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Local heuristics and an exact formula for
abelian varieties of odd prime dimension

over finite fields

Jonathan Gerhard and Cassandra Williams

Abstract. Consider a q-Weil polynomial f of degree 2g. Using an
equidistribution assumption that is too strong to be true, we define and
compute a product of local relative densities of matrices in GSp2g(F`)
with characteristic polynomial f mod ` when g is an odd prime. This
infinite product is closely related to a ratio of class numbers. When
g = 3 we conjecture that the product gives the size of an isogeny class
of principally polarized abelian threefolds.
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1. Introduction

This paper is a direct generalization of the work of Achter-Williams [2]
to abelian varieties of odd prime dimension, and is guided in philosophy by
both Gekeler [4] and Katz [7]. We begin by considering abelian varieties
over a finite field Fq, where q is a power of a prime. To each such variety
X, we can associate a characteristic polynomial of Frobenius fX(T ) ∈ Z[T ].
A theorem of Tate [11] tells us that two varieties are isogenous if and only
if their characteristic polynomials are equal.
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Let Ag(k) denote the moduli space of principally polarized abelian vari-
eties of dimension g over a field k, where each variety is weighted by the size
of its automorphism group. Also define Ag(Fq; f) to be those members of
Ag(Fq) with characteristic polynomial f(T ). Then Ag(Fq; f) denotes the set
of isomorphism classes of principally polarized abelian varieties of dimension
g over Fq with characteristic polynomial of Frobenius f , weighted inversely
by the size of the automorphism group, and computing #Ag(Fq; f) gives the
number of (isomorphism classes of) abelian varieties over Fq in a particular
isogeny class.

The Frobenius endomorphism gives an automorphism of the Tate module
T`X (for ` not dividing q), so it has a representation as an element of the
matrix group GSp2g(F`). For each `, we define a term ν`(f) measuring
the relative frequency of f mod ` as the characteristic polynomial for an
element of GSp2g(F`), as well as an archimedean term ν∞(f).

Since (as much as possible) Frobenius elements are equidistributed in
GSp2g(F`), it seems possible that the product of these local densities could at
least estimate the value of #Ag(Fq; f). This, of course, is a ridiculous tactic,
as the mod ` Frobenius elements are only equidistributed when q �g `.
However, as in [2], we again show that this local data does apparently control
isogeny class size.

Our main result is as follows. Consider a particular class of q-Weil poly-
nomials f of degree 2g (see the next section for details). Let K be the
splitting field of f over Q and K+ be its maximal totally real subfield, with
class numbers hK and hK+ respectively. A theorem of Everett Howe in the
preprint [6], together with the conditions stated in the next section, implies
that

#Ag(Fq; f) =
hK
hK+

(see Theorem 8.5 and Corollary 8.6). Then an immediate corollary of this
theorem and our work is that

ν∞(f)
∏
`

ν`(f) = #Ag(Fq; f)

when g = 3 (see Corollary 8.8). (For g > 3 an odd prime, there is only a
minimal obstruction to this corollary which is explained at the end of section
3.3 and in Remark 8.2.)

2. Abelian varieties and Weil polynomials

Let X/Fq be an abelian variety of dimension g over a finite field of q =
pa elements, and let f(T ) ∈ Z[T ] be the characteristic polynomial of its
Frobenius endomorphism. Then f(T ) is a q-Weil polynomial, a polynomial
of degree 2g with complex roots α1, . . . , α2g with |αj | =

√
q for every j,

where the ordering can be chosen so that αjαg+j = q for 1 ≤ j ≤ g.
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Each q-Weil polynomial f(T ) corresponds to a (possibly empty) isogeny
class If of abelian varieties of dimension g over Fq. Following [2], we will
assume:

(W.1) (ordinary) the middle coefficient of f is relatively prime to p;
(W.2) (principally polarizable) there exists a principally polarized abelian

variety of dimension g with characteristic polynomial f ;
(W.3) (cyclic) the polynomial f(T ) is irreducible over Q, and

Kf := Q[T ]/f(T )

is Galois, cyclic, and unramified at p;
(W.4) (maximal) for πf a (complex) root of f(T ), with complex conjugate

π̄f , then Of := Z[πf , π̄f ], a priori an order in Kf , is actually the
maximal order OKf .

Assumptions (W.1), (W.2), and (W.4) are identical to those in [2].
The condition (W.3) is similar; we want to assume Kf is abelian and

Galois. In [2, (W.3)], the authors only assumed that Kf is Galois, but as
Kf was a number field of degree 4 this also guaranteed it to be abelian.
Many of the results proven in the present work require only that Kf is
abelian and Galois; however, we will assume that g is an odd prime in many
of our major results, and thus Kf will be cyclic (with Gal(Kf/Q) ∼= Z/2gZ).

Remark 2.1. It should be noted that (W.3) is in fact a serious restriction,
as number fields Kf with a cyclic Galois group are quite rare among all
number fields of degree 2g. Our method does work in broader contexts; for
example, in [9] the author proves analogous results to those in [2] and our
own for degree 4 fields with a nonabelian Galois group. It seems likely that
our methods readily generalize to any abelian Galois extension Kf , at the
cost of more elaborate and extensive computations as the factorization of g
becomes more complex.

Thus, in this work, we will restrict to cyclic Galois groups in the hope
of demonstrating our method and heuristic in the simplest generalized sit-
uation, rather than distracting the reader with details that provide no new
insight into the problem.

Note that Kf is a CM field, and as such it comes equipped with an
intrinsic complex conjugation ι ∈ Gal(Kf/Q). Also, the isomorphism class
of Of (as an abstract order) is independent of the choice of πf .

Example 2.2. The polynomial f(T ) = T 6+10T 5+48T 4+151T 3+336T 2+
490T + 343 is a 7-Weil polynomial that meets all of the assumptions (W.1)-
(W.4) when g = 3.

The Weil polynomial f(T ) factors as f(T ) =
∏g
j=1(T −

√
qeiθj )(T −

√
qe−iθj ); then under our assumptions the polynomial f+(T ) =

∏g
j=1(T −

2
√
q cos(θj)) is the minimal polynomial of πf + π̄f and K+

f = Q[T ]/f+(T ) is

the maximal totally real subfield of Kf . Note that Z[πf ] ∼= Z[T ]/f(T ) ⊂ Of
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and define the conductor of f , cond(f) as the index [Of : Z[πf ]]. We will de-
note the discriminants of the polynomials f and f+ as disc(f) and disc(f+),
respectively, while ∆O will represent the discriminant of an order O. Note
that ∆Z[πf ] = disc(f) and ∆O

K+
f

= disc(f+).

In the following technical lemma, we give explicit forms for disc(f) and
disc(f+) for any positive integer g.

