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On analytic arcs of inner functions

Wen-Hui Ai, Xin-Han Dong* and Yue-Ping Jiang

Abstract. Let I = (eiα, eiβ) be an analytic arc of the infinite Blaschke
product B(z). We find some equivalent conditions under which the

argument of B(eiα
+

) or B(eiβ
−

) is finite. As an application, we classify
the analytic arcs of inner functions into four types.
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1. Introduction

An inner function Θ(z) is a function analytic in |z| < 1, having the proper-
ties |Θ(z)| ≤ 1 and |Θ(eiθ)| = 1 a.e. By the canonical factorization theorem
(see [Du70, p.24]), an inner function can be factorized into the product of a
(finite or infinite) Blaschke product and a singular inner function

S(z) = exp

{
−
∫ 2π

0

eit + z

eit − z
dµs(t)

}
, (1)

where µs is a singular positive measure on [0, 2π]. Recall that a sequence
of points {ak}∞k=1 in the unit disk D = {z ∈ C : |z| < 1} is said to satisfy
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the Blaschke condition if
∑

k(1− |ak|2) <∞. For a given sequence {ak}∞k=1
obeying the Blaschke condition, the infinite Blaschke product is defined by

B(z) =

∞∏
k=1

b(z, ak), where b(z, ak) =
|ak|
ak

ak − z
1− akz

. (2)

Here we use the interpretation that |ak|ak
= 1 if ak = 0.

In recent years, there have been many articles on the study of the group
of invariants of inner functions (see [CaC00, CaG07, BaG09, ChGP12]).
Since an inner function Θ(z) is undefined at its singular points on ∂D, they
interpret this as meaning that Θ(z) maps singular points to singular points
and regular points to regular points. Hence the singular points of an inner
function have special positions. These singular points are also closely related
to the Cantor boundary behavior of analytic functions (CBB), which can be
seen in [DoLL13].

In this paper, we want to study the analytic arcs of inner functions in more
detail. Following [ChGP12], the spectrum σ(Θ) is the complement of the set
of points p ∈ ∂D such that Θ has an analytic extension into a neighborhood
of p. Indeed, let E be the cluster set of {ak}∞k=1, σ(Θ) = E ∪ suppµs. If
σ(Θ) 6= ∂D, let

∂D \ σ(Θ) = ∪jIj (3)

be the decomposition as connected components, where

Ij = (eiαj , eiβj ) = {eiθ : αj < θ < βj}
with 0 ≤ αj < βj ≤ 2π. It is easy to see that Θ(z) is analytic in the domain

Ω := C \ (σ(Θ) ∪ { 1

ak
, k ≥ 1}).

Since Ij ⊂ Ω, we say that Ij is an analytic arc of Θ(z).
In [CaG07], the authors discuss the group of invariants of infinite Blaschke

products with a single singular point. One of their results is as follows.

Theorem A. [CaG07, Theorem 4] Suppose that the Blaschke sequence
{ak}∞k=1 converges to eiθ0. Then there are infinitely many arcs

Γn = {z = eiθ : θ0 + αn−1 ≤ θ < θ0 + αn},
with

n ∈ Z, α−n = −αn, 0 = α0 < α1 < · · · , lim
n→∞

αn = π,

which are mapped by the corresponding Blaschke product continuously and
injectively on the unit circle. There is a continuous passage from every one
of these mappings to the next one.

The theorem above means that for any w ∈ ∂D, if E = {eiθ0}, then

#(B−1(w) ∩ (ei(θ0−ε), eiθ0)) =∞, #(B−1(w) ∩ (eiθ0 , ei(θ0+ε))) =∞, (4)
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where # denotes the cardinality and ε > 0. In [BaG09, Theorem 2.1], the
authors extend E = {eiθ0} in Theorem A to general Cantor subsets of ∂D.

However, [CaG07, Theorem 4] and [BaG09, Theorem 2.1] are inaccurate.
In fact, we can construct an infinite Blaschke product (Example 5.1) such
that one equality in (4) is finite. More generally, let I = (eiα, eiβ) be an
analytic arc of the infinite Blaschke product B(z), we find some necessary
and sufficient conditions under which one equality in (4) is finite. Before
giving the theorem, let us make some notations. Denote{

∆α,δ = {an}∞n=1 ∩ {z : α ≤ arg z ≤ α+ δ},
∆α,−δ = {an}∞n=1 ∩ {z : α− δ ≤ arg z ≤ α} (5)

for small δ > 0 and

ϕ(α±) := lim
θ→α±

argB(eiθ), (6)

where the argument of B(z) is defined in Section 2.

Theorem 1.1. Let I = (eiα, eiβ) be an analytic arc of the infinite Blaschke
product B(z). Then the following statements are equivalent:

(i) ϕ(α+) is finite.
(ii) limθ→α+ B(eiθ) = L and |L| = 1.
(iii) For any w ∈ ∂D, there exists ε > 0 such that

#(B−1(w) ∩ (eiα, ei(α+ε))) <∞.

(iv) B(eiα) converges absolutely, namely,

∞∑
n=1

1− |an|
|an − eiα|

<∞,

and #∆α,δ <∞ for any δ > 0.

In other words, let I = (eiα, eiβ), 0 ≤ α < β < 2π, be an analytic arc
of the infinite Blaschke product B(z), then ϕ(α+) and ϕ(β−) can be both
finite, both infinite or only one finite. However, if eiθ0 is an isolated point
of the cluster set E, we have following corollary.

Corollary 1.2. Let B(z) be the infinite Blaschke product with zero set
{ak}∞k=1. Let E be the cluster set of {ak}∞k=1. If eiθ0 ∈ E be an isolated

point of E, then at least one of ϕ(θ+
0 ) and ϕ(θ−0 ) is infinite. In particular,

if the analytic arc I = (eiα, eiβ) satisfies β − α = 2π, then at least one of
ϕ(α+) and ϕ(β−) is infinite.

