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Representation theory of the
cyclotomic Cherednik algebra via
the Dunkl-Opdam subalgebra

Ben Webster

Abstract. We give an alternate presentation of the cyclotomic rational
Cherednik algebra, which has the useful feature of compatibility with
the Dunkl-Opdam subalgebra. This presentation has a diagrammatic
flavor, and it provides a simple explanation of several surprising facts
about this algebra. It allows direct proof of the connection of category
O to weighted KLR algebras, allows us to classify the simple Dunkl-
Opdam modules over the Cherednik algebra and provides an algebraic
construction of the KZ functor. Furthermore, one of prime motivations
for considering this approach is to provide a better framework for con-
necting Cherednik algebras to Coulomb branches of 3-d gauge theories.
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1. Introduction

In this paper we consider the rational Cherednik algebra H in the cyclo-
tomic case, i.e. that of the complex reflection group G(`, 1, n). This is an
algebra with a quite rich and interesting representation theory; this paper is
dedicated to the proposition that this representation theory can be under-
stood more clearly by choosing a different presentation. In particular, we can
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classify the simple Dunkl-Opdam modules over the Cherednik algebra in
this case. This is the analogue for the Cherednik algebra of Gelfand-Tsetlin
modules over U(gln); realizing both these algebras as Coulomb branches
makes this analogy manifest. In fact, the approach we apply here can be
generalized to any rational Galois order, as we will show in forthcoming
work [33].

In Section 2, we describe the presentation needed for our results, and
prove that it gives the Cherednik algebra. This presentation may not look
obviously simpler than the familiar one introduced by Etingof and Ginzburg
[10, (1.15)], but it does have a graphical calculus which allows it to be
described in terms of small local relations (much like the KLR algebras [14,
24]). Furthermore, it has another dramatic advantage: it contains a manifest
polynomial subalgebra defined by Dunkl and Opdam [9, Def. 3.7]. This
subalgebra commutes with the Euler element (unlike the usual polynomial
subalgebras, where all generators have weight ±1 in the Euler grading).
While exploited profitably in earlier papers of Dunkl and Griffeth [8, 13],
there is much more this subalgebra can tell us about the representation
theory of these algebras.

In Section 3, we turn to using this presentation to study the representation
theory of the Cherednik algebra, using weight spaces for the Dunkl-Opdam
polynomial subalgebra. This allows a new interpretation of previous work of
the author relating category O of Cherednik algebras to weighted KLR alge-
bras [31], a key step in proving Rouquier’s conjecture on the decomposition
numbers of category O for Cherednik algebras (this result was proved by
other methods in [25, 18]). That work depended on a very indirect method
using uniqueness of highest weight covers, whereas using this new presen-
tation, it can be proven directly. Similarly, the Knizhnik-Zamolodchikov
functor of [11], which had only been constructed analytically before, can
be realized as a sum of weight spaces for the Dunkl-Opdam polynomial
subalgebra (in particular, we can define the KZ functor over an arbitrary
characteristic 0 field, not just C). These results are only valid in charac-
teristic 0, but this technique is also promising for studying the Cherednik
algebra and coherent sheaves on Hilbert schemes in characteristic p.

In Section 4, we discuss the original motivation for this presentation:
to exhibit an isomorphism between the spherical Cherednik algebra and
the Coulomb branch of a certain 3-d gauge theory. While this paper was
in preparation, this isomorphism was proven independently by Kodera-
Nakajima [15]. This isomorphism looks quite strange in the usual presenta-
tion of the Cherednik algebra, and quite natural in the alternate one given
here. It would be quite interesting to find a geometric description of the
Cherednik algebra like the BFN construction of the Coulomb branch [20, 5],
in terms of convolution in homology.
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2. An alternate presentation

Let k be a field of characteristic coprime to ` and ζ be a primitive `th
root of unity in k. Let K = k[~]. For most purposes, we can take k = C
and ζ = e2πi/`.

Let Γ be the group of n × n monomial matrices with entries given by
`th roots of unity; this group is a wreath product of Sn with Z/`Z. It’s
generated by the permutation matrices (identified with Sn) and the matrices
tj = diag(1, . . . , ζ, . . . , 1) with (tj)jj = ζ and all other diagonal entries 1.

Fix parameters k, h1, . . . , h`−1, with the convention that h0 = h` = 0 and
let

p(u) =
`−1∑
s=1

`−1∑
r=1

ζ−rshru
s. (2.1)

We can equivalently fix the values

sm = p(ζm) +m~ for m = 0, . . . , `− 1. (2.2)

We’ll consider the cyclotomic rational Cherednik algebra H for Γ, generated
over K[Γ] by two alphabets of commuting variables x1, . . . , xn, y1, . . . , yn.
The former transform in the defining representation of Γ and the latter in
its dual. That is:

tixj = ζδijxjti tiyj = ζ−δijyjti (2.3)

The final relation is

[x, y] = ~〈x, y〉 −
∑
s∈S

cs〈x, αs〉〈α∨s , y〉 · s

We will use slightly different conventions here, following the conventions of
[12, §2.1.3], so these relations take the form:

[xi, yi] = ~ + k
∑
j 6=i

`−1∑
p=0

tpi t
−p
j (ij) +

`−1∑
s=1

∑̀
r=1

ζ−rs(hr − hr−1)tsi (2.4)

= ~ + k
∑
j 6=i

`−1∑
p=0

tpi t
−p
j (ij) + p(ti)− p(ζ−1ti)

[xi, yj ] = −k
`−1∑
p=0

ζptpi t
−p
j (ij) (i 6= j) (2.5)

Recall that this algebra contains the modified Dunkl-Opdam operators

ui = yixi + k
∑
j>i

`−1∑
p=0

tpi t
−p
j (ij) + p(ti) (2.6)

= xiyi − k
∑
j<i

`−1∑
p=0

tpi t
−p
j (ij) + p(ζ−1ti)− ~ (2.7)
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These differ from those defined in [13, (2.17)] by zi = ui − p(ζ−1ti)− ~ and
the reindexing of 1, . . . , n by i 7→ n−i+1. Note that since ti and zi generate
a commutative subalgebra, these elements ui commute with each other and
with ti (and generate the same subalgebra). Accounting for reindexing, the
equation [13, (3.5)] implies that if we let rj = (j, j + 1):

urj ·irj − rjui =


k`πj,j+1 i = j

−k`πj,j+1 i = j + 1

0 j /∈ {i, i− 1}
(2.8)

where πj,m = 1
`

(∑`−1
p=0 t

p
j t
−p
m

)
is the projection to the invariants of tjt

−1
m . Let

DOn denote the algebra generated by kΓ and ui modulo the relations (2.8).

Consider the free K algebra Ã generated by the group algebra KΓ and
the symbols σ, τ, and ui for i = 1, . . . , n. We define ui, ti ∈ Ã for any i ∈ Z
by the rule ui = ui−n + ~, and ti = ti−nζ

−1.

Definition 2.1. We let A be the quotient of this algebra by the relations
(2.8) and:

uitj = tjui i, j ∈ Z (2.9a)

σrj−1 = rjσ j = 2, . . . , n− 1 (2.9b)

τrj = rj−1τ j = 2, . . . , n− 1 (2.9c)

σ2rn = r1σ
2 (2.9d)

τ2r1 = rnτ
2 (2.9e)

στ = u1 − p(ζ−1t1) + ~ (2.9f)

τσ = un − p(tn) (2.9g)

uiuj = ujui i, j ∈ Z (2.9h)

uiσ = σui−1 i ∈ Z (2.9i)

uiτ = τui+1 i ∈ Z (2.9j)

tiσ = σti−1 i ∈ Z (2.9k)

tiτ = τti+1 i ∈ Z (2.9l)

τ(1, 2)σ = σ(n− 1, n)τ + k
( `−1∑
p=0

ζptpnt
−p
1

)
(2.9m)

Remark 2.2. Note that these relations are closely related to those for the
degenerate DAHA given in [4, Def. 2.1], and should be regarded as a higher
level version of this presentation.

