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Band number and the double slice genus

Clayton McDonald

Abstract. We study the double slice genus of a knot, a natural gen-
eralization of slice genus. We define a notion called band number, a
natural generalization of band unknotting number, and prove it is an
upper bound on double slice genus. Our bound is based on an analysis
of broken surface diagrams and embedding properties of 3-manifolds in
4-manifolds.
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1. Introduction

The study of surfaces in B4 that a knot bounds is a well developed
theme in low dimensional topology. Rather than studying properly em-
bedded surfaces in B4 which a given knot K Ă S3 “ BB4 bounds, one can
instead imagine two properly embedded surfaces pS1,Kq ãÑ pB4

1 , S
3q and

pS2,Kq ãÑ pB4
2 , S

3q, and then glue these two 4-balls together to produce an
embedded surface F Ă S4 whose intersection with the meridional S3 is K.

The double slice genus of K, gdspKq, was first defined by Livingston
and Meier [10, Section 5] as the minimal genus of such an F such that F
is unknotted, i.e. bounds a handlebody. This notion of unknottedness is
a natural extension of the 1-knot case, where one definition of the unknot
is a knot that bounds an embedded disc. We note that a handlebody is
in some sense the simplest 3-manifold bounded by a surface, and that any
two surfaces that bound handlebodies of the same genus are isotopic: the
existence of a bounding handlebody, which retracts to a wedge of circles in
S4, guides the isotopy between the surfaces. If gdspKq “ 0, then K is called
doubly slice, a definition which goes back to Fox’s problem list [6].
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2. Background and related invariants

Double slice genus naturally lends itself to the study of embedded 3-
manifolds in 4-manifolds through branched coverings (compare [1, 5]). More
specifically, if a knot K on a meridional S3 Ă S4 lies on a particular knotted
surface F Ă S4, then by taking the n-fold cyclic cover of S4 branched along
F , we get a 4-manifold ΣnpS

4, F q with a map to S4 that is 1-to-1 on F , and
n-to-1 otherwise. The preimage of the meridional S3 is a 3-manifold with a
map to S3 that is 1-to-1 along F XS3 “ K and n-to-1 otherwise. Therefore,
this manifold is ΣnpS

3,Kq, so we have an embedding of ΣnpS
3,Kq into

ΣnpS
4, F q.

It follows that gdspKq is a natural upper bound on εpΣ2pS
3,Kqq, the

minimal n for which the branched double cover of K embeds in #nS
2 ˆ S2

[1, Definition 2.2]. This is because the branched double cover of S4 with
branch set an unknotted genus g surface is #gS

2 ˆ S2, so the branched
double cover of K embeds in #gS

2ˆS2 for g “ gds. There are other bounds
on εpKq coming from more classical knot invariants, the Seifert genus g3pKq
and unknotting number upKq. Both of these bounds can be seen using the
Montesinos trick on a presentation of the knot, obtaining an even integral
surgery description of the branched double cover. The doubles of the traces
of these integral surgery descriptions yield connect sums of S2 ˆ S2, giving
2g3 and 2u as upper bounds for ε.

The quantity 2g3pKq can also easily be shown to be an upper bound for
gdspKq, as the double of a Seifert surface for a knot is unknotted. This is
because pushing the two copies of the Seifert surface into the two 4-balls
sweeps out a handlebody which the resulting surface bounds. The quantity
2upKq is also an upper bound for gdspKq, but this fact is less obvious and
seen more easily from the results of this paper, which relate these invariants
to band unknotting number.

3. Band unknotting and double slice genus

An (oriented) band unknotting sequence for K is a sequence of ori-
ented saddle moves on K that yields an unknot at the end (Figure 1). If
we follow this process in reverse from the unknot to K, each oriented sad-
dle move corresponds to an immersed band attachment to the disc that the
unknot bounds. Therefore, an oriented band unknotting sequence of length
2N yields a ribbon immersed surface S0 with one disc and 2N bands, which
we may arrange such that the bands are pairwise disjoint and intersect the
disc only in ribbon singularities. Furthermore, we can promote this ribbon
immersed surface to a ribbon surface S, a properly embedded surface in
B4 with only 0 and 1-handles. We do this by pushing the interior of the
disc into B4, pushing the disc portions of the ribbon singularities further
into B4 to remove the intersections. We define ubpKq, the (oriented) band
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unknotting number (su2pKq by the conventions of [8]), as the minimum
length of a band unknotting sequence for K.

