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Analyticity and kernel stabilization of
unbounded derivations on C∗-algebras

Lara Ismert

Abstract. We first show that a derivation studied recently by E. Chris-
tensen has a set of analytic elements which is strong operator topology-
dense in the algebra of bounded operators on a Hilbert space, which
strengthens a result of Christensen. Our second main result shows that
this derivation has kernel stabilization, that is, no elements have deriv-
ative eventually equal to 0 unless their first derivative is 0. As applica-
tions, we (1) show that a family of derivations on C*-algebras studied
by Bratteli and Robinson has kernel stabilization, and (2) we provide
sufficient conditions for when two operators which satisfy the Heisenberg
Commutation Relation must both be unbounded.
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1. Introduction

Given an algebra A with involution and a fixed element a ∈ A such that
a = a∗, the map δa : A → A by δa(b) := [ia, b] (where [x, y] = xy − yx)
is a ∗-derivation, that is, δa(b

∗) = δa(b)
∗ for all b ∈ A. Conversely, for an

arbitrary ∗-derivation δ : A → A, certain conditions on the algebra can
imply δ = δa for some a ∈ A. The correspondence between derivations on
algebras and their representation as commutators has a rich history and is
deeply connected to the mathematical formulation of quantum mechanics.
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To illustrate, a quantum system can be modeled by a Hilbert space H
and the associated Hamiltonian of that quantum system is given by a self-
adjoint operator D whose domain is a dense subspace of H. Despite the
potential for D to be unbounded, we wish to consider commutators of D
with elements ofB(H). As not every x ∈ B(H) will result in the commutator
[D,x] being defined and bounded on a dense subspace of H, the definition
of the derivation “δD” is ambiguous. A plethora of literature is dedicated
to exploring the various definitions of δD and their corresponding domains,
and in each situation, if D is unbounded then the domain of δD is a proper
subspace of B(H). In turn, further research has been dedicated to the study
of unbounded derivations on an abstract C∗-algebra. The unboundedness
of such a derivation creates complexities that are not found with derivations
defined on the entire C∗-algebra. In [6], Kadison summarizes three of the
many significant results pertaining to bounded derivations:

(1) Every such derivation on a commutative C∗-algebra is 0. (This fol-
lows from the Singer-Wermer Theorem from 1955 in [12].)

(2) Sakai (1959) showed in [10] that every derivation on a C∗-algebra is
automatically bounded, thus affirmatively settling a 1953 conjecture
of Kaplansky.

(3) In [7], Kaplansky showed every bounded derivation δ of a type I
von Neumann algebra M is inner, i.e., there exists a ∈M such that
δ = δa.

We turn our attention to densely-defined derivations on C∗-algebras. Our
primary setting of interest is a ∗-derivation δDw on B(H) defined by commu-
tation with a fixed (possibly unbounded) self-adjoint operator D. In Section
2 we give a formal definition of δDw , its domain, domains of its higher powers,
and state its desirable properties. All of these can be found in [3]. In partic-
ular, Christensen shows that the domain of δDw is strong operator topology
(SOT)-dense in B(H). We strengthen this property in Theorem 3.15, stated
as the following theorem.

Theorem. The set of analytic elements for δDw is SOT-dense in B(H).

Our second main result, Theorem 4.6, shows δDw has a property called
kernel stabilization.

Theorem. If H is a Hilbert space and D is a (possibly unbounded) self-
adjoint operator on H, then ker(δDw )n = ker δDw for all n ∈ N.

The proof requires use of Christensen’s work in [4] and [3]. Let D be
an unbounded self-adjoint operator on H. Seeking to formalize the con-
nection between commutators and unbounded derivations on B(H) of the
form δD, Christensen showed in [3] that x ∈ B(H) makes [D,x] defined
and bounded on a core for D if and only if for every h, k ∈ H, the map
t 7→

〈
eitDxe−itDh, k

〉
is continuously differentiable. If x satisfies this, we say

x is weakly D-differentiable, denoted x ∈ dom δDw . Define δDw (x) to be the
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bounded extension of [iD, x] to all of H. Christensen defines higher weak
D-differentiability in [4] and extends the aforementioned equivalence.

In Section 4, we prove Theorem 4.6, and in Section 5, we give two appli-
cations. The first extends the property of kernel stabilization to a class of
unbounded ∗-derivations on C∗-algebras described in the following theorem.

Theorem 1.1 (Bratteli-Robinson, Theorem 4 [1]). Let δ be a derivation of
a C∗-algebra A, and assume there exists a state ω on A which generates a
faithful cyclic representation (π,H, f) satisfying

ω(δ(a)) = 0, ∀a ∈ dom δ.

Then δ is closable and there exists a symmetric operator S on H such that

dom S = {h ∈ H : h = π(a)f for some a ∈ A}
and π(δ(a))h = [S, π(a)]h, for all a ∈ dom δ and all h ∈ dom S. Moreover,
if the set A(δ) of analytic elements for δ is dense in A, then S is essentially
self-adjoint on dom S. For x ∈ B(H) and t ∈ R, define

αt(x) := eiStxe−iSt

where S denotes the self-adjoint closure of S. It follows that αt(π(A)) = π(A)
for all t ∈ R, and {αt}t∈R is a strongly continuous group of automorphisms

with closed infinitesimal generator δ̃ equaling the closure of π ◦ δ|A(δ).

Physically, we interpret ω as an invariant state of the quantum system
whose observables lie in A. Also, we interpret the condition ω(δ(x)) = 0 for
all x ∈ dom δ as saying ω is an equilibrium state for the system. For more
details, see the introduction of [2]. We state our application formally below.

Application 1. Let A be a C∗-algebra, δ a derivation on A, and ω a state
on A which satisfy the hypotheses of Theorem 1.1. For every n ∈ N, ker δn =
ker δ.

As a second application of Theorem 4.6, we provide sufficient conditions
for when two operators satisfying the Heisenberg Commutation Relation
must both be unbounded.

Definition 1.2. Let A and B be two (possibly unbounded) self-adjoint op-
erators on a Hilbert space H, with domains dom A and dom B, respectively.
We say A and B satisfy the Heisenberg Commutation Relation if there is a
dense subspace K of H satisfying

K ⊆ dom [A,B] := {h ∈ dom A ∩ dom B : Ah ∈ dom B,Bh ∈ dom A}
and [A,B]k = ik for all k ∈ K.

