neighborhood
of y0 = T (x0) = (x′′0, 0, 0),

(x− x0) · νx0 =
1

2

(
y2
n

c(x0)1/s(en · νx0)1/s
−

y2
n+1

c(x0)1/(1−s)

)
+Os

(
(y2
n + y2

n+1)1+α
)
,

xn+1 =
ynyn+1

c(x0)1/(2s)c(x0)1/2(1−s)(en · νx0)1/(2s)

+Os
(
ynyn+1(y2

n + y2
n+1)α

)
.

Using that νx0 =
(−∇′′g(x′′0 ),1,0)t√

1+|∇g(x′′0 )|2
, we furthermore obtain

xn = g(y′′0) +∇′′g(y′′0) · (y′′ − y′′0)

+
1

2

(
y2
n

c(x0)1/s(en · νx0)(1+s)/s
−

y2
n+1

c(x0)1/(1−s)(en · νx0)

)
+Os

(
(y2
n + y2

n+1)1+α
)
.

By Convention 3.9 and by the assumption (A3) the functions c(x0) and (en ·
νx0) are uniformly bounded away from zero and are C0,α regular functions.
Setting

a0(y0) =
1

2c(x0)1/s(en · νx0)(1+s)/s
, a1(y0) =

1

2c(x0)1/(1−s)(en · νx0)
,

we hence arrive at the desired asymptotics in (30). The formula for v in (ii)
follows by integrating the relations

∂n+1v(y) = y1−2s
n+1 x

2s
n+1, ∂nv(y) = −2sy2s−1

n xn,

in combination with the asymptotics from (20) and the mixed Dirichlet-
Neumann boundary condition. Using the expression for vy0,λ in Lemma 4.7
and passing to the limit we obtain the formula for vy0 . �

With these auxiliary results at hand, we now address the asymptotic
behavior of the Legendre transform (which can be regarded as a partial
analogue of Proposition 3.6):

Proposition 4.9. Let C+
1 := {y ∈ Q+ : |y′′| < 1, 1

4 < y2
n+y2

n+1 < 1}. There

exists λ0 = λ0(s) > 0 such that for any λ ∈ (0, λ0) and any x0 ∈ Γw ∩ B+
δ0

,

(T
wx0,λ

2 )−1 ∈ C1,γ(C+
1 ). Moreover, for any γ ∈ (0, 1),

‖(Twx0,λ
2 )−1 − (Twx0 )−1‖L∞(B1∩Q+) ≤ Csλ2α,

‖D(T
wx0,λ

2 )−1 −D(Twx0 )−1‖C0,γ(C+
1 ) ≤ Csλ

2α.

Proof. The first inequality directly follows from Lemma 4.8 (i) by exploiting
the coefficient regularity.
The second inequality follows from the first inequality and Proposition 4.1
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(i), (ii). More precisely, one uses the relation DT−1(y) = (DT (T−1(y)))−1.
The constant λ0 is determined in the same way as Proposition 4.1 (ii). �

Proposition 4.10. Let vy0,λ and vy0 be as in Lemma 4.7. Let λ0 and C+
1

be as in Proposition 4.9. Then,

n−1∑
i=1

‖y−2s
n ∂i(vy0,λ − vy0)‖C0,γ(C+

1 ) + ‖y1−2s
n ∂n(vy0,λ − vy0)‖C0,γ(C+

1 )

+ ‖y−2s
n y−1

n+1∂n+1(vy0,λ − vy0)‖C0,γ(C+
1 ) ≤ Csλ

2α,

for any λ ∈ (0, λ0) and γ ∈ (0, 1).

Proof. We note that by (20)

y−2s
n ∂iv(y) =

∂iw(x)

∂nw(x)

∣∣
x=(Tw)−1(y)

, i ∈ {1, . . . , n− 1},

y1−2s
n ∂nv(y) = −(2s)xn

∣∣
x=(Tw)−1(y)

,

y−2s
n y−1

n+1∂n+1v(y) = y−2s
n y−2s

n+1x
2s
n+1

∣∣
x=(Tw)−1(y)

.

(31)

Step 1: Estimates for i ∈ {1, . . . , n − 1}. Using (31) and the explicit
expression for vy0 in Lemma 4.8 (ii), we observe that

y−2s
n ∂ivy0,λ(y)− y−2s

n ∂ivy0(y) =
∂iwx0,λ2(x)

∂nwx0,λ2(x)

∣∣
x=(T

w
x0,λ

2
)−1(y)

− (−∂ig(y0)).

By the boundary Harnack inequality, for any y ∈ C+
1∣∣∣∣ ∂iwx0,λ2(x)

∂nwx0,λ2(x)

∣∣
x=(T

w
x0,λ

2
)−1(y)

− (−∂ig(y0))

∣∣∣∣ ≤ Cλ2α|(Twx0,λ
2 )−1(y)− y0|α.

This gives the L∞ bound.
To prove the Hölder bound, noting that −∂ig(y0) is constant, we have∣∣y−2s

n ∂i(vy0,λ − vy0)(y1)− y−2s
n ∂i(vy0,λ − vy0)(y2)

∣∣
=

∣∣∣∣ ∂iwx0,λ2(x)

∂nwx0,λ2(x)

∣∣
x=(T

w
x0,λ

2
)−1(y1)

−
∂iwx0,λ2(x)

∂nwx0,λ2(x)

∣∣
x=(T

w
x0,λ

2
)−1(y2)

∣∣∣∣ .
By Proposition 3.6 (i) and by (33), there exists λ0 = λ0(s) such that
C+

1 ⊂ T
wx0,λ

2 (A+ ∪ A−) for any 0 < λ ≤ λ0. We will consider the Hölder
estimate in T

wx0,λ
2 (A+) and T

wx0,λ
2 (A−) separately. First for y1, y2 ∈

C+
1 ∩ T

wx0,λ
2 (A−), we rewrite

∂iwx0,λ2(x)

∂nwx0,λ2(x)
=
x−2s
n+1∂iwx0,λ2(x)

x−2s
n+1∂nwx0,λ2(x)

.

Using Proposition 3.10 and the fact that the denominator is uniformly
bounded away from zero for x ∈ A− we have that for any γ ∈ (0, 1)∣∣y−2s

n ∂i(vy0,λ − vy0)(y1)− y−2s
n ∂i(vy0,λ − vy0)(y2)

∣∣
≤ Csλ2α|(Twx0,λ

2 )−1(y1)− (T
wx0,λ

2 )−1(y2)|γ .
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By Proposition 4.9 we thus conclude that∣∣y−2s
n ∂i(vy0,λ − vy0)(y1)− y−2s

n ∂i(vy0,λ − vy0)(y2)
∣∣ ≤ Csλ2α|y1 − y2|γ . (32)

For y1, y2 ∈ C+
1 ∩ T

wx0,λ
2 (A+), we directly estimate the quotient

∂iwx0,λ
2 (x)

∂nwx0,λ
2 (x) .

Arguing similarly as above, we conclude that (32) also holds in this case.
Combining these bounds we deduce

‖y−2s
n ∂i(vy0,λ − vy0)‖C0,γ(C+

1 ) ≤ Csλ
2α.

Step 2: Estimates for the remaining two expressions. The remaining two
estimates are shown in a similar way. More precisely, we observe that∣∣y1−2s

n ∂nvy0,λ(y)− y1−2s
n ∂nvy0(y)

∣∣
= (2s)

∣∣((Twx0,λ
2 )−1(y))n − ((Twx0 )−1(y))n

∣∣ .
Using Proposition 4.9, we obtain the desired bound for y1−2s

n ∂nv.
Next we consider the term y−2s

n y−1
n+1∂n+1v. Using (31), the asymptotics of

x2s
n+1(y) from Lemma 4.8 (i), and noting that y−2s

n y−1
n+1∂n+1vy0(y) = 2a1(y0),

we immediately infer that∥∥y−2s
n y−1

n+1∂n+1vy0,λ − y−2s
n y−1

n+1∂n+1vy0

∥∥
L∞(C+

1 )
≤ Csλ2α.

To show the Hölder continuity, we write

y−2s
n y−1

n+1∂n+1vy0,λ(y) = y−2s
n+1

(
xn+1

yn

)2s ∣∣
x=(T

w
x0,λ

2
)−1(y)

if y ∈ Twx0,λ
2 (A−),

y−2s
n y−1

n+1∂n+1vy0,λ(y) = y−2s
n

(
xn+1

yn+1

)2s ∣∣
x=(T

w
x0,λ

2
)−1(y)

if y ∈ Twx0,λ
2 (A+).

By the proof of Proposition 4.1, we have (xn+1/yn)2s ∈ C0,γ(A−) and
(xn+1/yn+1)2s ∈ C0,γ(A+). Thus, arguing similarly as for (i) (where we
use that in T

wx0,λ
2 (A−), yn+1 ∼ 1 and that in T

wx0,λ
2 (A+), yn ∼ 1), we

infer that for any γ ∈ (0, 1) and for all y1, y2 ∈ C+
1∣∣y−2s

n y−1
n+1∂n+1vy0,λ(y1)− y−2s

n y−1
n+1∂n+1vy0,λ(y2)

∣∣
≤ Csλ2α

∣∣(Twx0,λ
2 )−1(y1)− (T

wx0,λ
2 )−1(y2)

∣∣γ .
Therefore, the estimate follows by invoking Proposition 4.9. This concludes
the proof. �

Similarly as in Section 3, it is possible to extend these asymptotics to
second order estimates:

Proposition 4.11. Let vy0,λ, vy0, λ0 and C+
1 be as in Proposition 4.10.

Then for any λ ∈ (0, λ0) and any γ ∈ (0, 1), ∂iy
1−2s
n ∂jvy0,λ ∈ C0,γ(C+

1 ) with
i, j ∈ {1, . . . , n+ 1}. Moreover,

n+1∑
i,j=1

∥∥∂iy1−2s
n ∂j (vy0,λ − vy0)

∥∥
C0,γ(C+

1 )
≤ Csλ2α.
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Proof. By (20) a direct computation gives

∂n(y1−2s
n ∂nv) = −(2s)(DT−1)n,n,

y1−2s
n ∂n+1∂nv = −(2s)(DT−1)n,n+1,

y1−2s
n ∂n+1,n+1v = (2s)(y−1

n+1y
−2s
n ∂n+1v)−

2s−1
2s (DT−1)n+1,n+1

+ (1− 2s)y1−2s
n y−1

n+1∂n+1v,

∂i(y
1−2s
n ∂nv) = (2s)(DT−1)n,i,

∂i(y
1−2s
n ∂n+1v) = (2s)(y−2s

n y−1
n+1∂n+1v)

2s−1
2s (DT−1)n+1,i.

Here v stands representatively for vy0,λ and vy0 , and T for T
wx0,λ

2 , Twx0 ,
respectively (x0 = (Tw)−1(y0)). By invoking Proposition 4.10 and Proposi-
tion 4.9, this yields the estimates.
Finally, we compute that for i, j ∈ {1, . . . , n− 1},

y1−2s
n ∂ijv = y1−2s

n ∂ijw(x)
∣∣
x=T−1(y)

+ y1−2s
n ∂njw(x)(DT−1)n,j + y1−2s

n ∂n+1,jw(x)(DT−1)n+1,j

∣∣
x=T−1(y)

.

We only show the estimate for y1−2s
n ∂ijw in detail, as the remainder of the

proof is similar. Let

G(y) := y1−2s
n ∂ijw(x)

∣∣
x=(Tw)−1(y)

.

If y ∈ C+
1 ∩ Tw(A+), we have yn ∼ 1. By Proposition 3.10 (ii) and Proposi-

tion 4.9, for λ ∈ (0, λ0),

‖Gλ(y)−G0(y)‖
C0,γ(T

w
x0,λ

2
(A+)∩C+

1 )
≤ Csλ2α.

Here Gλ(y) := y1−2s
n ∂ijwx0,λ2(x), x = (T

wx0,λ
2 )−1 and and G0 corresponds

to wx0 .
If y ∈ C+

1 ∩ Tw(A−), we write

G(y) =

(
yn
xn+1

)1−2s

(x1−2s
n+1 ∂ijw(x))

∣∣
x=T−1(y)

= (y1−2s
n+1 y

−2s
n ∂n+1v)

2s−1
2s (x1−2s

n+1 ∂ijw(x))
∣∣
x=T−1(y)

.

By Proposition 4.10, Proposition 3.10 and Proposition 4.9 we obtain

‖Gλ −G0‖C0,γ(T
w
x0,λ

2
(A−)∩C+

1 )
≤ Cλ2α.

In the end, arguing similarly as in the proof of Proposition 4.10 (i), we obtain
the desired estimate for Gλ −G0 in C+

1 . This concludes the proof. �

Finally to conclude this section, we discuss the model solution v0 which
is defined as the blow-up of v at y = 0 and which (up to constants) is the
Legendre function of the model solution w1,s from (3):
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Example 4.12. Recalling the assumptions that g(0) = 0 = |∇′′g(0)| yields
that the Legendre function, v0, of the blow-up w0 at zero (c.f. ( 15)) is of a
particularly simple form (compare this also to the more general expressions
from Lemma 4.8 in Section 4.3). Up to rescaling it reads:

v0(y) = − s

(s+ 1)
y2s+2
n + y2s

n y
2
n+1. (33)

Computing the expressions for x and J(v0) in terms of y (c.f. Proposition
4.3) in this particular case then yields

xn(y) =
1

2
(y2
n − y2

n+1), xn+1(y) = ynyn+1, J(v0) = y2
n + y2

n+1.

Hence, in the case of vanishing inhomogeneity, f = 0, up to a constant, the
linearization of the nonlinear functional F from ( 28) at v0 is

∆G,sṽ = (ynyn+1)1−2s(y2
n + y2

n+1)∂iiṽ + ∂n((ynyn+1)1−2s∂nṽ) (34)

+ ∂n+1((ynyn+1)1−2s∂n+1ṽ).

This is a Baouendi-Grushin type fractional Laplacian, which serves as a
first motivation of the introduction of the Baouendi-Grushin geometry in
the following section.

5. Geometry and function spaces

Motivated by the linearization result from Example 4.12, we introduce
the geometry and function spaces in which we will be working in the sequel.
More precisely, we consider the intrinsic geometry which is induced by the
Baouendi-Grushin operator (c.f. Definition 5.1). For the choice of our func-
tion spaces (c.f. Definition 5.8) we build on this. Guided by the explicit
form of the model solution from Example 4.12 and the a priori estimates for
the fractional Baouendi-Grushin operator (c.f. Sections 9.1), we construct
weighted spaces with the right asymptotic behavior at the straightened free
boundary P := {yn = yn+1 = 0}.

We begin by introducing the relevant geometric quantities in Definition
5.1.

Definition 5.1 (Baouendi-Grushin geometry). Let

Y1 := yn∂y1 , Y2 := yn+1∂y1 , . . . ,

Y2n−3 := yn∂yn−1 , Y2n−2 := yn+1∂yn−1 ,

Y2n−1 := ∂yn , Y2n := ∂yn+1 ,

denote the Baouendi-Grushin vector fields. We consider the associated
Baouendi-Grushin metric

gy(v, w) = (y2
n + y2

n+1)−1

(
n−1∑
i=1

wivi

)
+ vnwn + vn+1wn+1,
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for all y ∈ Rn+1 and v, w ∈ span{Yi(y)}i∈{1,...,2n}. This induces a (Carnot-

Caratheodory) distance on Rn+1:

dG(x, y) := inf


b∫
a

√
gγ(t)(γ̇(t), γ̇(t))dt : γ(a) = x, γ(b) = y, a, b ∈ R,

γ̇(t) ∈ span{Yi(γ(t))}i∈{1,...,2n}
}
.

We denote the associated (closed) Baouendi-Grushin balls of radius R and
with center y0 ∈ Rn+1 by BR(y0), i.e.

BR(y0) := {y ∈ Rn+1 : dG(y, y0) ≤ R}.

Let Q+ := {y ∈ Rn+1 : yn ≥ 0, yn+1 ≥ 0} denote the upper quarter space.
We denote the intersection of balls with Q+ by B+

R(y0).

The intrinsic metric associated to the fractional Baouendi-Grushin Lapla-
cian

∆G,s =

2n∑
i=1

Yiω(y)Yi, ω(y) = |ynyn+1|1−2s

is conformal equivalent to the Baouendi-Grushin metric on the space Rn+1 \
{ynyn+1 = 0}.

Remark 5.2. As in Remark 4.2 of [17], it is not hard to show that dG is
equivalent to the following quasi-metric:

d̃G(ŷ, y) := |ŷn − yn|+ |ŷn+1 − yn+1|

+
|ŷ′′ − y′′|

|ŷn|+ |ŷn+1|+ |yn|+ |yn+1|+ |ŷ′′ − y′′|1/2
.

Here ŷ = (ŷ′′, ŷn, ŷn+1), y = (y′′, yn, yn+1).

Using the previous notation, it is possible to define Hölder spaces with
respect to the Baouendi-Grushin metric:

Definition 5.3 (Hölder spaces). Let Ω ⊂ Rn+1 and let α ∈ (0, 1]. Then we
define

[·]
Ċ0,α
∗ (Ω)

: L∞(Ω̄)→ [0,∞],

[u]
Ċ0,α
∗ (Ω)

:= sup
ŷ,y∈Ω

|u(ŷ)− u(y)|
dG(ŷ, y)α

.

Moreover, we set

‖ · ‖
C0,α
∗ (Ω)

: L∞(Ω̄)→ [0,∞],

‖u‖
C0,α
∗ (Ω)

:= sup
ŷ∈Ω

|u(ŷ)|+ [u]
Ċ0,α
∗ (Ω)

,

and define

C0,α
∗ (Ω) := {u ∈ L∞(Ω̄) : ‖u‖

C0,ε
∗ (Ω)

<∞}.
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Remark 5.4. As in the Euclidean case, the spaces C0,α
∗ (Ω) form Banach

spaces.

In order to approximate functions with respect to the Baouendi-Grushin
geometry, we rely on the notion of homogeneous polynomials. These are
polynomials whose tangential and normal degrees are counted differently.
This is motivated by the different scaling behavior of the tangential and
normal components of the operator from Example 4.12.

Definition 5.5 (Homogeneous polynomials). Let k ∈ N and let the multi-
index β = (β1, . . . , βn+1) with βi ∈ N ∪ {0} be a multi-index. We define

Phomk :=

p(y) =
∑
|β|=k

bβy
β : bβ ∈ R, bβ = 0 if

n−1∑
j=1

2βi + βn + βn+1 > k


as the space of homogeneous polynomials with degree k. Here the notion
homogeneous refers to the scaling behavior

pk(δλ(y)) = λkpk(y), pk ∈ Phomk ,

where δλ(y) = (λ2y′′, λyn, λyn+1) is the dilation associated to the Baouendi-
Grushin vector fields. We define

Pk :=

p(y) =
∑
|β|≤k

bβy
β : bβ ∈ R, bβ = 0 if

n−1∑
j=1

2βi + βn + βn+1 > k

 ,

as the vector space of the homogeneous polynomials with degree less or
equal to k.

Finally, as the last ingredient before defining our function spaces, we
introduce the notion of differentiability at P := {yn = yn+1 = 0}:

Definition 5.6. We say that a function f : Q+ → R is Ck,α∗ at P if for
each point y0 ∈ P there exists a homogeneous polynomial Py0,k ∈ Pk such
that

|f(y)− Py0,k(y)| ≤ CdG(y, y0)k+2α in B+
1 (y0).

We call the polynomial Py0,k an approximating polynomial for f at y0.

Remark 5.7. We remark that if f is k-times differentiable at a point y0 ∈ P
in the classical sense, then the approximating polynomial Py0,k corresponds
to the Taylor polynomial (of homogeneous degree less than or equal to k) of
f at P .

With the previous preparation, we can now define our main function
spaces which are needed for the application of the implicit function theorem
in Section 7. We are seeking Banach spaces X and Y such that

(i) the nonlinear functional F in (28) is smooth (or analytic) from X to
Y , if the inhomogeneity f is smooth (or analytic),
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(ii) the model solution v0 is contained in X, and ∆G,s = Dv0F : X → Y
is invertible,

(iii) the Legendre function v from Section 4 is in X. Morevoer, the
differential DvF is a perturbation of ∆G,s : X → Y .