This band unknotting number can be seen as a unification of unknotting
number and Seifert genus in this context, as it is a lower bound for both.
Any crossing change can be obtained from two oriented saddle moves, and
the existence of a Seifert surface gives a band unknotting sequence from the
handle decomposition of the surface with length twice its genus. Further-
more, it is an upper bound on double slice genus and even the superslice
genus gss, defined below:

Theorem 3.1. For a knot K in S3,

ubpKq ě gsspKq ě gdspKq. (1)

Figure 1. An oriented saddle move.

To prove Theorem 3.1, we use the double of the ribbon surface coming
from the band unknotting sequence. The surface has a handle decompo-
sition with one 0-handle and ubpKq 1-handles, so its double is a surface
of genus ubpKq in S4. Thus we will proceed by proving that this doubled
surface is unknotted. We therefore establish that ubpKq is an upper bound
on superslice genus gsspKq, first defined in [4] as the minimal genus of an
unknotted surface in S4 that arises as the double of a slice surface of K.
Similarly to double slice genus, this was first defined in the genus 0 case [2].
It is clear that gsspKq an upper bound for gdspKq, as it is a more restrictive
condition on the construction of such an unknotted surface.

Our proof will involve manipulations of diagrams for 2-knots that are
analogous to those for 1-knots. For a knot diagram, we can remove two
balls from S3 to get S2 ˆ r´1, 1s, and then project to the S2 coordinate
to depict our knot as an immersed circle in S2, along with extra crossing
information, which indicates which portion of the knot is higher in the r´1, 1s
coordinate at self intersections. Similarly, for an embedding of a surface into
S4, we remove two 4-balls, project the surface from S3 ˆ r´1, 1s to S3, and
obtain an immersed surface in S3, along with some “crossing information”
for the self intersections, i.e. which part of the surface is higher in the r´1, 1s
coordinate.

This immersed surface together with its intersection data is called a bro-
ken surface diagram [3, Page 13], and captures the isotopy type of the
embedded surface in S4. As with knot diagrams, an arbitrary projection can



BAND NUMBER AND THE DOUBLE SLICE GENUS 967

Figure 2. A ribbon immersed surface S0 (left) and its dou-
ble (right).

be very badly behaved, but after a slight perturbation, we can guarantee an
immersion with regularity properties for the singular set, such as transverse
self intersections.

We now describe a procedure to get from a ribbon surface S for a knot
to a broken surface diagram of its double in S4. As stated before, we can
remove a small neighborhood from each B4 on each side of our meridional
S3, and think of the resulting S3 ˆ r´1, 1s as our ambient space, as this
admits a natural projection π : S3 ˆ r´1, 1s ÞÑ S3. We will call the r´1, 1s
factor the w coordinate, and the other factor the S3 coordinate. We start
with two copies of S0, the ribbon immersed surface corresponding to S, in
the meridional S3 ˆ 0. Take one copy of S0 and push its interior into the
bottom B4 (i.e. down in w). Then push the other copy into the top B4 (up
in w) to form two embedded ribbon surfaces in their respective punctured
4-balls. We will call these S´ and S` respectively; their union F “ S`YS´

is the double of S. Note that S` and S´ both project to S0 under π.
Although S0 is immersed, it is still oriented, and thus two-sided. Therefore,
this gives us two distinct directions in the S3 coordinate in which we can
push the interior of S0. By pushing S´ in one of those directions and S` in
the other direction, we obtain a regular immersion of F with transverse self
intersections by projecting it to the meridional S3, which we now show how
to diagrammatize.