The classical example of such a pair is the Schrödinger pair, which we
define in Example 5.8. Note both operators in this pair are unbounded. A
large body of research has been committed to finding sufficient conditions for
when two operators satisying the Heisenberg Commutation Relation must be
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unitarily equivalent to a direct sum of copies of the Schrödinger pair, thus
implying that the two operators are unbounded. We provide a sufficient
condition for when two operators satisfying the HCR must be unbounded
without proving they are unitarily equivalent to a direct sum of copies of
the Schrödinger pair.

Application 2. Let A and B be self-adjoint operators on a Hilbert space
H which satisfy the Heisenberg Commutation Relation on a dense subspace
K ⊆ H. If K is a core for both A and B, then A and B must be unbounded.

As an outline of the rest of the paper, Section 2 is devoted to providing
background and summarizing some of Christensen’s results from [4] and [3].
In Section 3, we prove SOT-density of the analytic elements in B(H) for δDw ,
in Section 4 we prove kernel stabilization of δDw , and in Section 5 we provide
applications of kernel stabilization.

2. Definition and properties of weak D-differentiability

Let D be a self-adjoint operator with domain dom D ⊆ H. For any
t ∈ R, the operator eitD is unitary, and the one-parameter family {eitD}t∈R
is strongly continuous. For x ∈ B(H) and t ∈ R, define αt(x) := eitDxe−itD.
Then {αt}t∈R defines a flow on B(H), and more specifically, is a one-
parameter automorphism group on B(H). While the infinitesimal gener-
ator of this automorphism group in the norm topology of B(H) is a natural
derivation to consider, we focus instead on a related derivation with a larger
domain.

Definition 2.1. An operator x ∈ B(H) is weakly D-differentiable if there
exists y ∈ B(H) such that for every h, k ∈ H,

lim
t→0

∣∣∣∣〈(αt(x)− x
t

− y
)
h, k

〉∣∣∣∣ = 0.

Equivalently, for every h, k ∈ H the function t 7→ 〈αt(x)h, k〉 is continuously
differentiable.

Theorem 2.2 (Christensen, 3.8 [3]). Let x be a bounded operator on H.
The following properties are equivalent:

(i) x is weakly D-differentiable.
(ii) There exists y ∈ B(H) such that for every h ∈ H,

lim
t→0

∥∥∥∥(αt(x)− x
t

− y
)
h

∥∥∥∥ = 0.

(iii) There exists c > 0 such that for all t ∈ R,

‖αt(x)− x‖ ≤ c |t| .

(iv) The commutator [iD, x] is defined and bounded on the domain of D.
(v) The commutator [iD, x] is defined and bounded on a core for D.
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(vi) The sesquilinear form on dom D × dom D given by

(h, k) 7→ i 〈xh,Dk〉 − i 〈xDh, k〉
is bounded.

(vii) The matrix m([iD, x])rc = i(DPrxPc−PrxPcD) defines a bounded op-
erator on H, where (Pn)n∈Z are the spectral projections of the intervals
(n− 1, n].

If any of the above conditions hold, then

x(dom D) ⊆ dom D, δDw (x)|dom D = i[D,x].

We write x ∈ dom δDw and the y in item (ii) satisfies y = δDw (x). Moreover,
for any h, k ∈ H, d

dt 〈αt(x)h, k〉 =
〈
αt(δ

D
w (x))h, k

〉
.

Theorem 2.3 (Christensen, 3.9 [3]). The domain of definition dom δDw is
a strongly dense ∗-subalgebra of B(H) and δDw is a ∗-derivation into B(H).
The graph of δDw is weak operator topology closed.

In Theorem 3.15 we strengthen the first statement of Theorem 2.3 by
proving that the analytic elements for δDw are SOT-dense in B(H)

Definition 2.4. An operator x ∈ B(H) is n-times weakly D-differentiable
if for every k = 0, ..., n − 1, (δDw )k(x) ∈ dom δDw . We denote this by x ∈
dom (δDw )n.

Proposition 2.5 (Christensen, 2.6 [4]). A bounded operator x on H is n-
times weakly D-differentiable if and only if for any pair h, k ∈ H the function
t 7→ 〈αt(x)h, k〉 is n-times continuously differentiable. If x is n-times weakly
D-differentiable, then

dn

dtn
〈αt(x)h, k〉 =

〈
αt((δ

D
w )n(x))h, k

〉
.

Analogous to Theorem 2.2, Christensen shows in [4] that higher order
weakD-differentiability is directly tied to iterated commutators [iD, ..., [iD, x]].

Proposition 2.6 (Christensen, 3.3 [4]). Let x ∈ dom (δDw )n. Then for
k = 1, ..., n,

(i) (δDw )k−1(x)(dom D) ⊆ dom D
(ii) x(dom Dk) ⊆ dom Dk

(iii) dom [iD, ..., [iD, x]]︸ ︷︷ ︸
k times

= dom Dk

(iv) (δDw )k(x)|dom Dk = [iD, ..., [iD, x]]︸ ︷︷ ︸
k times

(v) (δDw )k(x) is the bounded extension of [iD, ..., [iD, x]]︸ ︷︷ ︸
k times

from dom Dk to

all of H.

Theorem 2.7 (Christensen, 4.1 [4]). Let x ∈ B(H) and n be a natural
number. The following are equivalent:
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(i) x ∈ dom (δDw )n.
(ii) x is n times weakly D-differentiable.

(iii) For all k = 1, ..., n, x(dom Dk) ⊆ dom Dk and [iD, ..., [iD, x]]︸ ︷︷ ︸
k times

is defined

and bounded on dom Dk with closure (δDw )k(x).
(iv) There exists a core X for D such that for any k = 1, ..., n, the operator

[iD, ..., [iD, x]]︸ ︷︷ ︸
k times

is defined and bounded on X.

Notation 2.8. For notational convenience, we define

dk(x) := [iD, ..., [iD, x]]︸ ︷︷ ︸
k times

for each k ∈ N.