We can represent these elements graphically as string diagrams on a cylin-
der with a seam. We’ll draw these on the page with the cylinder cut along
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the seam. The generators are:

· · ·· · ·

tm

· · ·· · ·

um

· · ·· · ·

(m,m+ 1)

· · ·· · ·

σ

· · ·· · ·

τ

The relations of Γ and (2.8–2.9m) are determined by simple local rules
such as:

− = − = k +k
−1

+ · · ·+k −1

= ζ = ζ−1

= − ~ = + ~

= − p

( )
= + ~ − p

(
ζ−1

)
Consider the permutations χi = (i, i− 1 . . . , 1) and υi = (i, i+ 1, . . . , n).

Theorem 2.3. The algebras A and H are isomorphic via maps identifying
the copies of K[Γ] and sending

xi 7→ χiσυ
−1
i yi 7→ υiτχ

−1
i ui 7→ ui.

The elements χiσυ
−1
i and υiτχ

−1
i have natural graphical representations:

· · ·
· · ·

χiσυ
−1
i

· · ·
· · ·

υiτχ
−1
i

Proof. First we need to check the compatibility of this map with the action
of Γ. Note that the images of xi and yi commute with transpositions except
(i, i± 1), and

(i, i± 1)χiσυ
−1
i (i, i± 1) = χi±1συ

−1
i±1, (i, i± 1)υiτχ

−1
i (i, i± 1) = υi±1τχ

−1
i±1
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This establishes equivariance for Sn ⊂ Γ. Furthermore,

χiσυ
−1
i ti = χiσtnυ

−1
i υiτχ

−1
i ti = υiτt1χ

−1
i

= χitn+1συ
−1
i = υit0τχ

−1
i

= tn+iχiσυ
−1
i = ti−nυiτχ

−1
i

= ζ−1tiχiσυ
−1
i = ζtiυiτχ

−1
i .

Similar calculations show that these elements commute with the other tj ’s.
Thus, these elements have the correct commutation relations with Γ and we
need only check that they have the correct commutator with each other.

First, let us check that the images of xi and xj commute; we can assume
that j > i. Thus, we have that:

χjσυ
−1
j χiσυ

−1
i = χjσχiυ

−1
j συ−1

i

= χj(i+ 1, i, . . . , 2)σ2(j − 1, j, . . . , n− 1)υ−1
i

= χi(j + 1, i, . . . , 2)σ2(i− 1, j, . . . , n− 1)υ−1
j

= χiσυ
−1
i χjσυ

−1
j .

This proof is perhaps easier to imagine using a picture:

· · ·

· · ·

· · ·

· · ·
=

· · ·

· · ·

=

· · ·

· · ·

= · · ·

· · ·

· · ·

· · ·

The key relation is (2.9d) which we use in the middle equality.
Next, we consider the commutation relation between xi and yi, given in

(2.4). This we will prove in a few steps:

[χiσυ
−1
i , υiτχ

−1
i ] = χiστχ

−1
i − υiτσυ

−1
i

= χi(u1 − p(ζ−1t1) + ~)χ−1
i − υi(un − p(tn))υ−1

i (2.10)

= ~ + p(ti)− p(ζ−1ti) + χiu1χ
−1
i − υiunυ

−1
i .

Note that

p(ti)− p(ζ−1ti)

=
`−1∑
s=1

∑̀
r=0

ζ−rshrt
s
i −

`−1∑
s=1

∑̀
r=0

ζ−(r+1)shrt
s
i =

∑∑
ζ−rs(hr − hr−1)tsi .

(2.11)
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Similarly,

χiu1χ
−1
i = ui + k

i−1∑
j=1

`−1∑
p=0

tpj t
−p
i (j, i); (2.12)

υiunυ
−1
i = ui − k

n∑
j=i+1

`−1∑
p=0

tpj t
−p
i (j, i). (2.13)

Thus, combining (2.10–2.13), we can confirm (2.4) as follows:

[χiσυ
−1
i , υiτχ

−1
i ] = ~ +

`−1∑
s=1

∑̀
r=0

ζ−rs(hr − hr−1)tsi + k
∑
i 6=j

`−1∑
p=0

tpj t
−p
i (j, i).

(2.14)
Similarly, if i 6= j, then

[χiσυ
−1
i , υjτχ

−1
j ]=χiυj(σ(1, 2)τ−τ(n−1, n)σ)υ−1

i χ−1
j =−k

`−1∑
p=0

ζptpi t
−p
j (i, j).

(2.15)
This confirms (2.5).

Thus, we have verified the existence of a map H→ A. Note that

u1 = x1y1 + p(ζ−1t1)− ~ 7→ στ + p(ζ−1t1)− ~ = u1.

By the relations (2.8) and (2.8), this implies ui 7→ ui for all i.
The inverse is defined by

σ 7→ (1, . . . , i)xi(i, . . . , n) τ 7→ (n, . . . , i)yi(i, . . . , 1) ui 7→ ui (2.16)

so this map is an isomorphism. �

Lemma 2.4. Under this isomorphism, the deformed Euler element eu of
the Cherednik algebra matches u1 + · · ·+ un + n/2.

Proof. This follows immediately from the fact that ui 7→ ui and the formula
for the deformed Euler element given in [12, §2.3.5]. �

Thus, considering the simultaneous eigenspaces of these operators gives
a finer decomposition of the Euler eigenspaces, which we will study in the
following section.

Remark 2.5. The map of commutator with eu is semi-simple on H, with all
eigenvalues in Z. Thus, this conjugation induces a Z-grading on H, which
is easy to describe in the presentation given above: the elements σ and τ
have degrees 1 and −1, respectively, and all other generators have degree
0; we leave the verification of this based on the relations (2.8–2.9m) to the
reader. Thus, in terms of diagrams, this grading measures the total winding
number around the cylinder.

Lemma 2.6. The elements ui, ti for i = 1, . . . , n generate a subring U of A
isomorphic to K[u1, . . . , un, t1, . . . , tn]/(t`1 − 1, . . . , t`n − 1).
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Proof. Obviously, the ti generate a copy of the the group ring on (Z/`Z)n.
The elements ui commute by (2.9h). Furthermore, their images in the asso-
ciated graded grH ∼= K[Γ]⊗K[x,y] are given by x1y1, . . . , xnyn. Since these
are algebraically independent over the group algebra, the ui are as well, and
so they generate a copy of the polynomial ring. �

The subring U has another special property:

Lemma 2.7. The subalgebra U ⊂ H is Harish-Chandra in the sense of [7,
§1.3], that is, for any a ∈ H, the bimodule UaU is finitely generated as a left
module or right module.

Proof. This is easily seen from the fact that for each fixed element of the
affine Weyl group, the diagrams tracing out affine permutations with all
possible decorations by dots and stars form a bimodule over U which is
finitely generated as a left or right module. Of course, every a ∈ H lies in one
of these submodules. This completes the proof, since U is Noetherian. �

Note that this presentation allows us to give a “strange” polynomial rep-
resentation of the Cherednik algebra on the ring U of polynomials over K in
the alphabets of variables U = {U1, . . . , Un} and T = {T1, . . . , Tn} modulo
the relations T `i = 1. As before, we define Ui, Ti for all i ∈ Z, by the formula
Ui = Ui−n − ~, Ti = ζTi−n. To distinguish between the polynomial repre-
sentation we wish to define and the action of Γ on polynomials induced by
its linear action, we use fσ to denote the image of f under the latter action
of σ ∈ Γ. The desired representation sends

ui · f(U; T) = Uif(U; T) (2.17)

ti · f(U; T) = Tif(U; T) (2.18)

ri · f(U; T) = f ri + k`
f (i,i+1) − f
Ui+1 − Ui

πi,i+1 (2.19)

σ · f(U; T) = (u1 − p(ζ−1t1) + ~)· (2.20)

f(U2, U3, . . . , Un, Un+1;T2, T3, . . . , Tn, Tn+1) (2.21)

τ · f(U; T) = f(U0, U1, . . . , Un−2, Un−1;T0, T1, . . . , Tn−2, Tn−1) (2.22)

where, as before, πi,i+1 is the k[U]-linear map that sends T z11 · · ·T znn 7→
δzi,zi+1T

z1
1 · · ·T znn . This is an extension to the whole Cherednik algebra of

the action by difference operators introduced by Kodera-Nakajima in [15,
Thm. 1.5].