Definition 5.8 (Function spaces). Let α, ε ∈ (0, 1). We set

Xα,ε := {v ∈ L∞(Q+) : v = 0 on {yn = 0}, y−2s
n v ∈ C2,α

∗ at P,

lim
yn+1→0+

∂n+1(y−2s
n v(y)) = 0, lim

y→P
∂n(y1−2s

n ∂nv(y)) = 0,

supp(∆G,sv) ⊂ B+
1 , ‖v‖Xα,ε <∞},

Yα,ε := {f ∈ L∞(Q+) : y2s−1
n+1 f ∈ C

1,α
∗ at P,

lim
y→P

y2s−1
n+1 f(y) = 0 = lim

y→P
∂n+1(y2s−1

n+1 f(y)),

supp(f) ⊂ B+
1 , ‖f‖Yα,ε <∞},

where the associated norms are given by

‖v‖Xα,ε = sup
ȳ∈P

(∥∥∥dG(·, ȳ)−(2+2α)y−2s
n (v − y2s

n P
s
ȳ,2)
∥∥∥
L∞(Q+)

+
[
dG(·, ȳ)−2α+εy−1

n+1y
−2s
n ∂n+1(v − y2s

n P
s
ȳ,2)
]
Ċ0,ε
∗ (Q+)

+
[
dG(·, ȳ)−(2+2α−ε)y1−2s

n ∂n(v − y2s
n P

s
ȳ,2)
]
Ċ0,ε
∗ (Q+)

+

n−1∑
i=1

[
dG(·, ȳ)−(2α−ε)y−2s

n ∂i(v − y2s
n P

s
ȳ,2)
]
Ċ0,ε
∗ (Q+)

+

n+1∑
i,j=1

[
dG(·, ȳ)−(1+2α−ε)Yiy

1−2s
n Yj(v − y2s

n P
s
ȳ,2)
]
Ċ0,ε
∗ (Q+)

 ,

‖f‖Yα,ε = sup
ȳ∈P

[
dG(·, ȳ)−(1+2α−ε)y2s−1

n+1 (f − y1−2s
n+1 Q

s
ȳ,1)
]
Ċ0,ε
∗ (Q+)

.

The functions P sȳ,2 and Qsȳ,1 denote the respective (in the homogeneous sense)

second and first order approximating polynomials (in the sense of Definition
5.6) of y−2s

n v(y) and y2s−1
n+1 f(y) at ȳ := (ȳ′′, 0, 0) ∈ P .

Let us briefly comment on the main ideas leading to these definitions.
The spaces are constructed so as to measure the deviation of functions from
suitable approximations at the boundary of Q+. In this sense they mimic
the asymptotic expansions of the Legendre function v (for the definition of
the space Xα,ε) and of the function ∆G,sv (for the space Yα,ε), c.f. Section
4.3. The asymptotic behavior at the boundary of Q+ is thus encoded by
considering the difference of v to y2s

n P
s
ȳ,2 and y1−2s

n+1 Q
s
ȳ,1. These specific ap-

proximations are motivated by the structure of the “eigenpolynomials” to
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the fractional Baouendi-Grushin Laplacian and the associated elliptic reg-
ularity estimates (c.f. Sections 8.3-8.1). The existence of such an approxi-

mation is ensured by the requirement that y−2s
n v ∈ C2,α

∗ at P . The choice
of the norms rests on the availability of “Schauder type” elliptic estimates
for the Grushin Laplacian with mixed Dirichlet-Neumann conditions with
respect to these (c.f. Sections 8.3 and 9.1).
The pointwise conditions imposed on functions in the space Xα,ε are a mix-
ture of boundary and normalization properties: We require Dirichlet con-
ditions on {yn = 0} and a “strengthened” form of Neumann conditions on
{yn+1 = 0} (c.f. Remark 4.4). The Neumann condition in particular rules
out the presence of a linear term yn+1 in the asymptotic expansion of y−2s

n v
at P and is hence adapted to the expansion of y−2s

n v. Finally, the remaining
pointwise condition is a normalization which excludes the presence of the
linear term yn in the approximating polynomial for y−2s

n v at P .
The requirement that v ∈ L∞ in combination with the compact support
condition on ∆G,sv entails that the space Xα,ε is a Banach space.

Remark 5.9. Restrictions on the specific form of the weights (which are
used in the norms) originate from the second order estimates (c.f. Proposi-
tions 8.1, 8.2), the compatibility with the linear and nonlinear operators, and
the aim of proving analyticity of the nonlinear function ( 28) in the function
spaces Xα,ε, Yα,ε. We remark that this still leaves a non-negligible amount of
freedom for instance in the exact choice of the weights for the lowest order
contributions.

Remark 5.10. Due to the compact support of f and due to the definition
of P sȳ,1, we have that

∥∥∥dG(·, ȳ)−(1+2α)y2s−1
n+1 (f − P sȳ,1)

∥∥∥
L∞(Q+)

.
[
dG(·, ȳ)−(1+2α−ε)y2s−1

n+1 (f − P sȳ,1)
]
Ċ0,ε
∗ (Q+)

.

As in [17] these function spaces have local analoga:
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Definition 5.11. Let α, ε ∈ (0, 1). We set

Xα,ε(B+
R) := {v ∈ L∞(B+

R) : v = 0 on {yn = 0} ∩ B+
R ,

y−2s
n v ∈ C2,α

∗ at P ∩ B+
R ,

lim
yn+1→0+

∂n+1(y−2s
n v(y)) = 0 on B+

R ,

lim
y→P∩B+

R

∂n(y1−2s
n ∂nv(y)) = 0,

‖v‖Xα,ε(B+
R) <∞},

Yα,ε(B+
R) := {f : Q+ → R : y2s−1

n+1 f ∈ C
1,α
∗ at P ∩ B+

R ,

lim
y→P∩B+

R

y2s−1
n+1 f(y) = 0 = lim

y→P∩B+
R

∂n+1(y2s−1
n+1 f(y)),

‖f‖Yα,ε(B+
R) <∞},

where the associated norms are defined as above but now contain the full
C0,ε
∗ norms, e.g.

‖v‖Xα,ε(B+
R) = ‖v‖Ẋα,ε(B+

R) + sup
ȳ∈P∩B+

R

|P sȳ,2|.

Here ‖ · ‖Ẋα,ε(B+
R) is the homogeneous part which is defined the same way

as for the global spaces (c.f. Definition 5.8) with Q+ replaced by B+
R , and

|P sȳ,2| :=
∑
|β|≤2 |bβ(ȳ)| for P sȳ,2(y) =

∑
|β|≤2 bβ(ȳ)yβ.

As in [17], the function spaces from Definition 5.8 have a characterization
in terms of decompositions in appropriate Hölder spaces:

Proposition 5.12. Let α, ε ∈ (0, 1) with ε ≤ α and let Xα,ε, Yα,ε be the
function spaces from Definition 5.8. Then,
(i) v ∈ Xα,ε if and only if there exist functions a0, a1 ∈ C0,α(Rn−1), c0 ∈
C1,α(Rn−1) and C0, Ck, Ck` ∈ C0,ε

∗ (Q+) with k, ` ∈ {1, . . . , n+ 1} such that
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(a) for i, j ∈ {1, . . . , n− 1} the following decomposition holds:

v(y) = c0(y′′)y2s
n + a0(y′′)y2+2s

n + a1(y′′)y2s
n y

2
n+1

+ y2s
n r

2+2α−εC0(y),

y1−2s
n ∂nv(y) = (2s)c0(y′′) + (2 + 2s)a0(y′′)y2

n + (2s)a1(y′′)y2
n+1

+ r2+2α−εCn(y),

∂n+1v(y) = 2a1(y′′)y2s
n yn+1 + y2s

n yn+1r
2α−εCn+1(y),

∂iv(y) = ∂ic0(y′′)y2s
n + y2s

n r
2α−εCi(y),

∂n(y1−2s
n ∂nv)(y) = 2(2 + 2s)a0(y′′)yn + r1+2α−εCnn(y),

∂n+1(y1−2s
n ∂nv)(y) = (4s)a1(y′′)yn+1 + r1+2α−εCn+1,n(y),

y1−2s
n ∂n,n+1v(y) = (4s)a1(y′′)yn+1 + r1+2α−εCn,n+1(y),

y1−2s
n ∂n+1,n+1v(y) = 2a1(y′′)yn + r1+2α−εCn+1,n+1(y),

y1−2s
n ∂ijv(y) = r−1+2α−εCij(y),

y1−2s
n ∂inv(y) = (2s)∂ic0(y′′) + r2α−εCin(y).

(b) The following estimate holds:

[a0]Ċ0,α + [a1]Ċ0,α + [c0]Ċ1,α +

n+1∑
i=0

[Ci]Ċ0,ε
∗

+

n+1∑
i,j=1

[Cij ]Ċ0,ε
∗
≤ C‖v‖Xα,ε .

(c) The functions C0, Ci, Cij, i ∈ {1, . . . , n + 1} vanish on P and Cn+1

vanishes on {yn = 0}.
(d) supp(∆G,sv) ∈ B+

1 .

(ii) f ∈ Yα,ε if and only if there exist functions f0 ∈ C0,α(P ), f1 ∈ C0,ε
∗ (Q+)

such that

f(y) = yny
1−2s
n+1 f0(y′′) + y1−2s

n+1 r
1+2α−εf1(y),

with

[f0]Ċ0,α + [f1]
Ċ0,ε
∗
≤ C‖f‖Yα,ε ,

and f1(y) = 0 for y ∈ P and supp(f0), supp(f1) ⊂ B′′1 × R2
+.

Remark 5.13. For the local spaces Xα,ε(B+
R) and Yα,ε(B+

R), there are similar
characterizations. One has the equivalence of the norms

‖a0‖C0,α(B+
R∩P ) + ‖a1‖C0,α(B+

R∩P ) + ‖c0‖C1,α(B+
R∩P )

+
n+1∑
i=1

‖Ci‖C0,ε
∗ (B+

R)
+

n+1∑
i,j=1

‖Cij‖C0,ε
∗ (B+

R)
∼ ‖v‖Xα,ε(B+

R).

Using these definitions and characterizations, we note that for v ∈ Xα,ε,
it follows that ∆G,sv ∈ Yα,ε. Here ∆G,s is the fractional Baouendi-Grushin
Laplacian defined in (34). Moreover, the decomposition from Proposition
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5.12 can be used to prove that Xα,ε, Yα,ε form Banach spaces (c.f. Section
9.2.2):

Proposition 5.14. Let α, ε ∈ (0, 1) with α ≥ ε and let Xα,ε, Yα,ε be as in
Definition 5.8. Then, Xα,ε, Yα,ε are Banach spaces.

Next we state the following a priori estimate, whose proof is provided in
the Appendix (c.f. Proposition 8.3):

Proposition 5.15. Suppose that v ∈ Xα,ε for some α, ε ∈ (0, 1). Assume
that ∆G,sv = f for some f ∈ Yα,ε, where ∆G,s is the fractional Baouendi-
Grushin Laplacian in (34). Then,

‖v‖Xα,ε(B+
1/2

) ≤ C
(
‖f‖Yα,ε(B+

1 ) + ‖v‖L∞(B+
1 )

)
.

Last but not the least, we show that the Legendre function v associated
with a solution w to (9) satisfying the assumptions (A1)-(A4) is in Xα,ε(B+

δ0
)

for some small δ0 > 0 which only depends on s.

Corollary 5.16 (Regularity of the Legendre function). Let v be the Legendre
function associated with a solution w of the thin obstacle problem (9). Then
there exists a small radius δ0 > 0 depending on s, such that for any α as in
Proposition 3.6 and 0 < ε ≤ α we have v ∈ Xα,ε(B+

δ0
).

Proof. This follows immediately from the local version of the characteriza-
tion of the space Xα,ε in Proposition 5.12, from Lemma 4.8 (ii), from Propo-

sitions 4.10 and Proposition 4.11 by scaling, i.e. by setting λ =
√
y2
n + y2

n+1.

Here we have used that in C+
1 , where

√
y2
n + y2

n+1 ∼ 1, the Baouendi-Grushin

metric is equivalent to the Euclidean metric. �

6. Mapping properties

In this section we discuss the mapping properties of the nonlinear function
F from (28) (c.f. Section 6.1) and of its linearization (c.f. Section 6.2). In
particular, we prove that F is analytic as a function from a subset of Xα,ε to
Yα,ε for a suitable choice of α, ε, if the inhomogeneity f is also analytic (c.f.
Proposition 6.2). These mapping properties are necessary conditions for the
application of the implicit function theorem in Section 7. They a posteriori
justify the choice of our spaces from Section 5 and make the intuition from
Example 4.12 rigorous.

Throughout the section, we assume that the conditions (A1)-(A4) from
Section 2.1 hold.

6.1. Mapping properties of the nonlinear functional. Let
F (D2v,Dv, y) be the nonlinear functional from (28). For convenience, we
abbreviate it as F (v) := F (D2v,Dv, y). Let

v0(y) = − s

s+ 1
y2+2s
n + y2s

n y
2
n+1
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be the model solution from (33). We note that

‖v0‖Xα,ε(B+
1 ) = 1 + s/(s+ 1),

and observe that F is well-defined in a small Xα,ε-neighborhood of v0.
In the sequel, given u ∈ Xα,ε(B+

1 ) or u ∈ Xα,ε, we denote
the r-neighborhood of u in the corresponding Banach space by

Ur(u) := {v ∈ Xα,ε(B+
1 ) : ‖v − u‖Xα,ε(B+

1 ) < r}, 0 < r <∞.

We will show that there exists r0 ∈ (0, 1
4‖v0‖Xα,ε ] such that the nonlinear

functional F defined in (28) maps a neighborhood, Ur0(v0), of v0 in Xα,ε(B+
1 )

into Yα,ε(B+
1 ). Moreover, we discuss the analyticity (or smoothness) proper-

ties of F as a mapping from Ur0(v0) into Yα,ε(B+
1 ). Here a major difficulty is

that the functional F contains the term (y2s−1
n+1 ∂n+1v)

1−2s
s , which, if s 6= 1

2 ,
is not analytic in standard Hölder spaces. This however is overcome by the
use of the function spaces from Section 5.

Proposition 6.1. Let F be the nonlinear functional from Proposition 4.3.
Assume that the inhomogeneity f ∈ C0,1(B+

1 ). Let α ∈ (0, 1) and ε ∈ (0, α]
and let Xα,ε(B+

1 ), Yα,ε(B+
1 ) be the spaces from Definition 5.8. Then for any

r0 ∈
(
0, 1

4‖v0‖Xα,ε
]
,

Xα,ε(B+
1 ) ⊃ Ur0(v0) 3 v 7→ F (v) ∈ Yα,ε(B+

1 ).

Proof. The argument follows by inserting the characterization of the func-
tion spaces from Proposition 5.12 into the expression for F . We concentrate

on dealing with the (y2s−1
n+1 ∂n+1v)

1−2s
s contribution in the equation and the

inhomogeneity, as these are the only non-standard terms.

We begin with the (y2s−1
n+1 ∂n+1v)

1−2s
s contribution and observe that

y2s−1
n+1 ∂n+1v0(y) = 2y2s

n y
2s
n+1.

Thus, suppose that v ∈ Xα,ε(B+
1 ) ∩ Ur0(v0) with 0 < r0 ≤ 1

4‖v0‖Xα,ε , and
suppose (by Proposition 5.12) that v has the decomposition

y2s−1
n+1 ∂n+1v(y) = 2a1(y′′)y2s

n y
2s
n+1 + Cn+1(y)y2s

n y
2s
n+1r

2α−ε.

Then Remark 5.13 yields that 3
4 ≤ a1(y′′) ≤ 5

4 and |Cn+1(y)| ≤ 1
4 for any

y ∈ B+
1 . This implies that |Cn+1(y)/a1(y′′)| ≤ 1

3 . Thus for any v ∈ Ur0(v0),

(y2s−1
n+1 ∂n+1v)

1−2s
s = y2−4s

n y2−4s
n+1 (a1(y′′) + Cn+1(y)r2α−ε)

1−2s
s

= y2−4s
n y2−4s

n+1 a1(y′′)
1−2s
s

(
1 +

Cn+1(y)

a1(y′′)
r2α−ε

) 1−2s
s

= y2−4s
n y2−4s

n+1 (ã1(y′′) + C̃(y)r2α−ε),

where ã1 = a
1−2s
s

1 ∈ C0,α(P ∩ B+
1 ) and C̃ ∈ C0,ε

∗ (B+
1 ). Here we used the

analyticity of the function t 7→ (1 + t)
1−2s
s for |t| < 1

2 . Using this and
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the asymptotics from Proposition 5.12, we then obtain the desired mapping
property.
In order to deal with the “inhomogeneity”, i.e. with the term

(y2s−1
n+1 ∂n+1v)

3−2s
2s J(v)f(y′′, xn(y), xn+1(y)),

we make use of the asymptotics from Proposition 5.12 and the choice of α
and ε, i.e. ε ≤ α:

(y2s−1
n+1 ∂n+1v)

3−2s
2s J(v)f(y′′, xn(y), xn+1(y)) = (ynyn+1)3−2sr2C(y), (35)

for some C(y) ∈ C0,ε
∗ (B+

1 ). It can further be written as y1−2s
n+1 r

7−2sC̃(y) with

C̃(y) :=

(
y3−2s
n y2

n+1

r5−2s

)
C(y) ∈ C0,ε

∗ (B+
1 ). Here we have used the requirement

that s ∈ (0, 1). �

Based on the previous observations and the form of our function spaces,
we prove analyticity of F as a mapping from an Xα,ε(B+

1 ) neighborhood,
Ur0(v0), of the model solution v0 into Yα,ε(B+

1 ). To simplify the notation,
we set

F̃ (u, v, w)

:= det

 ∂iiu ∂inu ∂i,n+1u
1
2s∂i(y

1−2s
n ∂nv) − 1

2s∂n(y1−2s
n ∂nv) − 1

2s∂n+1(y1−2s
n ∂nv)

− 1
2s∂i(y

2s−1
n+1 ∂n+1w) 1

2s∂n(y2s−1
n+1 ∂n+1w) 1

2s∂n+1(y2s−1
n+1 ∂n+1w)

 ,

and

J̃(u, v) := det

(
− 1

2s∂n(y1−2s
n ∂nu) − 1

2s∂n+1(y1−2s
n ∂nu)

1
2s∂n(y2s−1

n+1 ∂n+1v) 1
2s∂n+1(y2s−1

n+1 ∂n+1v)

)
= (y2s−1

n+1 ∂n+1v)
2s−1

2s J(v).

(36)

Then the nonlinear functional F can be written as

F (v) = (y2s−1
n+1 ∂n+1v)

1−2s
s F̃ (v, v, v)

+ ∂n(y1−2s
n y1−2s

n+1 ∂nv) + (y2s−1
n+1 ∂n+1v)

1−2s
s ∂n+1(y2s−1

n y2s−1
n+1 ∂n+1v)

− (y2s−1
n+1 ∂n+1v)

2−2s
s J̃(v, v)f

(
y′′,− 1

2s
y1−2s
n ∂nv(y), (y2s−1

n+1 ∂n+1v)
1
2s

)
.

Proposition 6.2. Let F be the nonlinear function from Proposition 4.3
with inhomogeneity f . Denote by v0 be the model solution from (33) and let
ε, α, r0 > 0 be the constants from Proposition 6.1. Then, if f is smooth in
its arguments, the mapping

Ur0(v0) 3 v 7→ F (v) ∈ Yα,ε(B+
1 ),

is smooth. If f is real analytic in its arguments, the above mapping is real
analytic.
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Proof. We only prove the real analyticity result. The proof for the smooth
case is similar. We show that there exist r0, r1 > 0 such that for every v ∈
Ur0(v0) and every h ∈ Ur1(0), we have an absolutely converging expansion

F (v + h) =
∞∑
j=0

1

j!
Dj
vF (hj),

where Dj
vF denotes the j-th order differential of F with respect to v.