The main part of our Theorem 1.1 appears in Choike [Ch73, Theorem 3],
but the proof there is much more complicated and difficult to understand.
Therefore, we give a new but an elementary proof. What’s more, the paper
[Ch73] classifies the singular points of an inner function into three types
[Ch73, Theorem 1]. This classification was also presented in [ChGP12, Def-
inition 3.1] (see our Definition 4.1). In their definition, one question is not
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clear. If the limit limθ→θ−0
Θ(eiθ) does not exist, the classification is incom-

plete. In fact, the statement (iii) in our Theorem 1.1 means that there are

finitely many solutions of B(ξ) = w in (eiα, ei(α+ε)). Inspired by this, we
obtain following theorem.

Theorem 1.3. Let Θ(z) be an inner function with spectrum σ(Θ) and eiθ0 ∈
σ(Θ). If there exists λ ∈ ∂D such that there are finitely many solutions of

Θ(ξ) = λ in (ei(θ0−ε), eiθ0), then we have

(i) there exists ε0 ∈ (0, ε] such that Θ(z) is analytic in (ei(θ0−ε0), eiθ0);
(ii) limθ→θ−0

Θ(eiθ) = L and |L| = 1.

Hence, the classifications in both [Ch73] and [ChGP12] are complete. At
the same time, we get a new classification of analytic arcs (Corollary 4.5)
which is also complete and equivalent to the classification in [ChGP12, Def-
inition 3.2]. As a consequence of Theorem 1.3, we have following corollary.

Corollary 1.4. Let Θ(z) be an inner function. For λ1, λ2 ∈ ∂D, if there are

only finitely many solutions of Θ(ξ) = λ1 in (ei(θ0−ε), eiθ0) and Θ(ξ) = λ2

in (eiθ0 , ei(θ0+ε)), then Θ(z) is analytic at eiθ0.

This paper is organized as follows. Section 1 is the introduction and
our main results. In Section 2, we present some preparatory materials.
In Section 3, we discuss the endpoints of analytic arcs of infinite Blaschke
products and prove Theorem 1.1 and Corollary 1.2. In Section 4, we find the
classification of analytic arcs of inner functions in [ChGP12] is complete and
give the proofs of Theorem 1.3 and some corollaries. At last, we construct
some interesting examples to support our theorems in Section 5.

2. Preliminaries

2.1. Absolute convergence. Following [Ta63, p.410-411], we say that

B(z) =

∞∏
n=1

b(z, an) =

∞∏
n=1

(1 + c(z, an))

converges absolutely at eiθ if

∞∑
n=1

|c(eiθ, an)| <∞.

Note that

c(z, an) = b(z, an)− 1 =
1− |an|
|an|

− 1− |an|2

|an|(1− anz)
,

and thus

|c(eiθ, an)| ≤ 1− |an|
|eiθ − an|

1 + |an|
|an|

+
1− |an|
|an|

.
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Combining with the Blaschke condition and some detailed analysis, we ob-
tain that B(eiθ) converges absolutely if and only if

∞∑
n=1

1− |an|
|eiθ − an|

<∞. (7)

On the other hand, let (arg b(z, an))0 denote the principal argument of
b(z, an) which will be discussed later. If we write

c(eiαj , an) = b(eiαj , an)− 1 = ei(arg b(eiαj ,an))0 − 1,

a routine computation gives rise to the following inequality

2

π

∣∣(arg b(eiαj , an))0

∣∣ ≤ ∣∣c(eiαj , an)
∣∣

= 2

∣∣∣∣sin 1

2
(arg b(eiαj , an))0

∣∣∣∣
≤
∣∣(arg b(eiαj , an))0

∣∣ .
This shows that B(eiαj ) converges absolutely if and only if

∞∑
n=1

|(arg b(eiαj , an))0| <∞. (8)

2.2. The argument of B(z). Let an = ρne
iϕn with ρn ∈ (0, 1), ϕn ∈

[0, 2π). It is easy to check that

b(eiθ, an) =
2ρn − (1 + ρ2

n) cos(θ − ϕn)− i(1− ρ2
n) sin(θ − ϕn)

|1− ρnei(θ−ϕn)|2
.

For simplicity, denote

∆n(θ) = 2ρn − (1 + ρ2
n) cos(θ − ϕn),

and

Qn(θ) = arctan
−(1− ρ2

n) sin(θ − ϕn)

∆n(θ)
.

For θ ∈ [αj , αj+1], the principal value branch of arg b(eiθ, an) is defined as

(arg b(eiθ, an))0 =


Qn(θ) if ∆n(θ) > 0,
−π2 sgn(sin(θ − ϕn)) if ∆n(θ) = 0,
π +Qn(θ) if ∆n(θ) < 0, sin(θ − ϕn) ≤ 0,
−π +Qn(θ) if ∆n(θ) < 0, sin(θ − ϕn) > 0.

(9)

Let I = (eiα, eiβ) be an analytic arc of B(z). There exists a simply
connected domain D such that I ⊂ D ⊂ Ω and B(z) 6= 0,∞ for z ∈ D.
Hence, there is a single-valued analytic branch of logB(z) in D (see [Be79,
p.202]), so is log b(z, an). Without loss of generality, for fixed τ0 ∈ (α, β), let
τ0 = α+ 1

6(β−α). Because of the fact that B(z) =
∏∞
n=1 b(z, an) is analytic
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for z ∈ I, we can choose the initial values log b(eiτ0 , an) and logB(eiτ0)
satisfying

logB(eiτ0) :=

∞∑
n=1

log b(eiτ0 , an), or (argB(eiτ0))0 :=

∞∑
n=1

(arg b(eiτ0 , an))0. (10)

Lemma 2.1. Let I = (eiα, eiβ) be an analytic arc of the infinite Blaschke
product B(z). For fixed τ0 ∈ (α, β), let (argB(eiτ0))0 be defined by (10),
then argB(eiθ) can be obtained from

argB(eiθ) = (argB(eiτ0))0 +
∞∑
n=1

∫ θ

τ0

1− |an|2

|an − eix|2
dx, θ ∈ (α, β).