This representation is generated by the constant function 1, subject to
the left ideal of relations generated by

(i, i+ 1) · 1 = τ · 1 = 1 σ · 1 = (u1 − p(ζ−1t1) + ~)

Note that if we transport structure from this representation to the Chered-
nik algebra H then the formulae for the action of xi and yi will be quite
complicated.
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Note also that the invariants of Γ acting on the ring U are simply the Sn-
invariant functions in the variables Ui (for the usual action or equivalently,
the dAHA action). Thus, the spherical Cherednik algebra eHe acts naturally
on these symmetric polynomials.

In the discussion above, we can think of the parameters as formal vari-
ables, in which case, we’ll obtain an action on U Γ ⊗Π, where

Π = k[s0, . . . , s`−1, k]S`

and si are as defined in (2.2).

3. Weighted KLR algebras

This presentation gives a concrete equivalence between a category of rep-
resentations of the Cherednik algebra, and representations of a weighted
KLR algebra, originally proven in [31]. In this section, we set ~ = −1 for
simplicity1, and assume that we have numerical parameters k, si ∈ k.

Definition 3.1. Let H -modu be the category of H-modules on which the
polynomial ring U acts locally finitely, with finite dimensional generalized
weight spaces. We call modules in this category Dunkl-Opdam modules.
In the terminology of [7], these are the “Harish-Chandra” modules for this
subalgebra.

By Lemma 2.4, any module where the Euler element eu acts with finite
dimensional generalized weight spaces lies in this category. In particular,
any module in the GGOR category O is a Dunkl-Opdam module.

Of course, for each pair a ∈ kn and z ∈ µ`(k)n, we have an exact gener-
alized weight space functor

Wa,z(M) = {m ∈M | (ui − ai)Nm = (ti − zi)Nm = 0 for N � 0}.

Consider the additive quotient group k/Z; for an element a ∈ k, we
let ā denote its coset in this quotient. We have a natural homomorphism
γ : µ` → k/Z sending ζm 7→ m

` (mod Z). Let Σ: k × µ`(k) → k/Z be the
homomorphism Σ(a, z) = ā

` + γ(z). Note that this is well-defined since the
characteristic of k is coprime to `.

Consider the length 0 element

ν · (a, z) = ((a0 = an + 1, a1, . . . , an−1), (z0 = ζzn, . . . , zn−1))

ν−1 · (a, z) = ((a2, a3, . . . , an+1 = a1 − 1), (z2, . . . , zn+1 = ζ−1z1)).

The relations (2.9i–2.9l) show that:

Lemma 3.2. The elements σ and τ induce natural transformations:

σ : W(a,z) →Wν·(a,z) τ : W(a,z) →Wν−1·(a,z).

1The reader may doubt the simplicity of this choice, but due to some other notational
choices, it really is for the best.
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Lemma 3.3. Let v ∈ Wa,z(M) be a weight vector that generates M . If for
some a′, z′ we have Wa′,z′(M) 6= 0 then after some permutation ρ ∈ Sn, we
have that Σ(ai, zi) = Σ(a′ρ·i, z

′
ρ·i).

Proof. This is readily confirmed from the relations (2.9i–2.9l). The (2.8)
shows that the action of Γ can only simultaneously permute a and z, and
Lemma 3.2 shows that Σ and τ act by simultaneous cyclic permutation of
Σ(ai, zi). �

Corollary 3.4. If M is an indecomposable H-module, and we have (a, z)
and (a′, z′) such that Wa,z(M) 6= 0 and Wa′,z′(M) 6= 0 then the multisets
{Σ(ai, zi)} and {Σ(a′i, z

′
i)} are equal.

In particular, we can naturally organize the structure of modules over H
by fixing which elements of k/Z can appear as Σ(ai, zi). Fix a subset D of

k/Z, and let D̃ = Σ−1(D).

Definition 3.5. Let H -modD be the subcategory of H -modu killed by the
functors Wa,z where (ai, zi) /∈ D̃ for some i.

We’ll see that the structure of this category depends in a subtle way on
the set D; we’ll need a fair amount of combinatorics below to capture this
structure. The most important aspect of it a quiver structure on D that
we’ll define below. We give D the structure of a quiver by adding an arrow
m→ m+k whenever both lie in D. Thus if k is a field of characteristic 0, if
k = a/e ∈ Q, then k/Z is an infinite union of e-cycles, whereas if k ∈ k \Q
then k/Z is a union of infinite linear quivers.

3.1. Characteristic 0. Assume that k is a field of characteristic 0, and
thus contains a canonically embedded copy of Q. Accordingly, k is a Q-
vector space, and using the axiom of choice, we can choose a Q-linear map
Υ: k → R which sends 1 7→ 1. Note that making this choice, we have
a divergence between two important cases: if k ∈ Q, then we must have
Υ(k) = k; on the other hand, if k /∈ Q, then Υ(k) can be chosen freely. For
example, in the latter case, we could without loss of generality assume that
Υ(k) = 0. Note that while our precise description of the attached weighted
KLR algebra will depend on the choice of Υ, this choice is purely auxilliary,
and changing it will result in two algebras which are isomorphic by [32, 2.15].

In this case, if k = a/e ∈ Q, then k/Z is an infinite union of e-cycles,
whereas if k ∈ k \ Q then k/Z is a union of infinite linear quivers. Let

si = si/` ∈ k/Z.
The category H -modD from Definition 3.5 has a natural description in

terms of weighted KLR algebras.

Definition 3.6. Let D∞ be the quiver D with an additional vertex∞ added,
and an arrow ∞ → si added for each i such that si ∈ D. This is what we
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often call a Crawley-Boevey quiver, after the observation by Crawley-
Boevey that the points in Nakajima’s quiver varieties can be seen as repre-
sentations of the doubling of this quiver, with a 1-dimensional vector space
at ∞.

Choose a real number ε such that 0 < ε � 1. Consider the weighting of
this quiver where each edge in D is weighted by Υ(k) and the new edge for si

by Υ(p(ζ
i)
` )− iε. Note that this means that two new edges connected to the

same vertex can never have the same weighting, since if Υ(p(ζ
i)
` ) = Υ(p(ζ

j)
` ),

then Υ(si − sj) = i−j
` /∈ Z.

Example 3.7. For example, if ` = 2, k = 2/3, and s0 = 0, s1 = 1/3 then we
have that k/Z breaks into 3-cycles

ā→ ā+
2

3
→ ā+

4

3
→ ā+ 2 = ā.

If D = {0̄, 1/3, 2/3}, then the Crawley-Boevey quiver is given by this 3-cycle

with edges from 0̄ and 1/3 to ∞. On the other hand, if D is disjoint from

{0̄, 1/3, 2/3}, then the Crawley-Boevey quiver adds no edges.
On the other hand, if k =

√
2 (assuming this root exists in k), then k/Z

will decompose into infinite chains · · · → ā−
√

2→ ā→ ā+
√

2→ · · · . Note
that k being an irrational algebraic number has no bearing on the structure
of the category; the only thing which is significant is its order as an element
of the group k/Z. Since Υ(k) = 0, this graph has trivial weighting.

The extra edges in the Crawley-Boevey quiver still attached to 0̄ and 1/3,
but these are now on different components.

3.2. Weighted KLR algebras. Consider the reduced weighted KLR
algebra RD attached to the quiver D∞ with its chosen weighting as defined
in [31, §4.1] (see also [32, §3.1]). Choose ε ∈ R to be smaller than |Υ(ai −
aj)|/n for any pair i and j with Υ(ai − aj) 6= 0.

Definition 3.8. We let a weighted KLR diagram be a collection of
curves in R × [0, 1] with each curve mapping diffeomorphically to [0, 1] via
the projection to the y-axis. Each curve is allowed to carry any number of
dots, and has a label that lies in D. We draw:

• a dashed line Υ(k) units to the right of each strand, which we call a
ghost,

• red lines at x = Υ(p(ζ
i)
` )− iε labeled with the fundamental weight for

si ∈ D.

We now require that there are no triple points or tangencies involving any
combination of strands, ghosts or red lines and no dots lie on crossings.
We consider these diagrams equivalent if they are related by an isotopy that
avoids these tangencies, double points and dots on crossings.
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The intersection of such a diagram with y = 0 or y = 1 gives a loading,
that is, a labeling of a finite subset of R with vertices of the quiver D. For
every pair of n-tuples a and z with Σ(ai, zi) ∈ D for all i, we can define
a loading e(a, z) as follows: we label the real number Υ(ai` ) + iε with the
element Σ(ai, zi) ∈ D.