3. Density of the analytic elements for δDw

Definition 3.1. Let S be an operator on a Banach space X. An element
x ∈ X is an analytic element for S if

(1) x ∈ dom Sn for all n ∈ N and
(2) there exists tx > 0 such that for all 0 ≤ t < tx, the following series

converges:
∞∑
n=0

‖Snx‖
n!

tn.

Notation 3.2. Let A(S) denote the set of analytic elements for S.

By Nelson’s Analytic Vector Theorem in [8], a symmetric operator S on a
Hilbert space H is essentially self-adjoint if and only if A(S) is dense in H. In
particular, ifD is a self-adjoint operator, then the set A(D) is dense inH. An
analogous statement for δDw spurs our investigation. To relate the analytic
elements for D and δDw , we exploit an equivalent notion of analyticity for
the one-parameter families for which D and δDw are infinitesimal generators:
{eitD}t∈R and {αt}t∈R, respectively. We first introduce the notion of analytic
elements for a general one-parameter family on a Banach space, and then
we specialize to our setting.

Definition 3.3. Let X be a Banach space and let Y be a closed subspace
of X∗. A one-parameter family {τt}t∈R of bounded linear maps of X into
itself is called a σ(X,Y )-continuous group of isometries of X if

(1) τ0 = I,
(2) τs+t = τsτt for all s, t ∈ R,
(3) ‖τtx‖ = ‖x‖ for all t ∈ R, x ∈ X,
(4) t 7→ τt(x) is σ(X,Y )-continuous for all x ∈ X, i.e.,

t 7→ ψ(τt(x))

is continuous for all x ∈ X and ψ ∈ Y , and
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(5) x 7→ τt(x) is σ(X,Y )-σ(X,Y ) continuous for all t ∈ R.

Definition 3.4. Given a σ(X,Y )-continuous group of isometries {τt}t∈R,
an element x ∈ X is analytic for {τt}t∈R if there exist λ > 0, a strip Iλ :=
{z ∈ C : |Im z| < λ}, and a function ϕ : Iλ → X such that

(1) ϕ(t) = τt(x) for all t ∈ R and
(2) z 7→ ψ(ϕ(z)) is analytic on Iλ for all ψ ∈ Y.

Proposition 3.6 states that Definition 3.1 and Definition 3.4 are equivalent
when S is the infinitesimal generator of the family {τt}t∈R.

Definition 3.5. Given a σ(X,Y )-continuous group of isometries {τt}t∈R,
the infinitesimal generator S for {τt}t∈R is the operator whose domain con-
sists of all elements x ∈ X such that there exists x′ ∈ X which satisfies

lim
t→0

ψ

(
τt(x)− x

t
− x′

)
= 0 for all ψ ∈ Y.

If x ∈ dom S with corresponding difference quotient limit x′, set Sx := x′.

Proposition 3.6 (Bratteli-Robinson, [2]). If {τt}t∈R is a σ(X,Y )-continuous
group of isometries with infinitesimal generator S, then x is analytic for
{τt}t∈R if and only if x ∈ A(S).

ConsiderX=B(H), the one-parameter group of ∗-automorphisms {αt}t∈R,
and the closed subspace of B(H)∗ defined by

Y := {ψf,g : f, g ∈ H, ψf,g(x) = 〈xf, g〉}.
Note that σ(X,Y ) is precisely the weak operator topology (WOT) on B(H).

Proposition 3.7. The family {αt}t∈R is a WOT-continuous group of au-
tomorphisms with infinitesimal generator δDw .

The WOT-continuity of {αt}t∈R is a simple computation and showing δDw
is the corresponding infinitesimal generator is immediate by the definition
of weak D-differentiability. As a corollary of Propositions 3.6 and 3.7, we
have the following:

Corollary 3.8. An operator x ∈ B(H) is analytic for {αt}t∈R if and only
if x ∈ A(δDw ).

Notation 3.9. Given h, k ∈ H, define the rank-one operator h⊗k∗ ∈ B(H)
by

(h⊗ k∗)(f) := 〈f, k〉h for all f ∈ H.

Notation 3.10. Given subsets S1, S2 ⊆ H, let

F(S1, S2) := span{h⊗ k∗ : h ∈ S1, k ∈ S2}.
We simply denote F(S1, S1) by F(S1).

Lemma 3.11. If S1, S2 ⊆ H are dense subspaces, then F(S1, S2) is norm-
dense in K(H).
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The proof of Lemma 3.11 is just an“ ε3”-argument using norm-density of
F(H) in K(H). Our initial method for proving SOT-density of the set of
analytic elements for δDw in B(H) was to show that any rank-one operator
belonging to the set F(A(D)) is analytic for δDw . We were successful in proving
the inclusion

F(dom Dn) ⊆ dom (δDw )n for every n ∈ N

but extending this argument to show F(A(D)) ⊆ A(δDw ) fails. To reme-
diate this argument, we chose to consider the set of finite-rank operators
F
(
A(D), R−1[A(D#)]

)
, whereD# is conjugate toD via the antiunitary Riesz

map, R : H → H∗ given by

for each h ∈ H, [Rh](f) := 〈f, h〉 for all f ∈ H.

Lemma 3.12. The map D# := RDR−1 is self-adjoint.

Proof. To show D# = (D#)∗, we must show dom (D#)∗ = dom D#

and D#ξ = (D#)∗ξ for all ξ ∈ dom D#. We first show D# is a linear
symmetric operator and then relate its adjoint’s domain to the domain of
D. By definition, dom D# = R(dom D). Thus, given h ∈ dom D and λ ∈ C,
observe

D# (λRh) = [RDR−1] (λRh) = [RD](λh) = R
(
λDh

)
= λ[RDR−1]Rh = λD# (Rh) .

As h ∈ dom D was arbitrary and dom D# = R(dom D), we have D#(λξ) =
λD#ξ for all ξ ∈ dom D# and λ ∈ C. It’s easy to check additivity of D#,
so D# is linear. For f, h ∈ dom D,〈

D#Rh,Rf
〉

=
〈
RDR−1Rh,Rf

〉
= 〈RDh,Rf〉
= 〈f,Dh〉
= 〈Df, h〉
= 〈Rh,RDf〉

=
〈
Rh,D#Rf

〉
.

As f, h ∈ dom D were arbitrary and dom D# = R(dom D), we have〈
D#ξ, η

〉
=
〈
ξ,D#η

〉
for all ξ, η ∈ dom D#.