Besides, ϕ(α+) is finite if and only if

∞∑
n=1

∫ τ0

α

1− |an|2

|an − eix|2
dx <∞.

Proof. First, let us prove the series in (10) is convergent. Choose a small
η > 0 satisfying τ0 ∈ (α+η, β−η). It is clear that there exists N0 such that

an 6∈ {z : α+
1

2
η ≤ arg z ≤ β − 1

2
η}

for n ≥ N0. This yields that there exists N1 > N0 such that for n ≥ N1,

∆n(θ) ≥ 2ρn − (1 + ρ2
n) cos

1

2
η ≥ 1− cos

1

2
η > 0, θ ∈ [α+ η, β − η].

Hence

|(arg b(eiθ, an))0| = | arctan
(1− ρ2

n) sin(θ − ϕn)

∆n(θ)
| ≤ C(1− ρn), n ≥ N1,

which ensures that
∞∑
n=1

(arg b(eiθ, an))0

converges uniformly on [α + η, β − η]. In particular, the series in (10) is
convergent.

Let γz0,z ⊂ D be a simple curve with starting point z0 = eiτ0 and end point
z. The value of logB(z) is decided by continuous change of logB(ξ) when
ξ changes from z0 to z along γz0,z and so is log b(z, an). Since

d

dξ

( ∞∑
n=1

log b(ξ, an)

)
=
∞∑
n=1

b′(ξ, an)

b(ξ, an)

is a single-valued analytic function in D, we can define

logB(z) := logB(z0) +

∫
γz0,z

∞∑
n=1

b′(ξ, an)

b(ξ, an)
dξ. (11)
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If we choose γz0,z = {eit : t ∈ [τ0, θ]} or γz0,z = {eit : t ∈ [θ, τ0]}, we can
obtain

logB(eiθ) = logB(eiτ0) + i
∞∑
n=1

∫ θ

τ0

1− |an|2

|an − eix|2
dx,

that is,

argB(eiθ) = argB(eiτ0) +
∞∑
n=1

∫ θ

τ0

1− |an|2

|an − eix|2
dx, (12)

arg b(eiθ, an) = (arg b(eiτ0 , an))0 +

∫ θ

τ0

1− |an|2

|an − eix|2
dx. (13)

The contents in the above show that the series in (12) converges uniformly
on each compact subset of (α, β). We now prove that arg b(eiθ, an) in (13)
is consistent with (arg b(eiθ, an))0 for large n. For θ ∈ [α+ η, β − η], we can
find n ≥ N0 such that

an 6∈
{
z : α+

1

2
η ≤ arg z ≤ β − 1

2
η

}
.

By the Blaschke condition, there exists M > 0 such that

∞∑
n=1

1− |an|2

|eiθ − an|2
≤

N0∑
n=1

1− |an|2

|eiθ − an|2
+ C

∞∑
N0+1

(1− |an|2) ≤M.

This along with (12)-(13) shows that

∞∑
n=1

∣∣∣arg b(eiθ, an)
∣∣∣ ≤ ∞∑

n=1

∣∣(arg b(eiτ0 , an))0

∣∣+M |θ − τ0| <∞.

Hence arg b(eiθ, an) converges uniformly to 0 on [α + η, β − η] as n → ∞.
Consequently, argB(eiθ) is strictly increasing on (α, β).

Hence ϕ(α+) and ϕ(β−) both exist (may be infinite). Our theorem then
follows from (12). �

3. The end-points of analytic arcs

In this section, we will prove Theorem 1.1 and Corollary 1.2.
Let an = ρne

iϕn with ρn ∈ (0, 1), ϕn ∈ [0, 2π). For simplicity, we always
use c1, c2, · · · to express absolute constants. If I = (eiα, eiβ) is an analytic
arc of the infinite Blaschke product B(z), let

Jn =

∫ τ0

α

1− |an|2

|an − eix|2
dx, τ0 ∈ (α, β). (14)
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Besides, we classify the zero set {an}∞n=1 into four categories:
Λ1 = {an}∞n=1 ∩ {z : α < arg z ≤ α+ δ},
Λ2 = {an}∞n=1 ∩ {z : arg z = α},
Λ3 = {an}∞n=1 ∩ {z : α− δ ≤ arg z < α},
Λ4 = {an}∞n=1 \ (∪3

i=1Λi),

(15)

where δ ∈ (0, (β − α)/6) is small. From Lemma 2.1, in order to prove
Theorem 1.1, we need to prove that the condition

∞∑
n=1

Jn =

4∑
i=1

∑
an∈Λi

Jn <∞

is equivalent to the conditions

#∆α,δ <∞,
∞∑
n=1

1− |an|
|an − eiα|

<∞.

For x 6= ϕn, note that

1− |an|2

|an − eix|2
=

1 + ρn
1− ρn

(
1−ρn

sin x−ϕn
2

)2

(
1−ρn

sin x−ϕn
2

)2

+ 4ρn

.

Changing the variable of integration by letting

z(x) =
1− ρn

sin x−ϕn
2

,

we get

Jn =

∫ z(τ0)

z(α)

2(1 + ρn)z dz

(z2 + 4ρn)
√
z2 − (1− ρn)2

. (16)

Since the case x = ϕn is trivial, we just need to estimate (16). Now, let’s
prove some lemmas.

Lemma 3.1. If #Λ1 = ∞, then there exists an absolute constant c > 0
such that∣∣∣∣Jn − (1 + ρn)(π − arctan

1− ρn
2 sin 1

2 (ϕn − α)
)

∣∣∣∣ ≤ c(1− ρn), an = ρne
iϕn ∈ Λ1.

Furthermore,
∑

an∈Λ1
Jn <∞ if and only if #Λ1 <∞.

Proof. For an ∈ Λ1, we have α < ϕn < τ0 and

z(α) =
1− ρn

sin α−ϕn
2

< 0.
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Let us calculate (16) further.