Lemma 2.3. Let f be a q-Weil polynomial of degree 2g with g ≥ 1. Then

disc(f) = (−1)g22g
2
q2g

2−g

 g∏
j=1

sin2(θj)

 ∏
1≤k<t≤g

(cos(θk)− cos(θt))
2

2

and

disc(f+) = 2g(g−1)q
g(g−1)

2

∏
1≤k<t≤g

(cos(θk)− cos(θt))
2.

Proof. Recall that the roots of f(T ) are of the form
√
qe±iθj for 1 ≤ j ≤ g.

Then the proof of the first formula proceeds by induction on g using elemen-
tary methods and is omitted here. A direct computation of the discriminant
of f+, which has roots

√
qeiθj +

√
qe−iθj = 2

√
q cos(θj) for 1 ≤ j ≤ g, proves

the second formula. �

Remark 2.4. See [6, Theorem 4.3] for a similar computation relating the
Frobenius angles θi to (in our notation)√√√√∆OKf

∆O
K+
f

.

The explicit forms of Lemma 2.3 will be helpful in proving the following
lemma, as well as for defining local factors in section 4.

Lemma 2.5. The index of Z[πf ] in Of is q
g(g−1)

2 .

Proof. From [5], we have

∆Of = (−1)g disc(f+)2NKf/Q(πf − π̄f )

and disc(f) = cond(f)2 ∆Of . Then

cond(f)2 = (−1)g
disc(f)

disc(f+)2NKf/Q(πf − π̄f )
.

Without loss of generality, choose πf =
√
qeiθ1 . Then

πf − π̄f = 2i
√
q sin(θ1)

and all of its Galois conjugates are of the form ±2i
√
q sin(θj) for j ∈

{1, 2, . . . , g}. Therefore,

NKf/Q(πf − π̄f ) =

g∏
j=1

(2i
√
q sin(θj))(−2i

√
q sin(θj)) = 4gqg

g∏
j=1

sin2(θj).
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Applying disc(f) and disc(f+) from Lemma 2.3, we find cond(f)2 = qg(g−1),
and the lemma follows. �

Corollary 2.6. If ` 6= p, then OKf ⊗ Z(`)
∼= Z(`)[T ]/f(T ).

Corollary 2.6 is proved, independent of the dimension of the abelian va-
riety, in [2] and so its proof is omitted here.

Lastly, we prove that Z[T ]/f+(T ) is the maximal order of K+
f .

Lemma 2.7. The order Z[T ]/f+(T ) is the maximal order OK+
f

.

Proof. Condition (W.4) implies that Of ∩K+
f = OKf ∩K

+
f = OK+

f
. Cer-

tainly Z[T ]/f+(T ) = Z[πf + π̄f ] ⊆ Of ∩K+
f .

Let α ∈ K+
f = Q[T ]/f+(T ) = Q(πf + π̄f ), which has dimension g over Q.

Then

α = a0 + a1(πf + π̄f ) + a2(πf + π̄f )2 + · · ·+ ag−1(πf + π̄f )g−1

with all ai ∈ Q. Suppose α is also an element of Of , so α ∈ Of ∩K+
f . It is

straightforward to show that the set{
1, πf , π

2
f , . . . , π

g
f , π̄f , π̄

2
f , . . . , π̄

g−1
f

}
forms a basis for Of = Z[πf , π̄f ]. Recall that πf π̄f = q; expand α and collect

powers of πf and π̄f . Notice that the coefficient of πg−1f in α is exactly ag−1,

and so ag−1 ∈ Z. Using back substitution on the coefficients of powers of πf
and π̄f , we find that ag−2 ∈ Z, ag−3 ∈ Z, and so on. Therefore, all ai ∈ Z
and α ∈ Of ∩ K+

f is such that α ∈ Z[πf , π̄f ] and Of ∩ K+
f ⊆ Z[πf + π̄f ].

Therefore, Z[πf + π̄f ] = OK+
f

. �

3. Conjugacy classes in GSp2g(F`)

3.1. Symplectic groups and conjugacy. Recall that the symplectic group
GSp2g(F`) is the subgroup of GL2g(F`) preserving an antisymmetric bilinear
form J up to a scalar multiple. We choose

J =

[
0 Ig
−Ig 0

]
but note that different choices of J produce isomorphic copies of GSp2g(F`).

Explicitly,

GSp2g(F`) = {M ∈ GL2g(F`) |MJMT = mJ for some m ∈ F×` }.

The valuem is called the multiplier ofM . All matrices in GSp2g(F`) have the
property that there exists a pairing (dictated by the choice of antisymmetric
bilinear form) of its eigenvalues such that each pair has product m.

In [10, Theorem 1.18], Shinoda parametrizes the set of conjugacy classes
of GSp2g(F`). For our purposes, we do not need their parametrization in
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full generality, and will describe the relevant portions in our own notation.
Let

f(T ) = T d + cd−1T
d−1 + · · ·+ c1T + c0

be a polynomial in F`[T ]. Define the dual of f(T ) with respect to the
multiplier m to be

f̄m(T ) =
T d

c0
f(mT−1).

(We will occasionally omit the m on the left hand side for notational conve-
nience.) Then we have three types of polynomials:

(1) Root polynomials are polynomials of the form f(T ) = T 2 −m when
m is not a square, or either of f(T ) = T ±

√
m when m is a square.

(It is easy to check that all root polynomials satisfy f̄m(T ) = f(T ).)
(2) α pairs are pairs of polynomials (f(T ), f̄m(T )) such that f̄m(T ) 6=

f(T ).
(3) β polynomials are polynomials f(T ) such that f̄m(T ) = f(T ) and

f(T ) is not a root polynomial.

Note that any linear polynomial satisfying f̄m(T ) = f(T ) is a root poly-
nomial. One consequence of these definitions is as follows.

Lemma 3.1. There are no irreducible β polynomials of odd degree. That
is, for all irreducible nonlinear polynomials f(T ) of odd degree and all mul-
tipliers m ∈ F×q ,

f̄m(T ) 6= f(T ).

Proof. Let f(T ) = T d + cd−1T
d−1 + · · ·+ c1T + c0 be an irreducible poly-

nomial with d ≥ 3 odd and suppose f̄m(T ) = f(T ). This implies c20 = md,
but if m is non-square then md is non-square since d is odd, which is a
contradiction. If instead m is a square, then −

√
m ∈ F` is a root of f(T ),

contradicting the fact that f(T ) is irreducible. �

The general theory of conjugacy classes in GLn as well as the additional
intricacies of conjugacy in GSpn are given (briefly) in [2, Section 3.2], and
the reader is encouraged to revisit this section if needed. For our current pur-
poses, recall that to each irreducible factor of the characteristic polynomial
of a matrix, we associate a partition of its multiplicity; the characteristic
polynomial together with its partition data determine conjugacy in GLn.
We also remind the reader that cyclic matrices are those for which the char-
acteristic and minimal polynomials coincide, and thus are those where all
partitions are maximal (consist of only one part). Then characteristic poly-
nomials for conjugacy classes of cyclic matrices in GSp2g(F`) are constructed
as follows.