Hence, D# is symmetric. By symmetry of D#, we have

dom D# ⊆ dom (D#)∗ and D#ξ = (D#)∗ξ for all ξ ∈ dom D#.
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Thus, it suffices to prove dom (D#)∗ ⊆ dom D#. The domain of the adjoint
of D# is the set

dom (D#)∗

= {η ∈ H∗ : the map dom D# → C; ξ 7→
〈
D#ξ, η

〉
is bounded}

= {η ∈ H∗ : the map R(dom D)→ C; Rh 7→
〈
D#(Rh), η

〉
is bounded}.

= {η∈H∗: the map R(dom D)→ C;Rh 7→
〈
R−1η,R−1D#(Rh)

〉
is bounded}.

= {η ∈ H∗ : the map R(dom D)→ C; Rh 7→
〈
R−1η,Dh

〉
is bounded}.

Hence, given η ∈ dom (D#)∗, the map R(dom D)→ C defined by

Rh 7→
〈
R−1η,Dh

〉
for all h ∈ dom D

is a bounded linear functional. Then, as R is isometric, the composition

dom D → R(dom D)→ C given by h 7→ Rh 7→
〈
R−1η,Dh

〉
defines a bounded linear functional on the domain of D. By the definition
of the domain of D∗, this implies R−1η belongs to dom D∗. Further, self-
adjointness of D implies R−1η ∈ dom D. Since R is bijective, we conclude
η ∈ R(dom D) = dom D#. Therefore, D# is self-adjoint. �

Another application of Nelson’s Analytic Vector Theorem in [8] implies
that the set of analytic elements for D#, denoted A(D#), are dense in H∗.
As R−1 : H∗ → H is antiunitary, it follows that R−1[A(D#)] is dense in
H. By Lemma 3.11, we obtain norm-density of F

(
A(D), R−1[A(D#)]

)
in the

compact operators.

Proposition 3.13. If h ∈ A(D) and k ∈ R−1[A(D#)], then h⊗k∗ is analytic
for {αt}t∈R.

Proof. Let h ∈ A(D) and k ∈ R−1[A(D#)]. To prove h⊗ k∗ is analytic for
{αt}t∈R in the WOT, we must find λ > 0 and a function ϕ : Iλ → B(H)
such that

(1) ϕ(t) = αt(h⊗ k∗) for all t ∈ R and
(2) z 7→ 〈ϕ(z)f, g〉 is analytic on Iλ for all f, g ∈ H.

We shall construct ϕ using functions obtained from analytic properties of
h and k. As h ∈ A(D), Proposition 3.6 implies h is analytic for {eitD}t∈R.
Thus, there exist λh > 0 and a function ϕh : Iλh → H such that

(1) ϕh(t) = eitDh for all t ∈ R and
(2) z 7→ 〈ϕh(z), g〉 is analytic on Iλh for all g ∈ H.

As k ∈ R−1[A(D#)], there exists a unique η ∈ A(D#) such that k = R−1η.

Since η is analytic for D#, it is analytic for {eitD#}t∈R by Proposition 3.6.
Thus, there exist λη > 0 and a function ϕη : Iλη → H∗ such that

(1) ϕη(t) = eitD
#
η for all t ∈ R and
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(2) z 7→ 〈ϕη(z), Rf〉 is analytic on Iλη for all f ∈ H.
Note that in (2) for η, we simply identified H∗ with R(H).

Set λ := min{λh, λη}, and fix z ∈ Iλ. Define a map

[·, ·] : H ×H → C by [f, g] := 〈ϕh(z), g〉 〈ϕη(z), Rf〉 for all f, g ∈ H.
Sesquilinearity of the inner products on H and H∗ and antilinearity of R
establishes that [·, ·] is a sesquilinear form. Moreover, for any f, g ∈ H,

|[f, g]| = |〈ϕh(z), g〉| |〈ϕη(z), Rf〉| ≤ ‖ϕh(z)‖ ‖g‖ ‖ϕη(z)‖ ‖f‖ .
As h, η, and z are all fixed, [·, ·] defines a bounded sesquilinear form on
H. Hence, for each z ∈ Iλ, the Riesz Representation Theorem provides an
operator ϕ(z) ∈ B(H) such that

〈ϕ(z)f, g〉 = [f, g] = 〈ϕh(z), g〉 〈ϕη(z), Rf〉 for all f, g ∈ H.
As the two maps z 7→ 〈ϕh(z), g〉 and z 7→ 〈ϕη(z), Rf〉 are analytic on Iλ for
all f, g ∈ H, their product z 7→ 〈ϕ(z)f, g〉 is analytic on Iλ for all f, g ∈ H.
Furthermore, for each t ∈ R,

〈ϕ(t)f, g〉 =
〈
eitDh, g

〉 〈
eitD

#
η,Rf

〉
=
〈
eitDh, g

〉 〈
f, eitDk

〉
= 〈αt(h⊗ k∗)f, g〉 .

As f, g ∈ H were arbitrary, we have ϕ(t) = αt(h ⊗ k∗) for all t ∈ R.
Therefore, h⊗ k∗ is analytic for {αt}t∈R in the WOT. �

Lemma 3.14. If S is a subspace of B(H) such that S∩F(H) is norm-dense
in K(H), then S is SOT-dense in B(H).

Theorem 3.15. The set of analytic elements for δDw are SOT-dense in
B(H).

Proof. By Proposition 3.6, the set of analytic elements for δDw is precisely
the set of analytic elements for {αt}t∈R. Since the set of analytic elements
for {αt}t∈R is a linear space, Proposition 3.13 implies F(A(D), R−1[A(D#)])
is contained in A(δDw ). In particular,

F(A(D), R−1[A(D#)]) ⊆ A(δDw ) ∩ F(H).

By Lemma 3.11 and Nelson’s Analytic Vector Theorem, we know that
F(A(D), R−1[A(D#)]) is norm-dense in K(H). Thus, by the above inclusion,
we then have that A(δDw )∩F(H) is norm-dense in K(H). From Lemma 3.14
we obtain SOT-density of A(δDw ) in B(H). �

4. Kernel stabilization of δDw

In this section, we show for any self-adjoint operator D on a Hilbert space,
ker(δDw )n = ker δDw for all n ∈ N. We call this property kernel stabilization.