When we perform this pushoff (seen in Figure 2), each disc in our disc-
band presentation of S gives rise to a sphere, and each band gives rise to a
tube connecting two patches of these spheres. Thus we obtain a sphere-tube
presentation of the double of S. Each ribbon singularity with a disc will
form a circle as we inflate our bands into tubes, so when we push the two
copies of the disc off each other, we will have two such intersection circles for
each ribbon singularity of S. These pushoffs come with crossing information
inherited from the projections of S` and S´ to S3. Note that we have a
natural hierarchy on the w coordinate because of he way we pushed the two
copies of S0 to form the resulting embedded surface in S4. The discs of S`

are above its bands, which are in turn above all of S´. In S´, the opposite is
true, as we pushed everything in the negative direction. This means that the
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tube part of the surface has a higher w coordinate when it passes through
πpS´q, and a lower w coordinate when it passes through πpS`q.

Next we can discard our choices for a w function on the surface, noting
that any choice that preserves the crossing information of the broken surface
will preserve the isotopy type (much like for a knot diagram).

Proof of Theorem 3.1. Let S be a one-disk ribbon surface. We claim
that the double of S is unknotted. Note that if S is obtained from a band
unknotting sequence, then the genus of the double equals the number of
bands used, so the theorem is reduced to proving the claim. We proceed to
establish the claim by induction on the number of ribbon singularities in S0,
the immersion of S. In the base case where S0 has no ribbon singularities, S0
is in fact a Seifert surface, and the unknottedness of its double is clear. Now
suppose that S0 has at least one ribbon singularity and the result is true for
any one-disk ribbon surface whose immersion has fewer ribbon singularities.
The aim of the proof will be to use a few specific moves on the double of S to
pass to a ribbon surface whose immersion has one fewer ribbon singularity
and whose double is isotopic to that of S.

Consider a band B of S0 containing a ribbon singularity and consider the
first ribbon singularity of this band starting from one foot of the band. We
explain how to isotope S to remove this ribbon singularity from S0 without
introducing any new ones.

There are two arcs in S0 from the foot of the band to the ribbon singu-
larity, one along the core of B and another along the disc. We identify a
Whitney disk D in S3 whose boundary is composed of the union of these
two arcs which will guide the isotopy cancelling the ribbon singularity. We
may assume that the interior of D is disjoint from the disc of S0, and in-
tersects bands other than B transversely in ribbon intersections. We can
then perform a sequence of band crossing changes between B and any bands
intersecting D as in [10, Section 4.2] and Figure 4 to remove all of the rib-
bon intersections with D. Note that this move does not introduce any new
ribbon singularities, but can change the isotopy type of the boundary knot.
However, it does not change the isotopy type of the doubled surface. This
is because one can push one of the two tubes higher than the other in the w
coordinate, so that when they pass through each other in the S3 coordinate,
they do not intersect in S3 ˆ r´1, 1s.

Then, as there are no ribbon singularities with D, we can perform a
Whitney move along D cancelling the ribbon singularity. We now have a
ribbon surface whose double is isotopic to that of S, but has one fewer ribbon
singularity. Therefore by induction, its double, and thus the double of S, is
unknotted. �

Using similar methods as in Theorem 3.1, we can prove a slightly stronger
bound on gds using tubings, i.e. 2-D 1-handles, in the broken surface dia-
gram.
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D

Figure 3. The cancelling Whitney disc D.

Figure 4. The isotopy of the doubled surface (below) in-
ducing the band crossing change (above).

Theorem 3.2. Given a ribbon surface S for a knot K in S3 with d discs
and b bands, b is an upper bound for gdspKq.

This means that the minimal number of bands among all ribbon surfaces
with boundary K, which we will denote as the band number bpKq, is an
upper bound on double slice genus. The quantity bpKq is a generalization
of ubpKq, where it can be seen as the distance via oriented saddle moves
between K and some unlink, instead of the unknot in the case of ubpKq. It
is also a generalization of fusion number fpKq, or ribbon fusion number of
a ribbon knot, discussed in [9], the minimum number of bands in a ribbon
disc for K. Not only does bpKq extend the definition to non-ribbon knots, it
also is theoretically lower, as the minimum number of bands is not a priori
realized by a minimum genus ribbon surface.