Theorem 3.2. The following characteristic polynomials uniquely determine
a conjugacy class of cyclic matrices in GSp2g(F`), where, for each m, the first
product is over all α pairs and the second product is over all β polynomials.
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(1) For square m ∈ F×` ,

f(T ) = (T −
√
m )eR1 (T +

√
m )eR2

∏
α

(fα(T )f̄α(T ))eα
∏
β

(fβ(T ))eβ

for a choice of eR1 , eR2 , eα, and eβ such that any odd parts in the
partitions of eR1 and eR2 have even multiplicity and

eR1 + eR2 + 2
∑
α

deg(fα)eα +
∑
β

deg(fβ)eβ = 2g.

(2) For non-square m ∈ F×` ,

f(T ) = (T 2 −m)eR
∏
α

(fα(T )f̄α(T ))eα
∏
β

(fβ(T ))eβ

for a choice of eR, eα, and eβ such that any odd parts in the partition
of eR have even multiplicity and

2eR + 2
∑
α

deg(fα)eα +
∑
β

deg(fβ)eβ = 2g.

For each exponent ek defined above, the only allowable partition is [ek].

Remark 3.3. Shinoda’s parameterization ([10, Theorem 1.18]) also includes
sets of (nondegenerate symmetric) bilinear forms with ranks relating to the
number of parts of even sizes in the partitions of any root polynomials
present in the factorization of the characteristic polynomial. The number of
equivalence classes of these bilinear forms detect when a characteristic poly-
nomial (and associated set of partitions) gives rise to two conjugacy classes
in GSp2g(F`), indexed by {+,−}. We omit this component of Shinoda’s
parameterization because, when g is odd, all of the characteristic polynomi-
als that we will declare as relevant in the next section give rise to only one
conjugacy class.

3.2. Relevant conjugacy classes of GSp2g(F`). For the remainder of
section 3, let g be an odd prime.

We want to identify the possible shapes (factorization structures) of char-
acteristic polynomials which correspond to conjugacy classes of cyclic ma-
trices in GSp2g(F`) which respect the assumptions (W.1)-(W.4). Therefore,
a relevant characteristic polynomial is one such that

• the factorization is as in Theorem 3.2,
• the degrees of all irreducible factors are equal, and
• the multiplicities of each irreducible factor are equal.

The first condition forces our matrices to be cyclic elements of GSp2g(F`),
and the other two correspond with the requirement that Kf be Galois from
(W.3).

Let [d] denote a monic irreducible degree d polynomial in F`[T ], and
assume that [d]i 6= [d]j if i 6= j. Then the following are the shapes of all
relevant characteristic polynomials.
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[1]1 . . . [1]2g [1]2g

[2]1 . . . [2]g [1]g1[1]g2

[g]1[g]2 [2]g

[2g]

We exclude the shape [g]2 by Lemma 3.1. Additionally, we exclude [1]21 . . . [1]2g;
since there are an odd number of factors, it must be that one of these linear
factors is a root polynomial while the rest are α pairs. Then the Galois
group of Kf cannot act transitively on the roots of such an f .

The seven relevant conjugacy class shapes fall into two categories: reg-
ular semisimple and non-semisimple. A regular semisimple conjugacy class
contains elements with a squarefree characteristic polynomial (and thus are
cyclic by definition). A class is not semisimple when the characteristic poly-
nomial of its elements is not squarefree.

We list the relevant conjugacy classes by the shape of their characteristic
polynomial in Tables 3.1 (regular semisimple) and 3.2 (non-semisimple).
Each table also contains information about the multiplier m and the type
of the irreducible factors.

Char. Pol. Shape Valid m Polynomial type
[1]1 . . . [1]2g All m α pairs
[2]1 . . . [2]g All m β polynomials

[g]1[g]2 All m α pair
[2g] All m β polynomial

Table 3.1. Relevant characteristic polynomial shapes for
regular semisimple conjugacy classes

Char. Pol. Shape Valid m Polynomial type
[1]2g Square m Root polynomial

[1]g1[1]g2 All m α pair
[2]g All m β polynomial

Table 3.2. Relevant characteristic polynomial shapes for
non-semisimple conjugacy classes

3.3. Centralizer orders. Denote by C a conjugacy class of matrices in
GSp2g(F`) with characteristic polynomial fC(T ). For each relevant conju-
gacy class, we will find its order by instead finding the order of its centralizer.
Let ZGSp2g(F`)(C) be the centralizer in GSp2g(F`) of an element of C. Since

we need only the size of the centralizer, the choice of this element is arbitrary.
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Lemma 3.4. Let C be a regular semisimple conjugacy class with charac-
teristic polynomial having one of the shapes listed in Table 3.1. Then we
have

#ZGSp2g(F`)(C) =


(`− 1)g+1 if fC(T ) has shape [1]1 . . . [1]2g,

(`2 − 1)(`+ 1)g−1 if fC(T ) has shape [2]1 . . . [2]g,

(`g − 1)(`− 1) if fC(T ) has shape [g]1[g]2,

(`g + 1)(`− 1) if fC(T ) has shape [2g].

Proof. Since each class is regular and semisimple, their centralizers are
tori. For example, consider the case where fC(T ) has the shape [2g]. Then

fC(T ) has roots α, α`, . . . , α`
2g−1

in F×
`2g

in a single orbit under the action
of Galois. Since C ⊆ GSp2g(F`), it must be that the elements of C have

multiplier m = α`
i
α`

g+i
for i ∈ {0, 1, . . . , g − 1}. Thus, elements of the

centralizer of C are those where roots of the characteristic polynomial are

elements of F×
`2g

with an F`g -norm lying in F×` . There are `2g−1
`g−1 = `g + 1

elements of F×
`2g

with such a norm for a fixed m. Since we have `− 1 choices
for the multiplier, #ZGSp2g(F`)(C) = (`g + 1)(`− 1).

The centralizer sizes for the other cases are computed similarly. �

In the case where C is not semisimple, the process for determining the
order of its centralizer is significantly more challenging. In these cases, we
must construct an explicit matrix γ which is a representative of C, and verify
that γ has the correct characteristic polynomial, that γ is cyclic, and that
γ ∈ GSp2g(F`). Then we must find an explicit matrix C which is a generic
member of the centralizer of that γ (also in GSp2g(F`)) and use it to count
the number of possible elements of ZGSp2g(F`)(C).

For any particular g, this process is possible. (As an example, the cen-
tralizer orders of the non-semisimple classes for g = 3 are given in Proposi-
tion 7.5.) However, we have not yet constructed representatives for all three
non-semisimple classes for a general (odd prime) g and thus do not have
formulae for their centralizer orders. We hope, in future work, to address
this gap.