We now present the motivating example for Theorem 4.6. Given a σ-finite
measure space (X,µ), define

diag : L∞(X,µ)→ B(L2(X,µ))
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diag(f) := Mf ,

where Mfg = fg for each g ∈ L2(X,µ). Throughout, we denote the standard
orthonormal basis for `2(Z) by {εj : j ∈ Z}, and we denote the matrix
representation of an operator x ∈ B(`2(Z)) with respect to the standard
orthonormal basis by [xrc] where

xrc := 〈xεc, εr〉 .

Example 4.1. Define (Df)(j) := jf(j) for f ∈ dom D, where

dom D := {f ∈ `2(Z) :
∑
j∈Z

j2 |f(j)|2 <∞}.

Then,

(a) the operator D is self-adjoint.
(b) an operator x ∈ B(`2(Z)) is n-times weakly D-differentiable if and only

if for every k ≤ n, x(dom Dk) ⊆ dom Dk and the matrix [ik(r − c)kxrc]
with dense domain dom Dk extends to a bounded operator on `2(Z).
When either condition is satisfied,

[(δDw )n(x)rc]|dom Dn = [in(r − c)nxrc].
(c) for any g ∈ `∞(Z), δDw (Mg) = 0.
(d) for all n ∈ N, ker(δDw )n = diag(`∞(Z)).

Proof. (a) See Example 7.1.5 of [11].
(b) Matrix multiplication shows for any r, c ∈ Z,

dk(x)rc = ik(r − c)kxrc.
Given x ∈ B(`2(Z)) such that x(dom Dk) ⊆ dom Dk for each k ≤ n,
the domain of dk(x) is dom Dk. Theorem 2.7 states x is n-times weakly
D-differentiable if and only if for every k ≤ n, x(dom Dk) ⊆ dom Dk

and dk(x) is bounded on dom Dk. It follows that x is n-times weakly
D-differentiable if and only if x(dom Dk) ⊆ dom Dk and [dk(x)rc] =
[ik(r − c)kxrc] is bounded on dom Dk. As D is self-adjoint, dom Dk is
dense in `2(Z) for all k ∈ N. Therefore, [dk(x)rc] extends to a bounded
matrix on all of `2(Z). By Theorem 2.7, the closure (δDw )n(x) is the
extension of [in(r − c)nxrc] to all of `2(Z).

(c) Fix g ∈ `∞(Z), and let f ∈ dom D. We show Mgf ∈ dom D. Observe

∑
j∈Z
|j(Mgf)(j)|2 =

∑
j∈Z
|jg(j)f(j)|2 ≤ ‖g‖2∞

∑
j∈Z
|jf(j)|2

 <∞.

As f ∈ dom D was arbitrary, Mg(dom D) ⊆ dom D, and hence, the
commutator [iD,Mg] is a well-defined linear operator on dom D. Fur-
thermore, iD and Mg are diagonal matrices with complex entries (which
commute), so the commutator [iD,Mg] is simply a restriction of the 0
operator to dom D. Theorem 2.2 implies Mg ∈ dom δDw and δDw (Mg) is
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the extension of [iD,Mg] to all of H. In particular, δDw (Mg) = 0. Hence,
Mg ∈ ker δDw , and since g ∈ `∞(Z) was arbitrary, diag(`∞(Z)) ⊆ ker δDw .

(d) Part (c) quickly implies diag(`∞(Z)) ⊆ ker(δDw )n for all n ∈ N. We now
show if (δDw )n(x) = 0, then x ∈ diag(`∞(Z)). If x ∈ dom (δDw )n and
(δDw )n(x) = 0, then x ∈ B(`2(Z)) and (δDw )n(x)rc = 0 for every r, c ∈ Z.
By part (b),

[(δDw )n(x)rc]|dom Dn = [in(r − c)nxrc],
thus, in(r − c)nxrc = 0 for every r, c ∈ Z. If r 6= c, it must be that
xrc = 0, i.e., x must be zero off the diagonal. As x ∈ B(`2(Z)), we
conclude x ∈ diag(`∞(Z)). Therefore, ker(δDw )n = diag(`∞(Z)) for all
n ∈ N.

�

This kernel stabilization phenomenon initially appears unique to the set-
ting of Example 4.1; the self-adjoint operator is multiplicity-free (the von
Neumann algebra generated by its spectral projections is a maximal abelian
self-adjoint subalgebra ofB(`2(Z))) and its eigenvectors constitute our choice
of orthonormal basis. Below, we show our example is not unique; kernel sta-
bilization holds for every self-adjoint operator on any Hilbert space.

Proposition 4.2. Let H be a Hilbert space and D a self-adjoint operator.
Then ker δDw is a von Neumann algebra.

Proof. The identity I of B(H) is easily shown to be in ker δDw . Let x ∈
ker δDw . As dom δDw is a ∗-algebra by Theorem 2.3, x∗ ∈ dom δDw . Since δDw
is a ∗-derivation, δDw (x∗) = δDw (x)∗ = 0. Therefore, x∗ ∈ ker δDw . Finally, if
x, y ∈ ker δDw , then xy ∈ dom δDw and δDw (xy) = δDw (x)y + xδDw (y) = 0, so
xy ∈ ker δDw .

Let (xλ) ⊂ ker δDw be a net converging in the weak operator topology to
some x ∈ B(H). We show x ∈ dom δDw and δDw (x) = 0. Because δDw (xλ) = 0

for all λ, we trivially have δDw (xλ)
WOT→ 0. By Theorem 2.3, the graph of δDw

is weak operator topology closed. Therefore, x ∈ dom δDw and δDw (x) = 0.
We conclude ker δDw is a von Neumann algebra. �

Notation 4.3. Let PD denote the collection of all spectral projections for D
obtained through the spectral theorem for unbounded self-adjoint operators.
Also, let

MD := P′′D.

We give further description of the structure ker δDw in terms of of MD in
the following lemma and proposition.