Step 1: We claim that for each v ∈ Ur0(v0) ⊂ Xα,ε(B+
1 ) with r0 =

1
4‖v0‖Xα,ε , for all h, u, u1, u2, u3 ∈ Xα,ε(B+

1 ), for each k ∈ N and for s ∈ (0, 1)

∥∥∥(y2s−1
n+1 ∂n+1v)

1−2s
s
−k(y2s−1

n+1 ∂n+1h)k∂n+1(y2s−1
n y2s−1

n+1 ∂n+1u)
∥∥∥
Yα,ε(B+

1 )

≤ Cs
(

1

3
‖v0‖Xα,ε(B+

1 )

)−k
‖h‖k

Xα,ε(B+
1 )
‖u‖Xα,ε(B+

1 ),∥∥∥(y2s−1
n+1 ∂n+1v)

1−2s
s
−k(y2s−1

n+1 ∂n+1h)kF̃ (u1, u2, u3)
∥∥∥
Yα,ε(B+

1 )

≤ Cs
(

1

3
‖v0‖Xα,ε(B+

1 )

)−k
‖h‖k

Xα,ε(B+
1 )

3∏
i=1

‖ui‖Xα,ε(B+
1 )∥∥∥(y2s−1

n+1 ∂n+1v)
2−2s
s
−k(y2s−1

n+1 ∂n+1h)kJ̃(u1, u2)
∥∥∥
Yα,ε(B+

1 )

≤ Cs
(

1

3
‖v0‖Xα,ε(B+

1 )

)−k
‖h‖k

Xα,ε(B+
1 )

2∏
i=1

‖ui‖Xα,ε(B+
1 ),∥∥∥(y2s−1

n+1 ∂n+1u)
2−2s
s J̃(u, u)(y1−2s

n ∂nh)k
∥∥∥
Yα,ε(B+

1 )

≤ Cs‖h‖kXα,ε(B+
1 )
‖u‖2Xα,ε .

Indeed, the estimates follow from the decomposition in Proposition 5.12 and
the proof of Proposition 6.1. We will only show the first inequality and the
arguments for the remaining ones are similar. Indeed, by the local version
of Proposition 5.12, for v, u, h ∈ Xα,ε(B+

1 ) we may assume that they have
the decompositions

y2s−1
n+1 ∂n+1v =

(
2a1(y′′) + r2α−εCn+1(y)

)
y2s
n y

2s
n+1,

y2s−1
n+1 ∂n+1h =

(
2ã1(y′′) + r2α−εC̃n+1(y)

)
y2s
n y

2s
n+1,

∂n+1(y2s−1
n y2s−1

n+1 ∂n+1u) = 4sy4s−1
n y2s−1

n+1 â1(y′′) + y4s−2
n y2s−1

n+1 r
1+2α−εĈ(y).
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Then,

I := (y2s−1
n+1 ∂n+1v)

1−2s
s
−k(y2s−1

n+1 ∂n+1h)k∂n+1(y2s−1
n y2s−1

n+1 ∂n+1u)

=
(
2a1(y′′) + r2α−εCn+1(y)

) 1−2s
s
−k (

y2s
n y

2s
n+1

) 1−2s
s
−k

·
(

2ã1(y′′) + r2α−εC̃n+1(y)
)k

·
(
y2s
n y

2s
n+1

)k (
y4s−1
n y2s−1

n+1 â1(y′′) + y4s−2
n y2s−1

n+1 r
1+2α−εĈ(y)

)
.

Simplifying the above expression leads to

I = (2a1(y′′))
1−2s
s

(
ã1(y′′)

a1(y′′)

)k
·

·

(
1 + r2α−εD̃(y)

1 + r2α−εD(y)

)k (
y1−2s
n+1 ynâ1(y′′) + y1−2s

n+1 r
1+2α−εĈ(y)

)
,

where D(y) = Cn+1(y)
2a1(y′′) and D̃(y) = C̃n+1(y)

2ã1(y′′) . If u, v, h ∈ Ur0(v0) ⊂ Xα,ε(B+
1 )

with r0 = 1
4‖v0‖Xα,ε(B+

1 ), then similarly as in the proof of Proposition 6.1 we

infer that

‖a1‖C0,α(B+
1 ∩P ), ‖ã0‖C0,α(B+

1 ∩P ) ≥
3

4
≥ 1

2
‖v0‖Xα,ε(B+

1 ),

‖Cn+1‖Ċ0,ε
∗ (B+

1 )
, ‖C̃n+1‖Ċ0,ε

∗ (B+
1 )
≤ 1

4
‖v0‖Xα,ε(B+

1 ).

Using these relations and the characterization for space Yα,ε in Proposi-
tion 5.12, results in the claimed estimate for ‖I‖Yα,ε(B+

1 ).

Step 2: We first discuss the contributions originating from the expansion
of

F1(v) := (y2s−1
n+1 ∂n+1v)

1−2s
s ∂n+1(y2s−1

n y2s−1
n+1 ∂n+1v).

We begin by noting that

DvF1(h) =
1− 2s

s
(y2s−1
n+1 ∂n+1v)

1−2s
s
−1(y2s−1

n+1 ∂n+1h)∂n+1(y2s−1
n y2s−1

n+1 ∂n+1v)

+ (y2s−1
n+1 ∂n+1v)

1−2s
s ∂n+1(y2s−1

n y2s−1
n+1 ∂n+1h).

In general for k ≥ 2

Dk
vF1(hk) = cs,k(y

2s−1
n+1 ∂n+1v)

1−2s
s
−k(y2s−1

n+1 ∂n+1h)k∂n+1(y2s−1
n y2s−1

n+1 ∂n+1v)

+ cs,k−1(y2s−1
n+1 ∂n+1v)

1−2s
s
−(k−1)(y2s−1

n+1 ∂n+1h)k−1∂n+1(y2s−1
n y2s−1

n+1 ∂n+1h),

where cs,k =
∏k
j=1

1−2s−(j−1)s
sj

. Thus, by virtue of Step 1 we obtain that

Dk
vF1 satisfies

‖Dk
vF1(hk)‖Yα,ε(B+

1 ) ≤ Cscs,k
(

1

3
‖v0‖Xα,ε(B+

1 )

)−k
‖h‖k

Xα,ε(B+
1 )
.
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To show the absolute convergence of the Taylor series, we note that

∞∑
k=0

1

k!
‖DvF

k(hk)‖Yα,ε(B+
1 ) ≤ Cs

∞∑
k=0

1

k!
cs,k

(
1

3
‖v0‖Xα,ε(B+

1 )

)−k
‖h‖k

Xα,ε(B+
1 )
.

As
|cs,k|
k! ≤ C < ∞, by majorization by a geometric series, the series hence

converges absolutely if ‖h‖Xα,ε(B+
1 ) <

1
3‖v0‖Xα,ε(B+

1 ).

Step 3: Next we discuss the contribution originating from the expansion
of

F2(v) := (y2s−1
n+1 ∂n+1v)

1−2s
s F̃ (v, v, v).

We observe that

DvF̃ (h) = F̃ (h, v, v) + F̃ (v, h, v) + F̃ (v, v, h),

D2
vF̃ (h, h) = 2F̃ (h, h, v) + 2F̃ (v, h, h) + 2F̃ (h, v, h),

D3
vF̃ (h, h, h) = 6F̃ (h, h, h).

Thus, estimating this similarly as in Step 2 and using Step 1, we obtain the
analyticity of F2.

Step 4: We finally discuss the contribution coming from the inhomogene-
ity:

J(v)(y2s−1
n+1 ∂n+1v)

3−2s
2s f

(
y′′,− 1

2s
y1−2s
n ∂nv, (y

2s−1
n+1 ∂n+1v)

1
2s

)
=: J̃(v, v)(y2s−1

n+1 ∂n+1v)
2−2s
s F̃(v),

(37)

with F̃(v) := f
(
y′′,− 1

2sy
1−2s
n ∂nv, y

2s−1
n+1 ∂n+1v

)
. Hence, F̃(v) is a composi-

tion of the analytic function f , and the maps

Rn+1
+ 3 z 7→ g(z) := (z′′, zn, z

1/2s
n+1 ),

Ur0(v0)× Rn+1
+ 3 (v, y) 7→ h(v, y) := (y′′,− 1

2s
∂nv, y

2s−1
n+1 ∂n+1v).

We note that away from {zn+1 = 0} the function (f ◦ g)(z), as a function
of z ∈ Rn+1

+ , is analytic. However, instead of expanding on this observation
to provide the proof of the analyticity of (37), we argue similarly as in
Steps 2 and 3. We use the product and chain rules and invoke the last two
inequalities in Step 1: More precisely,

DvF̃(h) = (∂nf)|(
y′′,− 1

2s
y1−2s
n ∂nv,(y

2s−1
n+1 ∂n+1v)

1
2s

)(− 1

2s
y1−2s
n ∂nh

)
+ (∂n+1f)|(

y′′,− 1
2s
y1−2s
n ∂nv,(y

2s−1
n+1 ∂n+1v)

1
2s

) 1

2s
(y2s−1
n+1 ∂n+1v)

1
2s
−1
(
y2s−1
n+1 ∂n+1h

)
.

Using the chain rule, it is possible to explicitly compute the higher deriva-

tives Dk
v F̃(hk). Thus, to estimate Dk

v

(
J̃(v, v)(y2s−1

n+1 ∂n+1v)
2−2s
s F̃(v)

)
, if the
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differentiation falls on F̃(v), we invoke the last inequality in Step 1. Us-

ing the analyticity of F̃ in its arguments, we obtain the convergence of the

power series
∑∞

j=0
1
j! J̃(v, v)(y2s−1

n+1 ∂n+1v)
2−2s
s Dj

vF̃(hj) in Yα,ε. If the differ-

entiation falls on J̃(v, v) or on (y2s−1
n+1 ∂n+1v)

2−2s
s , the argument is analogous

as in Steps 2 and 3: We use the last two inequalities from Step 1 and the
linear dependence of J̃(v1, v2) on v1, v2. �

6.2. Mapping properties of the linearized equation. Let Lv = DvF
denote the first order differential of the nonlinear functional with respect to
v. In this section we show that for v ∈ Ur0(v0) with r0 = 1

4‖v0‖Xα,ε(B+
1 ), the

linear operator Lv : Xα,ε(B+
1 )→ Yα,ε(B+

1 ) is a perturbation of the constant
coefficient fractional Grushin operator ∆G,s in (34).

Proposition 6.3. Let v0 be the model solution from (33). Let f be the inho-
mogeneity in ( 9) and suppose that it is C1,ε(B+

1 ) regular (in x coordinates).
Assume that α, ε, r0 are as in Proposition 6.1. Then for any v, h ∈ Ur0(v0)
with r0 = 1

4‖v0‖Xα,ε we have

‖(Lv −∆G,s)h‖Yα,ε(B+
1 ) ≤ Cn,s

(
‖v − v0‖Xα,ε(B+

1 )‖h‖Xα,ε(B+
1 )

+‖v‖2
Xα,ε(B+

1 )
‖h‖Xα,ε(B+

1 )‖f‖C1,ε(B+
1 )

)
.

Proof. The proof follows from the chain rule and Proposition 6.2. To fur-
ther simplify the notation, we define

W1(v) := (y2s−1
n+1 ∂n+1v)

1−2s
s , W2(v) := (y2s−1

n+1 ∂n+1v)
2−2s
s ,

G(v) := F̃ (v, v, v) + ∂n+1(y2s−1
n y2s−1

n+1 ∂n+1v),

J̃(v) := J̃(v, v),

F̃(v) := f

(
y′′,− 1

2s
y1−2s
n ∂nv, (y

2s−1
n+1 ∂n+1v)

1
2s

)
,

where J̃(v, v) and F̃ (v, v, v) are as in (36) (note that J̃(v) differs from J(v)

in (28) by a factor (y2s−1
n+1 ∂n+1v)

2s−1
2s ). Then F can be written as

F (v) = W1(v)G(v) + ∂n(y1−2s
n y1−2s

n+1 ∂nv) +W2(v)J(v)F(v).

By the product rule,

Lvh = G(v)DvW1(h) +W1(v)DvG(h) + ∂n(y1−2s
n y1−2s

n+1 ∂nh)

+ J̃(v)F̃(v)DvW2(h) +W2(v)DvJ̃(h)F̃(v) +W2(v)J̃(v)DvF̃(h).
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Noting that ∆G,sh = G(v0)Dv0W1(h)−W1(v0)Dv0G(h), we obtain

Lvh−∆G,sh

= G(v)DvW1(h) +W2(v)DvG(h)−G(v0)Dv0W1(h)−W1(v0)Dv0G(h)

+ J̃(v)F̃(v)DvW2(h) +W2(v)DvJ̃(h)F̃(v) +W2(v)J̃(v)DvF̃(h)

= (DvW1 −Dv0W1) (h)G(v) +Dv0W1(h) (G(v)−G(v0))

+ (DvG−Dv0G) (h)W1(v) +Dv0G(h) (W1(v)−W1(v0))

+ J̃(v)F̃(v)DvW2(h) +W2(v)DvJ̃(h)F̃(v) +W2(v)J̃(v)DvF̃(h)

=: I + II + III.

Using the estimates in Step 1 of Proposition 6.2, we obtain

‖I‖Yα,ε(B+
1 ) + ‖II‖Yα,ε(B+

1 )

≤Cs‖v − v0‖Xα,ε(B+
1 )

(
‖v‖Xα,ε(B+

1 ) + ‖v0‖Xα,ε(B+
1 ) + 1

)
‖h‖Xα,ε(B+

1 ).

Hence it remains to bound III. To this end, using Step 4 of Proposition 6.2
we note that

‖III‖Yα,ε(B+
1 ) ≤ Cs‖v‖

2
Xα,ε(B+

1 )
‖h‖Xα,ε(B+

1 )‖f‖C1,ε(B+
1 ).

Here we used a bound similar as in the proof of Proposition 6.2, Step 1. �

7. Application of the implicit function theorem

In this section we invoke the implicit function theorem to deduce the
smoothness and analyticity of the regular free boundary (for smooth and
analytic inhomogeneities respectively). To this end, we introduce an auxil-
iary one-parameter family of diffeomorphisms, which infinitesimally acts as
a translation on P . Composing our function with this one-parameter fam-
ily of diffeomorphisms creates a parameter-dependent problem, to which we
apply the implicit function theorem (c.f. [1], [14], [17]). This then yields the
desired tangential regularity of our solution and hence proves Theorem 7.1.

As we rely on the results of the previous sections, we always assume that
the conditions (A1)-(A4) are satisfied in the sequel.

We begin by defining our family of diffeomorphisms. As this is identical
to the set-up in [17], we do not present the details of the proof.

Lemma 7.1 (One-parameter family of diffeomorphisms, [17]). Let y ∈ B+
1 ,

a ∈ B′′1 . Consider φa : [0, 1]→ Rn−1, which is defined as the solution to the
ODE

φ′a(t) = a
(
(3/4)2 − |φ(t)|2

)3
+
η(yn, yn+1),

φa(0) = y′′.

Here η : R2 → R is a smooth, radial cut-off function, which is one for
|(yn, yn+1)| ≤ 1/4 and which vanishes for |(yn, yn+1)| ≥ 1/2. Let Φa(y) :=
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(φa,y(1), yn, yn+1). Then the mapping Φa : B+
1 → Rn+1 is well-defined and

satisfies the following properties:

(i) For any fixed y ∈ B+
1/2, the map B′′1 3 a 7→ Φa(y) ∈ Rn+1 is analytic.

(ii) For each a ∈ B′′1 , the map B+
1 3 y 7→ Φa(y) ∈ Rn+1 is C3, and

moreover ‖Φa(y)− y‖C3(B+
1 ) ≤ Ca.

(iii) Φa({yn = 0}) ⊂ {yn = 0}, Φa({yn+1 = 0}) ⊂ {yn+1 = 0}.
(iv) ∂n+1Φa|{yn+1=0} = en+1.

(v) ∂nΦj
a(y) = 0 = ∂n+1Φj

a(y) for all y with |(yn, yn+1)| ≤ 1/4 and
j ∈ {1, . . . , n− 1}.

(vi) Φa(y) = y for y ∈ {y ∈ B+
1 : |y′′| ≥ 3

4 or |(yn, yn+1)| ≥ 1
2}.

We now apply the implicit function theorem to deduce the tangential
smoothness or analyticity of our Legendre function v. Recall that given a
solution w to the fractional thin obstacle problem (9) satisfying the assump-
tions (A1)-(A4), the Hodograph-Legendre transformation was invertible in
B+
δ0

with some small radius δ0 = δ0(s). Hence, it is possible to consider the

Legendre function v (c.f. (19)) in the corresponding image domain. The
asymptotics and regularity properties of v were studied in Section 4.3. In
particular, by Corollary 5.16, v ∈ Xα,ε(B+

δ0
), where α is the Hölder exponent

of the regular free boundary Γw and ε is any number in (0, α) (here δ0 might
be different from above the constant from above, but it also only depends
on s).

To simplify the notation, in the sequel we will assume that

δ0 = 1, i.e. v ∈ Xα,ε(B+
1 ).

Furthermore, we suppose that v is close to the model solution v0 in Xα,ε(B+
1 ),

i.e.

v ∈ U r0
2

(v0) ⊂ Xα,ε(B+
1 ), where r0 =

1

4
‖v0‖Xα,ε . (38)

We remark that by Proposition 4.10 and Proposition 4.11, these assumptions
are always satisfied by choosing ε0, µ0 and [∇g]Ċ0,α in (A2)-(A4) to be
sufficiently small, and by a scaling with a factor which only depends on s.

After these normalizations, given a Legendre function v as above, as in
[17] we now consider a one-parameter family of Legendre functions:

ṽa(y) := v(Φa(y)). (39)

We note that by Lemma 7.1 (vi), the perturbation Φa is only active in B+
1/2 b

B+
1 . More precisely, ṽa(y) = v(y) in B+

1 \ {y : |y′′| ≤ 3
4 , |(yn, yn+1)| ≤ 1

2}.
We claim that ṽa satisfies the following further properties:

Proposition 7.2. Let α, ε satisfy the same assumptions as in Proposi-
tion 6.1 and let v, ṽa be as above. Then,

(i) there exists a constant η0 = η0(n, s) ∈ (0, 1/4) such that for all
a ∈ B′′η0

we have, ṽa ∈ Ur0(v0) ⊂ Xα,ε(B+
1 ) for r0 = 1

4‖v0‖Xα,ε(B+
1 ).
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In particular, ṽa satisfies the mixed Dirichlet-Neumann conditions

ṽa = 0 on {yn = 0}, lim
yn+1→0+

y−2s
n ∂n+1ṽa = 0 on {yn+1 = 0}.

(ii) ṽa is a solution to the fully nonlinear equation

0 = Fa(u, y) := F (u ◦ Φ−1
a (z), z)|z=Φa(y).

Proof. To show (i) we compute the derivatives of ṽa in terms of the ones
of v:

∂iṽa(y) = ∂jv|Φa(y)∂iΦ
j
a(y),

∂ikṽa(y) = ∂j`v|Φa(y)∂iΦ
j
a(y)∂kΦ

`
a(y) + ∂jv(y)∂ikΦ

j
a(y).

We first note that in the domain in which |(yn, yn+1)| ≤ 1/4, the tangential
and normal derivatives are not mixed (c.f. Lemma 7.1 (v)). Thus, as all
tangential derivatives are treated homogeneously, around P the function ṽa
satisfies the decomposition from Proposition 5.12, if |a| < 1/4. Away from
P we invoke the radial assumption on η: In order to conclude that ṽa ∈
Xα,ε(B+

1 ), it remains to discuss the region in which 1/4 ≤ |(yn, yn+1)| ≤ 1/2.
As r(y) ∼ 1 in this region, it suffices to study the behavior of ∂iv at the
boundaries {yn = 0} and {yn+1 = 0}. Due to the radial dependence of η
(and by considering the ODE from Lemma 7.1), we however have

|∂nΦj
a(y)| ≤ Cyn and |∂n+1Φj

a(y)| ≤ Cyn+1 for j ∈ {1, . . . , n− 1}.
Hence, the asymptotics at the boundary (and the Dirichlet-Neumann bound-
ary conditions) follow in this region as well.
Additionally, choosing |a| ≤ η0 for some sufficiently small η0(n, s) > 0, we
further infer that ṽa ∈ Ur0(v0) with r0 = 1

4‖v0‖Xα,ε(B+
1 ) (this follows from

(28) and the estimate ‖ṽa − v‖Xα,ε(B+
1 ) . |a|).