Definition 3.9. Consider the algebra RD spanned by weighted KLR di-
agrams whose top and bottom both give loadings of the form e(a, z) with
Σ(ai, zi) ∈ D modulo the local relations

i j

=

i j

for i 6= j (3.1a)

i i

=

i i

+

i i i i

=

i i

+

i i

(3.1b)

i i

= 0 and

i j

=

ji

(3.1c)

i j

=

i j

for i+ k 6= j (3.1d)

i j

=

i j

for i+ k 6= j (3.1e)

i i+ k

=

i i+ k

−

i i+ k

+ h

i i+ k

(3.1f)
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i i+ k

=

i i+ k

−

i i+ k

+ h

i i+ k

(3.1g)

mi j

=

mi j

(3.1h)

i+ ki+ ki

=

i+ ki+ ki

−

i+ ki+ ki

(3.1i)

ii i+ k

=

ii i+ k

+

ii i+ k

.

(3.1j)

i i

=

ii

− zk

ii ji

=

i j

(3.1k)

ij m

=

ij m

+

ij m

δi,j,m
(3.1l)

= =

(3.1m)
For the relations ( 3.1m), we also include their mirror images.

This algebra is graded with

deg
i j

= −2δi,j deg
i j

= δj,i−k deg
i j

= δj,i+k
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deg
i

= 2 deg
i j

= δj,i deg
i j

= δj,i

and we’ll also consider the completion R̂D of this algebra with respect to its
grading.

We let e(a, z) denote the idempotent in RD or the completion R̂D given
by a diagram of vertical lines whose x-values are determined by the corre-
sponding loading.

It will often be technically more convenient for us to think of RD or R̂D
as a category whose objects are loadings and whose morphisms are elements
of RD matching the source loading at the bottom and target loading at the
top; this is the standard trick for considering a ring with set of idempotents
summing to the identity as a category, discussed in [16, §3.1].

Remark 3.10. As we’ve defined it, the algebra RD is infinite rank as a module
over K[y1, . . . , yn], since we consider the x-values of the strands at the top
and bottom of the diagram as fixed. However, if two loadings are related by
an isotopy (i.e. the straight line diagram relating them has no crossings),
they are equivalent objects in the category RD. This is equivalence of
loadings, as discussed in [32, Def. 2.9]. As in [32, Def. 2.13], we usually
take “weighted KLR algebra” to mean the algebra Morita equivalent to RD
where we keep only one loading from each equivalence class.

3.3. The isomorphism. We’ll now compare this KLR algebra with the
category of Dunkl-Opdam modules using the approach of Drozd-Futorny-
Ovsienko [7]. They introduce a category H whose objects are pairs (a, z) ∈
k
n × µ`(k)n, considered as maximal ideals m(a,z) ⊂ U. The morphisms in

this category are given by:

HomH((a, z), (a′, z′)) = lim−→H/(mN
(a′,z′)H + HmN

(a,z))

with the obvious composition by multiplication. As an inverse limit, this
Hom-space has a natural induced topology.

Theorem 3.11 ([7, Th. 17]). The category of Dunkl-Opdam modules is
equivalent to the representations of the category H which are continuous
in the discrete topology, via a functor sending the module M to the repre-
sentation (a, z) 7→Wa,z(M).

Note that this category has a “polynomial representation” induced by the
representation of H on U ; this sends

(a, z) 7→ lim−→U/m
N
(a,z)
∼= K[[U1 − a1, . . . , Un − an]].

This module does not have the discrete topology, and thus does not have a
corresponding Dunkl-Opdam module. Since the action of H on U is faithful,
the same is true of the action of H on the completions.
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Note that the extended affine Weyl group SnnZn acts on D̃n by permu-
tations and translations sending

(a, z) 7→ ((a1 +m1, . . . , an +mn), (ζm1z1, . . . , ζ
mnzn)).

Two pairs lie in the same orbit if and only if their images in D agree up
to permutation of the entries. For purposes of understanding this action,
it’s useful to extend a and z to arbitrary integers via ai = ai−n − 1, and
zi = zi−nζ

−1.
For two pairs (a, z) and (a′, z′) = w · (a, z) with w in the extended affine

Weyl group, we let ξ(a, z, w) be the straight-line diagram connecting these
loadings.

It’s worth noting how these diagrams look for various values of a, z and
w. If w = rm, then this straight line diagram ξ(a, z, rm) moves the strand
corresponding to (am, zm) to the right by ε and that for (am+1, zm+1) to the
left. This will result in a diagram which is the same up to isotopy, unless:

(1) If Υ(am) = Υ(am+1), then the resulting strands will cross.
(2) If Υ(am− k`) = Υ(am+1) then the the mth strand crosses the ghost

of the m+ 1st strand moving rightward.
(3) If Υ(am + k`) = Υ(am+1) then the m+ 1st strand crosses the ghost

of the mth strand moving leftward.

The diagram ξ(a, z, ν) moves each strand ε steps to the left, except that
corresponding to an, which moves 1 − (n − 1)ε steps to the right; not that
this ensures that this strand does not cross any strands with the same label,
nor the ghost of any with adjacent labels. Similarly, ξ(a, z, ν−1) pushes all
strands ε units to the right, except that for a1, which moves 1 − (n − 1)ε
units to the left. Unlike diagrams coming from elements of Sn, these can
create red and black crossings.

Let
θm = (um − um+1)rm − k`πm,m+1. (3.2)

Lemma 3.12. There is a fully faithful functor

Ξ: R̂D → H. (3.3)

such that Ξ sends the loading e(a, z) to the object (a, z). On morphisms, the
dot yme(a, z) on the strand corresponding to (am, zm) is sent to

Ξ(yme(a, z)) = (um − am)e(a, z), (3.4)

and we have that Ξ(ξ(a, z, rm)) = e(a, z)rm if zm 6= zm+1 and if zm = zm+1,
then

Ξ(ξ(a, z, rm)) =


e(a, z) 1

um−um+1−k`θm am − k` 6= am+1 6= am

e(a, z)θm am − k` = am+1 6= am

e(a, z) 1
um+1−um+k`(rm − 1) am − k` 6= am+1 = am

e(a, z)(1− rm) am − k` = am+1 = am.

(3.5)
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Furthermore,

Ξ(ξ(a, z, ν)) =

{
σ an = p(zn)

σ 1
un−p(zn) an 6= p(zn)

Ξ(ξ(a, z, ν−1)) = τ.

(3.6)

In the formulas above, we have used that if f is a n-variable polynomial
such that f(a1, . . . , an) 6= 0, then f(u1, . . . , un)e(a, z) can be inverted, using
the geometric series.

Proof. First, note that the space e(a′, z′) ·RD ·e(a, z) has a basis over poly-
nomials in the dots which is in bijection with the elements of the extended
affine Weyl group sending (a, z) to (a′, z′). Writing a reduced expression of
this element, times a power of the length 0 rotation shows how to write this
basis vector (modulo those corresponding to shorter elements of the Weyl
group) as a product of straight-line diagrams. More precisely, we see that

R̂D is generated over the dots by the diagrams ξ(a, z, rm) and ξ(a, z, ν±).
We will thus define Ξ by describing the images of these elements. The

algebra RD has a polynomial representation of the weighted KLR algebra in-
troduced in [32, Prop. 2.7]; in the categorical framework, we can think of this
as a functor that sends each loading to the polynomial ring K[Y1, . . . , Yn].

After completion, we obtain an action of R̂D that sends each loading to
K[[Y1, . . . , Yn]]. We’ll compare polynomial representations by using the iso-
morphism of this ring to K[[U1−a1, . . . , Un−an]] which sends Yi 7→ Ui−ai.

Note first that this is compatible with (3.4).
In order to calculate the images of ξ(a, z, rm) and ξ(a, z, ν±), note that the

action of θm and rm − 1 in the polynomial representation can be described
as:

θm · f = (um − um+1 − k`πm,m+1)f rm

(rm − 1) · f =
um − um+1 − k`πm,m+1

um − um+1
(f rm − f)

The formulas of (3.5) show that:

Ξ(ξ(a, z, rm)) · fe(a′, z′)

=


f rme(a, z) am − k` 6= am+1 6= am

(um − um+1 − k`)f rme(a, z) am − k` = am+1 6= am
frm−f

um+1−um e(a, z) am − k` 6= am+1 = am

(f − f rm)e(a, z) am − k` = am+1 = am.