Lemma 4.4. Suppose x ∈ B(H) satisfies x(dom D) ⊆ dom D. If P ∈ PD,
then

[P, [D,x]]h = [D, [P, x]]h

for all h ∈ dom D.
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Proof. Let B(R) denote the bounded Borel functions on R, and for each
R ∈ R, define idR : R→ R by idR(t) = t whenever −R ≤ t ≤ R and idR(t) =
0 otherwise. The spectral theorem, stated as in Theorem 7.2.8 [11], provides
a bounded Borel functional calculus for D, that is, a ∗-homomorphism ΦD :
B(R)→ B(H) satisfying ΦD(1) = I,

dom D = {h ∈ H : lim
R→∞

‖ΦD(idR)h‖ <∞},

and
Dh = lim

R→∞
ΦD(idR)h

for all h ∈ dom D. We claim for each P ∈ PD, P (dom D) ⊆ dom D and
PDh = DPh for all h ∈ dom D. Given P ∈ PD, P = ΦD(χE) for some
Borel set E ⊆ R. Note that (idR ·χE)(t) = 0 if t 6∈ E∩[−R,R], and otherwise
(idR · χE)(t) = t. Thus, for any h ∈ dom D,

lim
R→∞

‖ΦD(idR)Ph‖ = lim
R→∞

‖ΦD(idR · χE)h‖ ≤ lim
R→∞

‖ΦD(idR)h‖ <∞.

Therefore, Ph ∈ dom D, and as h ∈ dom D was arbitrary, P (dom D) ⊆
dom D. Furthermore,

‖DPh− PDh‖ = lim
R→∞

‖ΦD(idR)ΦD(χE)h− ΦD(χE)ΦD(idR)h‖

= lim
R→∞

‖ΦD(idR · χE)h− ΦD(χE · idR)h‖

= lim
R→∞

‖ΦD(idR · χE)h− ΦD(idR · χE)h‖

= 0.

Let x ∈ B(H) and suppose x(dom D) ⊆ dom D. For h ∈ dom D, observe

[P, [D,x]]h = P (Dx− xD)h− (Dx− xD)Ph

= PDxh− PxDh−DxPh+ xDPh

= DPxh− PxDh−DxPh+ xPDh

= DPxh−DxPh+ xPDh− PxDh
= D(Px− xP )h+ (xP − Px)Dh

= D(Px− xP )h− (Px− xP )Dh

= [D, [P, x]]h

Hence, [P, [D,x]]h = [D, [P, x]]h for all h ∈ dom D, and as P ∈ PD was
arbitrary, this equality holds for any spectral projection of D. �

Proposition 4.5. MD ⊆ ker δDw = M′D.

Proof. Let P ∈ PD. By the previous lemma, [D,P ] = 0 on dom D, so
P ∈ dom δDw by Theorem 2.2. Moreover, δDw (P ) is the bounded extension of
i(DP −PD) to all of H, which is 0. Therefore, P ∈ ker δDw . Proposition 4.2
implies MD ⊆ ker δDw .

Let x ∈ ker δDw . By Theorem 2.7, x(dom D) ⊆ dom D and δDw (x)|dom D =
[D,x]|dom D = 0. Then, by Theorem X.4.11 [5], xf(D) ⊆ f(D)x for any
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f ∈ B(R). In particular, when f = χE for some Borel subset E ⊆ R and
P denotes the corresponding spectral projection for D, xP = Px. Hence,
x commutes with all projections in PD, and as MD is generated as a von
Neumann algebra by these projections, it follows that x ∈M

′
D.

Let x ∈ M′D. For each t ∈ R, eitD ∈ MD. Thus, αt(x) = eitDxe−itD = x
for all t ∈ R. In particular, for any h, k ∈ H, the function t 7→ 〈αt(x)h, k〉 =
〈xh, k〉 is constant, and thus is continuously differentiable with derivative 0.
Therefore, x ∈ ker δDw . �

We now present our kernel stabilization result.

Theorem 4.6. If D is any self-adjoint operator on a Hilbert space H, then
for every n ∈ N,

ker(δDw )n = ker δDw .

Proof. We first show ker(δDw )2 = ker δDw . The inclusion ker δDw ⊆ ker(δDw )2

is clear. Let x ∈ ker(δDw )2. Proposition 4.5 states ker δDw = M′D. Thus, it
suffices to prove x ∈ M′D, which holds if and only if [P, x] = 0 for ev-
ery P ∈ PD. By Proposition 2.6, if x ∈ dom (δDw )2, then x(dom D) ⊆
dom D, δDw (x)(dom D) ⊆ dom D, and (δDw )2(x)|dom D = [iD, δDw (x)]. Since
(δDw )2(x) = 0, it must be that [iD, δDw (x)] = 0. Thus, Theorem X.4.11 of [5]
implies δDw (x) commutes with the bounded Borel functional calculus for D,
so, in particular, [P, δDw (x)] = 0 for every P ∈ PD. Because δDw (x) and P
both preserve the domain of D, so does the commutator [P, δDw (x)]. Thus,
Lemma 4.4 implies

0 = [P, δDw (x)]|dom D = [P, [iD, x]]|dom D = [iD, [P, x]]|dom D.

As [P, x] ∈ B(H), [P, x](dom D) ⊆ dom D, and [iD, [P, x]] is bounded on the
domain of D, Theorem 2.7 implies [P, x] ∈ ker δDw . Hence, by Proposition 4.5,
[P, x] ∈M′D. Therefore,

[P, x] = (P + P⊥)[P, x](P + P⊥)

= P [P, x]P + P [P, x]P⊥ + P⊥[P, x]P + P⊥[P, x]P⊥

= P [P, x]P + PP⊥[P, x] + P⊥P [P, x] + P⊥[P, x]P⊥

= P (Px− xP )P + 0 + 0 + P⊥(Px− xP )P⊥

= PxP − PxP + 0 + 0 + 0

= 0.