In order to compute the equation satisfied by va, we set Ψa := Φ−1
a and

observe that ṽa(Ψa(y)) = v(y). This then yields:

∂iv(y) = ∂j ṽa|Ψa(y)∂iΨ
j
a(y),

∂ikv(y) = ∂j`ṽa|Ψa(y)∂iΨ
j
a(y)∂kΨ

`
a(y) + ∂j ṽa|Ψa(y)∂ikΨ

j
a(y),

from which we infer the equation for ṽa. �

Remark 7.3. The linearization DvFa(·, y) of the nonlinear function Fa(·, y)
still satisfies local a priori estimates in the spaces Xα,ε, Yα,ε. This is a conse-
quence of the existence of a one-to-one correspondence between the solutions
of Fa and F by means of the diffeomorphism Φa and by the discussion in
the preceding Proposition 7.2.

We finally prepare the application of the implicit function theorem by
extending our problem to a problem on the whole quarter space Q+ and
by working with the function w̃a := ṽa − v rather than with ṽa. We point
out that as w̃a is compactly supported in B+

1/2, we can avoid dealing with

artificially created boundaries ∂B+
1 ∩ {yn > 0, yn+1 > 0}.



THE FRACTIONAL THIN OBSTACLE PROBLEM 801

Proposition 7.4. Let v, ṽa ∈ Xα,ε(B+
1 ) be as (39). Let w̃a := ṽa − v in B+

1

and set w̃a = 0 in Q+ \ B+
1 . Let ε, α ∈ (0, 1) with ε ≤ α. Then,

(i) supp(w̃a) ⊂ B+
3/4. Moreover, w̃a satisfies the equation

Ga(w̃a, y) := η̄(y)F̃a(w̃a, y) + (1− η̄(y))∆G,sw̃a = 0 in Q+,

where η̄ is a smooth cut-off function that is one on B+
3/4 and zero

outside B+
1 , F̃a(w̃a, y) = Fa(v + w̃a, y), and ∆G,s is the fractional

Baouendi-Grushin Laplacian in (34).
(ii) For η0 = η0(n, s) > 0 as in Proposition 7.2 and for a ∈ B′′η0

, the
map

w 7→ Ga(w) ∈ Yα,ε

is analytic in Ur0/2(0) ⊂ Xα,ε with r0 = 1
4‖v0‖Xα,ε.

(iii) For any w ∈ Ur0/2(0),

B′′η0
3 a 7→ Ga(w) ∈ Yα,ε

is analytic.
(iv) There exists µ0 = µ0(s, n) > 0 such that if ‖f‖C1,ε(B+

1 ) < µ0, then

DwG|(w,a)=(0,0) : Xα,ε → Yα,ε

is an invertible map.

Proof. The proof of (i) follows immediately by noticing that w̃a = 0 outside
B+

3/4 and by rewriting ṽa = w̃a + v.

To prove (ii), we first note that w+v ∈ Ur0(v0) for each w ∈ Ur0/2(0) ⊂ Xα,ε.
Applying Proposition 6.2 we obtain that w 7→ F (w + v, y) is analytic in
Ur0/2(0) ⊂ Xα,ε(B+

1 ). The analyticity of w 7→ Fa(w+ v, y) for fixed a (recall
Fa is defined Proposition 7.2 (ii)) follows from the properties (ii), (v) (in
Lemma 7.1) of the diffeomorphism Φa and the analyticity for F . Thus by
the definition of Ga, the map w 7→ Ga(w) is analytic in Ur0/2(0) as well.
The statement (iii) follows from the analytic dependence of Φa and Ψa on
a (c.f. Lemma 7.1 (i), (ii)). Finally, using Lemma 7.1 (ii), we can di-
rectly compute that DwG

∣∣
(w,a)=(0,0)

= η̄Lv + (1− η̄)∆G,s, where Lv = DvF .

Since ∆G,s : Xα,ε → Yα,ε is invertible, Proposition 6.3 combined with the
global invertibility result of Proposition 9.4 implies that the linearization
DwG

∣∣
(0,0)

: Xα,ε → Yα,ε is also invertible, if ‖f‖C1,ε(B+
1 ) is sufficiently small

(e.g. by rewriting DwG|(0,0) = ∆G,s(Id + ∆−1
G,s(η̄P)) with P being the op-

erator from Proposition 6.3 and using the norm bounds from Proposition
6.3). �

With this at hand, we can finally prove our main theorem:
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Theorem 7.1 (Analyticity). Let v be a Legendre function associated to a
solution of the fractional thin obstacle problem ( 9) with smooth or analytic
inhomogeneity f . Then there exists a constant η0 > 0 such that the mapping

B′′η0
3 y′′ 7→ − 1

2s
y1−2s
n ∂nv(y)|y=(y′′,0,0),

is smooth if f is smooth and real analytic if f is real analytic. In particular,
the regular free boundary Γs+1(w) is locally smooth if f is smooth and locally
real analytic if f is real analytic.

Proof. The proof follows by an application of the smooth/analytic implicit
function theorem (c.f. [8]). We only show the real analytic case. The
arguments for the smooth case are analogous.

By Proposition 7.4 (ii) and (iii) the mapping G : B′′η0
× Ur0(0) → Yα,ε is

analytic for r0 = 1
4‖v0‖Xα,ε . By Proposition 7.4 (iv) the operator DwG|(0,0)

is invertible from Xα,ε to Yα,ε. Due to the implicit function theorem there
exists a neighborhood (−ε̃0, ε̃0)n−1 × Ur̃(0) of (0, 0), such that for each a ∈
(−ε̃0, ε̃0)n−1 there exists a unique function wa ∈ Ur̃(0) ⊂ Xα,ε satisfying

Ga(wa) = 0. (40)

Moreover, this solution wa depends analytically on the parameter a. As the
function w̃a = ṽa − v ∈ Xα,ε (defined in Proposition 7.4) also satisfies the
nonlinear equation Ga(w̃a) = 0, and as ‖w̃a‖Xα,ε . |a| < r̃ for a small choice
of |a|, the local uniqueness result of the implicit function theorem asserts
that wa = w̃a. Hence, as a function in Xα,ε, w̃a depends analytically on
a. Thus, by definition of the norm of Xα,ε the function y1−2s

n ∂nw̃a also de-
pends analytically on a. As a consequence, this remains true for y1−2s

n ∂nṽa.
Recalling that Φa infinitesimally corresponds to a (tangential) translation
at P , this implies that the function y1−2s

n ∂nv depends analytically on the
tangential variables. This yields the desired result. �

Remark 7.5. It is clear that by carefully tracking our arguments, the set-
up of analytic and smooth inhomogeneities can also be extended to that of
Hölder inhomogeneities. More precisely, let w be a solution to the fractional
thin obstacle problem (5) with inhomogeneity f̃ ∈ Ck,β for some β ∈ (0, 1)
and k ≥ 1, then

(i) if s ∈ (0, 1/2), then the regular free boundary Γ1+s(w) is locally a
Ck+1,α graph for some α ∈ (0, 1);

(ii) if s ∈ (1/2, 1), furthermore assume k ≥ 3, then the regular free
boundary Γ1+s(w) is locally a Ck+1,α graph for some α ∈ (0, 1).

(iii) if s = 1/2, then the regular free boundary Γ1+s(w) is locally a

Ck+1+[β+ 1
2

],β+ 1
2
−[β+ 1

2
] graph.

Here case (iii) was proved in [17] (c.f. Theorem 2 (ii) of [17]). We remark
that by using similar techniques as in [17] (c.f. Section 5.2 and the proof for
Theorem 3 in [17]), it is possible in cases (i) and (ii) to obtain a regularity
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result analogous to (iii), i.e. it is possible to show that locally the regular

free boundary Γ1+s(w) is a Ck+1+[β+(1−s)],β+(1−s)−[β+(1−s)] graph.

8. Appendix A

The following sections contain auxiliary (regularity) results for the linear
fractional Laplacian with Dirichlet, Neumann and mixed Dirichlet-Neumann
data. Moreover, in the last section of this first appendix, by using the
square root mapping these results are then also transferred into regularity
statements for the fractional Baouendi-Grushin Laplacian. These regular-
ity results are deduced by relying on the compactness method similarly as
in [24] and build on approximation properties in terms of eigenfunctions of
the respective operator. On the one hand this is reminiscent of Campanato
type arguments of proving regularity [6], on the other hand it also reminds
us of the methods used in obtaining the up to the corner (or edge) asymp-
totics of the solutions for elliptic equations in conical domains by means of
eigenfunction approximations (c.f. [10], [18]).

Let us formulate our main regularity results for the fractional Laplacian:
Using the notation Ls := ∇·x1−2s

n+1 ∇ with s ∈ (0, 1) from above, in the sequel
we consider the equations

Lsu = f in B+
1 , u = 0 on B′1,

and

Lsu = x1−2s
n+1 f in B+

1 , x1−2s
n+1 ∂n+1u = 0 on B′1.

In both cases, we assume that the inhomogeneity f ∈ C0,ε(B+
1 ) for some

ε ∈ (0, 1). For solutions of the above equations, we prove the following
Schauder apriori estimates which hold up to B′1:

Proposition 8.1 (Dirichlet data). Let u ∈ L∞(B+
1 )∩H1

ω̄(B+
1 ) be a solution

of

Lsu = f in B+
1 , u = 0 on B′1,

where f ∈ C0,ε(B+
1 ) for some ε ∈ (0, 1). Then there exists a constant

C = C(n, s, ε) > 0 such that

‖x−2s
n+1u‖C0,ε(B+

1/2
) +

n∑
i=1

‖x−2s
n+1∂iu‖C0,ε(B+

1/2
) + ‖x1−2s

n+1 ∂n+1u‖C0,ε(B+
1/2

)

+

n+1∑
i,j=1

‖∂ix1−2s
n+1 ∂ju‖C0,ε(B+

1/2
) ≤ C

(
‖f‖C0,ε(B+

1 ) + ‖u‖L2
ω̄(B+

1 )

)
.

Here, for simplicity, we set ω̄(x) := x1−2s
n+1 , abbreviate

ω̄(Ω) :=

∫
Ω

x1−2s
n+1 dx
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for Ω ⊂ Rn+1
+ and denote the associated weighted Lebesgue and Sobolev

spaces by L2
ω̄(Ω) := L2(Ω, ω̄dx), H1

ω̄(Ω) := H1(Ω, ω̄dx).
In the case of the Neumann problem we analogously show the following

regularity result:

Proposition 8.2 (Neumann data). Let u ∈ L∞(B+
1 )∩H1

ω̄(B+
1 ) be a solution

of

Lsu = x1−2s
n+1 f in B+

1 , lim
xn+1→0+

x1−2s
n+1 ∂n+1u = 0 on B′1,

where f ∈ C0,ε(B+
1 ) for some ε ∈ (0, 1). Then there exists C = C(n, s, ε) > 0

such that

‖u‖C0,ε(B+
1/2

) + ‖∂iu‖C0,ε(B+
1/2

) + ‖x−1
n+1∂n+1u‖C0,ε(B+

1/2
) + ‖∂iju‖C0,ε(B+

1/2
)

≤ C
(
‖f‖C0,ε(B+

1 ) + ‖u‖L2
ω̄(B+

1 )

)
.

Finally, using the square root mapping, we exploit these results to infer
Schauder estimates for the Baouendi-Grushin Laplacian

∆G,s :=
2n∑
i=1

Yiω(y)Yi, ω(y) := |ynyn+1|1−2s, s ∈ (0, 1),

where {Yi}2ni=1 are the Baouendi-Grushin vector fields in Definition 5.1 and
derive the proof of Proposition 5.15:

Proposition 8.3 (Apriori Schauder estimate). Suppose that v ∈ L∞(B+
1 )∩

M1
ω(B1) is a weak solution to

∆G,sv = f in B+
1 with f ∈ Yα,ε,

v = 0 on B1 ∩ {yn = 0},
lim

yn+1→0+

ω(y)∂n+1v(y) = 0 on B1 ∩ {yn+1 = 0}.

Then, v ∈ Xα,ε(B+
1/2) and it satisfies

‖v‖Xα,ε(B+
1/2

) ≤ C
(
‖f‖Yα,ε(B+

1 ) + ‖v‖L∞(B+
1 )

)
.

Here L2
ω(Ω) := L2(Ω, ωdy) for Ω ⊂ Rn+1. Moreover, the weighted L2-

based Sobolev space M1
ω(Ω) associated with the Baouendi-Grushin vector

fields {Yi} is defined as

M1
ω(Ω) := {u : u ∈ L2

ω(Ω), Yiu ∈ L2
ω(Ω)}.

The spaces Xα,ε, Yα,ε are the ones from Definition 5.11.
Although we deal with linear problems, the results in this section might

be of independent interest. For instance, we obtain a full classification of all
eigenvalues and eigenfunctions of the mixed Dirichlet-Neumann problem in
the slit domain. This situation can be regarded as the linearization of the
thin obstacle problem.
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For us the results in this section play an important role in deducing the
asymptotic expansions and mapping properties for the fractional Baouendi-
Grushin operator (e.g. in Propositions 3.10 and 5.15). In particular in
Section 8.4 we transfer the results from the Laplacian to the Baouendi-
Grushin Laplacian by means of the square root mapping.

The Section is structured as follows: First we compute all global homo-
geneous solutions to the fractional Laplacian with Dirichlet, Neumann or
mixed Dirichlet-Neumann data (c.f. Section 8.1). Relying on this we use
the compactness method as e.g. in [24] to approximate the solution w by
(a linear combination of) homogeneous global solutions to Lsu = 0 (c.f.
Section 8.2). With this at hand, we then prove Propositions 8.1 and 8.2 in
Section 8.3 and Proposition 5.15 in Section 8.4.

8.1. Eigenfunctions and eigenvalues. In the following two sections we
discuss the form of the global homogeneous solutions to Lsw = 0 in the upper
half-plane with Dirichlet, Neumann and mixed Dirichlet-Neumann data on
the boundary. These results will play a crucial role for our approximation
arguments in Section 8.2 and hence in the regularity statements of Section
8.3 and also of Section 8.4.

8.1.1. Mixed Dirichlet-Neumann data. In this section we compute ho-
mogeneous solutions to the mixed Dirichlet-Neumann problem. In the fol-
lowing section we then deal with the Dirichlet and Neumann problems, re-
spectively. In deducing the approximation result for the mixed Dirichlet-
Neumann problem, we argue in two steps: We first compute the solutions in
the two-dimensional set-up (c.f. Section 8.1.1) and then exploit the transla-
tion invariance in tangential directions of our problem to infer an analogous
(n+ 1)-dimensional result from that.

We begin by considering the mixed Dirichlet-Neumann problem for the
fractional Laplacian with s ∈ (0, 1) in the two-dimensional upper half plane:

(∂1x
1−2s
2 ∂1 + ∂2x

1−2s
2 ∂2)u = 0 in R2

+,

u(x1, 0) = 0 on {x1 ≤ 0} ∩ (R× {0}),
lim

x2→0+

x1−2s
2 ∂2u(x1, x2) = 0 on {x1 > 0} ∩ (R× {0}).

(41)

In the polar coordinates (x1, x2) = (r cosϕ, r sinϕ), ϕ ∈ [0, π], and with
a separation of variables ansatz u(r, ϕ) = u1(r)u2(ϕ) the bulk equation in
spherical variables reads

(∂2
r + (2− 2s)r−1∂r)u1(r) = λ2r−2u1(r),

sin(ϕ)2s−1∂ϕ(sin(ϕ)1−2s∂ϕ)u2(ϕ) = −λ2u2(ϕ),
(42)

(we stress that the separation ansatz is justified here, as the spherical oper-
ator forms a basis of L2(S1

+, sin(ϕ)1−2s) and as the separation ansatz essen-
tially corresponds to an expansion into these eigenfunctions). The Neumann
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condition becomes

lim
ϕ→0

(sin(ϕ))1−2s∂ϕu2(ϕ) = 0.

In the sequel we focus on the spherical part of the problem and determine
the corresponding spherical eigenfunctions:

Lemma 8.4 (2D spherical eigenfunctions). Let u2(ϕ) be a solution of

sin(ϕ)2s−1∂ϕ(sin(ϕ)1−2s∂ϕ)u2(ϕ) = −λ2u2(ϕ) for ϕ ∈ (0, π),

u2(π) = 0,

lim
ϕ→0

(sin(ϕ))1−2s∂ϕu2(ϕ) = 0.

Then, the eigenvalue λ2 has the form

λ2 = k(k + 1)− s(s− 1) for some k ∈ N.

The associated spherical eigenfunction is given as

u2(ϕ) = C

(
1 + cos(ϕ)

2

)s
F

(
1− s− k, k + s, 1 + s;

cos(ϕ) + 1

2

)
,

where F is a hypergeometric function. Moreover, the hypergeometric func-
tion F (1− s− k, k + s, 1 + s; z) is a polynomial of degree k in z.

Proof. In order to prove the lemma, we consider the following change of
variables: We set x = cos(ϕ) and define u2(ϕ) =: v(cos(ϕ)). In these
coordinates the equations become

(1− x2)v′′(x) + (2s− 2)xv′(x) + λ2v(x) = 0 for x ∈ [−1, 1],

v(−1) = 0,

lim
x→1−

(1− x2)1−sv′(x) = 0.

This equation has three regular singular points at x = ±1,∞. By further
defining z = x+1

2 and v(x) =: w(z), we transform this into a standard
hypergeometric equation with the three regular singular points z = 0, 1,∞:

z(1− z)w′′(z) + ((1− s) + 2(s− 1)z)w′(z) + λ2w(z) = 0 for z ∈ [0, 1],

w(0) = 0,

lim
z→1−

(z(1− z))1−s∂zw(z) = 0.

(43)

The general solution of the bulk equation is given as

w(z) = AF (a, b, c; z) +Bz1−cF (a+ 1− c, b+ 1− c, 2− c; z), A,B ∈ R,

(44)
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where F denotes the hypergeometric function and where

a =
1

2
(1− 2s+

√
4λ2 + 4s2 − 4s+ 1),

b =
1

2
(1− 2s−

√
4λ2 + 4s2 − 4s+ 1),

c = 1− s.

As F (a, b, c; 0) = 1, the Dirichlet boundary conditions immediately imply
that A = 0 and thus, for some B ∈ R,

w(z) = Bz1−cF (a+ 1− c, b+ 1− c, 2− c; z) = BzsF (a+ s, b+ s, 1 + s; z).

In order to determine the possible values of λ, we now use the Neumann
condition. To this end, we recall the following relations for hypergeometric
functions:

∂zF (a, b, c; z) =
ab

c
F (a+ 1, b+ 1, c+ 1; z),

F (a, b, c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

F (a, b, a+ b− c+ 1; 1− z)

+ (1− z)c−a−bΓ(c)Γ(a+ b− c)
Γ(a)Γ(b)

F (c− a, c− b, c− a− b+ 1; 1− z).

(45)

Thus, ∂zw(z) turns into

∂zw(z) = szs−1F (a+ s, b+ s, 1 + s; z)

+ zs
ab

1 + s
F (a+ s+ 1, b+ s+ 1, 2 + s; z).

(46)

We consider the two terms separately. For the first contribution we note
that

F (a+ s, b+ s, 1 + s; z) =
Γ(1 + s)Γ(s)

Γ(1− a)Γ(1− b)
F (a+ s, b+ s, 1− s; 1− z)

+ (1− z)sΓ(1 + s)Γ(1− s)
Γ(a+ s)Γ(b+ s)

F (1− a, 1− b, 1 + s; 1− z).