The four cases in (3.5) correspond to:

(1) There are only crossings in the diagram ξ that act trivially on the
polynomial representation.

(2) There is a ghost crossing in ξ corresponding to an arrow

Σ(am+1, zm+1)→ Σ(am, zm)
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in D, where the strand moves left to right.
(3) There is a crossing of strands with the same label Σ(am, zm) =

Σ(am+1, zm+1), but no ghost crossing.
(4) There is both a strand and a ghost crossing, corresponding to a loop

at Σ(am, zm) = Σ(am+1, zm+1).

Thus, these match the formulae of [32, Prop. 2.7].
In the case of ξ(a, z, ν±), this same correspondence is easily confirmed.

The straight line diagram ξ(a, z, ν):

• only has a ghost crossing with an adjacent label if Υ(an) > Υ(am −
k`) > Υ(an) + 1 for some m, which is impossible if an and am lie in
the same component of D (since then they would differ by a multiple
of k`), and
• only has a red/black crossing if Υ(an) ≤ Υ(p(zn)) < Υ(an) + 1,

but this red/black crossing only has an interesting action if an =
p(zn). Note that in this case, if zn = ζm, we have that the label on
the corresponding strand is Σ(an, zn) = sm, so this gives the node
labeling the corresponding red line.

Thus, by the formulae of [32, Prop. 2.7], we have that ξ(a, z, ν±) acts by
the identity unless p(zn) = an, in which case it acts by the identity times a
dot on the strand corresponding to (an, zn). This matches the action of the
elements on the RHS of (3.6) under the action (2.20).

A similar analysis shows that under the representation of [32, Prop. 2.7],
the diagram ξ(a, z, ν−1) always acts by the identity. This matches with
(2.22), completing the proof.

This shows that we have a functor RD → H, which we wish to show is fully
faithful after completion. First note that Ξ intertwines the grading topology
with that onH on the subalgebras K[y1, . . . , yn]. Since e(a′, z′)·RD ·e(a, z) is
finitely generated as a right module over K[y1, . . . , yn], the grading topology
on this space is the same as that induced by any finite set of generators over
K[y1, . . . , yn]; similarly, each Hom space in H is finitely generated as a right
module over the suitable completion of U, and thus has a similar description
of its topology. This shows that Ξ induces a continuous functor RD → H,
which thus extends to the completion.

This functor must be injective on RD, since the polynomial representation
remains faithful after completion by [29, Lem. 2.5]. On the other hand, we
can easily show that generating morphisms of the categoryH lie in the image
by inverting the formulas (3.4–3.6). �

Let R̂D -modfd be the category of modules over the algebra R̂D such that
e(a, z)M is finite dimensional for all (a, z); if, as in Remark 3.10, we replace

R̂D by the Morita equivalent algebra where we take one loading from each
equivalence class, these are genuinely finite-dimensional modules. Note that
these are precisely the finite-dimensional representations of RD on which
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the dots act nilpotently. Combining Theorem 3.11 and Lemma 3.12, we find
that:

Theorem 3.13. The functor W : H -modD → R̂D -modfd sending M 7→
⊕a,zWa,z(M) is an equivalence.

3.4. Category O. For a fixed choice of parameters k, si ∈ k, we let

D = {si +mk | m ∈ [−n, n]} ⊂ k/Z.

This is a union of finite linear quivers if k /∈ Q or n is small; it is a union
of e-cycles if k = a/e in reduced form, and n > e/2. Taking the limit as
n → ∞, we just obtain the set {si +mk | m ∈ Z}, which is a union of
infinity linear quivers (A∞) or of e-cycles.

The category H -modD has a natural subcategory O+ consisting of finitely
generated modules on which xi acts nilpotently, considered by [11]; we can
equally well consider O−, where yi acts nilpotently, which is the Ringel dual
of O+ by [11, 4.11]. In [31, Th. A], this category is related to a quotient of
the weighted KLR algebra: the steadied quotient. We’ll only be interested
in a special case of this notion (which in general depends on a choice of
stability condition).

Definition 3.14. We’ll say that a loading is unsteady (for the positive

stability condition) if there exists a real number δ ≥ Υ(p(ζ
i)
` ) such that a

non-empty set of points in the loading have x-value > δ + |Υ(k)|, and all
others have x-value ≤ δ.

There is also a negative stability condition where all signs above are re-

versed: we have δ ≤ Υ(p(ζ
i)
` ), a non-empty set of points have x-value

< δ − |Υ(k)|, and all others have x-value ≥ δ.

The quotient of RD by the two-sided ideal generated by the idempotents
e(a, z) which correspond to unsteady loadings (for one stability condition)
is called the steadied quotient; we denote these by RD(±) for the posi-
tive/negative stability condition.

Note that these algebras have a number of desirable properties: they are
cellular and highest weight (since new edges connected to the same vertex
in D always have different weightings) by [31, Th. B].

Theorem 3.15. The functor W induces an equivalence O± ∼= RD(±) -mod.

Proof. Since the proof is the same in both cases, we consider the case
of O−. The pair (a, z) corresponds to an unsteady loading if and only if
there exists I ⊂ [1, n] and a real number δ ≤ Υ(−si) for all i such that
Υ(ai) < δ − |Υ(k)| if i ∈ I and Υ(ai) ≥ δ if i /∈ I. Note that permuting
an element of I past one in [1, n] \ I gives an isomorphism between the
corresponding weight functors, so without loss of generality, we can assume
that I = [1, q]. Similarly, we have an isomorphism of Wa,z

∼= Wag ,z where
ag = (a1−g`, . . . , aq−g`, aq+1, . . . , an), since the corresponding loadings are
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connected by a crossingless diagram. If N ∈ O, then N must be killed by
Wag ,z for g � 0, since the Euler eigenvalues of N are bounded below. Thus,
W(N) is killed by e(a, z) for any unsteady loading, and thus the action on
it factors through the steadied quotient.

On the other hand, any pair (a, z) with
∑

Υ(aj) sufficiently negative
must be unsteady, since if a strand is more than n|Υ(k)| left of a red line, it
must be destabilizing. Thus, if the action on M factors through the steadied
quotient, then h(M) has Euler eigenvalues which are bounded below. Since
h(M) is finitely generated, and the action of eu is locally finite, this shows
that h(M) lies in category O. �

Perhaps a few remarks are called for about the match of this result with
[31, Thm. 4.7]. Theorem 3.15 is more general, since it does not assume that
k = C. To recover [31, Thm. 4.7], we consider the case where Υ: C→ R is
given by taking real part.

This theorem allows us to recover in an interesting way the classification
of modules in category O. The best known version of this classification is
due to Ginzburg, Guay, Opdam and Rouqiuer:

Theorem 3.16 ([11, Prop. 2.11]). For every simple module S in category
O−, the subspace U of elements with minimal weight under eu is an irre-
ducible module over G(`, 1, n) and this describes a bijection between simples
in O and over G(`, 1, n).

Of course, simple modules over G(`, 1, n) are indexed by `-multipartitions
with n total boxes, and the corresponding module over G(`, 1, n) has a basis
indexed by standard tableaux on the corresponding Young diagram. Since
there are several notions of standard tableau on a multi-partition, let us
clarify that we just mean a filling with [1, n] which increases in rows and
columns.

This construction is carried out in the style of Vershik and Okounkov [22]
in work of Pushkarev [23] and Ogievetsky and Poulain d’Andecy [21]. These
papers show that, in particular,the subalgebra generated by ti (denoted
ji in [21]) and the Jucys-Murphy elements (denoted j̃i in loc. cit.) has
simple spectrum, with elements in the spectrum in canonical bijection with
standard tableaux as discussed above.

In [21, Prop. 11], they define a representation Vξ of kΓ with a basis vS
for tableaux S of shape ξ, if the entry c is in the ith row and jth column
of the mth component, then tc acts by the scalar ζm, and (c, c+ 1) acts by
switching c and c+ 1 if these are in different components, and by the Young
normal form if they are in the same component. These are a complete list
of the irreps.