4. Local factors for f

In this section we define local factors ν`(f) for each finite rational prime
` and one for the archimedean prime, ν∞(f). For all ` 6= p, this local factor
is given by the density of elements of GSp2g(F`) with a fixed multiplier and
characteristic polynomial f with respect to the “average” frequency. We
also define νp(f) and ν∞(f) based on the same notions. These definitions
are in direct analogue with those of [2], and are thus philosophically guided
by [4] as well.



132 JONATHAN GERHARD AND CASSANDRA WILLIAMS

4.1. ν`(f). Suppose ` 6= p is a rational prime and consider a principally
polarized abelian variety X/Fq of dimension g. The Frobenius endomor-
phism πX/Fq of X acts as an automorphism of X`, and scales by a factor
of q the symplectic pairing on X` induced by the polarization. Thus, we
can consider πX/Fq as an element of GSp2g(F`)(q) (the set of elements of
GSp2g(F`) with multiplier q).

Note that there are `g possible characteristic polynomials for an element
of GSp2g(F`)(q), and so the average frequency of a particular polynomial
occurring as the characteristic polynomial of an element of the group (with
respect to all such polynomials) is given by

# GSp2g(F`)(q)/`g.

Then for primes ` unramified in Kf , we define ν`(f) as

ν`(f) =
#
{
γ ∈ GSp2g(F`)(q) | charpol(γ) ≡ f mod `

}
# GSp2g(F`)(q)/`g

. (4.1)

(See (5.1) for a definition for all ` 6= p.)

4.2. νp(f). The definition of νp(f) is similar to but more intricate than
(4.1). Under our assumptions, X/Fq is an ordinary abelian variety of (odd
prime) dimension g with characteristic polynomial of Frobenius

fX(T ) = T 2g + c1T
2g−1 + · · ·+ cgT

g + qcg−1T
g−1 + · · ·+ qg−1c1T + qg.

Thus, as in [2], we have a canonical decomposition of the p-torsion group
scheme into étale and toric components X[p] ∼= X[p]et ⊕ X[p]tor. By or-
dinarity, X[p]et(F̄q) ∼= (Z/p)g and (X[p]tor)∗(F̄q) ∼= (Z/p)g, and the q-
power Frobenius πX/Fq acts invertibly on X[p](F̄q). This action of πX/Fq on
both the étale and toric components of X[p] has characteristic polynomial
gX(T ) = T g+c1T

g−1+ · · ·+cg mod p, and must preserve the decomposition

of X[p]. Let mg be the multiplier of gX (so mg is a gth root of c2g). Thus,
we set νp(f) to be

#
{
γ ∈ GSp2g(Fp)(mg) | charpol(γ) ≡ (gX)2 mod p and γ semisimple

}
# GSp2g(Fp)(mg)/pg

.

(4.2)

4.3. ν∞(f). Lastly, we define an archimedean term, which is related to
the Sato-Tate measure. As stated in [2], the Sato-Tate measure on abelian
varieties conjecturally explains the distribution of Frobenius elements, and
is a pushforward of Haar measure on the space of “Frobenius angles”, 0 ≤
θ1 ≤ · · · ≤ θg ≤ π. The Weyl integration formula [13, p218, 7.8B] gives the
Sato-Tate measure on abelian varieties of dimension g explicitly as

µST (θ1, . . . , θg) = 2g
2

∏
j<k

(cos(θj)− cos(θk))
2

 g∏
i=1

(
1

π
sin2(θi)dθi

)
.
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Fixing a particular q, the set of angles {θ1, . . . , θg} gives rise to a q-
Weil polynomial. We use the induced measure on the space of all such
polynomials to define the archimedean term ν∞(f). To derive this induced
measure, we first write the polynomial in terms of its roots and in terms of
its coefficients as

f(T ) =

g∏
j=1

(T −√qeiθj )(T −√qe−iθj )

= T 2g + c1T
2g−1 + · · ·+ cgT

g + cg−1qT
g−1 + · · ·+ c1q

g−1T + qg,

and perform a change of variables. Thus, we find our induced measure on
the space of all q-Weil polynomials to be

µ(c1, . . . , cg) =
1

qg2(2π)g

√∣∣∣∣ disc(f)

disc(f+)

∣∣∣∣ dc1 . . . dcg.
Note that there are approximately qdimAg = q

g(g+1)
2 principally polarized

abelian varieties over Fq, so q
g(g+1)

2 µ(c1, . . . , cg) can be thought of as an
archimedean predictor for #Ag(Fq; f). Then we define

ν∞(f) =
1

cond(f)(2π)g

√∣∣∣∣ disc(f)

disc(f+)

∣∣∣∣. (4.3)

(We note that definition (4.3) holds for any g, not just odd prime g.)

5. Polynomials and primes in K

Fix a q-Weil polynomial f(T ) which satisfies conditions (W.1)-(W.4). For
the remainder of the paper, we write K for Kf , OK for Of , K+ for K+

f , ∆K

for ∆OK , and ∆K+ for ∆OK+ . Let κ` = OK ⊗ F`, a 2g-dimensional vector
space over F`.

Our goal in this section is to relate the polynomial f(T ) mod ` to (a
representative of) one of the conjugacy classes defined in section 3.2. There
are two lenses through which we can consider such a correspondence, as
outlined in [2, Section 5].

Regardless of the perspective, we will use the factorization of f(T ) mod
` to determine a cyclic element of GSp2g(F`) whose semisimplification is
conjugate to γ`, the image of the action of πf on κ`. Then we define

ν`(f) =
#
{
γ ∈ GSp2g(F`) | γ is cyclic with semisimplification γ`

}
# GSp2g(F`)(q)/`g

. (5.1)

Lemma 5.1. If ` - p∆K , then definitions (4.1) and (5.1) coincide.

Proof. If ` - p∆K then ` - disc(f) and so f(T ) mod ` has distinct roots.
Under condition (W.3), any factorization of f(T ) mod ` with distinct roots
appears in Table 3.1, and so any element with characteristic polynomial
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f(T ) mod ` is conjugate to γ`. All regular semisimple elements are cyclic,
so the lemma is proven. �

Note that charpol(γ`) is precisely f(T ) mod `. Also note that κ` =
OK/` ∼= F`[T ]/f(T ) by Corollary 2.6, so the factorization of f(T ) mod `
is determined by the splitting of ` in OK . That is, if f(T ) mod ` =∏

1≤j≤r gj(T )ej , then ` =
∏

1≤j≤r λ
ej
j for primes λj of OK where the residue

degree of λj equals the degree of the irreducible polynomial gj(T ).
Because of Condition (W.3), K/Q is a finite Galois extension with

Gal(K/Q) ∼= Z/2gZ.