Jn =

∫ ∞
−z(α)

+

∫ ∞
z(τ0)

2(1 + ρn)z dz

(z2 + 4ρn)
√
z2 − (1− ρn)2

= (1 + ρn)

(
π − arctan

−z(α)

2
− arctan

z(τ0)

2

)
(17)

+ 2(1 + ρn)

∫ ∞
−z(α)

+

∫ ∞
z(τ0)

δn(z) dz,

where

δn(z) =
z

4ρn + z2

1√
z2 − (1− ρn)2

− 1

4 + z2
.

After a careful calculation, we can get

0 < δn(z) ≤
c1(1− ρn)

{
z4 + z2 + (1− ρn)

}
(1 + z2)3

√
z2 − (1− ρn)2

(
z +

√
z2 − (1− ρn)2

) .
If 0 < −z(α) < 1, then

1

1− ρn

∫ ∞
−z(α)

δn(z) dz

≤ c4

(
1 + log

ρn
2− ρn

1 + sin 1
2(ϕn − α)

1− sin 1
2(ϕn − α)

)
+ T1

≤ c5, (18)

where

0 < T1 =
1

1− ρn

∫ ∞
1

δn(z) dz ≤ c2

and ϕn → α as n→∞. In the same way,

1

1− ρn

∫ ∞
z(τ0)

δn(z) dz ≤ c6

(
1 + log

1 + sin 1
2(τ0 − ϕn)

1− sin 1
2(τ0 − ϕn)

)
+ T1 ≤ c7. (19)

By (17)-(19), for ρne
iϕn ∈ Λ1, we obtain

0 < Jn − (1 + ρn)

(
π − arctan

−z(α)

2
− arctan

z(τ0)

2

)
≤ c8(1− ρn).

The lemma now follows from

0 < arctan
z(τ0)

2
≤ c9(1− ρn).

�

Lemma 3.2. If #Λ2 = ∞, then there exists an absolute constant c > 0
such that ∣∣∣Jn − (1 + ρn)

π

2

∣∣∣ ≤ c(1− ρn), an = ρne
iϕn ∈ Λ2.

Furthermore,
∑

an∈Λ2
Jn <∞ if and only if #Λ2 <∞.
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Proof. For an ∈ Λ2, we have ϕn = α < τ0. Then

Jn =

∫ ∞
z(τ0)

2(1 + ρn)z dz

(z2 + 4ρn)
√
z2 − (1− ρn)2

.

From the proof of Lemma 3.1, we have

0 <

∫ ∞
z(τ0)

δn(z)dz ≤ c13(1− ρn).

Since

0 < arctan
z(τ0)

2
≤ c9(1− ρn),

we complete the proof. �

Lemma 3.3. If #Λ3 = ∞, then there exists an absolute constant c > 0
such that∣∣∣∣Jn − (1 + ρn)| arctan

1− ρn
2 sin 1

2 (α− ϕn)
|
∣∣∣∣ ≤ c(1− ρn), an = ρne

iϕn ∈ Λ3. (20)

Furthermore,
∑

an∈Λ3
Jn <∞ if and only if∑

an∈Λ3

1− ρn
|an − eiα|

<∞.

Proof. Without lose of generality, suppose that α = 0. As ϕn ∈ [0, 2π), if
an ∈ Λ3, we have

ψn := ϕn − 2π ∈ [−π
3
, 0)

and
1− ρn

sin x−ψn
2

= z(x+ 2π).

Consequently,

Jn =

∫ z(α+2π)

z(τ0+2π)

2(1 + ρn)z dz

(z2 + 4ρn)
√
z2 − (1− ρn)2

= (1 + ρn)

(
arctan

z(α+ 2π)

2
− arctan

z(τ0 + 2π)

2

)
+ 2(1 + ρn)

∫ z(α+2π)

z(τ0+2π)
δn(z) dz.

Similar to the calculation in (18) and (19), we can obtain that

1

1− ρn

∫ z(α+2π)

z(τ0+2π)
δn(z) dz ≤ c11.

The inequality (20) follows from that∣∣∣∣arctan
z(τ0 + 2π)

2

∣∣∣∣ ≤ c12(1− ρn)
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and

arctan
z(α+ 2π)

2
= − arctan

z(α)

2
> 0.

By the Blaschke condition and (20), we get
∑

an∈Λ3
Jn <∞ if and only if∑

an∈Λ3

∣∣∣∣arctan
z(α)

2

∣∣∣∣ <∞,
which is equivalent to

∑
an∈Λ3

|z(α)| < ∞. After some manipulations, we
can get

∑
an∈Λ3

Jn <∞ if and only if∑
an∈Λ3

1− ρn
|an − eiα|

=
∑
an∈Λ3

|z(α)|√
z(α)2 + 4ρn

<∞,

as ρn → 1 (n→∞). The proof is complete. �

For an ∈ Λ4, there exists ε > 0 such that |an − eiα| > ε. It is easy to get
following lemma.

Lemma 3.4. Let
Λ4 = {an}∞n=1 \

{
∪3
i=1Λi

}
.

Then ∑
an∈Λ4

Jn <∞,
∑
an∈Λ4

1− |an|
|an − eiα|

<∞.

With the help of the preceding four lemmas we can now prove Theorem
1.1 and Corollary 1.2.

Proof of Theorem 1.1. It is obvious that (i) ⇔ (ii). Note that B(z)
is continuous on the analytic arc I = (eiα, eiβ) and argB(eiθ) increases
monotonously on (α, β), it is easy to see that (i) ⇔ (iii). The equivalence
(ii)⇔ (iv) appears in [Ch73, Theorem 3], where they proved that

lim
θ→α+

B(eiθ) = L(|L| = 1)

if and only if
∞∑
n=1

1− |an|
|an − eiα|

<∞

and there are no zeros {ak} in the region

4 = {z : 1− ε < |z| < 1, α < arg z < α+ δ},
where the positive numbers δ and ε are small. Our theorem is a supplement
to their result.