In the relevant Neumann derivative (coming from the equation) the previous
expression is weighted with the vanishing factor (1 − z)1−s (we recall that
s ∈ (0, 1)). Since the prefactors in the expression for F (a+ s, b+ s, 1 + s; z)
are all finite and as F (a, b, c; 0) = 1, the first part in (46) always satisfies the
boundary conditions. As a consequence, we turn to the second contribution
from (46). We have:

F (a+ s+ 1, b+ s+ 1, 2 + s; z)

=
Γ(2 + s)Γ(1 + s)

Γ(1− a)Γ(1− b)
F (1 + a+ s, 1 + b+ s, 2− s; 1− z)

+ (1− z)s−1 Γ(2 + s)Γ(2− s)
Γ(1 + a+ s)Γ(1 + b+ s)

F (2− a, 2− b, 2 + s; 1− z).
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Similarly as above, the first summand vanishes in the limit z → 0 if it is
multiplied with the weight (1− z)1−s. Therefore, it suffices to consider the
second term which does not vanish in the limit z → 0 unless the prefactor

Γ(2 + s)Γ(2− s)
Γ(1 + a+ s)Γ(1 + b+ s)

vanishes. This is the case iff at least one of the Γ-functions in the denomina-
tor explodes (i.e. iff at least one of the arguments of the Γ-functions in the
denominator is a negative integer). Plugging in the definition of a, b, this is
the case iff

1

2
± 1

2

√
1 + 4λ2 + 4s2 − 4s = −k, k ∈ N.

This however is equivalent to

λ2 = k2 + k + s− s2.

The result on the eigenfunction representation in terms of the corresponding
hypergeometric functions therefore follows from inserting these values of λ
into the expressions for a, b.
We prove that F (1−s−k, k+s, 1+s, z) is a polynomial of degree k: To this
end, we first set w(z) = zsh(z) (where w(z) is the solution of the transformed
equation (43)). Inserting this into the equation for w, we deduce that h(z)
satisfies

z(1− z)h′′(z) + (1 + s− 2z)h′(z) + k(k + 1)h(z) = 0.

Making a series ansatz, h(z) =
∞∑
m=0

amz
m thus yields

0 =
∞∑
m=0

[χ{m≥1}m(m+ 1)am+1 − χ{m≥2}m(m− 1)am

+ (1 + s)(m+ 1)am+1 − 2χ{m≥1}mam + k(k + 1)am]zm.

For a prescribed non-zero value of a0 this corresponds to the following system
of equations for the coefficients am:

(1 + s)a1 + k(k + 1)a0 = 0,

(4 + 2s)a2 + (k(k + 1)− 2)a1 = 0,

(m2 + 2m+ms+ 1 + s)am+1 − (m(m+ 1)− k(k + 1))am = 0.

As m2 +2m+ms+1+s 6= 0 for m ∈ N, s ∈ (0, 1), this system is up to order
m = k uniquely solvable for given a0. Moreover, we note that it is possible
to choose am = 0 for all m ≥ k+1. This yields the claimed polynomial form
of the hypergeometric function F (1− s− k, k + s, 1 + s, z). �

As a corollary of Lemma 8.4 we obtain the following result on the structure
of 2D homogeneous solutions to (41):
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Corollary 8.5 (2D homogeneous solutions). Let u : R2
+ → R be a κ-

homogeneous solution of ( 41) with κ ≥ 0. Then,

κ = k + s, for some k ∈ N,

and u has the form

u(x) = C|x|k+s

(
1 + x1

|x|

2

)s
F

(
1− s− k, k + s, 1 + s;

x1
|x| + 1

2

)
,

where F denotes the hypergeometric function from 8.4. By the observation
on the polynomial structure of the relevant hypergeometric function F , this
can also be rewritten as

u(x) = w0,s(x1, x2)Pk(x1, |x|),
where Pk is a polynomial and w0,s is the function from Section 3.

Remark 8.6. For later reference, we note that for instance for k = 0, 1 we
have

u0(x) = c0w0,s(x1, x2),

u1(x) = c1w0,s(x1, x2) (s|x| − x2) .

Here we used the series approach from the proof of Lemma 8.4 to compute
the coefficients of u1. We note that these functions correspond to the ones
from the asymptotic expansion in Proposition 3.6.

Remark 8.7 (Orthogonality). We note that the spherical eigenfunctions
are pairwise orthogonal with respect to the L2((sin(ϕ))1−2sdϕ, [0, π]) scalar
product. This entails that the homogeneous solutions from Corollary 8.5 are
orthogonal with respect to the L2(x1−2s

2 dx) scalar product on B+
1 ⊂ R2

+.

Proof. The corollary is an immediate consequence of the form of the solu-
tions in Lemma 8.4, the fact that x1 = r cos(ϕ) and of the equation for the
radial component of uk. �

Relying on the two-dimensional result from above, we now proceed to
determining the full set of (n + 1)-dimensional homogeneous solutions for
the mixed Dirichlet-Neumann problem.

Proposition 8.8 (Homogeneous solutions in Rn+1
+ ). Let u : Rn+1

+ → R be
a κ-homogeneous solution of

∇ · x1−2s
n+1 ∇u = 0 in Rn+1

+ ,

u = 0 on {xn ≤ 0} ∩ (Rn × {0}),
lim

xn+1→0
x1−2s
n+1 ∂n+1u = 0 on {xn ≥ 0} ∩ (Rn × {0}),

(47)

with κ ≥ 0. Then, the possible homogeneities are of the form

κ = s+ ` with ` ∈ N.
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The corresponding κ homogeneous solutions are

uκ(x) =
∑

κ=m+d+s
d−2k≥0

|(xn, xn+1)|2kPd−2k(x
′′)um(x),

where d, k ∈ N ∪ {0},

um(x) = |(xn, xn+1)|m
(
|(xn, xn+1)|+ xn

2

)s
F

(
1− s−m,m+ s, 1 + s;

xn
|x| + 1

2

)
,

and Pl(x
′′) denotes a l-homogeneous polynomial. In particular, a general

(n+ 1)-dimensional eigenfunction can also be represented as

ũκ(x) =
∑

k+d=κ

ws,0(xn, xn+1)Pk(xn,
√
x2
n + x2

n+1)Pd(x),

where Pk is one of the k-homogeneous polynomials from Corollary 8.5 and
Pd(x

′′) denotes a polynomial of degree d.

Proof. We begin by introducing new coordinates (x′′, r, ϕ) which are defined
as

(x′′, xn, xn+1) = (x′′, r cos(ϕ), r sin(ϕ)).

Dividing our equation (47) by x1−2s
n+1 and rewriting it in the new variables

leads to

(∆′′ + (∂2
r + (2− 2s)r−1∂r) + r−2(sin(ϕ)2s−1∂ϕ(sin(ϕ)1−2s)∂ϕ))u = 0.

(48)

Let um(ϕ) denote the functions from Lemma 8.4. As they form an orthogo-
nal basis of L2(S1

+, sin(ϕ)1−2sdϕ) (as they are eigenfunctions of an associated
Sturm-Liouville operator), we obtain an expansion

u(x′′, r, ϕ) =

∞∑
m=1

cm(x′′, r)um(ϕ). (49)

By orthogonality of the functions um(ϕ), each of the functions cm(x′′, r)
solves

(−∆′′ + r2(∂2
r + (2− 2s)r−1∂r)− λ2

m)cm(x′′, r) = 0, (50)

with λ2
m = m2 + m − s2 + s. Moreover, again by orthogonality and by the

homogeneity of u each of the functions cm is κ homogeneous.
Since the problem is translation invariant in tangential variables x′′, we carry
out a Fourier transform of cm(x′′, r) (interpreted as a Fourier transform on
tempered distributions) in the tangential variables x′′ and denote the partial
Fourier transform of cm by

ĉm(ξ′′, r).
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We note that by the κ-homogeneity the functions cm, we obtain that

ĉm(λ−1ξ′′, λr) = λκ+n−1ĉm(ξ′′, r). (51)

Therefore,

|ĉm(ξ′′, r)| ≤ C max{rκ+n−1, |ξ′′|−κ−n+1}. (52)

After the Fourier transform the equation (50) for cm reads

(−r2|ξ′′|2 + r2(∂2
r + (2− 2s)r−1∂r)− λ2

m)ĉm(ξ′′, r) = 0, (53)

with λ2
m = m2 +m− s2 + s.

Considering the ansatz, ĉm(ξ′′, r) = r
2s−1

2 fm(ξ′′, r), we deduce that fm(ξ′′, r)
satisfies a modified Bessel equation:

r2f ′′m(ξ′′, r) + rf ′m(ξ′′, r)− fm(ξ′′, r)

(
λ2
m +

(1− 2s)2

4
+ r2|ξ′′|2

)
= 0.

A fundamental system of this ODE is given by the modified Bessel functions

fm(ξ′′, r) = d1(ξ′′)I 1+2m
2

(|ξ′′|r) + d2(ξ′′)K 1+2m
2

(|ξ′′|r).

These functions satisfy the following asymptotics:

Iν(x) ∼ (Γ(ν + 1))−1
(x

2

)ν
, Kν(x) ∼ 1

2
Γ(ν)

(x
2

)−ν
for x→ 0 and ν ≥ 0,

Iν(x) ∼ ex√
2πx

, Kν(x) ∼ e−x
√
π√

2x
for |x| → ∞.

Combining this asymptotic behavior with the bounds from (52), we infer
that fm(ξ′′, r) is only supported in |ξ′′| = 0 (this follows by considering the
limits r → 0, and r →∞ for fixed ξ′′ 6= 0). Thus,

ĉm(ξ′′, r) =
∞∑
k=0

∑
|α|=k

cm,α(r)δ
(α)
{ξ′′=0}(ξ

′′). (54)

Here α = (α1, . . . , αn−1) is a multi-index with αj ∈ N ∪ {0} for all j ∈
{1, . . . , n−1}, and δ

(α)
{ξ′′=0}(ξ

′′) denotes the distribution which is obtained by

taking α distributional derivatives of the delta distribution δ{ξ′′=0}. Using
the homogeneity of ĉm (c.f. (51)), we deduce that cm,α(r) is κ + n − 1 −
k homogeneous. However the Dirichlet data (which hold on part of the
domain) require that k ≤ κ + n − 1, whence we observe that the series in
(54) is a finite sum. We use K0(m) to denote the largest positive integer
less than κ+ n− 1 with cm,K0(m)(r) 6= 0. Then,

ĉm(ξ′′, r) =

K0(m)∑
k=0

∑
|α|=k

cm,α(r)δ
(α)
{ξ′′=0}(ξ

′′). (55)
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Here [·] denotes the floor function.
We plug this expression back into (53) and test it with a smooth, compactly
supported function ϕ. This yields

K0(m)∑
k=0

∑
|α|=k

[−[(Dα
ξ′′(|ξ′′|2ϕ))|ξ′′=0]r2cm,α(r)

+ [(Dα
ξ′′ϕ)(0)](r2∂2

r + (2− 2s)r−1∂r − λ2
m)cm,α] = 0.

(56)

Successively inserting the test functions

ϕj(ξ
′′) = |ξ′′|j for j ∈ {1, . . . ,K0(m)}

with ϕj being extended away from zero to have compact support in ξ′′

(and beginning the testing with large j first and then decreasing the power
in each step), we obtain the following equations for cm,α(r): For α̃ with
|α̃| ∈ {K0(m),K0(m)− 1} we have

(r2∂2
r + (2− 2s)r−1∂r − λ2

m)cm,α̃(r) = 0,

from which we obtain cm,α̃(r) = c̃m,α̃r
m+s with an absolute constant c̃m,α̃ in

both cases. As cm is however homogeneous (in the sense of (51)), this implies
that either cm,α̃(r) = 0 for all α̃ with |α̃| = K0(m) or cm,ᾱ(r) = 0 for all ᾱ

with |ᾱ| = K0(m) − 1 (as the functions cm,α̃δ
(α̃)
{ξ′′=0} with |α̃| = K0(m) and

cm,ᾱδ
ᾱ
{ξ′′=0} with |ᾱ| = K0(m)− 1 can else not have the same homogeneity).

We assume that the second case holds (the other one is analogous).
Again invoking (51), we obtain a condition for K0(m) depending on m,κ, n:

K0(m) = κ+ n− 1− s−m ≥ 0.

This in particular entails that κ+s ∈ N. Further we note that with increasing
m the value of K0(m) decreases. Hence ĉm 6= 0 only for finitely many values
of m (depending on κ). In particular the sum in (49) is finite.
We return to the condition on the coefficients cm,α(r): Evaluating (56) for
ϕk with k ∈ {1, . . . ,K0(m)− 2}, we then have

(r2∂2
r + (2− 2s)r−1∂r − λ2

m)cm,α(r) = dm,α̃cm,α̃(r),

where |α| = k and α̃ = k + 2 and dm,α is an absolute constant. Inte-
grating this iteratively and recalling that cm obeys the homogeneity con-
dition (51), we thus deduce that for |α| = K0(m) − l we have cm,α(r) =

dm,lr
m+s+2(l−1+[l/2]). By homogeneity of cm, we conclude that dm,2j+1 = 0

for all j ∈ {1, . . . , [(K0(m)− 2)/2]}. Therefore, (55) turns into

ĉm(ξ′′, r) =
∑

k∈2N∪{0},
k≤K0(m)/2

∑
|α|=K0(m)−2k

rm+s+2kδ
(α)
{ξ′′=0}(ξ

′′).

Inserting this information, using that the inverse Fourier transform of δ
(α)
{ξ′′=0}

is a homogeneous polynomial of degree |α|, and transforming back into
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(x′′, r, ϕ) coordinates then yields

cm(x′′, r) =
∑

k∈2N∪{0},
k≤(K0(m)−n+1)/2

rm+s+2kPK0(m)−2k−n+1(x′′)um(ϕ).

Here PK0(m)−2k−n+1 is a polynomial of degree K0(m)− 2k − n+ 1 ≥ 0. As

u(x′′, r, ϕ) =
∑
m,

K0(m)>0

∑
k∈2N∪{0},

k≤(K0(m)−n+1)/2

rm+s+2kPK0(m)−2k−n+1(x′′)um(ϕ),

where P[κ+n+1]+2k(x
′′) is a polynomial of degree 2k and κ−[κ+n+1]−s ∈ N,

this concludes the proof of the proposition. �

8.1.2. Dirichlet and Neumann data. In this section we determine all
homogeneous solutions to the (n + 1)-dimensional Dirichlet and Neumann
problems for the fractional Laplacian. This is slightly less involved than
the argument for the mixed Dirichlet-Neumann problem, as the problem
has only one “broken symmetry” originating from the operator (which is
inhomogeneously weighted in the x′ and xn+1 directions). In contrast in
the mixed Dirichlet-Neumann case we had to deal with two directions of
“symmetry loss” as the boundary data caused an additional direction with
loss of symmetry.

For the Dirichlet and Neumann problems our main result is:

Proposition 8.9 (Dirichlet, Neumann homogeneous solutions in Rn+1
+ ). Let

uD,N : Rn+1
+ → R be a κ-homogeneous (κ ≥ 0) solution of

LsuD,N = 0 in Rn+1
+ , BD,Nu = 0 in Rn × {0}.

Here BDuD = uD and BNuN = lim
xn+1→0+

x1−2s
n+1 ∂n+1uN , respectively. Then,

uD(x) = x2s
n+1

[m/2]∑
k=0

x2k
n+1Pm−2k(x

′),

uN (x) =

[m/2]∑
k=0

x2k
n+1Pm−2k(x

′),

with m ∈ N ∪ {0} and Pm−2k being a polynomial of degree m− 2k.

Proof. We begin with the Dirichlet case. Carrying out a Fourier transform
(interpreted as a tempered distribution) and dividing by x1−2s

n+1 yields an
ODE for û(ξ′, xn+1):(

∂2
n+1 +

1− 2s

xn+1
∂n+1 − |ξ′|2

)
û = 0 for xn+1 ∈ (0,∞),

û(ξ′, 0) = 0.

(57)
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Similarly as in the proof of Proposition 8.8, homogeneity further implies
that

|û(ξ′, xn+1)| ≤ C max{|ξ′|−1, xn+1}κ+n. (58)

Making the ansatz û(ξ′, xn+1) = xsn+1v(ξ′, xn+1), the ODE from (57) is
transformed into a modified Bessel equation

x2
n+1v

′′ + xn+1v
′ − (|ξ′|2x2

n+1 + s2)v = 0,

where differentiation with respect to xn+1 has been abbreviated with the
dashes and ξ′ plays the role of a parameter. The general solution of this
ODE is of the form

v(ξ′, xn+1) = C1(ξ′)Is(|ξ′|xn+1) + C2(ξ′)Ks(|ξ′|xn+1).

The asymptotics for Is,Ks (c.f. the proof of Proposition 8.8) and the Dirich-
let data (i.e. the limit xn+1 → 0) imply that for |ξ′| 6= 0, C2 = 0. Consider-
ing the asymptotics xn+1 →∞ in combination with the bound (58) and the
exponential growth of Is then also results in C1 = 0. Hence, v is supported
in ξ′ = 0. Thus û can be written as

û(ξ′, xn+1) =
∞∑
k=0

∑
|α|=k

cα(xn+1)δ
(α)
{ξ′=0}(ξ

′),

where α = (α1, . . . , αn) ∈ (N ∪ {0})n and δ
(α)
{ξ′=0}(ξ

′) denotes an α-fold dis-

tributional derivative of the delta-distribution δ{ξ′=0}(ξ
′). Using the homo-

geneity of û, we further obtain that cα(xn+1) is κ−|α|−n homogeneous. As
û has to satisfy Dirichlet boundary conditions, we thus have that |α| ≤ κ−n,
which yields that the series is a finite sum:

û(ξ′, xn+1) =

[κ−n]∑
k=0

∑
|α|=k

cα(xn+1)δ
(α)
{ξ′=0}(ξ

′). (59)

As in the proof of Proposition 8.8, we can further compute the functions cα
iteratively, by plugging it into (57) and by testing with test functions which
vanish of sufficiently high order. More precisely, we obtain that for α with
|α| = κ− n

c′′α +
1− 2s

xn+1
c′α = 0,

i.e. cα(xn+1) = c̃αx
2s
n+1 with c̃α ∈ R (where we used the Dirichlet data).

The functions cβ(xn+1) with β = [κ − n] − 1 also satisfy this equation and
are hence of the same form. Inductively, for l ∈ {2, . . . , [κ− n]− 1}, α̃ with

|α̃| = [κ− n]− l and β̃ with |β̃| = [κ− n]− l + 2 we have

c′′α̃ +
1− 2s

xn+1
c′α̃ = dlcβ̃.
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Inductively and by invoking the Dirichlet data, we thus infer that

cα̃(xn+1) = x2s
n+1

l−1+[l/2]∑
j=1

c̃l,j,α̃x
2j
n+1,

for some constants c̃l,j,α̃ ∈ R. Due to the homogeneity condition on cα̃ from
above, this further simplifies to

cα̃(xn+1) = c̃α̃x
2s+2(l−1+[l/2])
n+1 .

for α̃ with |α̃| = [κ − n] − l and c̃α̃ ∈ R. Therefore transforming (59) back
into x-coordinates, leads to

u(x′, xn+1) = x2s
n+1

[m/2]∑
k=0

x2k
n+1Pm−2k(x

′),

where m ∈ N and Pm−2d(x
′) denotes a polynomial of degree m−2k depend-

ing on the x′ variables and [·] denotes the floor function. This concludes the
proof for the case with Dirichlet data.
For the Neumann problem we argue analogously. As in the Dirichlet case,
the Neumann boundary condition implies that the transformed function
û(ξ′, xn+1) has the form

û(ξ′, xn+1) =

[κ−n]∑
k=0

∑
|α|=k

cα(xn+1)δ
(α)
{ξ′=0}(ξ

′).

As before the finiteness of the sum is a consequence of homogeneity. We
obtain the same recurrence relation as above for the coefficient functions
c[κ−n]−l. However, as these now satisfy Neumann data, we have that

c[κ−n](xn+1) = c̃ ∈ R.