The most important tool in this construction is the algebra they denote
A`,n in [21, §3]. This is simply our algebra DOn under an isomorphism

x̃m 7→
1

k`
um xm 7→ tm s̄i 7→ (i, i+ 1).
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In loc. cit., the algebra kΓ is written as a quotient of DOn by setting u1 = 0,
but this is not the correct map to use for the elements of minimal eu-weight
in a module.

Of course, DOn acts on the subspace U , and does so via a quotient map
to kΓ, but not this most obvious one. Since τ acts by 0 on U , the product
στ = u1 − p(ζ−1t1) − 1 does as well. Thus, we have unique surjective
homomorphism η : DOn → kΓ splitting the usual inclusion and killing the
2-sided ideal generated by u1 − p(ζ−1t1) − 1. In particular, if we have a
weight (a, z) that appears in Vξ with z1 = ζm for m ∈ [0, ` − 1], then
a1 = p(ζm−1) + 1.

Making small changes in arguments of [21, §4], we can see that the weights
of Vξ correspond to the tableaux S of shape ξ as follows:

Lemma 3.17. If the entry c is in the ith row and jth column of the mth
component, then uc and tc act in the vector vS by the scalars ac = p(ζm−1)+
1 + k`(j − i) and zc = ζm.

All of these weights will give isomorphic idempotents e(a, z) in RD, which
match the loading iξ introduced in [31, Def. 2.11]; of course, we can see
directly from the cellular structure of [31, Th. B] that these must be the
lowest weights, showing the compatibility with the GGOR perspective.

Finally, we turn to considering the KZ functor of O±. This functor has
a categorical interpretation: it is represented by the sum of all self-dual
projectives, with multiplicities given by the dimensions of simple modules
over Hecke algebras at roots of unity. The functors Wa,z are also represented
by projectives and thus it is natural to try to express the KZ functor in terms
of them.

Choose a fixed lift ϕ : D → k, where Σ(ϕ(d), 1) = d. Choose an integer

N � max
i∈[1,`]
d∈D

(|Υ(p(ζi)|, |Υ(k)|, |Υ(ϕ(d))|).

For each n-tuple d = (d1, . . . , dn) ∈ Dn, let

a±d = (ϕ(d1)∓N,ϕ(d2)∓ 2N, . . . , ϕ(dn)∓ nN) 1 = (1, . . . , 1).

Theorem 3.18. The functor KZ on O± is isomorphic to the sum
⊕
d∈Dn

Wa±d ,1
.

Proof. As before, the argument is identical for the two different signs, and
so we consider O−. We need only show that there is an isomorphism between
the representing projectives. For d ∈ DN , we can define a loading which
places a dot with label dm at x = mN . Let es,n ∈ RD(−) be the sum
of the idempotents for these loadings. From the isomorphisms of Theorems
3.13 and 3.15, we know that ⊕d∈DnWa−d ,1

corresponds to the projective over

RD(−) given by RD(−)es,N . The isomorphism [31, Thm. 4.5] sends this to
the idempotent eDs,N

in the notation of [31, Sec. 2.5], which [31, Thm. 3.9]
shows corresponds to the KZ functor. �



Representation theory via the Dunkl-Opdam subalgebra 1037

The endomorphisms of the functor ⊕d∈DnWa±d ,1
are isomorphic to the

cyclotomic KLR algebra with n strands corresponding to the highest weight∑`
i=1 ωsi . Previous work of Brundan and Kleshchev [6] has constructed an

isomorphism of these to the cyclotomic Hecke algebras which naturally act
by monodromy on KZ.

3.5. The classification of Dunkl-Opdam modules. The equivalence of
Theorem 3.13 allows us to classify all simple Dunkl-Opdam modules over H,
not just those in category O±.

For a general Dunkl-Opdam module, of course, there is no maximal or
minimal weight under eu. Instead, we must look for some other patterns
within the weights.

A charged segment is a g-tuple (for some g ≤ n) of elements q =
(q1, . . . , qg) of k/Z, which satisfy qi+1 − qi = k. We’ll use lifted segment
to mean a similar g-tuple a in k satisfying ai+1 − ai = k` Choose a large
negative integer P � 0, and let Λ(q1, . . . , qg) for a charged segment be the
unique lifted segment (a1, . . . , ag) of elements of k such that Σ(ai, zi) = qi,
ai+1 − ai = k`, zi+1 = zi, and Υ(a1) is minimized subject to P ≤ Υ(ai);
this means that P ≤ Υ(a1) < P + 1 if Υ(k) ≥ 0 and P ≤ Υ(ag) < P + 1 if
Υ(k) ≤ 0. A charged multisegment is an m-tuple of charged segments. The
size of a multisegment is the sum of the lengths of the segments.

As usual, we can associate to any lifted segment a and z ∈ µ`(k), a 1-
dimensional representation of the algebra DOg by letting Sg act trivially, the
elements ti act by the scalar z and ui act by the scalar ai; to a charged seg-
ment q, we associate the 1-dimensional representation for the distinguished
lift Λ(q1, . . . , qg).

Note that by the usual theory of modules over degenerate affine Hecke
algebras, based on work of Zelevinsky [35] and refined further by Suzuki [27],
we can associate a simple DOg module L(Q) to any multisegment Q of size
g by inducing up the tensor product of the 1-dimensional modules attached
to segments ordered, and taking the unique simple quotient. Note that we
have to be careful about the order of lifted segments; if two lifted segments
with the same z of the form (a, a+ k`, . . . ) and (a− hk`, a− (h− 1)k`, . . . )
with h ∈ Z>0 appear, they must be in this order in the induction.

Let

DOg,n−g = DOg ⊗DOn−g ⊂ DOn
be the subalgebra generated by ti, ui for all i ∈ [1, n] and the Young subgroup
Sg×Sn−g. Given a multisegment Q of size g and an `-multipartition ξ of size
n− g, we have a DOg,n−g module L(Q)⊗ Vξ by taking outer tensor of these
modules, where Vξ has the DOn−g module structure via the homomorphism
η discussed in the previous section.

We can construct a module over Hn by considering

M(Q, ξ) = Hn ⊗DOg,n−g (L(Q)⊗ Vξ).
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Note that that this definition depends on the choice of P . We assume from
now on that P < Υ(p(ζm))− 2n|Υ(k`)|.

Lemma 3.19. Every simple Dunkl-Opdam module S is a quotient ofM(Q, ξ)
for some Q, ξ.

Proof. For simplicity, we’ll assume throughout the proof that Υ(k) ≥ 0.
By assumption, we have that Wa,z(S) 6= 0 for some (a, z). We claim

that we can choose (a, z) so that Υ(ai) > P for all i. We’ll prove this by
induction on the sum Π of the quantity P −Υ(ai)+1 over the indices i such
that Υ(ai) ≤ P . Obviously, this is 0 if and only if Υ(ai) > P for all i.

Consider the equivalence relation on the indices [1, n] obtained by tran-
sitive closure of the relation that i ∼ j if we have that ai = aj ± k` and
zi = zj . Note that we have |Υ(ai) − Υ(aj)| ≤ n|Υ(k`)| for any i ∼ j. We
will use several times the fact that

(∗) if two consecutive indices satisfy i 6∼ i + 1, then θm : W(a,z)(S) →
Wsi·(a,z)(S) is an isomorphism, so we can reorder these without
changing whether the weight space is non-zero.

Let i be the index that minimizes Υ(ai). If for any i, we have that Υ(ai) ≤ P ,
then we have Υ(aj) < Υ(p(ζm)) for all j ∼ i and all m. If we let j be the
largest index such that j ∼ i, then by (∗) we can assume that j = n without
loss of generality. In this case, have that Υ(an) < Υ(p(ζm)) for all m, so
σ induces an isomorphism Wa,z(S) ∼= Wν·(a,z)(S). The weight ν · (a, z) has
strictly fewer indices in the equivalence class of i, so we can reduce to the
case where i = n.

In this case, (a′, z′) = ν · (a, z) has almost all indices the same, but
a′1 = an + 1, so either Π has dropped by exactly 1, or we have strictly fewer
indices Υ(ai) ≤ P , in which case Π drops by at least 1.

Thus, after performing this operation finitely many times, we must have
Π drop to 0. Thus, we can assume that Υ(ai) > P for all i.