Then the residue degrees of the λj are all equal to a common value f, and
the ramification degrees of the λj are all equal to a common value e. In
particular 2g = efr. (Notice that this restriction is precisely how we iden-
tified relevant class shapes in Section 3.2.) Without loss of generality, let λ
be a prime of OK over `. Let D(`) and I(`) denote the decomposition and
inertia groups, respectively, of a rational prime `. Lastly, if ` - disc(f), then
Gal(κ(λ)/F`) (the residue field of λ) is cyclic. Let FrobK(`) ∈ Gal(K/Q)
be the element which induces the generator of this group, and call it the
Frobenius endomorphism of λ over `.

Let Gal(K/Q) = 〈σ〉 so that complex conjugation is given by ι = σg. We
classify the splitting of rational primes of K by enumerating the possibilities
for D(`) and I(`).

Lemma 5.2. Suppose f satisfies Conditions (W.1)-(W.4). Let ` 6= p be a
rational prime. The cyclic shape of γ` is determined by the decomposition
and inertia groups D(`) and I(`) as in Table 5.1.

D(`) I(`) FrobK(`) (e, f, r) Class shape

{1} {1} 1 (1, 1, 2g) [1]1 . . . [1]2g
〈σg〉 {1} σg (1, 2, g) [2]1 . . . [2]g〈
σ2
〉
{1} σ2 (1, g, 2) [g]1[g]2〈

σ2
〉 〈

σ2
〉

- (g, 1, 2) [1]g1[1]g2
〈σ〉 {1} σi for (i, g) = 1 (1, 2g, 1) [2g]
〈σ〉

〈
σ2
〉

- (g, 2, 1) [2]g

〈σ〉 〈σ〉 - (2g, 1, 1) [1]2g

Table 5.1. Prime factorizations and conjugacy class shapes
for K.

Note that in every case, the data D(`) and I(`) determines a unique
conjugacy class from those given in Tables 3.1 and 3.2.
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Proof. In Table 5.1, we enumerated all possibilities for pairs of subgroups
I(`) ⊆ D(`) ⊆ Gal(K/Q). In every case, there are r = # Gal(K/Q)/#D(`)
distinct irreducible factors of f(T ) mod `, each with degree f = #D(`)/#I(`)
and multiplicity e = #I(`). In all cases, this factorization pattern exactly
determines the conjugacy class for which γ` is a representative. �

6. Local factors for K

Recall that K/Q is a finite Galois extension with Gal(K/Q) ∼= Z/2gZ.
Then K has two unique subfields, the maximal totally real field K+ of index
2 in K, and a complex quadratic extension of Q which we will call K1 in
what follows.

LetX(K) be the character group of the Galois group ofK. For χ ∈ X(K),
let Kχ be the fixed field of ker(χ). For a rational prime `, define

χ(`) =

{
χ(FrobKχ(`)) if ` is unramified in Kχ,

0 otherwise.

Let S(K) = X(K) rX(K+) and define

ν`(K) =
∏

χ∈S(K)

(
1− χ(`)

`

)−1
. (6.1)

Recall that σ is a generator of Gal(K/Q) and let χ be a generator of X(K).
Then 〈σ2〉 = Gal(K+/Q) and 〈χ2〉 = X(K+), so S(K) = {χ, χ3, . . . , χ2g−1}.
A quick computation shows Kχg = K1 and Kχi = K for all other χi ∈ S(K).
We have χi(`) = (χ(`))i for all odd i 6= g, and so to compute χi(`) for odd
i, we only need to know χ(`) and χg(`).

Lemma 6.1. The values of χ(`) and χg(`) are determined by D(`) and I(`),
as given in Table 6.1.

Proof. The values in the table follow from the definitions of χ and χg above,
the Frobenius elements given in Table 5.1, and the fact that Gal(K/Q)
and X(K) are cyclic. Then when FrobK(`) generates Gal(K/Q), χ(`) is
a primitive 2gth root of unity. In particular, the values in Table 6.1 are
independent of the choice of generator for each of D(`), I(`), and X(K). �

7. Matching

In this section, we will prove a series of propositions to establish equalities
between the local factor defined for f in Section 4 and the local term intrinsic
to K = Kf defined in Section 6 both for general odd prime g and for the
specific case when g = 3.
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D(`) I(`) {χ(`), χg(`)} Class shape

{1} {1} {1, 1} [1]1 . . . [1]2g
〈σg〉 {1} {−1,−1} [2]1 . . . [2]g〈
σ2
〉
{1} {e2πi/g, 1} [g]1[g]2〈

σ2
〉 〈

σ2
〉
{0, 1} [1]g1[1]g2

〈σ〉 {1} {eπi/g,−1} [2g]
〈σ〉

〈
σ2
〉
{0,−1} [2]g

〈σ〉 〈σ〉 {0, 0} [1]2g

Table 6.1. Values of imaginary characters for K.

7.1. General case. Let g be an odd prime.
In Proposition 7.1, we must restrict to regular semisimple conjugacy

classes because we only have #ZGSp2g(F`)(C) for all odd prime g in those
cases.

Proposition 7.1. Suppose f is a q-Weil polynomial of degree 2g such that
f mod ` = fC for one of the conjugacy class shapes in Table 3.1. If ` 6= p
then ν`(f) = ν`(K).

Proof. Let C be a conjugacy class from Table 3.1. Using the orbit-stabilizer
theorem, we can rewrite ν`(f) in terms of #ZGSp2g(F`)(C) as

#C
# GSp2g(F`)(q)/`g

=
# GSp2g(F`)/#ZGSp2g(F`)(C)

# GSp2g(F`)(q)/`g
=

`g(`− 1)

#ZGSp2g(F`)(C)
.

Since we found the centralizer orders for each regular semisimple class in
Theorem 3.4, we use this expression for ν`(f) to calculate the third column
of Table 7.1.

Additionally, from (6.1), ν`(K) is equal to∏
χ∈S(K)

(
1− χ(`)

`

)−1
=

(
`

`− χ(`)

)(
`

`− χ3(`)

)
· · ·
(

`

`− χ2g−1(`)

)
.

The fourth column of Table 7.1 contains the relevant values from Table 6.1
from which we compute ν`(K) in the fifth column.

To compute the third and fourth rows of the fifth column of Table 7.1,
recall that if z is a primitive (2g)th root of unity, then z2 is a primitive gth

root of unity. Then since (`2g − 1) = (`g − 1)(`g + 1),

`2g − 1 =

2g∏
j=1

(`− zj), and `g − 1 =

g∏
j=1

(`− z2j),

we must have

(`g + 1) =

g∏
j=1

(`− z2j−1).
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We see the third and fifth columns of Table 7.1 match, so the proposition is
proved. �

Class Shape #Z(C) ν`(f) {χ(`), χg(`)} ν`(K)

[1]1 . . . [1]2g (`− 1)g+1 `g

(`−1)g {1, 1}
(

`
`−1

)g
[2]1 . . . [2]g (`2 − 1)(`+ 1)g−1 `g

(`+1)g {−1,−1}
(

`
`+1

)g
[g]1[g]2 (`g − 1)(`− 1) `g

`g−1 {e2πi/g, 1} `g

`g−1
[2g] (`g + 1)(`− 1) `g

`g+1 {eπi/g,−1} `g

`g+1

Table 7.1. Evaluating ν`(f) and ν`(K) for regular semisim-
ple classes.