Proof. First, use the same doubling procedure as before to go from a ribbon
surface with d discs and b bands to a broken surface diagram of the double
with d spheres and b tubes between them, such that the only self intersections
in the projection are double circles between the tubes and the spheres. This
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is a broken surface diagram of a potentially knotted surface in S4 such that
there is some meridional S3 whose intersection with this surface is K.

Then tube together all of the spheres with trivial tubes (one can imagine
the core of such a tube as an arc between the two spheres that does not
intersect the immersed surface) to get a surface with one sphere and b tubes.
Note that if we assume that the attaching regions of the tubes we added
are both on the bottom disc of the sphere, i.e. the one with w ă 0, then it
becomes clear that we can do this tubing such that there is still a meridional
S3 that intersects the resulting surface in K, as in Figure 5.

S4

F

tube

S3

Figure 5. A schematic for tube attachment to F as to avoid
the meridional S3.

From here we note that because the resulting surface has a one sphere,
b tube presentation, Theorem 3.1 shows that it is an unknotted genus b
surface, and thus the double slice genus of K is at most b. �

Note that because the tubings we use are not symmetric, b is not a bound
on gss. Unlike the other bounds for gds, b can take odd values. In particular,
we can use this to prove that the stevedore knot 61 has gds “ 1, as it has a
two-disc, one-band ribbon disc, but it is not doubly slice because the first
homology of its branched double cover is not a direct double, as in [10,
Proposition 2.1].

Remark 3.3. This proof does not require broken surface diagrams, and can
instead be proved using banded unlink diagrams [11], or by the following line
of argument given by the referee. First, note that homotopy implies isotopy
for closed loops in a 4-manifold. Additionally, the fundamental group of an
unknotted surface exterior is generated by a meridian. Therefore, if we add
a tube to an unknotted surface, the isotopy type of the resulting surface
is determined only by the homotopy class of the core of the tube. Finally,
we see that adding a meridian to the core of the tube doesn’t change the
isotopy class of the resulting surface, so any tubing to an unknotted surface
is unknotted. This means that the double of a 1-disc ribbon surface is
unknotted, producing the desired results.
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We can improve on this bound in certain situations. Using the band
crossing change argument from before, we see that the isotopy class of the
2-knot gotten by doubling a ribbon disc depends only on the homotopy
classes of the cores of the bands in X, the complement of the boundaries
of the discs in S3. (In fact, the isotopy class only depends on the bands’
homotopy classes up to band swim and handle slide equivalence). There is
an action of π1pXq on these homotopy classes, where a group element acts
by concatenating that loop onto our arc, using a fixed set of arcs from the
basepoint of X to the boundary components of X.

D1 D2 D1 D2

Figure 6. The band a1,2pidq (left) and the band a1,2px2x1q (right).

The fundamental group π1pXq is a free group generated by meridians of
the disc boundaries, and the group action acts transitively on the set of
homotopy classes beginning and ending on a given pair of boundary com-
ponents of X, as concatenating a meridian to an existing path allows an
arc to pass through the corresponding disc boundary. Therefore, we can
encode, with some redundancy, the homotopy classes of these arcs by their
start and endpoints as well as an element of π1pXq. Moreover, we note that
the word we designate in π1pXq corresponds to the orderings of the ribbon
singularities of the corresponding band, as a meridian of a disc boundary
only intersects its disc in a single point. This means that the ordering of the
ribbon singularities with sign encapsulates all of the information about the
homotopy class of the band.

To encode a specific band, we prescribe a set of discs Dn “ tD1, . . . Dnu

and a set of generators for π1pXq “ xx1, . . . xny corresponding to each of the
meridians. We then also prescribe a set of base arcs ai,j from each Di to
each Dj disjoint from the interiors of the Dm. Then we can encode an arc
by a base arc together with a word in the xi’s. We can then encode a ribbon
surface up to homotopy of its bands with a set of discs and a set of arcs. For
example, in Figure 6, the left knot is a perturbation of the standard disc for
the unknot represented by pD2, a1,2pidqq and the right knot is a nontrivial
ribbon surface represented as pD2; a1,2px2x1qq.