Let us now prove that (i)⇔ (iv).
(i)⇒ (iv). Assume that ϕ(α+) is finite. By Lemma 2.1, we have

∞∑
n=1

Jn =

4∑
i=1

∑
an∈Λi

Jn <∞.
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Note that ∆α,δ = Λ1 ∪ Λ2. It follows from Lemma 3.1 and Lemma 3.2 that
#∆α,δ <∞. Combining with Lemma 3.3 and 3.4, we have

∞∑
n=1

1− |an|
|an − eiα|

=

 ∑
an∈∆α,δ

+
∑
an∈Λ3

+
∑
an∈Λ4

 1− |an|
|an − eiα|

<∞,

i.e., B(eiα) converges absolutely (by (7)).
(iv) ⇒ (i). Conversely, assume that B(eiα) converges absolutely and

#∆α,δ <∞. By (7), we have

∞∑
n=1

1− |an|
|an − eiα|

<∞.

Then Lemma 3.3 implies that
∑

an∈Λ3
Jn < ∞. Since ∆α,δ = Λ1 ∪ Λ2, it

follows from Lemma 3.1, Lemma 3.2 and Lemma 3.4 that∑
an∈Λ1∪Λ2∪Λ4

Jn <∞.

Hence
∞∑
n=1

Jn =
4∑
i=1

∑
an∈Λi

Jn <∞.

Lemma 2.1 shows that ϕ(α+) is finite.
In fact, similar to (i) ⇔ (iv), we can get ϕ(β−) is finite if and only if

B(eiβ) converges absolutely and #∆β,−δ <∞. �

Proof of Corollary 1.2. By using reduction to absurdity, we can get Corol-
lary 1.2 immediately. Suppose that the limits ϕ(θ+

0 ) and ϕ(θ−0 ) are both
finite, since eiθ0 ∈ E is an isolated point of E, then by Theorem 1.1, we have
#(Λ1 ∪ Λ2 ∪ Λ3) < ∞. This is a contradiction to the fact that eiθ0 is an
accumulation point of {ak}∞k=1. �

4. The classification of analytic arcs

In [ChGP12], for inner functions Θ(z) with finite spectrum, the authors
classify analytic arcs of Θ(z) into four types and the endpoints of analytic
arcs are classified into three types. For convenience of the reader, we present
the classification of the endpoints of analytic arcs.

Definition 4.1. [ChGP12, Definition 3.1] Let Θ(z) be an inner function
with finite spectrum. Let ξ0 = eiθ0 ∈ σ(Θ). We say that

(i) ξ0 is of type 1a,L if for ε > 0 sufficiently small, there are infinitely
many solutions of Θ(ξ) = 1 in the open interval (i.e., arc of the

circle) (eiθ0 , ei(θ0+ε)), finitely many solutions in (ei(θ0−ε), eiθ0), and
limθ→θ−0

Θ(eiθ) = L.
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(ii) ξ0 is of type 1b,L if for ε > 0 sufficiently small, there are infin-

itely many solutions of Θ(ξ) = 1 in the open interval (ei(θ0−ε), eiθ0),

finitely many solutions in (eiθ0 , ei(θ0+ε)), and limθ→θ+0
Θ(eiθ) = L.

(iii) ξ0 is of type 2 if for all ε > 0 there are infinitely many solutions to

Θ(ξ) = 1 in both of the intervals (ei(θ0−ε), eiθ0) and (eiθ0 , ei(θ0+ε)).

In their classification, one question is not clear: Is there any connection
between the condition that there are finitely many solutions of Θ(ξ) = 1

in (ei(θ0−ε), eiθ0) and the condition that limθ→θ−0
Θ(eiθ) = L? We find

that if there are finitely many solutions of Θ(ξ) = 1 in (ei(θ0−ε), eiθ0) then
limθ→θ−0

Θ(eiθ) = L and |L| = 1 (refer to Theorem 1.3). Hence, the classifi-

cation in [ChGP12] is complete.

Proof of Theorem 1.3. Since there are finitely many solutions of Θ(ξ) =

λ, we can take ε0 ∈ (0, ε] such that Θ(ξ) 6= λ in (ei(θ0−ε0), eiθ0). The
Mobius transformation ξ = L(w) = λ+w

λ−w maps Dw onto the right-half plane

such that L(λ) = ∞. Hence ξ = L(Θ(z)) is analytic with positive real
part in D. It follows from Theorem 2.4 in [Po75, p.40] that there exists an
increasing function ν(t) on [0, 2π] such that

L(Θ(z)) =
1

2π

∫ 2π

0

eit + z

eit − z
dν(t) + iγ,

where γ is a real constant. In particular,

u(r, θ) = ReL(Θ(reiθ)) =
1

2π

∫ 2π

0

1− r2

1 + r2 − 2r cos(θ − t)
dν(t).

We claim that ν(t) is absolutely continuous on (θ0 − ε0, θ0).
1). First, let’s prove ν(t) is continuous on (θ0 − ε0, θ0) by contradiction.

Let t0 ∈ (θ0−ε0, θ0) be a point of discontinuity, then by the lemma in [Lo52,
p.244], we have limr→1− u(r, t0) = +∞. Hence Θ(eit0) = limr→1− Θ(reit0) =
λ, it is a contradiction.

2). If ν(t) is continuous but not absolutely continuous on (θ0 − ε0, θ0),
it follows from [Sa64, p.128] that ν(t) has an infinite derivative on a non-
enumerable set of (θ0−ε0, θ0). Take t0 ∈ (θ0−ε0, θ0) be such a point. Similar
to the proof of Theorem 1.2 in [Du70, p.4], we can prove limr→1− u(r, t0) =
+∞, hence Θ(eit0) = λ, a contradiction.