As P ∈ PD was arbitrary, x ∈M′D. By Proposition 4.5, x ∈ ker δDw .
We proceed by induction on n. The case when n = 1 is vacuous. Suppose

ker(δDw )k = ker δDw for some k ∈ N. Let x ∈ ker(δDw )k+1. Then δDw (x) ∈
ker(δDw )k, which equals ker δDw by the inductive hypothesis. Hence, x ∈
ker(δDw )2. Since we have already shown ker(δDw )2 = ker δDw , we have x ∈
ker δDw . Therefore, ker(δDw )n = ker δDw for all n ∈ N. �
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Remark 4.7. Let n ∈ N be arbitrary. Kernel stabilization of δDw is equiv-
alent to the following statement: Suppose x ∈ B(H), the domains of the
iterated commutators dk(x) for k = 1, ..., n contain a common core X for D,
and dk(x) is bounded on X for all k = 1, ..., n. If the continuous bounded
extension of dn(x) to all of H belongs to M ′D, then [iD, x]|X = 0. Less
formally, if [iD, ..., [iD, x]]︸ ︷︷ ︸

n times

and all lower commutators are well-defined and

bounded on a core for D, then

[iD, ..., [iD, x]]︸ ︷︷ ︸
n times

= 0 implies [iD, x] = 0.

We are grateful to the referee’s hunch that this rephrasing of Theorem 4.6
in the case when n = 2 is similar to a theorem of C.R. Putnam’s in [9].
Upon investigation, we found that when n = 2, this statement is in fact
equivalent to Theorem 1.6.3 of [9] in the self-adjoint setting. Putnam’s
proof relies on techniques in the proof of Fuglede’s Theorem, whereas our
proof is direct. Establishing the equivalence of these statements requires use
of Christensen’s work in [4].

5. Applications of kernel stabilization (Theorem 4.6)

The first application is in the context of Theorem 1.1, which we copy
below for convenience.

Theorem 5.1 (Bratteli-Robinson, Theorem 4 [1]). Let δ be a derivation of
a C∗-algebra A, and assume there exists a state ω on A which generates a
faithful cyclic representation (π,H, f) satisfying

ω(δ(a)) = 0, ∀a ∈ dom δ.

Then δ is closable and there exists a symmetric operator S on H such that

dom S = {h ∈ H : h = π(a)f for some a ∈ A}

and π(δ(a))h = [S, π(a)]h, for all a ∈ dom δ and all h ∈ dom S. Moreover,
if the set A(δ) of analytic elements for δ is dense in A, then S is essentially
self-adjoint on dom S. For x ∈ B(H) and t ∈ R, define

αt(x) := eiStxe−iSt

where S denotes the self-adjoint closure of S. It follows that αt(π(A)) = π(A)
for all t ∈ R, and {αt}t∈R is a strongly continuous group of automorphisms

with closed infinitesimal generator δ̃ equaling the closure of π ◦ δ|A(δ).

We relate the infinitesimal generator δ̃ to a derivation δDu studied by
Christensen. Since the one-parameter automorphism group in Bratteli and
Robinson’s Theorem given by αt(x) := eitDxe−itD for each t ∈ R is strongly

continuous, δ̃ and δDu are precisely the same derivations.
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Definition 5.2. An operator x ∈ B(H) is uniformly D-differentiable if
there exists y ∈ B(H) such that

lim
t→0

∥∥∥∥αt(x)− x
t

− y
∥∥∥∥ = 0.

We denote this by x ∈ dom δDu and δDu (x) = y.

Proposition 5.3. ker δDu = ker δDw .

Proof. Theorem 4.1 [3] states x ∈ dom δDu if and only if x ∈ dom δDw
and t 7→ αt(δ

D
w (x)) is norm continuous. Moreover, δDw extends δDu . Thus,

ker δDu ⊆ ker δDw .
Let x ∈ ker δDw . Then t 7→ αt(δ

D
w (x)) = 0 is norm continuous, and hence,

x ∈ dom δDu . Moreover, δDu (x) = δDw |dom δDu
(x) = 0. Therefore, x ∈ ker δDu .

�

Corollary 5.4. For all n ∈ N, ker(δDu )n = ker δDu .

Proof. Fix n > 1 and let x ∈ ker(δDu )n. Then (δDu )n−1(x) ∈ dom δDu . Hence,
(δDu )n−1(x) ∈ dom δDw . Further, as x ∈ dom δDu , we have x ∈ dom δDw and
δDw (x) = δDu (x). Hence, x ∈ dom (δDw )n and (δDw )n(x) = (δDu )n(x) = 0. By
Theorem 4.6, x ∈ ker δDw . By Proposition 5.3, x ∈ ker δDu . �

Given a self-adjoint operator D, our proof of kernel stabilization of δDw
relied on the relationship between δDw and commutation with D. Intuitively,
then, kernel stabilization is likely to occur for a derivation δ on an abstract
C∗-algebra that can be implemented, under an appropriate representation,
as commutation with a self-adjoint operator. Bratteli and Robinson pro-
vide sufficient conditions for when a derivation on a C∗-algebra has such a
representation.

Under this representation π, Bratteli and Robinson construct an essen-
tially self-adjoint operator S which implements the derivation’s action as
commutation with S. Once this essentially self-adjoint operator is in play,
we use its self-adjoint closure D = S to generate the weak-D derivation δDw .
We show δDw extends δ ◦ π and apply Theorem 4.6 (kernel stabilization of
δDw ) to obtain kernel stabilization of δ.

Definition 5.5. Given a one-parameter group {αt}t∈R of maps on B(H),

let dom δ̃ be the set of all x ∈ B(H) so that there exists y ∈ B(H) satisfying

lim
t→0

∥∥∥∥αt(x)− x
t

− y
∥∥∥∥ = 0.

For x ∈ dom δ̃, let δ̃(x) = y where y is the uniform limit described above.

We call δ̃ the infinitesimal generator for {αt}t∈R.

Remark. When αt(x) := eitDxe−itD for some self-adjoint operator D,
Definition 5.5 is identical to the derivation δDu in Definition 5.2.
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Lemma 5.6. If δ, A, π, and δ̃ are as in Theorem 1.1, then

ker δ̃n ∩ π(A(δ)) = π(ker δn)

for all n ∈ N.

Proof. Recall if a ∈ A(δ), then Theorem 1.1 provides δ̃(π(a)) = π(δ(a)).

It follows by analyticity of a that δ̃n(π(a)) = π(δn(a)) for every n ∈ N.

Suppose δ̃n(π(a)) = 0. Then π(δn(a)) = δ̃n(π(a)) = 0, and since π is faithful,
δn(a) = 0. Therefore, π(a) ∈ π(ker δn).

Conversely, suppose a ∈ ker δn. Then a ∈ A(δ) because δj(a) = 0 for

all j ≥ n and
∑∞

k=0
tk

k!