In order to show that νp(f) = νp(K), we first must determine the possible
factorizations of p in OK .

Lemma 7.2. Let K/Q be a degree 2g CM number field, and let X be an
ordinary abelian variety of dimension g over Fq. Suppose K acts on X.
Then any prime of K+ over p splits in K.

Proof. Recall that K+ = Q(π + π̄), and that π, π̄ are roots of T 2 − (π +
π̄)T + q over K. Let p+ be a prime of K+ over p; since ππ̄ = q, at least one
of π or π̄ lies in p, a prime of K over p+. However, if π+ π̄ ∈ p+, then both
π and π̄ are in p. This contradicts the assumption that f was ordinary, so
π + π̄ /∈ p+. Then

T 2 − (π + π̄)T + q ≡ T 2 − uT mod p+

≡ T (T − u) mod p+

where u mod p+ is nonzero. Therefore, p+ splits in K. �

Proposition 7.3. Suppose f is as in Proposition 7.1. Then νp(f) = νp(K).

Proof. We assumed in (W.3) that p is unramified in K and Gal(K/Q) ∼=
Z/2gZ, and by Lemma 7.2 all primes of K+ over p split in K. Then the
only possible factorizations of p in OK are that p splits completely, or that
pOK = p1p2.

If p splits completely, then gX(T ) (from (4.2)) factors as a product of linear
polynomials over Fp and the set of semisimple matrices with characteristic
polynomial (gX(T ))2 has the same cardinality as [1]1 . . . [1]2g. Then νp(f) =
νp(K) by the first row of Table 7.1.

If instead pOK = p1p2 (so p is inert in OK+), then gX(T ) is irreducible
so the set of semisimple matrices with characteristic polynomial (gX(T ))2

has the same cardinality as [g]1[g]2. Then νp(f) = νp(K) by the third row
of Table 7.1. �
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The following proposition is true for any value of g.

Proposition 7.4. Let f be a q-Weil polynomial of degree 2g with splitting
field K and OK = Z[π, π̄]. Then

ν∞(f) =
1

(2π)g

√∣∣∣∣ ∆K

∆K+

∣∣∣∣ .
Proof. This follows from the fact that disc(f) = cond(f)2∆K and disc(f+) =
∆K+ . �

7.2. Specific case (g = 3). In the particular case when g = 3, we can
also prove that ν`(f) and ν`(K) match in the case when f mod ` = fC for
a non-semisimple conjugacy class C. We begin by giving the orders of the
centralizers for the non-semisimple conjugacy classes in GSp6(F`).

Proposition 7.5. Let C be one of the non-semisimple conjugacy classes of
matrices in GSp6(F`) with characteristic polynomial in one of the shapes
listed in Table 3.2. Then we have

#ZGSp6(F`)(C) =


`3(`− 1) if fC(T ) has shape [1]6,

`2(`− 1)2 if fC(T ) has shape [1]31[1]32,

`2(`2 − 1) if fC(T ) has shape [2]3.

Proof. Refer back to the end of section 3 for an outline of the general
method for determining centralizer orders for non-semisimple classes. We
demonstrate this method for g = 3 in the case where fC(T ) has the shape
[1]31[1]32.

Suppose fC(T ) = (T − a)3(T − b)3 with a, b ∈ F×q . Since these are α
polynomials (by Table 3.2), m = ab. A representative of the class C is

γ =


a −a 0 0 0 0
0 a −a 0 0 0
0 0 a 0 0 0
0 0 0 b b b
0 0 0 0 b b
0 0 0 0 0 b

 ,

where we verify that charpol(γ) = fC(T ), γ ∈ GSp6(F`) with multiplier ab,
and minpol(γ) = charpol(γ) (so that γ is cyclic). Then a generic element of
ZGSp6(F`)(C) has the form

C =


c1 y1 y2 0 0 0
0 c1 y1 0 0 0
0 0 c1 0 0 0
0 0 0 c2 c3 c4
0 0 0 0 c2 c3
0 0 0 0 0 c2
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where

y1 = −c1c3
c2

and y2 = c1

(
c23 − c2c4

c22

)
.

Since detC = c31c
3
2, it must be that c1, c2 ∈ F×` , while c3, c4 ∈ F`. Then

#ZGSp6(F`)(C) = `2(`− 1)2.

The other cases require similar computations. �

Proposition 7.6. Suppose f is a q-Weil polynomial of degree 6 such that
f mod ` = fC for one of the conjugacy classes in Table 3.2. If ` 6= p then
ν`(f) = ν`(K).

Proof. This proof is identical to the proof of Proposition 7.1, but for non-
semisimple classes. The second column of Table 7.2 comes from Proposi-
tion 7.5, which we use to compute the third column.

The fourth column comes from Table 6.1, which we use to compute the
fifth column. Seeing that the third and fifth columns match, we are done. �

Class Shape #Z(C) ν`(f) {χ(`), χg(`)} ν`(K)

[1]6 `3(`− 1) 1 {0, 0}
(

`
`−1

)g
[1]31[1]32 `2(`− 1)2 `

`−1 {0, 1} `
`−1

[2]3 `2(`2 − 1) `
`+1 {0,−1} `

`+1

Table 7.2. Evaluating ν`(f) and ν`(K) for non-semisimple
classes when g = 3.

8. Main results

This section generalizes many of the results of [2, Section 7]. We define
an infinite product of numbers {a`} indexed by finite primes by∏

`

a` = lim
B→∞

∏
`<B

a`

so that
∏
` a`

∏
` b` =

∏
`(a`b`).

For a number field L, let hL, ωL, and RL denote the class number, number
of roots of unity, and regulator of L respectively.

Proposition 8.1. Let f be a degree 2g q-Weil polynomial that is ordinary,
principally polarizable, cyclic, and maximal. Let K be the splitting field of
f over Q and let K+ be its maximal totally real subfield. Then

hK
hK+

= ωKν∞(f)
∏
`

ν`(K). (8.1)
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Proof. By the analytic class number formula, the ratio of class numbers on
the left side of (8.1) is

hK
hK+

= lim
s→1

(s− 1)ζK(s)

(s− 1)ζK+(s)

√
|∆K |2gωKRK+√
|∆K+ |(2π)gωK+RK

.