Now assume that (a, z) minimizes
∑

Υ(ai) amongst weights satisfying
this condition; that is, we minimize the eigenvalue of eu on this weight
space. Consider the intertwiner τ : Wa,z(S)→Wν−1·(a,z)(S). Since the latter
weight space has lower Euler eigenvalue, either we must have Υ(a1)−1 ≤ P ,
or this map is 0; the latter can only happen if a1 = p(ζm−1) + 1, z1 = ζm

for some m, since στ = u1 − p(ζ−1t1) − 1 must act by 0. That is, we must
have exactly one of the options:

(1) a1 = p(ζm−1) + 1, z1 = ζm

(2) P < Υ(a1)− 1 ≤ P + 1

Using (∗) again, we see the same is true of any index i such that i is not
equivalent to any lower index.

Thus, as before, we can decompose the indices [1, n] according the equiv-
alence relation ∼, and the lowest index in every equivalence class satisfies
exactly one of (1) or (2). This in turn breaks the indices into two classes
which we call types (1’) and (2’): either they are greater than or less than
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P + n|Υ(k`)|. All elements of an equivalence class containing an element
satisfying (1) will necessarily be of type (1’), and those containing an ele-
ment satisfying (2) will necessarily be of type (2’). The fact (∗) shows that
we can assume that [1, g] consists of indices of type (1’) and [g+1, n] of type
(2’).

Now, we consider the module over DOn generated by Wa,z, and consider
any simple K DOn-submodule of this space; WLOG, we can assume this has
non-trivial intersection with Wa,z. Let K ′ be the subspace in K given by
the sum of all weight spaces such that [1, g] consists of indices of type (1’)
and [g + 1, n] of type (2’); by assumption, this is a non-trivial module over
DOg,n−g. We have an obvious map DOn ⊗DOg,n−g K

′ → K, and applying
(∗) shows that this is an isomorphism. In particular K ′ must be a simple
DOg,n−g-module, and thus K ′ ∼= L⊗V for L a simple DOg-module and V a
DOn−g-module.

First, we claim that L = L(Q) for some Q. The module L corresponds to
some lifted multisegment; let a be first entry in one of these lifted segments
which maximizes Υ(a). By assumption Υ(a) > P . We can assume that
a+hk` does not appear as the first entry in one of these lifted segments for
all h ∈ Z>0. Thus, the subspace K ′ contains a weight with a1 = a; applying
τ maps to a weight space with lower Euler eigenvalue, and is an isomorphism
since the index a is of type (1’). This is only possible if Υ(a) ≤ P + 1, so
the same is true of the initial element of each segment. This shows that L
has the form L(Q).

Now, assume g < n. Using (∗) again, we can also write K = DOn⊗DOn−g,g

(V ⊗L); the fact that τ acts trivially on any vector in V ⊗L in this embedding
shows that V is killed by u1 − p(ζ−1t1) − 1, and thus must be of the form
Vξ with ξ having n− g boxes.

Thus, the inclusion of DOg,n−g-modules L(Q) ⊗ Vξ → S induces the de-
sired surjection. �

Let cξ be the eigenvalue of eu ∈ DOn−g acting on Vξ.

Definition 3.20. Let ∆(Q, ξ) be the quotient of M(Q, ξ) by the image of
any map from M(Q′, ξ′) with Q′ of greater size than Q or cξ′ < cξ.

Remark 3.21. If Q = ∅, then we can easily check that these are the Verma
modules in category O. We should take pains here to emphasize that in
general, these are not the standard modules of a quasi-hereditary structure
on Dunkl-Opdam modules; consideration of the special case n = 1 shows
there is no such structure. However, these are the proper standards of a
standardly stratified structure one can easily derive from the approach of
[30, §5.4].

In particular, if we just subtract ` from P and all elements of Q, then the
module ∆(Q, ξ) will be unchanged.



1040 BEN WEBSTER

Theorem 3.22. For fixed P � 0, every simple Dunkl-Opdam module S is
the unique simple quotient of ∆(Q, ξ) for a unique Q and ξ.

Proof. Consider a simple Dunkl-Opdam module S. By Lemma 3.19, we
have that S is a quotient of some M(Q, ξ), and we can choose (Q, ξ) with ξ
having a minimal number of boxes, and cξ minimal amongst the possible ξ
with the minimal number of boxes.

In this case, S is a quotient of M(Q, ξ) but not of any of the M(Q′, ξ′)
whose images we kill to get ∆(Q, ξ). Thus, the map to M(Q, ξ)→ S must
factor through ∆ = ∆(Q, ξ).

Now we must show that ∆ is unique, and has a unique simple quotient.
Let (a, z) be a weight space in J = L(Q)⊗ Vξ. Then for any weight (a′, z′)
satisfying Υ(a′i) > P , if we let {w1, . . . , wk} be the finite set of elements of

Ŵ such that wp · (a, z) = (a′, z′), then Wa′,z′(∆) is spanned by dkv for dk a
sequence of intertwining operators tracing out wk (or equivalently, Ξ applied
to the weighted KLR diagram ξ(a, z, wk)) and v ∈Wa′,z′(∆)∩ J . Note that
all intermediate steps of these interwining operators pass through (a′′, z′′)
with

P < min
i

(Υ(a′i),Υ(ai)) ≤ Υ(a′′k) ≤ max
i

(Υ(a′i),Υ(ai)).

Now, assume that
∑
ai =

∑
a′i, that is, that these have the same Euler

eigenvalue. If wk is not in Sn, then we can arrange this sequence of inter-
twiners so that a τ appears before a σ using the relations (2.9b,2.9c,2.9m).
Thus, this sequence factors through a weight space with lower Euler eigen-
value that still satisfies Υ(a′′i ) > P for all i. By assumption, this weight
space is zero.

That is, we must have

Wa′,z′(∆) ⊂ DOn · J = J.

This shows that J is uniquely characterized as the sum of the weight spaces
in ∆ which minimize eu among those with Υ(ai) > P . Since this space is
a simple DOn-module, any submodule N of ∆ with N ∩ J 6= 0 must have
J ⊂ N and so N = ∆. That is, N is proper if and only if N ∩ J = 0; as
usual, this implies that the sum of all proper submodules is proper and ∆
has a unique simple quotient.

On the other hand, this also show that (Q, ξ) can be reconstructed from
this simple quotient by considering the DOn action on the sum of the weight
spaces in ∆ which minimize eu among those with Υ(ai) > P . �

It’s worth noting the similarity of this result to that for the trigonometric
Cherednik algebra (also known as degenerate double affine Hecke algebra) by
Suzuki [28, Cor. 8.3]; if we replace the equations (2.9f,2.9g) by στ = τσ = 1,
then one can check that we get a slight variation on the usual presentation
of the trigonometric Cherednik algebra, and our result reduces to Suzuki’s.
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3.6. Positive characteristic. Lemma 3.12 fails as stated if k is a field
of characteristic p; its very statement uses the existence of Q-linear maps
k → R. However, the functor W and the general strategy of computing
its endomorphisms remain valid. The result is quite interesting because of
its relationship to the coherent sheaves on the degree n Hilbert scheme of
C2/(Z/`Z). More precisely, consider the case where k = Fp for p - `, and D is
the (finite) set of all pairs possible in this field; let Cohpun(Hilbn(C2/(Z/`Z)))
be the category of coherent sheaves on the Hilbert scheme supported on a
formal neighborhood of the punctual Hilbert scheme. In the case of ` = 1,
this is a well-established result of Bezrukavnikov, Finkelberg and Ginzburg:

Proposition 3.23 ([1, Thms. 1.3.2 & 1.4.1]). For p� 0 and k generic, we
have that

Db(H -modD) ∼= Db(Cohpun(Hilbn(C2))).

This result is extended to ` > 1 in [2].
We’ll discuss the computation of End(W) in a more general context in

future work [34], where we can give more detailed context; the combina-
torial description of this endomorphism algebra is a cylindrical version of
the KLR algebra which has not yet been introduced in the literature. This
modified KLR algebra is actually a more useful object for algebraic geome-
ters than the Cherednik algebra, since even in characteristic 0, it appears as
the endomorphisms of a tilting bundle on the Hilbert scheme, and thus can
describe all coherent sheaves, not just those set-theoretically supported on
the punctual Hilbert scheme.

This also fits into a more general context about Coulomb branches (as
discussed in Section 4) in characteristic p, which we do not have the space
to develop here.