∥∥δk(a)
∥∥ =

∑n−1
k=0

tk

k!

∥∥δk(a)
∥∥ < ∞ for any choice

of t > 0. Similar to above, δ̃n(π(a)) = π(δn(a)) = π(0) = 0. Therefore,

π(a) ∈ ker δ̃n ∩ π(A(δ)). The desired equality holds for all n ∈ N. �

Theorem 5.7. If δ, A, π, δ̃, and S are as in Theorem 1.1, then ker δn =
ker δ.

Proof. Fix n ∈ N, and let a ∈ ker δn. Then, a ∈ A(δ) and π(a) ∈ ker δ̃n

by Lemma 5.6. Note δ̃ = δDu where D = S, so Proposition 5.4 implies

ker δ̃n = ker δ̃ for all n ∈ N. Hence, π(a) ∈ ker δ̃ ∩ π(A(δ)). By another
application of Lemma 5.6, we get a ∈ ker δ. Therefore, ker δn = ker δ for all
n ∈ N. �

The second application of Theorem 4.6 is related to the Heisenberg Com-
mutation Relation, defined in Definition 1.2.

Example 5.8. The classical example of a pair satisfying the Heisenberg
Commutation Relation is the Schrödinger pair, the quantum mechanical
position operator Q and momentum operator P on L2(R). Let

dom Q = {f ∈ L2(R) :

∫
R
|xf(x)|2 dx <∞}

and, for g ∈ dom Q, define (Qg)(x) = xg(x) for a.e. x ∈ R. It is shown in
Example 7.1.5 of [11] that Q defines a self-adjoint operator. If a function f
is absolutely continuous, denote its almost-everywhere defined derivative by
f ′. Now, let

dom P = {f ∈ L2(R) : f is absolutely continuous and f ′ ∈ L2(R)},

and for h ∈ dom P , define Ph := ih′. It is shown in Theorem 6.30 of [13]
that P defines a self-adjoint operator. Let S(R) denote the Schwartz space
on R, that is,

S(R) = {f ∈ C∞(R) : ∀m,n ∈ N, ‖QmPnf‖∞ <∞} .

Proposition X.6.5 of [5] shows S(R) is dense in L2(R), and it is clear from
its definition that S(R) is contained in dom Q ∩ dom P and is invariant
under both Q and P . Hence, S(R) ⊆ dom [P,Q]. Furthermore, [P,Q]g = ig
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for all g ∈ S(R). Therefore, P and Q satisfy the Heisenberg Commutation
Relation.

If two operators are unitarily equivalent to a direct sum of copies of the
Schrödinger pair, then they are certainly both unbounded. There are, how-
ever, examples of operators satisfying the Heisenberg Commutation Relation
where one operator is bounded.

Example 5.9. For f ∈ L2[0, 1], define (Bf)(x) = xf(x) for a.e. x ∈ [0, 1].
In contrast to its unbounded analogue Q, the operator B is contractive. Let
AC[0, 1] denote the set of functions which are absolutely continuous on [0, 1],
and let

dom A = {f ∈ AC[0, 1] : f ′ ∈ L2[0, 1], f(0) = f(1)}.
For g ∈ dom A, define Ag = ig′. Example X.1.12 of [5] shows the operator
A with this particular domain is self-adjoint. Due to boundedness of B,

dom [A,B] = {f ∈ dom A : Bf ∈ dom A}.
Choose

K := {f ∈ AC[0, 1] : f ′ ∈ L2[0, 1], f(0) = f(1) = 0}.
Example X.1.11 of [5] shows K is dense in L2[0, 1] as it contains all poly-
nomials p on [0, 1] satisfying p(0) = p(1) = 0. Furthermore, we claim K
is invariant for B. Indeed, products of absolutely continuous functions are
again absolutely continuous, so (Bg)(x) = xg(x) for a.e. x ∈ [0, 1] defines an
absolutely continuous function. The a.e.-defined derivative of Bg is equiva-
lent to Bg′ + g by the product rule. Moreover, Bg′ + g belongs to L2(R) as
g′ ∈ L2(R) and B ∈ B(L2[0, 1]). Lastly,

(Bg)(0) = 0 · g(0) = 0 = 1 · 0 = 1 · g(1) = (Bg)(1).

Thus, BK ⊆ K. As a result, K ⊆ dom [A,B]. For k ∈ K, observe

[A,B]k = i

(
d

dx
(Bk)−B(k′)

)
= i(Bk′ + k −Bk′) = ik.

Therefore, A and B satisfy the Heisenberg Commutation Relation.

We claim the boundedness of the operators in Examples 5.8 and 5.9
differs due the relative size of dom [P,Q] in L2(R) versus dom [A,B] in
L2[0, 1]. In particular, dom [A,B] does not contain a core for A or B, while
dom [P,Q] contains S(R), which is a core for both P and Q.

Theorem 5.10. Let A : dom A → H and B : dom B → H be self-adjoint
operators which satisfy the Heisenberg Commutation Relation on a dense
subspace K ⊆ H. If K is a core for both A and B, then A and B are both
unbounded.

Proof. Suppose that K is a core for both A and B. It is well-known that A
and B cannot both be bounded and satisfy the Heisenberg Relation. Thus,
without loss of generality, the only possibilities are that A is bounded and
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B is unbounded, or both A and B are unbounded. Suppose that A ∈ B(H).
By the Heisenberg Commutation Relation, [A,B]k = ik for all k ∈ K, or,
equivalently, [iB,A]k = k for all k ∈ K.

As K is a core for B and ‖[iB,A]|K‖ = 1, we have that A ∈ dom δBw .
Furthermore, δBw (A) is the continuous extension of the bounded and densely-
defined operator [iB,A]|K to all of H, and thus, δBw (A) = I. Trivially,
I ∈ dom δBw and δBw (I) = 0, so A ∈ dom (δBw )2 and (δBw )2(A) = 0. By
Theorem 4.6, A ∈ ker(δBw )2 = ker δBw . But then

0 = δBw (A)|K = [iB,A]|K = I|K ,

which is absurd. Therefore, A cannot be bounded. We conclude that if A
and B satisfy the Heisenberg Commutation Relation on a common core for
A and B, then A and B must both be unbounded. �
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