Thus,

u(x′, xn+1) =

[m/2]∑
k=0

x2k
n+1Pm−2k(x

′),

which concludes the proof. �

8.2. Approximation results for the fractional Laplacian. In this sec-
tion, we prove approximation results for the fractional Laplacian in the
upper half-space with Dirichlet, Neumann and mixed Dirichlet-Neumann
data. The proofs of these results are based on the compactness method as
for instance in [24], [23]. As a key step we exploit the characterization of
the homogeneous global solutions (with corresponding Dirichlet, Neumann
boundary data). These rely on the computations of the eigenvalues and
eigenfunctions in the preceding Section 8.1. As shown in Section 8.4, these
results for the fractional Laplacian also suffice to prove a corresponding
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approximation result for the fractional Grushin Laplacian ∆G,s (c.f. Propo-
sition 8.18).

The main result of this section is the following approximation statement,
in which we use the notation from the beginning of Section 8 (below the
statement of Proposition 8.1) and where for abbreviation we also set ‖ ·
‖L̃2

ω̄(Ω) := 1
ω̄(Ω)‖ · ‖L2(Ω) for any Ω ⊂ Rn+1

+ .

Proposition 8.10 (Approximation). Let u ∈ H1
ω̄(B+

1 ) be a solution of

Lsu = g in B+
1 ,

Bu = 0 on B′1,
(60)

where B ∈ {BD, BN , BDN} is one of the following operators:

• (Dirichlet) BDu := u,
• (Neumann) BNu := ∂n+1u,
• (mixed Dirichlet-Neumann) BDNu := u on {xn ≤ 0} and BDNu =
∂n+1u on {xn ≥ 0}.

Assume that the inhomogeneity g is of the following form:

• g = f in the case of Dirichlet data,
• g = x1−2s

n+1 f for Neumann data,
• and

g(x) = x1−2s
n+1 (x2

n + x2
n+1)−1/2w0,s(xn, xn+1)f0(x) + (x2

n + x2
n+1)−1/2f1(x)

in the case of mixed Dirichlet-Neumann data.

Further suppose that

• in the Dirichlet and Neumann cases f is C0,α at 0 in the sense that
for all x ∈ B+

1

|f(x)− f(0)| ≤ C|x|α,

• in the case of mixed Dirichlet-Neumann data f0 is C0,α at 0, and
for all x ∈ B+

1 , f1 satisfies

|f1(x)| ≤ C|x|1+α−s.

Then, there exist a constant C = C(n, s, α) > 0 and functions hβB (x) such
that for all r ∈ (0, 1/2)

‖u− hβB‖L̃2
ω̄(B+

r ) ≤ Cr
βB+α

(
‖f‖+ ‖u‖L̃2

ω̄(B+
1 )

)
.

Here, ‖f‖ denotes ‖f‖C0,α(0) in the Dirichlet and Neumann cases, or

‖f0‖C0,α(0) + sup
B+

1

||x|−1−α+sf1(x)| in the mixed Dirichlet-Neumann case,

βB :=

 1 + 2s in the Dirichlet case,
2 in the Neumann case,
1 + s in the mixed Dirichlet-Neumann case,
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and

hβB (x) :=



x2s
n+1

(
a+

n∑
j=1

bjxj

)
+ f(0)

1+2sx
1+2s
n+1

in the Dirichlet case,

c+
n∑
j=1

ajxj +
n∑

i,j=1
dijxixj + f(0)

2(2−2s)x
2
n+1

in the Neumann case,

w0,s(xn, xn+1) (a0 + a1(s|x| − xn)) + f0(0)
2(2+2s)w

1+1/s
0,s (xn, xn+1)

in the mixed Dirichlet-Neumann case.

(61)

All coefficients of hβB are bounded in terms of ‖u‖L̃2
ω̄(B+

1 ) and ‖f‖.

Remark 8.11 (Inhomogeneity for the Dirichlet-Neumann data). The spe-
cific form of the inhomogeneity in the mixed Dirichlet-Neumann case stems
from our definition of the spaces Yα,ε and the transformation behavior under
the opening of the domain transformation described in Section 9.1. Carrying
out this transformation carefully leads to an inhomogeneity of the form

g(x) = x1−2s
n+1 r

−1
(
w0,s(xn, xn+1)f0(x) + w0,s(xn, xn+1)

2s−1
2s r

1
2

+α− ε
2 f1(x)

)
,

where r = (x2
n + x2

n+1)1/2, f0 ∈ C0,α(0) and f1 ∈ C0,ε/2(0) with f1(0) = 0.
This inhomogeneity however falls into the class of the inhomogeneities from
Proposition 8.10.

Remark 8.12. In the sequel, we assume that f(0) = 0 in the Dirichlet and
Neumann cases and that f0(0) = 0 in the mixed Dirichlet-Neumann case.
This can be achieved by subtracting the profiles csf(0)x1+2s

n+1 , csf(0)x2
n+1 and

csf0(0)w
1+1/s
0,s .

Remark 8.13. We point out that in the Dirichlet and Neumann boundary
data cases, the approximation result of Proposition 8.10 holds at all points
x0 ∈ {xn+1 = 0}, while in the mixed Dirichlet-Neumann case, it holds at
all points x0 ∈ P := {xn = 0 = xn+1} (if the inhomogeneities f satisfy
suitable regularity assumptions at these points). This observation follows
immediately from translation invariance of the problem in the corresponding
directions.

In order to infer this result, we first approximate the inhomogeneous prob-
lem by the corresponding homogeneous one and then use the fact that homo-
geneous solutions are well-approximated by “eigenpolynomials” (i.e. homo-
geneous global solutions with corresponding Dirichlet Neumann boundary
data).

Lemma 8.14. Let u be a solution of ( 60) with

‖u‖L̃2
ω̄(B+

1 ) ≤ 1, ‖x
2s−1

2
n+1 g‖L̃2(B+

1 ) ≤ δ. (62)
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For each ε > 0 there exists δ = δ(ε, n, s) > 0 such that if ( 62) is satisfied,
then there exists a solution h of the homogeneous equation

Lsh = 0 in B+
1 , Bh = 0 on B′1, (63)

such that

‖u− h‖L̃2
ω̄(B+

1
2

) ≤ ε.

Here B· denotes the Dirichlet, Neumann or mixed Dirichlet-Neumann op-
erators from Proposition 8.10.

Proof. In order to infer this result, we argue by contradiction. Assuming
the statement were wrong, there existed ε̄ > 0 and sequences of solutions uk
of (60) with inhomogeneities gk such that

‖uk‖L̃2
ω̄(B+

1 ) ≤ 1, ‖x
2s−1

2
n+1 gk‖L̃2(B+

1 ) ≤ k
−1,

but

‖uk − h‖L̃2
ω̄(B+

1
2

) ≥ ε̄, (64)

for any solution h of the homogeneous problem (63). However, by energy
estimates, all these solutions uk satisfy

‖∇uk‖L2
ω̄(B+

1
2

) ≤ C(‖uk‖L2
ω̄(B+

1 ) + ‖x
2s−1

2
n+1 gk‖L2(B+

1 )) ≤ C <∞.

Hence, on the one hand uk ⇀ ū in H1
ω̄(B+

1
2

), with ū being a weak solution

of the corresponding homogeneous problem (63). On the other hand, by
compactness up to a subsequence the functions uk converge to ū strongly in
L2
ω̄(B+

1
2

) (c.f. the Sobolev inequality in Proposition 9.1). This contradicts

the assumption (64). �

Remark 8.15. An alternative proof in which δ ∼ ε would have been possible
by using the existence results and kernel estimates from Lemmas 9.2 and 9.3.

As the next step towards the proof of Proposition 8.10, we approximate
solutions of (63) by “eigenpolynomials”:

Lemma 8.16 (Eigenpolynomial approximation). Let h be a solution of ( 63)
with ‖h‖L̃2

ω̄(B+
1 ) ≤ c̄. Then there exist solutions hβB of ( 63), which are of

the form ( 61) (c.f. Proposition 8.10), such that for all r ∈ (0, 1/2)

‖h− hβB‖L̃2
ω̄(B+

r ) ≤ C(c̄)rβB+1.

All coefficients of hβB are bounded by Cc̄ with C = C(n, s).

Proof. We first prove that h can be decomposed as

h(x) =
∞∑
k=0

αkhk(x) with
∞∑
k=0

|αk|2 ≤ c̄2, (65)
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where the functions hk(x) denote the homogeneous solutions from Section
8.1. Indeed, rewriting the equation (63) in (standard) polar coordinates
(r, θ) with θn := yn+1

|y| yields

θ1−2s
n r−n∂r(r

n+1−2s∂r)h+ r−1−2s∇Snθ1−2s
n ∇Snh = 0 in Sn+ × R+,

BSn−1h = 0 on Sn−1 × R+,

where BSn−1 denotes the suitably transformed boundary data operator B
from (63).

Due to the compact embedding H1(θ1−2s
n dθ, Sn+) ↪→ L2(θ1−2s

n dθ, Sn+) (and
due to the form of the boundary data), there is an orthonormal basis of
L2(θ1−2s

n dθ, Sn+) consisting of eigenfunctions {hm}m∈N of the spherical oper-
ator as well as an associated discrete set of eigenvalues λm, i.e., the functions
hm and the values λm satisfy

∇Snθ1−2s
n ∇Snhm = −λ2

mθ
1−2s
n hm in Sn+,

BSn−1h = 0 on Sn−1.

Thus, h can be expanded into these eigenfunctions:

h(r, θ) =
∑
m

αm(r)hm(θ). (66)

By orthogonality the functions αm(r) satisfy

r−n∂r(r
n+1−2s∂r)αm − λ2

mr
−1−2sαm = 0,

and are hence homogeneous. As a consequence the functions αm(r)hm(θ)
are homogeneous solutions to (63) which satisfy the boundary conditions
(which implies that the homogeneity κ is larger than or equal to zero). Ho-
mogeneous solutions to (63) are however exactly the ones which are classified
in Propositions 8.8 and 8.9. Combining this with (66) shows the existence
of the claimed decomposition (65).

Building on this decomposition we prove the claim of the lemma: As the
functions hk are homogeneous, orthogonal with respect to the L2

ω̄(B1) scalar
product and normalized on B+

1 , the result follows by setting

hβB (x) :=

βB∑
k=0

αkhk(x)

and noting that

‖h− hβB‖
2
L2
ω̄(B+

r )
=

∞∑
k=βB+1

|αk|2‖hk‖2L2
ω̄(B+

r )

≤ r2(βB+1)+2(n+1)+1−2sC(c̄).

This concludes the proof. �
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Combining the results of the previous two lemmas, we obtain the following
key approximation lemma. An iteration of it yields the proof of Proposition
8.10.

Lemma 8.17 (Iteration). There exist δ > 0 and a radius r0 ∈ (0, 1) such
that for any solution u of ( 60) with ‖u‖L̃2

ω̄(B+
1 ) ≤ 1 and

‖x
2s−1

2
n+1 g‖L̃2(B+

1 ) ≤ δ,

there exists a sum of homogeneous functions hβB as in ( 61) in Proposition
8.10 with all coefficients bounded by a uniform constant C = C(n, s, α) such
that

‖u− hβB‖L̃2
ω̄(B+

r0
) ≤ r

βB+α
0 .

Here δ0 and r0 are constants depending only on n, s, α.

Proof. For a sufficiently small ε > 0 which will be determined later, Lemma
8.14 implies the existence of δ = δ(ε, n, s) > 0 and a homogeneous solution

h of (63) such that if ‖x
2s−1

2
n+1 g‖L̃2(B+

1 ) ≤ δ, we have

‖u− h‖L̃2
ω̄(B+

1
2

) ≤ ε.

Moreover, Lemma 8.16 then yields a sum of homogeneous solutions of the
form (61) from Proposition 8.10 such that for all r ∈ (0, 1/2)

‖h− hβB‖L̃2
ω̄(B+

r ) ≤ Cr
βB+1,

where C is an absolute constant, since by the triangle inequality we have
‖h‖L2

ω̄(B+
1/2

) ≤ 2. Thus, the triangle inequality leads to

‖u− hβB‖L̃2
ω̄(B+

r ) ≤ ‖u− h‖L̃2
ω̄(B+

r ) + ‖h− hβB‖L̃2
ω̄(B+

r )

≤ ε+ CrβB+1, r ∈ (0, 1/2).

Choosing first r0 ∈ (0, 1/2) such that CrβB+1
0 ≤ 1

2r
βB+α
0 and then ε such

that ε ≤ 1
2r
βB+α
0 gives the desired estimate. Here the constants δ and r0

depend on n, s and α. �

Iterating this result and exploiting the structure of the right hand side,
then yields the proof of Proposition 8.10:

Proof of Proposition 8.10. It suffices to prove the iteration statement:
If ‖u‖L̃2

ω̄(B+
1 ) ≤ 1 and if for some sufficiently small δ > 0 (which can be

chosen as in Lemma 8.17)

‖x
2s−1

2
n+1 g‖L̃2(B

rk0
) ≤ δr

k(βB+α− 3
2
−s)

0 , (67)
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where βB is the exponent from Proposition 8.10, then there exist solutions
hβB ,k which satisfy the corresponding boundary data and which are as in
(61) in Proposition 8.10 such that

‖u− hβB ,k‖L̃2
ω̄(B

rk0
) ≤ r

k(βB+α)
0 . (68)

Once this is shown the remainder of the proof is similar as in [24] or [17].
In order to derive this claim, we argue by induction. As the base case
corresponds to the statement of Lemma 8.17, it suffices to prove the step
from k to k+1. To this end, let hβB ,k be the approximating solution at step
k. We consider

uk(x) :=
(u− hβB ,k)(rk0x)

r
k(βB+α)
0

.

By the inductive assumption assumption (68) we have that ‖uk‖L̃2
ω̄(B+

1 ) ≤ 1.

Moreover,

∇ · x1−2s
n+1 ∇uk = r

−k(βB+α)
0 r

(1+2s)k
0 g(rk0x) =: gr0(x).

By (67)

‖x
2s−1

2
n+1 gr0‖L̃2(B+

1 ) = r
−k(βB+α)
0 r

( 3
2

+s)k
0 ‖x

2s−1
2

n+1 g‖L̃2(B
rk0

) ≤ δ.

Hence, Lemma 8.17 is applicable and yields a solution h̃βB ,k+1 which is of
the form of (61) such that

‖uk − h̃βB ,k+1‖L̃2
ω̄(B+

1 ) ≤ r
βB+α.

Rescaling and setting

hβB ,k+1(x) := hk(x) + rβB+α
0 h̃βB ,k+1

(
x

rk0

)
,

yields the claim. Using the geometric decay of the coefficients of h̃βB ,k+1

hence allows us to find a limiting function hβB ,∞(x) := lim
k→∞

hβB ,k(x) which

is still a solution and of the desired form (61) and satisfies the right boundary
conditions. We remark that this iteration procedure is applicable in the
setting of Proposition 8.10 as scaling allows us to assume that the inductive
hypotheses are satisfied. �

8.3. Up to the boundary a priori estimates. In this section we exploit
the results of the previous two sections and prove the Schauder estimates
from Propositions 8.1 and 8.2, which were stated in the introduction to
this first appendix. At the set {x : xn+1 = 0} at which the operator Ls
degenerates, we employ the approximation result from Proposition 8.10,
while away from this degenerate set, we use the usual uniformly elliptic
Schauder estimates for second order elliptic operators.

We begin by proving the result for Dirichlet data:



822 HERBERT KOCH, ANGKANA RÜLAND AND WENHUI SHI

Proof of Proposition 8.1. The result follows from the approximation re-
sult at B′1/2 which will be shown in Proposition 8.10 and a scaling argument.

More precisely, let x0 = (x′0, 0) ∈ B′1/2. Without loss of generality we may as-

sume that f(x0) = 0, as we can always subtract the function 1
1+2sf(x0)x1+2s

n+1 .

Then, by the polynomial approximation at x0 (c.f. Proposition 8.10 in Sec-
tion 8.2), there exists a polynomial Px0(x) with the properties that

x2s
n+1Px0(x) := x2s

n+1(a(x0) +

n∑
j=1

bj(x0)xj),

Ls(x
2s
n+1Px0) = 0 and ‖Px0‖L∞(B+

1 ) ≤ C(‖f‖L∞(B+
1 ) + ‖u‖L2

ω̄(B+
1 )), such that

‖u− x2s
n+1Px0‖L̃2

ω̄(B+
r ) ≤ Cr

1+2s+ε
(

[f ]C0,ε(B+
1 ) + ‖u‖L̃2

ω̄(B+
1 )

)
(69)

for all r ∈ (0, 1/2). Here ‖u‖L̃2
ω̄(Ω) := 1

ω̄(Ω)1/2 ‖x
1−2s

2
n+1 u‖L2(Ω) with ω̄(Ω) :=∫

Ω

x1−2s
n+1 dx, and C = C(n, s, ε). Given λ ∈ (0, 1/2) , we consider

ũλ(z) :=
(u− x2s

n+1Px0)(x0 + λz)

λ1+2s+ε
.

By (69) we infer that ‖ũλ‖L2
ω̄(B+

2 ) ≤ C([f ]C0,ε(B+
1 ) + ‖u‖L̃2

ω̄(B+
1 )). Moreover,

Lsũλ(z) = fλ(z), fλ(z) := λ−εf(x0 + λz).

Since f ∈ C0,ε(B+
1 ), we have that fλ ∈ C0,ε(B+

2 ) with ‖fλ‖C0,ε(B+
2 ) ≤

C‖f‖C0,ε(B+
1 ). We notice that in B3/4(en+1) the equation for ũλ is uniformly

elliptic with a C0,ε inhomogeneity. Hence, by classical elliptic estimates, we
have

‖ũλ‖C2,ε(B1/2(en+1)) ≤ C
(

[fλ]Ċ0,ε(B+
2 ) + ‖ũλ‖L2(B+

2 )

)
.

Scaling back, yields that in the non-tangential balls Bλ/2(x0 + λen+1) it
holds

λ−(1+2s+ε)‖u− x2s
n+1Px0‖L∞(Bλ/2(x0+λen+1))

+ λ−(2s+ε)‖∂i(u− x2s
n+1Px0)‖L∞(Bλ/2(x0+λen+1))

+ λ−(−1+2s+ε)‖∂ij(u− x2s
n+1Px0)‖L∞(Bλ/2(x0+λen+1))

+ λ−(−1+2s)[∂ij(u− x2s
n+1Px0)]Ċ0,ε(Bλ/2(x0+λen+1))

≤ C([f ]Ċ0,ε(B+
1 ) + ‖u‖L̃2

ω̄(B+
1 )).

(70)

Repeating the above procedure at every x0 ∈ B′1/2, leads to (70) for each

x0 ∈ B′1/2 and each λ ∈ (0, 1/2).

Based on this, a triangle inequality argument implies that x0 7→ a(x0) is
in C1,ε(B′1/2) and x0 7→ bi(x0), i ∈ {1, . . . , n}, is in C0,ε(B′1/2) with norm

bounded by the right hand side of (70). More precisely, let x0, x̂0 ∈ B′1/2.



THE FRACTIONAL THIN OBSTACLE PROBLEM 823

Let x̃ be the mid point of x0 and x̂0. We apply (70) with λ = 2|x0 − x̂0| at
x0 and x̂0. By a triangle inequality (note that Bλ/4(x̃+λen+1) ⊂ Bλ/2(x0 +
λen+1) ∩Bλ/2(x1 + λen+1)),

λ−(1+2s+ε)‖x2s
n+1Px0 − x2s

n+1Px1‖L∞(Bλ/4(x̃+λen+1))

+λ−(2s+ε)‖∂i(x2s
n+1Px0 − x2s

n+1Px1)‖L∞(Bλ/4(x̃+λen+1)) ≤ C.