Thus, ν(t) has to be absolutely continuous on (θ0 − ε0, θ0). Hence

ν(x2)− ν(x1) =

∫ x2

x1

ν ′(t)dt, x1, x2 ∈ (θ0 − ε0, θ0). (21)

Since |Θ(eiθ)| = 1 a.e. on [0, 2π], we have limr→1− u(r, θ) = 0 almost every-
where on [0, 2π]. On the other hand, by Theorem 1.2 in [Du70, p.4], if ν ′(θ)
exists, then limr→1− u(r, θ) = ν ′(θ). Hence ν ′(t) = 0 almost everywhere on
[0, 2π], since ν ′(t) exists almost everywhere on [0, 2π]. By (21), we have
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ν(t) ≡ c for t ∈ (θ0 − ε0, θ0) (for plane measure, see [DoL03, p.72]). Then
ν ′(t) ≡ 0 for t ∈ (θ0 − ε0, θ0), which yields

λ+ Θ(z)

λ−Θ(z)
=

1

2π

∫ θ0−ε0

0
+

∫ 2π

θ0

eit + z

eit − z
dν(t) + iγ. (22)

Thus Θ(z) is analytic in (ei(θ0−ε0), eiθ0), and (i) follows.

Choose a simply connected domain D such that (ei(θ0−ε0), eiθ0) ⊂ D, and

Θ(z) is analytic in D. Let Θ(eiθ) = eiφ(θ), where φ(θ0 − 1
2ε0) ∈ [0, 2π),

and the value of φ(θ) is decided by continuous change of arg Θ(ξ) when ξ

changes from z0 = ei(θ0−
1
2
ε0) to z = eiθ along the simple curve γz0,z ⊂ D.

Let λ = eiα 6= eiφ(θ) for θ ∈ (θ0 − ε0, θ0), from (22), we have

cot
φ(θ)− α

2
=

1

2π

∫ θ0−ε0

0
+

∫ 2π

θ0

cot
θ − t

2
dν(t) + γ.

Hence φ(θ) = arg Θ(eiθ) is strictly increasing on (θ0−ε0, θ0). Note that φ(θ)
is continuous and that φ(θ) 6= 2kπ + α in (θ0 − ε0, θ0) for any k ∈ Z, there
exists k0 such that α + 2k0π < φ(θ) < α + 2(k0 + 1)π for θ ∈ (θ0 − ε0, θ0).
These show the limit limθ→θ−0

φ(θ) is finite, and (ii) follows. �

Proof of Corollary 1.4. Let the inner function Θ(z) = B(z)S(z). Recall
that we say Θ(z) is analytic at eiθ0 if eiθ0 6∈ σ(S) and(

ei(θ0−ε0), ei(θ0+ε0)
)
∩ E = ∅

for small ε0 > 0.
By Theorem 1.3, Θ(z) is analytic in (ei(θ0−ε0), ei(θ0+ε0)) except for the

point eiθ0 and limθ→θ0 arg Θ(eiθ) is finite. Since arg Θ(eiθ), argB(eiθ) and
argS(eiθ) increase monotonously on (θ0−ε0, θ0) and (θ0, θ0 +ε0) separately,
we obtain that limθ→θ0 argB(eiθ) and limθ→θ0 argS(eiθ) are finite. Combin-
ing with Corollary 1.2, we have(

ei(θ0−ε0), ei(θ0+ε0)
)
∩ E = ∅.

Because S(z) is analytic in(
ei(θ0−ε0), ei(θ0+ε0)

)
\ {eiθ0},

we have µs(t) ≡ c1 for t ∈ (θ0 − ε0, θ0) and µs(t) ≡ c2 for t ∈ (θ0, θ0 + ε0).
Hence

− logS(z) =

(∫ θ0−ε0

0
+

∫ 2π

θ0+ε0

)
eit + z

eit − z
dµs(t)+

(
µs(θ

+
0 )− µs(θ−0 )

) eiθ0 + z

eiθ0 − z
.

As limθ→θ0 argS(eiθ) is finite, we have µs(θ
+
0 ) − µs(θ

−
0 ) = 0. Therefore,

µs(t) ≡ c for |t− θ0| < ε0 and eiθ0 6∈ σ(S). �

Contrary to Corollary 1.4, we can get following corollaries immediately.
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Corollary 4.2. Let B(z) be a Blaschke product with the property that the
cluster set of {ak}∞k=1 is the whole circle ∂D. For λ ∈ ∂D we have

#
(
B−1(λ) ∩ (eia, eib)

)
=∞

for any arc (eia, eib) ⊂ ∂D with 0 ≤ a < b < 2π.

Corollary 4.3. Let Θ(z) be an inner function. If σ(Θ) ∩ (eia, eib) 6= ∅ for
any (a, b) ⊂ [0, 2π), then #(Θ−1(λ) ∩ (eia, eib)) =∞ for any λ ∈ ∂D.

Let ∆θ0,δ,∆θ0,−δ be defined in (5). Combining with Theorem 1.1, Theo-
rem 1.3 and Corollary 1.4, we get following corollary.

Corollary 4.4. Let Θ(z) be an inner function with finitely many singulari-
ties and let eiθ0 be a singularity. If #∆θ0,δ =∞ and #∆θ0,−δ =∞ for small

δ > 0, then by the classification in Definition 4.1, eiθ0 is of type 2.

Therefore, we can classify analytic arcs of the inner function Θ(z) into
four types as follows. This classification is complete and equivalent to the
classification in [ChGP12, Definition 3.2].

Corollary 4.5. Let B be the Blaschke product whose sequence of zeros is
{ak}∞k=1 and let Θ(z) = BS be an inner function. An interval (eiα, eiβ)
whose endpoints are consecutive accumulation points of {ak}∞k=1

(i) is of type 0 if and only if both B(eiα) and B(eiβ) converges absolutely
and #∆α,δ, #∆β,−δ <∞;

(ii) is of type 1a if and only if the following conditions hold simulta-
neously: (1) B(eiα) does not converge absolutely or #∆α,δ = ∞,

(2) B(eiβ) converges absolutely and #∆β,−δ <∞;
(iii) is of type 1b if and only if the following conditions hold simultane-

ously: (1) B(eiα) converges absolutely and #∆α,δ < ∞, (2) B(eiβ)
does not converge absolutely or #∆β,−δ =∞;

(iv) is of type 2 if and only if the following conditions hold simultaneously:
(1) B(eiα) does not converge absolutely or #∆α,δ = ∞, (2) B(eiβ)
does not converge absolutely or #∆β,−δ =∞.