For a finite abelian extension L/Q, we have

lim
s→1

(s− 1)ζL(s) =
∏

χ∈Gal(L/Q)∗\id

L(1, χ)

where we interpret the Dirichlet L-function as the conditionally convergent
Euler product

L(1, χ) = lim
B→∞

∏
`<B

1

1− χ(`)/`
.

We then see that

lim
s→1

(s− 1)ζK(s)

(s− 1)ζK+(s)
=

∏
χ∈Gal(K/Q)∗\id

(∏
`

1
1−χ(`)/`

)
∏
χ∈Gal(K+/Q)∗\id

(∏
`

1
1−χ(`)/`

)
=

∏
χ∈S(K)

∏
`

1

1− χ(`)/`

=
∏
`

ν`(K)

where S(K) is as in Section 6.
By [12, Proposition 4.16] RK = 1

Q2g−1RK+ , whereQ is Hasse’s unit index.

Since K/Q is cyclic, Q = 1 by [3, Theorem 3]. Therefore, RK = 2g−1RK+ .
Lastly, ωK+ = 2 since K+ is totally real, so

hK
hK+

=

√∣∣∣∣ ∆K

∆K+

∣∣∣∣ωKRK+

2πgRK

∏
`

ν`(K)

=

√∣∣∣∣ ∆K

∆K+

∣∣∣∣ ωK(2π)g

∏
`

ν`(K)

= ωKν∞(f)
∏
`

ν`(K).

�

Remark 8.2. Propositions 7.1 and 7.3 tell us that in many cases the ν`(K)
in the previous proposition is in fact equal to ν`(f). While we did not give
the orders of the centralizers of the non-semisimple conjugacy classes for
all odd prime g in this paper, we have partial progress which suggests that
Proposition 7.6 will also generalize to all odd prime g. On the assumption
that Proposition 7.6 in fact generalizes to all odd prime g, we make the
following conjecture.
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Conjecture 8.3. Let g be an odd prime, and let f be a degree 2g q-Weil
polynomial that is ordinary, principally polarizable, cyclic, and maximal. Let
K be the splitting field of f over Q and let K+ be its maximal totally real
subfield. Then

ν∞(f)
∏
`

ν`(f) =
1

ωK

hK
hK+

. (8.2)

Proof. For any primes ` where fC = f mod ` has one of the regular semisim-
ple shapes in Table 3.1, Propositions 7.1 and 7.3 give that ν`(f) = ν`(K).

Assume that ν`(f) = ν`(K) for primes ` where fC = f mod ` is non-
semisimple for all odd prime g. (That is, assume a version of Proposition
7.6 is true for all odd prime g.) Then for all primes ` we have ν`(f) = ν`(K),
and so by Proposition 8.1 the conjecture would be true. �

In the case where g = 3, we can say more.

Theorem 8.4. Let f be a degree 6 q-Weil polynomial that is ordinary,
principally polarizable, cyclic, and maximal. Let K be the splitting field of
f over Q and let K+ be its maximal totally real subfield. Then

ν∞(f)
∏
`

ν`(f) =
1

ωK

hK
hK+

.

Proof. Combine Proposition 7.6 with Propositions 7.1, 7.3, and 8.1 for
g = 3, and the theorem is proven. �

While Theorem 8.4 and Conjecture 8.3 are interesting in their own right
as an unexpected equality of a product of local densities of matrices to a
ratio of class numbers, there is an interpretation of this quantity related to
isogeny classes of abelian varieties via results in a preprint of Everett Howe
[6].

We begin with some notation. Given a Weil polynomial f ∈ Z[T ], let K,
πf , π̄f , K+, and Of be defined as in section 2 and let Of+ = Z[πf + π̄f ].

Let U be the unit group of Of and let U+
>0 be the group of totally positive

units in Of+ . Denote the narrow class number of K+ by h+
K+ .

Theorem 8.5 (Howe). Let I be an isogeny class of simple ordinary abelian
varieties over Fq corresponding to an irreducible Weil polynomial f ∈ Z[T ].
Using the notation above, suppose that Of is the maximal order of K, and
suppose that K is ramified over K+ at a finite prime. Then the number of
abelian varieties in I that have a principal polarization is equal to hK

h+
K+

, and

each such variety has (up to isomorphism) exactly [U+
>0 : N(U)] principal

polarizations, where N is the norm map from U to U+
>0.

We note that the conditions in Theorem 8.5 are indeed met under our
conditions; we assume that the abelian varieties are ordinary in (W.1), the
polynomial f is irreducible in (W.3), and Of is the maximal order of K
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in (W.4). By [5, Lemma 10.2], K is ramified over K+ at a finite prime
whenever g is odd.

Corollary 8.6. Let everything be as in Theorem 8.5. If in addition the unit
groups of K and K+ are equal, then the total number of principally polarized
varieties lying in the isogeny class I is equal to hK/hK+.

Proof. If the unit groups of K and K+ are equal, then the ratio
h+
K+

hK+
is

equal to [U+
>0 : N(U)] and the result follows from Theorem 8.5. �

Remark 8.7. Corollary 8.6 generalizes the classical result that the number
of elliptic curves in a fixed isogeny class is given by the class number of an
appropriate imaginary quadratic field.

We assume in (W.3) that K/Q is cyclic, which implies that Hasse’s unit
index is 1 (see the proof of Proposition 8.1). Thus, under our conditions,
the unit groups of K and K+ are equal, and so we can apply Corollary 8.6.

Recall that Ag(Fq; f) denotes the set of isomorphism classes of principally
polarized abelian varieties of dimension g over Fq with characteristic poly-
nomial of Frobenius f , weighted inversely by the size of the automorphism
group. Then we have the following corollary of Theorem 8.4.

Corollary 8.8. Let f be as in Theorem 8.4. Then

ν∞(f)
∏
`

ν`(f) = #A3(Fq; f).

Proof. From Corollary 8.6, the (unweighted) size of the isogeny class of
principally polarized abelian threefolds with characteristic polynomial f(T )

is hK
hK+

. The size of the automorphism group of any element of that isogeny

class is ωK , so
1

ωK

hK
hK+

= #A3(Fq; f)

and the corollary is proven. �

If we also assume Conjecture 8.3, then we can state the following corollary,
which generalizes the previous result.

Corollary 8.9. Assume that Conjecture 8.3 is true and let f be as in that
conjecture. Then

ν∞(f)
∏
`

ν`(f) = #Ag(Fq; f).

Recent work of Marseglia gives an algorithm for computing isomorphism
classes of abelian varieties in certain isogeny classes [8]. One possible appli-
cation of the algorithm, according to the author, is to provide computational
evidence for the main formulas in [2], [1], and the present work.



LOCAL HEURISTICS FOR ABELIAN VARIETIES OVER FINITE FIELDS 143

Acknowledgments. We thank Everett Howe for sharing with us his work
related to isogeny classes of principally polarized abelian varieties, and Jeff
Achter for very helpful conversations. We also thank the referee for useful
suggestions and insightful questions.