4. Coulomb branches

The isomorphism of Theorem 2.3 makes it easy to see the relationship
between the cyclotomic Cherednik algebra and quantum Coulomb branches.
Consider the GLn representation V = gln ⊕ (Cn)⊕`, and consider the BFN
space

X =
{

(g(t), v(t)) ∈ GLn((t))×GLn[[t]] V [[t]] | g(t) · v(t) ∈ V [[t]]
}

as discussed in [20, 5]. For an action of GLN on any space, we will use the
term equivariant parameters to mean the equivariant Chern classes of
the trivial bundle with fiber CN . The BFN space has:

(1) an action of C∗ by loop rotation with equivariant parameter `~;
(2) an obvious action of GLn[[t]]; we will identify the Chern classes of the

tautological bundle for this action with the elementary symmetric
polynomials ei(U), and thus the Chern roots with Ui;

(3) an action of GL` on the multiplicity space of Cn; we will identify the
Chern roots of the tautological bundle with −si + `~;
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(4) an action of C∗ by scalar multiplication on gln with equivariant pa-
rameter k.

All of these actions commute. We let G be the product of the first two, and
H the product of the last two. Consider the G×H-equivariant Borel-Moore
homology A = HG×H

∗ (X); this algebra is the quantum Coulomb branch of
the gauge theory attached to V .

This algebra acts naturally on the G×H-equivariant homology of V [[t]],
which is the same as that of a point, that is, a polynomial ring over k in the
equivariant parameters ~, ei(U), ei(s), k.

Theorem 4.1. There is an isomorphism of eHe with the quantum Coulomb
branch A. This isomorphism is induced by the isomorphism U Γ ⊗ Π ∼=
H∗G×H(∗) discussed above.

In [3], the commutative Coulomb branch of the corresponding gauge the-
ory is described as the cone Symn(C2/(Z/`Z)); by the uniqueness of quan-
tizations shown by Losev [17, 19], we must have that A is isomorphic to
eHe, which is a well-known quantization of this variety. However, having a
concrete understanding of this isomorphism is of course, more useful, and
more revealing about the structure of both algebras. Since a proof of this
result was recently given by Kodera-Nakajima [15], we will only sketch the
isomorphism below. However, we believe it is of some independent interest,
since this isomorphism is quite straightforward given the isomorphism of
Theorem 2.3.

Let us prove a slightly stronger (but none the less easier) version of this
theorem. The BFN space can be replaced by its Iwahori analogue. Let
I = {g(t) ∈ GLn[[t]] | g(0) ∈ B} be the standard Iwahori corresponding to
the standard Borel B of upper triangular invertible matrices. This analogue
is defined by:

I = {v(0) ∈ b⊕ (Cn)⊕` | v(t) ∈ V [[t]]}
X′ = {(g(t), v(t)) ∈ GLn((t))×I I | g(t) · v(t) ∈ I},

and the quantum Coulomb branch can be replaced by its Iwahori version
A′ = HI×C∗

∗ (X′); see [4, §4] for a more detailed discussion of this variety.
Similarly, we can replace eHe by e′He′ where

e′ =
1

`n

∑
i∈(Z/`Z)n

ti11 · · · t
in
n

is just the idempotent symmetrizing for the action of A = (Z/`Z)n. More
generally, for any character η of the group A, we have an idempotent

eη =
1

`n

∑
i∈(Z/`Z)n

η(t−i11 · · · t−inn )ti11 · · · t
in
n (4.1)

the idempotent of the group algebra C[A] projecting to this isotypic compo-
nent. We let Eη = eη ·1 ∈ U and E′ = E1; this is effectively the same sum as
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(4.1), but with the substitution ti 7→ Ti. Since U ∼= C[U1, . . . , Un]⊗C C[A],
we have that

U =
⊕
η

C[U1, . . . , Un]Eη.

Thus, both algebras A′ and e′He′ act naturally on U A ∼= H∗I×C∗(∗), iden-
tifying the variables Ui with the Euler classes of the tautological line bundles
on the classifying space of I.

Lemma 4.2. There is an isomorphism of e′He′ with the flag quantum
Coulomb branch A′. This isomorphism is induced by the obvious isomor-
phism e′U = U A ∼= H∗I×C∗(∗).

This extension is also proven by Braverman-Etingof-Finkelberg [4, §4.2]
with a similar proof.

Proof. In both cases, we have a copy of polynomial multiplication, given
by the e′ui in e′He′ and the Chern classes of tautological bundles in A′. We
also have copies of Sn which act as in dAHA. In A′, this is given by the
pullback of the action of Sn on the Springer sheaf. Finally, the shift element
e′y`−1

n τe′ agrees with the shift correspondence

Xτ = {(V•, V ′• | Vi = V ′i+1}

and e′x`−1
1 σe′ agrees with the correspondence

Xσ = {(V•, V ′• | Vi = V ′i−1}

To see that these act the same way, we need only check their commutation
with ui, as in (2.9i–2.9j), and that they act correctly on the unit. The
commutation is clear, since the shift correspondence simply reindexes the
tautological line bundles.

The element e′y`−1
n τe′ and [Xτ ] both send E′ to E′. We claim that the

element e′x`−1
1 σe′ sends E′ to

(U1 + ~− p(ζ−1)) · · · (U1 + (`− 1)~− p(ζ))(U1 + `~− p(1))E′

= (U1 − s`−1 + `~) · · · (U1 − s1 + `~)E′. (4.2)

In order to do this computation, we have to leave U A, and consider ele-
ments of U transforming over another character η : A → C∗. Consider the
character ηi(tj) = ζδij ; note that eηηixi = xieη.

Recall that x1 = συ−1
1 . Note that

υ−1
1 t1 = tnυ

−1
1 υ−1

1 u1 = unυ
−1
1 + a (4.3)

where a is a diagram given by permutations of length < n − 1. Thus com-
bining (4.3) with (2.9i) and (2.9k), if we have a polynomial f(u1, t1), then

x1 · f(U1, T1)eη = f(U1 + ~, ζ−1T1)(U1 + ~− p(ζ−1))Eηiη + (1− eηiη) · a′(f)

for a correction term a′(f).
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Now, let us apply this to the proof of (4.2). First, note that σ · E′ =
(U1 + ~− p(ζ−1))Eη1 . Thus, we have that:

e′x`−1
1 σ · E′ = e′x`−1

1 · (U1 + ~− p(ζ−1))Eηi

= e′x`−2
1 · (U1 + 2~− p(ζ−2))(U1 + ~− p(ζ−1))Eη2i

+

e′x`−2
1 (1− eη2i ) · a′(u1 + ~− p(ζ−1))

Since e′x`−2
1 (1 − eη2i

) = 0, this correction term vanishes. Applying this

inductively, we find that

e′x`−1
1 σE′ = e′x`−2

1 · (U1 + 2~− p(ζ−2))(U1 + ~− p(ζ−1))Eη2i

= e′x`−3
1 · (U1+3~− p(ζ−3)(U1+2~− p(ζ−2))(U1+~− p(ζ−1))Eη3i

...

= (U1 + ~− p(ζ−1)) · · · (U1 + (`− 1)~− p(ζ))(U1 + `~− p(1))E′

This shows equation (4.2).
On the other hand, [Xσ] · 1 is the class of the subspace of flags such that

ρ · v(t) ∈ V [[t]] where

ρ =


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

t−1 0 0 · · · 0

 .
The obstruction to this is the constant term of the first component of v(t).
This is a section of ` copies of the tautological bundle on the affine Grass-
mannian, which transform according to the standard representation of GL`,
and trivially with respect to the loop C∗. Thus, [Xσ]·1 is just the Euler class
of this bundle, which agrees with (4.2) by the convention we have chosen for
Chern roots. This completes the proof that we have a map e′He′ → A′.

We note that X′ has a cell decomposition pulling back the Schubert de-
composition, and this map hits the fundamental class of each cell. Using the
shift elements constructed above, we see that the map from e′He′ hits the
classes of Schubert cells for all simple reflections. Multiplying the classes
of the simple reflections in the reduced decomposition of an element of the
Weyl group hits the class of the corresponding Schubert cell, plus those of
shorter length, by a standard argument (see, for example, [26, Lemma 3.13]).
Thus, the map is surjective, and the proof is completed. �
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