Using that in xn+1 ∼ λ in Bλ/4(x̃+λen+1), we have |bi(x0)− bi(x̂0)| ≤ Cλε,
|a(x0)− a(x̂0)| ≤ Cλ, |∇a(x0)−∇a(x̂0)| ≤ Cλε. Recalling the definition of
λ, we obtain the desired estimate.
A further triangle inequality argument combined with a covering argument
gives the up to B′1/2 Hölder regularity of the weighted derivatives:

x−2s
n+1u, x

1−2s
n+1 ∂n+1u ∈ C1,ε(B+

1/2),

x−2s
n+1∂iu, x

1−2s
n+1 ∂i,n+1u, ∂n+1(x1−2s

n+1 ∂n+1u) ∈ C0,ε(B+
1/2),

and for each x0 ∈ B′1/2

x−2s
n+1u

∣∣
x=x0

= a(x0),

x−2s
n+1∂iu

∣∣
x=x0

=
1

2s
x1−2s
n+1 ∂i,n+1u

∣∣
x=x0

= bi(x0), i ∈ {1, . . . , n},

∂n+1(x1−2s
n+1 ∂n+1u)

∣∣
x=x0

= f(x0).

This yields the desired estimates. �

Similarly as the Dirichlet case, we can treat the Neumann case.

Proof of Proposition 8.2. Again the proof follows by approximation at
the set {xn+1 = 0} (where the Muckenhoupt weight x1−2s

n+1 degenerates) and
by rescaling. Let x0 ∈ B′1/2. Without loss of generality we may assume that

f(x0) = 0 (as we can always subtract the polynomial 1
4(2−2s)f(x0)x2

n+1). By

Proposition 8.10 we have

‖(u−Qx0)‖L̃2
ω̄(Br(y0)) ≤ Cr

2+ε([f ]C0,ε(B+
1 ) + ‖u‖L̃2

ω̄(B+
1 )),

for all r ∈ (0, 1/2). Here,

Qx0(x) = c(x0) +

n∑
j=1

aj(x0)xj +

n∑
i,j=1

dij(x0)xixj ,

which satisfies LsQx0(x) = 0. With the approximation result at hand, we
argue similarly as in the previous proposition and rescale. Let λ ∈ (0, 1/2)
and consider

ṽλ(z) :=
(u−Qx0)(x0 + λz)

λ2+ε
.
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This makes the equation uniformly elliptic in B3/4(en+1) and thus yields

‖∂i∂j ṽλ‖C0,ε(B1/2(en+1)) ≤ C
(
‖fλ‖C0,ε(B3/4(en+1)) + ‖ṽλ‖L̃2(B3/4(en+1))

)
.

Here fλ(z) = z1−2s
n+1 λ

−εf(x0 + λz), with ‖fλ‖C0,ε(B3/4(en+1)) ≤ C[f ]Ċ0,ε(B+
1 ),

and ‖ṽλ‖L̃2
ω̄(B3/4(en+1)) ≤ C([f ]C0,ε(B+

1 ) + ‖u‖L̃2
ω̄(B+

1 )). Undoing the rescaling

therefore yields the desired result in a non-tangential neighborhood of x0.
Applying this at each x0 ∈ B′1/2 and using a triangle inequality argument as

in Proposition 8.1, we obtain the Hölder continuity of the coefficients of Qx0

in terms of x0. This then implies the estimate up to the boundary. Since
this part of argument is similar as in the proof of Proposition 8.1, we do not
repeat it here. �

8.4. Schauder estimates for the Baouendi-Grushin Laplacian in
the quarter space, opening up the domain. Last but not least, we
invoke the square root mapping to transfer the regularity results which were
obtained for the fractional Laplacian to the Baouendi-Grushin Laplacian.
This allows us to derive the proof of the apriori estimate from Proposition
5.15.

In the sequel we will consider weak solutions to

∆G,sv = f in int(B+
1 ), B+

1 = B1 ∩ {yn ≥ 0, yn+1 ≥ 0},

with mixed Dirichlet and Neumann boundary conditions:

w = 0 on B1 ∩ {yn = 0}, lim
yn+1→0+

ω(y)∂n+1w(y) = 0 on B1 ∩ {yn+1 = 0}.

Here f is a given function with ω−1f ∈ L2
ω(B+

1 ). More precisely, we consider
w ∈M1

ω(B+
1 ) and

−
∫
B+

1

YiwYiφωdy =

∫
B+

1

fφdy,

for any φ ∈ C∞c (B1) with φ = 0 on B1 ∩ {yn = 0}.
As our main result in this section we prove an apriori Schauder esti-

mate for the Baouendi-Grushin Laplacian ∆G,s. The idea is to interpolate
the asymptotics at the singular set P = {yn = yn+1 = 0} (c.f. Proposi-
tion 8.18) and the Schauder estimate for the standard fractional Lapacian
Ls (c.f. Section 8.3) in the region distG(y, P ) ∼ 1. A combination of this
apriori estimate and the existence result from Section 9.1 then also imply a
global invertibility result for the fractional Baouendi-Grushin Laplacian in
our spaces Xα,ε, Yα,ε (c.f. Proposition 9.4).

We begin by deriving the asymptotics at the corner {yn = 0 = yn+1}:
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Proposition 8.18 (Approximation). Let ∆G,s be the fractional Baouendi-

Grushin Laplacian. Assume that v ∈M1
ω(B+

1 ) is a weak solution to

∆G,sv = yny
1−2s
n+1 f0(y) + f1(y) in int(B+

1 ),

v = 0 on B+
1 ∩ {yn = 0},

∂n+1v = 0 on B+
1 ∩ {yn+1 = 0},

(71)

where f0 ∈ C0,2α
∗ (B+

1 ) and where f1 satisfies

|f1(y)| ≤ C1|y|2+2α−2s.

Then, there exist a constant C = C(n, s, α) > 0 and a function

h2+2s(y) := y2s
n

(
a0 +

n−1∑
i=1

aiyi + any
2
n + an+1y

2
n+1

)
with coefficients

n+1∑
i=1

|ai| ≤ C
(
C1 + |f0(0)|+ [f0]

C0,2α
∗ (B+

1 )
+ ‖v‖L̃2

ω(B+
1 )

)
,

such that

‖v − h2+2s‖L̃2
ω(B+

r ) ≤ Cr
2+2s+2α

(
C1 + |f0(0)|+ [f0]

C0,2α
∗ (B+

1 )
+ ‖v‖L̃2

ω(B+
1 )

)
for all r ∈ (0, 1/2).

Here we have used the notation introduced at the beginning of Appendix
8 (below Proposition 8.3). In addition, in analogy to the notation in Section
8.2 we have set

‖ · ‖L̃2
ω(Ω) :=

1

ω(Ω)
‖ · ‖L2(Ω)

for any Ω ⊂ Rn+1.
In proving this result the main idea consists of transforming the Baouendi-

Grushin setting to the mixed Dirichlet-Neumann problem for the fractional
Laplacian from Proposition 8.10. To this end, we note that, as already
seen in the Example 4.12, ∆G,s is the push-forward operator of the operator

Ls = ∇ · x1−2s
n+1 ∇ by means of the square root mapping.

Proof. Step 1: Square root transformation. First we observe the following
relation between ∆G,s and Ls which is established by means of the square
mapping: Suppose that h is a solution to

∆G,sh = 0 in Q+,

h = 0 on {yn = 0}, lim
yn+1→0+

ω(y)∂n+1h = 0 on {yn+1 = 0}.
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Let

T : Q+ → Rn+1, x = T (y),

xi = yi for i ∈ {1, ..., n− 1}, xn =
1

2
(y2
n − y2

n+1), xn+1 = ynyn+1.

We define h̃(x) := h(T −1(x)). Then h̃ solves Lsh̃ = 0 in Rn+1
+ , with the

mixed Dirichlet-Neumann boundary condition

h̃ = 0 on Rn × {0} ∩ {xn ≤ 0},

lim
xn+1→0+

x1−2s
n+1 ∂n+1h̃ = 0 on Rn × {0} ∩ {xn > 0}.

Thus, global homogeneous solutions to ∆G,sh = 0 with Dirichlet-Neumann
boundary data are characterized by invoking the characterization result for
Lsh̃ = 0 from Proposition 8.8.

Step 2: Approximation. Transforming all the quantities in the formula-
tion of Proposition 8.18 hence reduces the desired approximation result to
the approximation result for the mixed Dirichlet-Neumann case treated in
Proposition 8.10. �

Remark 8.19. By translation invariance of the operator, this approxima-
tion result holds at every point y ∈ B1 ∩ {yn = yn+1 = 0}.

Relying on the asymptotics, we now proceed with the proof of the main
Schauder estimate from Proposition 8.3:

Proof of Proposition 8.3. Step 1: “Eigenpolynomial” approximation at
P . Given f ∈ Yα,ε, Proposition 5.12 implies that

f(y) = yny
1−2s
n+1 f0(y′′) + y1−2s

n+1 r
1+2α−εf1(y)

with supp(f0), supp(f1) ⊂ B′′1 ×R2 and with ‖f0‖C0,α(B1∩P ) +‖f1‖C0,ε
∗ (B+

1 )
≤

C‖f‖Yα,ε . Let ȳ ∈ B1/2∩P be an arbitrary point. Without loss of generality
we may assume that f0(ȳ′′) = 0 (as else we can subtract the correction

1
1+2sy

1−2s
n+1 f0(ȳ′′) from v). Note that f satisfies

sup
r∈(0,1/2)

r−(2s+2α)‖ω−1f‖L̃ω(B+
r ) ≤ C‖f‖Yα,ε .

By virtue of Proposition 8.18, there exists a function

y2s
n Pȳ(y) = y2s

n

(
a0 +

n−1∑
i=1

aiyi + any
2
n + an+1y

2
n+1

)
,

with coefficients ak depending on ȳ and
∑
k

|ak| ≤ C‖f‖Yα,ε(B+
1 ), such that

‖v − y2s
n Pȳ‖L̃2

ω(B+
r (ȳ)) ≤ Cr

2+2s+2α
(
‖f‖Yα,ε(B+

1 ) + ‖v‖L̃2
ω(B+

1 )

)
.

for all r ∈ (0, 1/4).
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Step 2: Interpolation. We consider

ṽλ(y) :=
(v − y2s

n Pȳ)(ȳ + δλ(y))

λ2+2s+2α
, λ ∈ (0, 1/4),

where δλ(y) = (λ2y′′, λyn, λyn+1). By Step 1,

‖ṽλ‖L̃2
ω(B+

4 ) ≤ C
(
‖f‖Yα,ε(B+

1 ) + ‖v‖L̃2
ω(B+

1 )

)
.

Moreover, ṽλ solves

∆G,sṽλ(y) = λ−(2−2s+2α)f(ȳ + δλy)

= y1−2s
n+1 λ

−2αf0 + y1−2s
n+1 r(y)1+2α−ελ−εf1(ȳ + δλy) =: fλ(y).

In the region y ∈ C+
2 := {y : |y′′| < 1, 1

16 < y2
n + y2

n+1 < 4, yn > 0}, the
operator ∆G,s can be viewed as

Ls := (ynyn+1)1−2s∆′′ + ∂n((ynyn+1)1−2s∂n) + ∂n+1((ynyn+1)1−2s∂n+1),

i.e. the weight (y2
n+y2

n+1) in front of the tangential Laplacian can be ignored.

Moreover, since f0 ∈ C0,α, f1 ∈ C0,ε
∗ and since both vanish at P , the function

fλ satisfies y2s−1
n+1 fλ(y) ∈ C0,ε(C+

2 ).

We highlight that by definition on C+
2 it is not possible that both values

of |yn| and |yn+1| are close to zero. We will exploit this by distinguishing
between three regions in which the operator Ls behaves differently:

CD := C+
2 ∩ {0 ≤ yn < 1/8},

CN := C+
2 ∩ {|yn+1| < 1/8},

CE := C+
2 \ (CN ∪ CD).

These correspond to the regions in which the equation is governed by a
fractional Laplacian with Dirichlet (CD) or Neumann data (CN ) or where the
equation becomes uniformly elliptic (CE). We discuss these cases separately:

(i) We observe that by definition in the region CD we have yn+1 > 1/8.
Hence, y1−2s

n+1 is smooth in this region. Thus, the operator Ls can be

viewed as a simple variation of ∇ · y1−2s
n ∇. Furthermore, we note

that ṽλ = 0 vanishes continuously on C+
2 ∩ {yn = 0}. Therefore, the

up to the boundary apriori estimate from Proposition 8.1 applies.
(ii) Similarly, in the region CN we have yn > 1/8. Thus, we can invoke

the apriori estimate with the Neumann data from Proposition 8.2.
(iii) In the remaining region CE the operator Ls is uniformly elliptic,

therefore classical Schauder estimates hold.
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Combining the three cases from above, therefore leads to the following apri-
ori estimate for ṽλ:

‖y1−2s
n ∂nṽλ‖C0,ε(C+

1 ) +
n−1∑
i=1

‖y−2s
n ∂iṽλ‖C0,ε(C+

1 ) + ‖y−2s
n y−1

n+1∂n+1ṽλ‖C0,ε(C+
1 )

+ ‖y−2s
n ṽλ‖C0,ε(C+

1 ) +
n+1∑
i,j=1

‖∂iy1−2s
n ∂j ṽλ‖C0,ε(C+

1 )

≤ C
(
‖y2s−1
n+1 fλ‖C0,ε(C+

2 ) + ‖ṽλ‖L2
ω(C+

2 )

)
.

(72)

Scaling (72) back results in[
Yiy

1−2s
n Yj(v − y2s

n Pȳ)
]
Ċ0,ε
∗ (C+

λ (ȳ))
≤ λ1+2α−ε

(
‖f‖Yα,ε(B+

1 ) + ‖v‖L̃2
ω(B+

1 )

)
,

where C+
λ (ȳ) = {y : |y − ȳ| < λ2, λ2/4 ≤ y2

n + y2
n+1 ≤ λ2, yn > 0}.

Applying this to every ȳ ∈ P ∩ B1/2 and every λ ∈ (0, 1/4), yields the
boundedness of ‖v‖Xα,ε(B+

1/2
), i.e. a local version of the estimate from Propo-

sition 5.15. We note that from the specific expression of the approximation
eigenpolynomials y2s

n Pȳ(y), the boundary condition of v on B1/2 ∩ P are
satisfied. �

9. Appendix B

In this second appendix, we study the fractional Baouendi-Grushin Lapla-
cian ∆G,s, which is related to the operator Ls by a square root transforma-
tion (c.f. Section 8.4 from above). As the main result in Section we show
that ∆G,s is invertible as a map from Xα,ε to Yα,ε. Here Xα,ε and Yα,ε de-
note the function spaces which were introduced in Section 5. To this end,
we prove a Sobolev embedding for the energy spaces associated with the
operator, and kernel estimates (c.f. Section 9.1). In Sections 9.2.1 and 9.2.2
we finally deduce the characterization results of Proposition 5.12 for our
function spaces Xα,ε and Yα,ε and give the argument that they form Banach
spaces which had been claimed in Proposition 5.14.

9.1. Fractional Baouendi-Grushin Laplacian, kernel estimates and
global invertibility. We first recall the fractional Baouendi-Grushin Lapla-
cian

∆G,s =

2n∑
i=1

Yiω(y)Yi,

where {Yi} are the Baouendi-Grushin vector fields from Defnition 5.1, and
ω(y) = |ynyn+1|1−2s is the associated Muckenhoupt weight.

We recall a number of relevant notions: The definitions of L2
ω(Ω) and

M1
ω(Ω) for Ω ⊂ Rn+1 were given in Section 8 (c.f. the definitions below

Proposition 8.3). If Ω = Rn+1 we omit the domain dependence and write



THE FRACTIONAL THIN OBSTACLE PROBLEM 829

M1
ω and L2

ω for simplicity. We denote the associated homogeneous Sobolev

space by Ṁ1
ω. It is defined as the completion of C∞0 with respect to the

homogeneous norm ‖v‖Ṁ1
ω

:=
∑

i ‖Yiv‖L2
ω
.

In the sequel, we seek to deduce the existence of weak solutions to the
equation ∆G,su = f (c.f. (75) and Lemma 9.2 for the precise definition of
this). A central tool towards this is the Sobolev embedding for the space
M1
ω:

Proposition 9.1 (Sobolev embedding). Let 1
p + 1

2(n+1−2s) = 1
2 , then for all

u ∈M1
ω

‖u‖Lpω ≤ Cn,s
2n∑
i=1

‖Yiu‖L2
ω
. (73)

Proof. The proof follows the same strategy as the argument for Lemma 5.1
in [15]. Suppose that u ∈ C∞0 (Rn+1) with supp(u) ⊂ BR. We write

u(y) = −
∫ ∞

0

d

ds
u(y′′ + σ′′γ(s), yn + σns, yn+1 + σn+1s)ds,

where σ := (σ′′, σn, σn+1) ∈ B′′1 × (−1, 1)× (−1, 1) with B′′1 being the n− 1
unit ball, γ : [0, 1) → R is a C1 function satisfying γ(0) = 0 and γ̇(s) =
|(yn + σns, yn+1 + σn+1s)|. Thus,

|u(y)| ≤
∫ ∞

0
f(y′′ + σ′′γ(s), yn + σns, yn+1 + σn+1s)ds,

where

f(y) := |(yn, yn+1)||∇′′u(y)|+ |(∂nu(y), ∂n+1u(y))|.

Integrating with respect to σ′′, we obtain that

|u(y)| ≤ cn
∫ ∞

0

∫
|σ′′|≤1

f(y′′ + σ′′γ(s), yn + σns, yn+1σn+1s)dσ
′′ds

= cn

∫ ∞
0

1

|γ(s)|n−1

∫
|η′′|≤γ(s)

f(y′′ + η′′, yn + σns, yn+1 + σn+1s)dη
′′ds.

By Minkowski’s inequality and Young’s convolution inequality we infer that

‖u(·, yn, yn+1)‖Lp(Rn−1) ≤ cn
∫ ∞

0

‖f(·, yn + σns, yn+1 + σn+1s)‖L2(Rn−1)

|γ(s)|(n−1)( 1
2
− 1
p

)
ds.

Similarly as in [15] |γ(s)| ≥ s2/4 for any (σn, σn+1) such that |σn| ≤ 1,
|σn+1| = 1. Thus,

‖u(·, yn, yn+1)‖Lp(Rn−1) ≤ cn
∫ ∞

0

‖f(·, yn + σns, yn+1 + σn+1s)‖L2(Rn−1)

s
2(n−1)( 1

2
− 1
p

)
ds
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Integration with respect to σn ∈ (−1, 1) yields

‖u(·, yn, yn+1)‖Lp(Rn−1)

≤ cn
∫ ∞

0

∫
|σn|≤1

‖f(·, yn + σns, yn+1 + σn+1s)‖L2(Rn−1)

s
2(n−1)( 1

2
− 1
p

)
dσnds

= cn

∫ ∞
0

∫
|ηn|≤s

‖f(·, yn + ηn, yn+1 + σn+1s)‖L2(Rn−1)

s
2(n−1)( 1

2
− 1
p

)+1
dηnds.

We apply the following weighted (1d) Hardy-Littlewood-Sobolev inequality
(c.f. [12])

‖f ∗t g‖Lp(R,|t|1−2sdt) ≤ ‖f‖L2(R,|t|1−2sdt)‖g‖Lq(R). (74)

in the ηn variable and with exponents such that 1
p = 1

2 + 1
q+(1−2s)

(
1
2 −

1
p

)
−

1. This entails

‖u(·, ·, yn+1)‖Lp(Rn,|yn|1−2sdy′′dyn)

≤ cn
∫ ∞

0
s−λ

∫
R
‖f(·, ·, yn+1 + σn+1s)‖L2(Rn,|yn|1−2sdy′′dyn)ds,

where

λ = 2(n− 1)

(
1

2
− 1

p

)
+ 1− 1

q
= (2(n− 1) + 2− 2s)

(
1

2
− 1

p

)
.

Finally, we consider σn+1 = ±1 and obtain

‖u(·, ·, yn+1)‖Lp(Rn,|yn|1−2sdy′′dyn)

≤ cn
∫ ∞

0
|ηn+1|−λ

∫
R
‖f(·, ·, yn+1 + ηn+1)‖L2(Rn,|yn|1−2sdy′′dyn)ds.