References

[1] Achter, Jeffrey D.; Gordon, Julia. Elliptic curves, random matrices and orbital
integrals. Pacific J. Math. 286 (2017), no. 1, 1–24. MR3582398, Zbl 1379.11065,
arXiv:1510.07068, doi: 10.2140/pjm.2017.286.1. 142

[2] Achter, Jeffrey; Williams, Cassandra. Local heuristics and an exact formula
for abelian surfaces over finite fields. Canad. Math. Bull. 58 (2015), no. 4, 673–691.
MR3415659, Zbl 1354.14068, arXiv:1403.3037, doi: 10.4153/CMB-2015-050-8. 123,
124, 125, 127, 128, 131, 132, 133, 139, 142

[3] Furuya, Hisako. Principal ideal theorems in the genus field for absolutely Abelian
extensions. J. Number Theory 9 (1977), no. 1, 4–15. MR0429820 (55 #2830), Zbl
0347.12006, doi: 10.1016/0022-314X(77)90045-2. 140

[4] Gekeler, Ernst-Ulrich. Frobenius distributions of elliptic curves over finite prime
fields. Int. Math. Res. Not. 2003 no. 37, 1999–2018. MR1995144 (2004d:11048), Zbl
1104.11033, doi: 10.1155/S1073792803211272. 123, 131

[5] Howe, Everett W. Principally polarized ordinary abelian varieties over finite fields.
Trans. Amer. Math. Soc. 347 (1995), no. 7, 2361–2401. MR1297531 (96i:11065), Zbl
0859.14016, doi: 10.2307/2154828. 126, 142

[6] Howe, Everett W. Variations in the distribution of principally-polarized abelian
varieties among isogeny classes. Preprint, 2018. 124, 126, 141

[7] Katz, Nicholas M. Lang–Trotter revisited. Bull. Amer. Math. Soc. (N.S.)
46 (2009), no. 3, 413–457. MR2507277 (2010f:11088), Zbl 1234.11072,
doi: 10.1090/S0273-0979-09-01257-9. 123

[8] Marseglia, Stefano. Computing square-free polarized abelian varieties over finite
fields. Preprint, 2018. arXiv:1805.10223. 142

[9] Rauch, Job. Using heuristics on local matrix groups to count Abelian surfaces.
Master’s thesis, Leiden University, August 2017. 125

[10] Shinoda, Ken-ichi. The characters of Weil representations associated to finite
fields. J. Algebra 66 (1980), no. 1, 251–280. MR591256 (81k:20017), Zbl 0444.20034,
doi: 10.1016/0021-8693(80)90123-4. 127, 129

[11] Tate, John. Endomorphisms of abelian varieties over finite fields. Invent. Math. 2
(1966), 134–144. MR0206004 (34 #5829), Zbl 0147.20303, doi: 10.1007/BF01404549.
123

[12] Washington, Lawrence C. Introduction to cyclotomic fields. Second Edition.
Graduate Texts in Mathematics, 83. Springer-Verlag, New York, 1997. xiv+487 pp.
ISBN: 0-387-94762-0. MR1421575 (97h:11130), Zbl 0966.11047, doi: 10.1007/978-1-
4612-1934-7. 140

[13] Weyl, Hermann. The classical groups. Their invariants and representations. Fif-
teenth printing. Princeton Landmarks in Mathematics. Princeton Paperbacks. Prince-
ton University Press, Princeton, NJ, 1997. xiv+320 pp. ISBN: 0-691-05756-7.
MR1488158 (98k:01049), Zbl 1024.20501. 132

http://www.ams.org/mathscinet-getitem?mr=3582398
http://www.emis.de/cgi-bin/MATH-item?1379.11065
http://arXiv.org/abs/1510.07068
http://dx.doi.org/10.2140/pjm.2017.286.1
http://www.ams.org/mathscinet-getitem?mr=3415659
http://www.emis.de/cgi-bin/MATH-item?1354.14068
http://arXiv.org/abs/1403.3037
http://dx.doi.org/10.4153/CMB-2015-050-8
http://www.ams.org/mathscinet-getitem?mr=0429820
http://www.emis.de/cgi-bin/MATH-item?0347.12006
http://www.emis.de/cgi-bin/MATH-item?0347.12006
http://dx.doi.org/10.1016/0022-314X(77)90045-2
http://www.ams.org/mathscinet-getitem?mr=1995144
http://www.emis.de/cgi-bin/MATH-item?1104.11033
http://www.emis.de/cgi-bin/MATH-item?1104.11033
http://dx.doi.org/10.1155/S1073792803211272
http://www.ams.org/mathscinet-getitem?mr=1297531
http://www.emis.de/cgi-bin/MATH-item?0859.14016
http://www.emis.de/cgi-bin/MATH-item?0859.14016
http://dx.doi.org/10.2307/2154828
http://www.ams.org/mathscinet-getitem?mr=2507277
http://www.emis.de/cgi-bin/MATH-item?1234.11072
http://dx.doi.org/10.1090/S0273-0979-09-01257-9
http://arXiv.org/abs/1805.10223
http://www.ams.org/mathscinet-getitem?mr=591256
http://www.emis.de/cgi-bin/MATH-item?0444.20034
http://dx.doi.org/10.1016/0021-8693(80)90123-4
http://www.ams.org/mathscinet-getitem?mr=0206004
http://www.emis.de/cgi-bin/MATH-item?0147.20303
http://dx.doi.org/10.1007/BF01404549
http://www.ams.org/mathscinet-getitem?mr=1421575
http://www.emis.de/cgi-bin/MATH-item?0966.11047
http://dx.doi.org/10.1007/978-1-4612-1934-7
http://dx.doi.org/10.1007/978-1-4612-1934-7
http://www.ams.org/mathscinet-getitem?mr=1488158
http://www.emis.de/cgi-bin/MATH-item?1024.20501


144 JONATHAN GERHARD AND CASSANDRA WILLIAMS

(Jonathan Gerhard) James Madison University, Harrisonburg, VA 22807, USA
gerha2jm@dukes.jmu.edu

(Cassandra Williams) James Madison University, Harrisonburg, VA 22807, USA
willi5cl@jmu.edu

http://educ.jmu.edu/~willi5cl

This paper is available via http://nyjm.albany.edu/j/2019/25-5.html.

mailto:gerha2jm@dukes.jmu.edu
mailto:willi5cl@jmu.edu
http://educ.jmu.edu/~willi5cl
http://nyjm.albany.edu/j/2019/25-5.html

	1. Introduction
	2. Abelian varieties and Weil polynomials
	3. Conjugacy classes in `39`42`"613A``45`47`"603AGSp2g(F)
	4. Local factors for f
	5. Polynomials and primes in K
	6. Local factors for K
	7. Matching
	8. Main results
	References