5. Examples

In this section, we construct an infinite Blaschke product such that one
equality in (4) is actually finite and give more examples of interesting infinite
Blaschke products to support our theorems.

Example 5.1. For s > 2, set ρk = 1− 1
(2k)s and ak = ρke

i 1
k
π. The sequence

{ak}∞k=1 satisfies the Blaschke condition. Let B be the Blaschke product
whose sequence of zeros is {ak}∞k=1. Then the following statements hold.

(i) B(1) is absolutely convergent, and #∆0,−δ = 0,#∆0,δ =∞;
(ii) ϕ(0−) is finite, ϕ(0+) is infinite. Then by the classification in Defi-

nition 4.1, the singular point 1 is of type 1a,L.
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Proof. It is obvious that the cluster set of {ak}∞k=1 is E = {1}. Since all
arg ak > 0, we have #∆0,−δ = 0 and #∆0,δ =∞. By Theorem 1.1, we only
need to prove that

∞∑
k=2

1− ρk∣∣∣1− ρkei 1kπ∣∣∣ <∞.
In fact,

1− ρk
|1− ρkei

1
k
π|

=
1− ρk√

(1− ρk)2 + 4ρk sin2 π
2k

≤ c

ks−1
, s > 2.

Hence ϕ(0−) is finite. Then, by Corollary 1.2, ϕ(0+) is infinite. The proof
is complete. �

Example 5.2. For s > 3, set ρk = 1− 1
(2k)s and ak,m = ρke

i2π m
2k . Let

Ωk,0 = {1, · · · , k − 1},
Ωk,1 = {1, · · · , k − 1, k + 1},
Ωk,2 = {−1, 1, · · · , k − 1, k + 1}.

For i = 0, 1, 2, let

Bi(z) =
∞∏
k=2

∏
m∈Ωk,i

b(z, ak,m).

Then the following statements hold.

(i) For i = 0, 1, 2, the cluster set of the zero set of Bi(z) is E = {eiθ :
θ ∈ [0, π]}, and Bi(z) is absolutely convergent at z = 1, −1.

(ii) The limits limθ→π+ argB0(eiθ) and limθ→0− argB0(eiθ) are both fi-
nite. Then by the classification in Corollary 4.5, for B0(z), the
interval (eiπ, ei2π) is of type 0;

(iii) The limit limθ→π+ B1(eiθ) is infinite but limθ→0− B1(eiθ) is finite.
Then by the classification in Corollary 4.5, for B1(z), the interval
(eiπ, ei2π) is of type 1a;

(iv) The limits limθ→π+ B2(eiθ) and limθ→0− B2(eiθ) are both infinite.
Then by the classification in Corollary 4.5, for B2(z), the interval
(eiπ, ei2π) is of type 2.

Proof. For s > 2, it is easy to see

∞∑
k=2

∑
m∈Ωk,2

(1− |ak,m|) =

∞∑
k=2

k + 1

(2k)s
<∞.
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Since Ωk,0 ⊂ Ωk,1 ⊂ Ωk,2, our zero set of Bi(z) satisfies the Blaschke condi-
tion. On the other hand, for s > 3,

∞∑
k=2

∑
m∈Ωk,2

1− ρk
|1− ak,m|

=
∞∑
k=2

∑
m∈Ωk,2

1− ρk√
(1− ρk)2 + 4ρk sin2 π m2k

≤ c
∞∑
k=2

k2−s <∞,

and
∞∑
k=2

∑
m∈Ωk,2

1− ρk
|1 + ak,m|

=
∞∑
k=2

∑
m∈Ωk,2

(1− ρk)√
(1− ρk)2 + 4ρk cos2 mπ

2k

≤ c
∞∑
k=2

k2−s <∞.

Hence Bi(z) is absolutely convergent at z = 1, −1. Obviously,

{ak,m : m ∈ Ωk,0, k ≥ 2} ∩ {π ≤ arg z ≤ 2π} = ∅,
so we obtain (i). By Theorem 1.1, the limits

lim
θ→π+

argB0(eiθ), lim
θ→2π−

argB0(eiθ)

are both finite, so (ii) follows. (iii) and (iv) follow from Theorem 1.1, (i)
and

#
(
{ak,m : m ∈ Ωk,1, k ≥ 2} ∩ {π ≤ arg z ≤ 6

5
π}
)

=∞,

#
(
{ak,m : m ∈ Ωk,1, k ≥ 2} ∩ {9

5
π ≤ arg z ≤ 2π}

)
<∞,

#
(
{ak,m : m ∈ Ωk,2, k ≥ 2} ∩ {π ≤ arg z ≤ 6

5
π}
)

=∞,

#
(
{ak,m : m ∈ Ωk,2, k ≥ 2} ∩ {9

5
π ≤ arg z ≤ 2π}

)
=∞.

This completes the proof. �

References

[BaG09] Barza, Ilie; Ghisa, Dorin. The geometry of Blaschke products mappings.
Further progress in analysis, 197–207. World Sci. Publ., Hackensack, NJ,
(2009). MR2581622, Zbl 1185.30059, doi: 10.1142/9789812837332 0013. 1368,
1369

[Be79] Beardon, Alan F. Complex analysis. The argument principle in analysis and
topology. A Wiley-Interscience Publication. John Wiley & Sons, Ltd., Chich-
ester, 1979. xiii+239 pp. ISBN: 0-471-99671-8. MR0516811, Zbl 0399.30001.
1371

[CaG07] Cao-Huu, Tuan; Ghisa, Dorin. Invariants of infinite Blaschke products.
Mathematica 49 (72) (2007), no. 2, 139–148. MR2431141, Zbl 1164.30024.
1368, 1369

http://www.ams.org/mathscinet-getitem?mr=2581622
http://www.emis.de/cgi-bin/MATH-item?1185.30059
http://dx.doi.org/10.1142/9789812837332_0013
http://www.ams.org/mathscinet-getitem?mr=0516811
http://www.emis.de/cgi-bin/MATH-item?0399.30001
http://www.ams.org/mathscinet-getitem?mr=2431141
http://www.emis.de/cgi-bin/MATH-item?1164.30024