The core of the argument in Theorem 3.1 was that we could cancel the
closest ribbon singularity to the foot of the band if it is with the disc that
foot is attached to, as in Figure 7.

Additionally, although we attached the tubes in Theorem 3.2 such that
they didn’t intersect the meridional S3, the trivial tube is isotopic to the
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D1 D2

Figure 7. The band a1,2px1x2x1q, which we can change via
homotopy into a1,2px2x1q, as in Figure 6.

double of a trivial band between discs. Adding such a tube gives us a ribbon
presentation for the resulting surface with an extra trivial band. After can-
celling the resulting 0-1 pair, this surface is equivalent to our original surface
if we identified the discs joined by the band. Adding such a band has the
effect on π1pXq of identifying the meridians of the two discs that the band
connects. Moreover, the double of our ribbon surface after trivial banding
between the discs is still a surface which contains K as a cross section. The
point of tubing in the proof of Theorem 3.2 was to identify every generator
of π1pXq, and in doing so the cancellations of all of the homotopy classes
become clear. The resulting doubled surface is unknotted and has K as a
cross section, giving us a bound on double slice genus.

However, if we ever make a partial set of identifications of generators in
our tubing process such that all of these homotopy classes of bands can be
cancelled, then this would be a more refined bound on double slice genus.

Example 3.4. Consider a knot with a ribbon disc whose bands are in the
homotopy classes defined by the band set pD4; a1,2px3q, a2,3px1q, a3,4px4x2qq,
as in Figure 8. Theorem 3.2 gives an upper bound of three on the dou-
ble slice genus of the boundary knot. However, we see that if we trivially
band D1 to D3 and D2 to D4, this applies the relations x1 “ x3 and x2 “
x4, which would give us the band set pD2; a1,2px1q, a2,1px1q, a3,2px2x2qq »
pD2; a1,2pidq, a2,3pidq, a3,4pidqq as in Figure 9. Therefore the doubles of all of
the bands are isotopically trivial when we add the two corresponding trivial
tubes, giving an upper bound on the double slice genus of two.

We close with some conjectures that illustrate the limits of our knowledge:
As indicated above, the band number of a ribbon knot is a lower bound on
its ribbon fusion number. We conjecture that the two are not always equal,
i.e that there exists a ribbon knot that bounds a ribbon surface with b bands,
yet any ribbon disc for it has more than b bands.

For example, the Whitehead double of any knot has Seifert genus one, and
therefore has band number at most two. Moreover, the untwisted Whitehead
pattern is a saddle move away from the 0-framed 2-cable pattern. Therefore
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D1 D2

D3D4

Figure 8. The band set pD4; a1,2px3q, a2,3px1q, a3,4px4x2qq.

D1 D2

D3D4

D1 D2

D3D4

Figure 9. The band set pD4; a1,2px3q, a2,3px1q, a3,4px4x2qq
after the trivial bandings, along with a simplified version after
homotopy.

we can construct a ribbon disc for the double of a ribbon knot by doing
this saddle move and then appending two ribbon discs for the 2-cable. The
natural band presentation of the ribbon disc for the untwisted Whitehead
double has 2b ` 1 bands if the original ribbon disc had b bands, making
these Whitehead doubles natural candidates for this conjecture. However,
untwisted Whitehead doubles of ribbon knots are all superslice [7], so they
have band presentations with homotopically trivial bands. Therefore, many
of the properties of these knots will be hard to detect algebraically.

More generally, we expect a similar statement is true for every genus:

Conjecture 3.5. For every genus g, there exists a knot K with ribbon genus
g for which bpKq is lower than the number of bands in any ribbon surface of
genus g.
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Demonstrating this difference seems challenging, as the lower bounds we
know how to prove for ribbon fusion number give lower bounds for band
number as well.
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