As a consequence an application of the weighted Hardy-Littlewood-Sobolev
inequality [12] in the ηn+1 variable results in

‖u‖Lp(Rn+1,|yn|1−2s|yn+1|1−2sdy) ≤ cn‖f‖L2(Rn,|yn|1−2s|yn+1|1−2sdy)ds.

Therefore, recalling the definition of the function f , we have shown that

‖u‖Lpω ≤ cn,s
2n∑
i=1

‖Yiu‖L2
ω
.

By the density of C∞0 (Rn+1) in M1
ω an approximation argument hence con-

cludes the proof. �

With the Sobolev embedding at hand, we deduce the existence of weak
solutions to the fractional Baouendi-Grushin operator. Here we say that
a function v ∈ Ṁ1

ω(Ω) is a weak solution to ∆G,sv = f with f satisfying

fω−1 ∈ Lp
′
ω (Ω) (here p′ is the Hölder conjugate of p), iff for all φ ∈ C∞c (Ω)∫

Ω
YivYiφω(y)dy =

∫
Ω
fφ dy. (75)
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Moreover, we derive the existence of the fundamental solution to (75). These
results follow from the Riesz representation theorem and the Schwartz kernel
theorem:

Lemma 9.2. Let p > 1 be as in Proposition 9.1 and assume that fω−1 ∈
Lp
′
ω . Then there exists a unique function uf ∈ H := Ṁ1

ω ∩ L
p
ω satisfying

( 75). It holds

‖uf‖Lpω ≤ C‖fω
−1‖

Lp
′
ω
. (76)

Moreover, there exists a kernel K(x, y) : Rn+1 × Rn+1 → R such that

x 7→ K(x, y) ∈ L2
loc(Rn+1 \ {y}, ωdx),

y 7→ K(x, y) ∈ L2
loc(Rn+1 \ {x}, ωdx),

and for fω−1 ∈ Lp
′
ω compactly supported it holds

uf (x) =

∫
Rn+1

K(x, y)f(y)dy. (77)

Proof. Step 1: Existence. By (73), the space H with the inner product

〈u, v〉 :=
∑2n

i=1

∫
Rn+1 YiuYivωdy is a Hilbert space. Given any f with fw−1 ∈

Lp
′
ω , where p′ is the Hölder conjugate of p, Hölder’s inequality and (73) entail

that the induced linear map Ff : v 7→
∫
Rn+1 fvdy is a bounded linear map

from H to R. Thus, by the Riesz representation theorem there exists a
unique uf ∈ H such that Ff (v) = 〈uf , v〉 for any v ∈ H.
Furthermore, the energy estimate

‖Yiuf‖2L2
ω
≤ ‖fω−1‖

Lp
′
ω
‖uf‖Lpω ,

and (73) imply that the map F : ω−1f 7→ uf is bounded from Lp
′
ω to Lpω,

which yields (76).
Step 2: Kernel estimates. We deduce the existence of the claimed kernel

K. Let w−1g ∈ L2
ω and supp(g) ⊂ B1(ȳ) for some ȳ. Then outside B1(ȳ), u

is a solution to the homogeneous equation ∆G,su = 0. By Moser’s inequality
(c.f. equation (2.2) in [19]), for any z ∈ Rn+1 \ B3(ȳ)

sup
z̃∈B1(z)

|u(z̃)| ≤ C‖u‖L2
ω(B2(z)).

By (76) and the fact that g is compactly supported, we infer that

sup
z̃∈B1(z)

|u(z̃)| ≤ C‖gω−1‖L2
ω(B1(ȳ)).

Hence, for fixed z, the mapping

L2
w−1(B1(ȳ)) 3 g 7→ u(z) ∈ R,
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is a continuous linear functional, which is thus represented by a function
K(z, y) ∈ L2

w(B1(ȳ)) with

‖K(z, ·)‖L2
ω(B1(ȳ)) ≤ C. (78)

Moreover, scaling (78) yields

‖K(z, ·)‖L2
ω(Bλ(y)) ≤ Cλ2ω(Bλ(y))−

1
2 (79)

for any y and z with dG(y, z) ≥ 3λ > 0 and C > 0 independent of λ. In

particular this holds for λ = dG(y,z)
3 , i.e. for y, z ∈ Rn+1

+ it holds

‖K(z, ·)‖L2
ω(B dG(y,z)

3

(y)) ≤ CdG(y, z)2ω

(
B dG(y,z)

3

(y)

)− 1
2

. (80)

Arguing similarly for the adjoint operator (and using the self-adjointness of
∆G,s) therefore gives the respresentation

uf (x) =

∫
Rn+1

K(x, y)f(y)dy for x /∈ supp(f).

By a limiting argument which is based on (80) this can then be extended to
yield the desired representation (77). Using the regularity result of Propo-
sition 8.3 similar bounds hold on the level of the derivative. �

Next we prove a global L∞ estimate for weak solutions to (75), if f is
compactly supported and ω−1f is contained in some Morrey type space.

Lemma 9.3. Given f with ω−1f ∈ L2
ω and supp(f) ⊂ B1. Suppose that

sup
Br(y)

(
1

ω(Br(y))

∫
Br(y)

(ω−1f)2 ωdy

) 1
2

≤ C0r
−γ for some γ ∈ [0, 2).

Then there exists a unique weak solution u ∈ Ṁ1
ω ∩ L

p
ω solving ( 75). More-

over, u ∈ L∞ and it satisfies ‖u‖L∞(Rn+1) ≤ cγC0 for some cγ > 0.

Proof. Step 1: Preliminaries. We first note that for p > 1 as in Proposition
9.1 Hölder’s inequality and the compact support condition imply

‖fω−1‖
Lp
′
ω (B1)

≤ ‖fω−1‖L2
ω(B1)‖ω‖

2−p′
2p′

L1(B1)
≤ Cs‖fω−1‖L2

ω(B1).

Hence, Lemma 9.2 is applicable yielding a unique solution u in H to (75),
which is represented in terms of a kernel K as in Lemma 9.2.

Step 2: L∞ estimate. With the previous considerations at hand we pro-
ceed to the claimed L∞ estimate. Let f satisfy the assumptions of the
lemma, and let u = ∆−1

G,s(f) =
∫
Rn+1 K(z, y)f(y)dy ∈ Ṁ1

ω ∩ L
p
ω. For any

z ∈ Rn+1, by Hölder’s inequality,

|u(z)| ≤
∞∑
j=0

‖K(z, ·)‖L2
ω(Aj)‖ω

−1f‖L2
ω(Aj),
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where Aj := B2−j (z) \ B2−j−1(z) are dyadic annuli centered at z. Using
the estimate (79) on the kernel K(z, ·) from Step 2, as well as our growth
assumption on f , we further obtain

|u(z)| ≤ C
∑
j

(2−j)2ω(B2−j (z))
− 1

2C0(2−j)−γω(B2−j (z))
1
2

≤ CC0

∑
j

(2−j)2−γ = cγC0.

This completes the proof. �

Combining Lemma 9.3 and Proposition 8.3, we obtain the invertibility of
the fractional Baouendi-Grushin Laplacian ∆G,s from spaces Xα,ε to Yα,ε:

Proposition 9.4 (Invertibility). Let Xα,ε, Yα,ε be the function spaces from
Definition 5.8 with ε ≤ α. Then the operator ∆G,s : Xα,ε → Yα,ε is invertible.
Moreover,

‖v‖Xα,ε ≤ C‖∆G,sv‖Yα,ε .

Proof. Given f ∈ Yα,ε, we extend f to the whole space by reflection about
yn and yn+1. By Proposition 5.12 it is not hard to see that ω−1f ∈ L2

ω,
supp(f) ⊂ B1, and moreover,

sup
Br(y)

(
1

ω(Br(y))

∫
Br(y)

(ω−1f)2 ωdy

) 1
2

≤ ‖f‖Yα,εrα−(1−2s).

Thus ω−1f satisfies the assumption of Lemma 9.3. Then, by Lemma 9.2,
there exists a unique weak solution v ∈ Ṁ1

ω ∩ L
p
ω to ∆G,sv = f in the sense

of (75). Moreover, by Lemma 9.3

‖v‖L∞(Rn+1) ≤ C‖f‖Yα,ε . (81)

By Proposition 8.3, v ∈ Xα,ε(B+
R) for each R > 0. Moreover, it satisfies

‖v‖Xα,ε(B+
R) ≤ C(‖f‖Yα,ε +R−1−2s‖v‖L∞(B+

2R)) with a constant C > 0 which

is independent of R (here we used that the norm of Xα,ε is a homogeneous
norm). Combining this with the L∞ estimate in (81), we infer that v ∈ Xα,ε

and that it satisfies ‖v‖Xα,ε ≤ C‖f‖Yα,ε . Note that this estimate also implies
the uniqueness of the solution. �

9.2. Characterization and Banach property of the function spaces.
In this section we show the characterization of the functions spaces Xα,ε

and Yα,ε stated in Proposition 5.12, and the Banach property of the func-
tion spaces stated in Proposition 5.14. As these follow from ideas which
are similar to those presented in [17] and as they would have obscured the
structure of the main argument, we decided to present them separately in
this appendix.
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9.2.1. Proof of Proposition 5.12. In this section we provide the proof
of Proposition 5.12

We begin with the discussion of the decomposition and regularity of f .
We show that if f ∈ Xα,ε, the decomposition and the estimates from the
Proposition hold.

We define f0(y′′) :=
Qy,1(y)
yn

, where Qy,1(y) denotes the first order approxi-

mating polynomial of f̃(y) := y2s−1
n+1 f(y). As f̃ was assumed to be C1,α

∗ at
P , these limits exist. We further define

f1(y) := y2s−1
n+1 r(y)−1−2α+ε(f(y)− f0(y′′)yny

1−2s
n+1 ).

By Remark 5.10 and the definition of the norm on Yα,ε this quantity is finite.
Hence, it remains to prove the claimed regularity properties for these two
functions. We begin with the estimate for f0: Let y1, y2 ∈ P be given.
Define ȳ ∈ P such that y1, y2 ∈ B1(ȳ). Further let y ∈ B1(ȳ) be another

point with the property that yn = dG(ȳ, y) = |y1−y2|1/2, yn+1 = 0 and with
dG(y, y1) ∼ dG(y, y2) ∼ dG(y, ȳ). By to Remark 5.10 we infer that

|dG(y, yi)
−1−2αy2s−1

n+1 (f(y)− y1−2s
n+1 Qyi,1)| ≤ C for i ∈ {1, 2}.

Thus, the triangle inequality and the choice of y, ȳ yield

|Qy1,1(y)−Qy2,1(y)| ≤ C(dG(y, y1)1+2α + dG(y, y2)1+2α) ≤ CdG(y, ȳ)1+2α.

Using the form of Q·,1 and the choice of y again by dividing by yn, we obtain
that

|f0(y1)− f0(y2)| ≤ CdG(y, ȳ)2α = C|y1 − y2|α.

This proves the claimed regularity of f0. We proceed by discussing the
regularity of f1(y). We first note that we can always bound

|f1(y)| ≤ Cr(y)ε.

Therefore, for points y1, y2 ∈ Q+ with max{r(y1), r(y2)} ≤ 10dG(y1, y2) we
infer

|f1(y1)− f1(y2)| ≤ |f1(y1)|+ |f1(y2)| ≤ C(r(y1)ε + r(y2)ε) ≤ CdG(y1, y2)ε.

In the case that y1, y2 are such that max{r(y1), r(y2)} ≥ 10dG(y1, y2), there
always exists a point ȳ ∈ P with y1, y2 ∈ C+

1 (ȳ). In this case the estimate
follows by an application of the triangle inequality and the result for f0.
Indeed, setting ri := r(yi), for i = 1, 2, we note that in this case dG(y2, y

′′
1) ∼
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r1 ∼ r2. By the triangle inequality,

|f1(y1)− f1(y2)|
=
∣∣r−1−2α+ε

1 [(y1)2s−1
n+1 f(y1)− f0(y′′1)(y1)n]

−r−1−2α+ε
2 [(y2)2s−1

n+1 f(y2)− f0(y′′2)(y2)n]
∣∣

≤
∣∣r−1−2α+ε

1 [(y1)2s−1
n+1 f(y1)− f0(y′′1)(y1)n]

−dG(y2, y
′′
1)−1−2α+ε[(y2)2s−1

n+1 f(y2)− f0(y′′1)(y2)n]
∣∣

+
∣∣(dG(y2, y

′′
1)−1−2α+ε − r−1−2α+ε

2 )[(y2)2s−1
n+1 f(y2)− f0(y′′1)(y2)n]

∣∣
+
∣∣r−1−2α+ε

2 (f0(y′′1)− f0(y′′2))(y2)n
∣∣ .

Using the bound on the norm of Yα,ε, the estimate for f0 and the Hölder
continuity of x 7→ xε in combination with the form of the Yα,ε norm, then
bounds the three terms. Conversely, we show that, if f is of the form stated
in Proposition 5.12, then f ∈ Yα,ε. Indeed, for any ȳ ∈ P , let Pȳ,1(y) :=
f0(ȳ)yn. Therefore,

|y2s−1
n+1 f(y)− Pȳ,1(y)| ≤ |f0(ȳ)− f0(y′′)|yn + r1+2α−ε|f1(y)|
≤ [f0]Ċ0,α |y′′ − ȳ′′|αyn + r(y)1+2α−ε|f1(y)| ≤ C[f0]Ċ0,αdG(y, ȳ)1+2α.

Thus, y2s−1
n+1 f(y) is C1,α

∗ at ȳ ∈ P . It hence remains to discuss the bounded-
ness of ‖f‖Yα,ε . This however follows from the regularity of f0 and f1.

Conversely, if f is of the form stated in Proposition 5.12, then y2s−1
n+1 f is C1,α

∗
at P and ‖f‖Yα,ε ≤ C([f0]Ċ0,α + [f1]Ċ0,ε). The remaining properties satisfied
by functions in the space Yα,ε follow by assumption.

We proceed with the characterization of the space Xα,ε. First we note
that if v ∈ Xα,ε, then the boundary and pointwise conditions which are im-
posed in the definition of Xα,ε imply that the (homogeneous) approximating
polynomial P sȳ,2(y) of y−2s

n v at ȳ ∈ P is of the form stated in the decompo-

sition in (a). The regularity results for the functions c0, a0, a1 and Ci, Cij
follow as in the proof for the space Yα,ε.
In the end, we show that if a function v satisfies the conditions (a)-(d) in
Proposition 5.12, then v ∈ Xα,ε. It is not hard to see that the boundary

conditions are satisfied. We claim that v ∈ C2,2α
∗ : For each ȳ ∈ P , we set

Pȳ,2(y) := c0(ȳ) +
n−1∑
i=1

∂ic0(ȳ)(yi − ȳi) + a0(ȳ)y2
n + a1(ȳ)y2

n+1.

Then it is not hard to check that

|y−2s
n v(y)− Pȳ,2(y)|
≤ [∇c0]Ċ0,α |y′′ − ȳ|1+α + [a0]Ċ0,α |y′′ − ȳ|αy2

n

+ [a1]Ċ0,α |y′′ − ȳ|αy2
n+1 + [C0]

Ċ0,ε
∗
r2+2α,

≤ C
(

[∇c0]Ċ0,α + [a0]Ċ0,α + [a1]Ċ0,α + [C0]
Ċ0,ε
∗

)
dG(y, ȳ)2+2α,
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with C independent of ȳ. Hence, y−2s
n v is C2,2α

∗ at each ȳ ∈ P . To show the
boundedness of the remaining terms in the norm ‖v‖Xα,ε , we argue similarly
as for the space Yα,ε.

9.2.2. Proof of Proposition 5.14. In this section we show that Xα,ε and
Yα,ε are Banach spaces.

Proof of Proposition 5.14. For the space Yα,ε the Banach property fol-
lows from the compact support assumption: Using the characterization from
Proposition 5.12, we have that for a given function f ∈ Yα,ε the functions
f0, f1 are supported only in B′′1 ×R2. Thus, the homogeneous Hölder norms
control the lower order L∞ norms. This yields the Banach property for Yα,ε.

Next we show thatXα,ε is complete under the homogeneous norm. Indeed,
for any v ∈ Xα,ε, it is not hard to check that ∆G,sv ∈ Yα,ε and ‖∆G,sv‖Yα,ε ≤
‖v‖Xα,ε . By Lemma 9.3 we have

‖v‖L∞ ≤ C‖∆G,sv‖Yα,ε ≤ C‖v‖Xα,ε .
This then also implies L∞ bounds for the functions c0, a0, a1, Ci, Cij in terms
of ‖v‖Xα,ε . Indeed, recalling the characterization for v ∈ Xα,ε in Proposi-
tion 5.12:

v(y) = c0(y′′)y2s
n + a0(y′′)y2+2s

n + a1(y′′)y2s
n y

2
n+1 + y2s

n r
2+2α−εC0(y), (82)

with C0(ȳ) = 0 for ȳ ∈ P and [C0]
Ċ0,ε
∗
≤ C‖v‖Xα,ε , implies that

v̄(y) := c0(y′′)y2s
n + a0(y′′)y2+2s

n + a1(y′′)y2s
n y

2
n+1 ∈ L∞({y : dist(y, P ) ≤ 2})

and ‖v̄‖L∞({y:dist(y,P )≤2}) ≤ C‖v‖Xα,ε . Now varying the values of yn, yn+1 ∈
{y : dist(y, P ) ≤ 2} yields the desired bounds

‖c0‖L∞(Rn−1) + ‖a0‖L∞(Rn−1) + ‖a1‖L∞(Rn−1) ≤ C‖v‖Xα,ε .
This together with (82) then also implies the global L∞ bound for C0 in
terms of ‖v‖Xα,ε . We note that the L∞ bounds for Ci, Cij , i, j ∈ {1, . . . , n+
1} follow from the a priori estimates for ∆G,s. More precisely, by (72) we
have

‖dG(·, ȳ)−(1+2α)Yiy
1−2s
n Yj(v − y2s

n P
s
ȳ,2)‖L∞(Q+) ≤ C

(
‖∆G,sv‖Yα,ε + ‖v‖L∞

)
.

Expressing the left hand side using Cij we obtain the L∞ bounds for Cij .
Similar estimates for the properly weighted first derivatives hold true. Using
those we obtain the L∞ bound for Ci. �
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Linéaire 34 (2017), no. 3, 533–570. MR3633735, Zbl 1365.35230, arXiv:1509.06228,
doi: 10.1016/j.anihpc.2016.03.001. 754

[10] Grisvard, Pierre. Elliptic problems in nonsmooth domains. Monographs and
Studies in Mathematics, 24. Pitman (Advanced Publishing Program), Boston,
MA, 1985. xiv+410 pp. ISBN: 0-273-08647-2. MR775683, Zbl 0695.35060,
doi: 10.1137/1.9781611972030. 803

[11] Jhaveri, Yash; Neumayer, Robin. Higher regularity of the free boundary in the
obstacle problem for the fractional Laplacian. Adv. Math. 311 (2017), 748–795.
MR3628230, Zbl 1372.35061, arXiv:1606.01222, doi: 10.1016/j.aim.2017.03.006. 754

[12] Kerman, R.A. Convolution theorems with weights. Trans. Amer. Math.
Soc. 280 (1983), no. 1, 207–219. MR0712256 (85c:42025), Zbl 0525.43002,
doi: 10.2307/1999609. 830

[13] Kinderlehrer, David; Nirenberg, Louis. Regularity in free boundary problems.
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 2, 373–391. MR0440187, Zbl
0352.35023. 748

[14] Koch, Herbert; Lamm, Tobias. Geometric flows with rough initial data. Asian
J. Math. 16 (2012), no. 2, 209–235. MR2916362, Zbl 1252.35159, arXiv:0902.1488,
doi: 10.4310/AJM.2012.v16.n2.a3. 798

[15] Koch, Herbert; Petrosyan, Arshak; Shi, Wenhui. Higher regularity of the
free boundary in the elliptic Signorini problem. Nonlinear Anal. 126 (2015), 3–
44. MR3388870, Zbl 1329.35362, arXiv:1406.5011, doi: 10.1016/j.na.2015.01.007. 748,
749, 754, 775, 829
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