1384 WEN-HUI AI, XIN-HAN DONG AND YUE-PING JIANG

[CaC00] Cassier, Gilles; Chalendar, Isabelle. The group of the invariants of a
finite Blaschke product. Complex Variables Theory Appl. 42 (2000), no. 3,
193–206. MR1788126, Zbl 1021.30032, doi: 10.1080/17476930008815283. 1368

[ChGP12] Chalendar, Isabelle; Gorkin, Pamela; Partington, Jonathan R.
The group of invariants of an inner function with finite spectrum. J. Math.
Anal. Appl. 389 (2012), no. 2, 1259–1267. MR2879294, Zbl 1242.28024,
arXiv:1103.5915, doi: 10.1016/j.jmaa.2012.01.005. 1368, 1369, 1370, 1378,
1379, 1381

[Ch73] Choike, James R. On the distribution of values of functions in the unit
disk. Nagoya Math. J. 49 (1973), 77–89. MR0320324, Zbl 0238.30030,
doi: 10.1017/S0027763000015294. 1369, 1370, 1377

[DoL03] Dong, Xin-Han; Lau, Ka-Sing. Cauchy transforms of self-similar measures:
the Laurent coefficients. J. Funct. Anal. 202 (2003), no. 1, 67–97. MR1994765,
Zbl 1032.28005, doi: 10.1016/S0022-1236(02)00069-1. 1380

[DoLL13] Dong, Xin-Han; Lau, Ka-Sing; Liu, Jing-Cheng. Cantor boundary be-
havior of analytic functions. Adv. Math. 232 (2013), 543–570. MR2989993,
Zbl 1272.30009, doi: 10.1016/j.aim.2012.09.021. 1368

[Du70] Duren, Peter L. Theory of Hp spaces. Pure and Applied Mathematics,
38. Academic Press, New York-London, 1970. xii+258 pp. MR0268655, Zbl
0215.20203. 1367, 1379

[Lo52] Lohwater, Arthur J. The boundary values of a class of meromorphic
functions. Duke Math. J. 19 (1952), 243–252. MR0048574, Zbl 0046.30006,
doi: 10.1215/S0012-7094-52-01925-X. 1379

[Po75] Pommerenke, Christian. Univalent functions. Studia Mathemat-
ica/Mathematische Lehrbcher, Band XXV. Vandenhoek and Ruprecht,
Göttingen, 1975. 376 pp. MR0507768, Zbl 0298.30014. 1379

[Sa64] Saks, Stanis law. Theory of the integral. Second revised edition. English
translation by L. C. Young. With two additional notes by Stefan Banach. Dover
Publications, Inc., New York, 1964. xv+343 pp. MR0167578, Zbl 1196.28001.
1379

[Ta63] Tanaka, Chuji. Boundary covergence of Blaschke products in the unit-
circle. Proc. Japan Acad. 39 (1963), 410–412. MR0158081, Zbl 0116.28304,
doi: 10.3792/pja/1195522985. 1370

(Wen-Hui Ai) College of Mathematics and Econometrics, Hunan University,
Changsha, Hunan 410082, China
awhxyz123@163.com

(Xin-Han Dong) College of Mathematics and Econometrics, Hunan University,
Changsha, Hunan 410082, China
xhdonghnsd@163.com

(Yue-Ping Jiang) College of Mathematics and Econometrics, Hunan University,
Changsha, Hunan 410082, China
ypjiang@hnu.edu.cn

This paper is available via http://nyjm.albany.edu/j/2019/25-55.html.

http://www.ams.org/mathscinet-getitem?mr=1788126
http://www.emis.de/cgi-bin/MATH-item?1021.30032
http://dx.doi.org/10.1080/17476930008815283
http://www.ams.org/mathscinet-getitem?mr=2879294
http://www.emis.de/cgi-bin/MATH-item?1242.28024
http://arXiv.org/abs/1103.5915
http://dx.doi.org/10.1016/j.jmaa.2012.01.005
http://www.ams.org/mathscinet-getitem?mr=0320324
http://www.emis.de/cgi-bin/MATH-item?0238.30030
http://dx.doi.org/10.1017/S0027763000015294
http://www.ams.org/mathscinet-getitem?mr=1994765
http://www.emis.de/cgi-bin/MATH-item?1032.28005
http://dx.doi.org/10.1016/S0022-1236(02)00069-1
http://www.ams.org/mathscinet-getitem?mr=2989993
http://www.emis.de/cgi-bin/MATH-item?1272.30009
http://dx.doi.org/10.1016/j.aim.2012.09.021
http://www.ams.org/mathscinet-getitem?mr=0268655
http://www.emis.de/cgi-bin/MATH-item?0215.20203
http://www.emis.de/cgi-bin/MATH-item?0215.20203
http://www.ams.org/mathscinet-getitem?mr=0048574
http://www.emis.de/cgi-bin/MATH-item?0046.30006
http://dx.doi.org/10.1215/S0012-7094-52-01925-X
http://www.ams.org/mathscinet-getitem?mr=0507768
http://www.emis.de/cgi-bin/MATH-item?0298.30014
http://www.ams.org/mathscinet-getitem?mr=0167578
http://www.emis.de/cgi-bin/MATH-item?1196.28001
http://www.ams.org/mathscinet-getitem?mr=0158081
http://www.emis.de/cgi-bin/MATH-item?0116.28304
http://dx.doi.org/10.3792/pja/1195522985
mailto:awhxyz123@163.com
mailto:xhdonghnsd@163.com
mailto:ypjiang@hnu.edu.cn
http://nyjm.albany.edu/j/2019/25-55.html

	1. Introduction
	2. Preliminaries
	2.1. Absolute convergence
	2.2. The argument of B(z)

	3. The end-points of analytic arcs
	4. The classification of analytic arcs
	5. Examples
	References

