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A remark on the group structure of
2-isogenous elliptic curves in

towers of finite fields

John Cullinan

Abstract. Let A and B be ordinary 2-isogenous elliptic curves defined
over a finite field F of odd characteristic. Suppose the groups A(F) and
B(F) are isomorphic. We determine necessary and sufficient conditions
for the groups A(L) and B(L) to be isomorphic for all finite extensions
L/F. This complements recent work in which we considered the similar
question for l-isogenous curves, when l is odd.
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1. Introduction

Let ` be a prime number and F a finite field of characteristic coprime to
`. Let E1 and E2 be ordinary, `-isogenous, elliptic curves defined over F
such that the isogeny is also defined over F . In [2], building on [3] and [8],
we considered the following problem.

Question 1.1. Suppose the groups E1(F ) and E2(F ) are isomorphic. Under
what conditions are E1(L) and E2(L) isomorphic, as L ranges over all finite
extensions of F?

Put another way, does the fact that E1(F ) and E2(F ) are isomorphic
imply that E1(L) and E2(L) are isomorphic over all finite extensions L of
F? We answered this question when ` is an odd prime, and record here the
main result of [2].
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Theorem 1.2 ([2]). Let ` be an odd prime, F a finite field of characteristic
coprime to `, and E1 and E2 ordinary, `-isogenous, elliptic curves defined
over F . Then

(1) the prime-to-` parts of the groups E1(L) and E2(L) are isomorphic
for every finite extension L/F , and

(2) E1(L) ' E2(L) for all finite extensions L/F if and only if the `-
Sylow subgroups of E1(F ) and E2(F ) are isomorphic and non-trivial.

The upshot of Theorem 1.4 is a certificate for checking whether the groups
E1(L) and E2(L) are isomorphic: replace F with a (possibly trivial) exten-
sion K/F so that the Ei acquire an `-torsion point over K. Then for any
finite extension L/K, E1(L) ' E2(L) if and only if E1(K) ' E2(K).

A result of Lenstra [6] relates the group structure of an elliptic curve
over a finite field to the endomorphism ring of the curve. Specifically, if
E is an ordinary elliptic curve defined over F , π ∈ End(E) the Frobenius
endomorphism, and [L : F ] = k, then

E(L) ' End(E)/(πk − 1). (1)

A result of Kohel [5] states that for ordinary, `-isogenous, elliptic curves
E1, E2 defined over a finite field F with endomorphism rings O1 and O2,
respectively, the endomorphism rings satisfy

[O1 : O2] = `±1, or 1,

via the inclusion of endomorphism rings induced by the isogeny. In the
former cases the isogeny is called vertical, while in the latter it is called
horizontal.

In light of (1), any horizontally-isogenous elliptic curves will trivially have
isomorphic groups of rational points over all finite extensions L/F (here
we are using the fact that for ordinary elliptic curves all endomorphisms
are defined over F ). Therefore, for the remainder of the paper we will
consider only vertical isogenies. A byproduct of our results in [2] is a general
construction of pairs of elliptic curves that are vertically `-isogenous (so they
are neither isomorphic as curves, nor have isomorphic endomorphism rings)
and yet have isomorphic groups of rational points in towers over F .

When ` = 2 the situation is more complicated, as the following example
from [2] and [4] illustrates.

Example 1.3. Let q = 257, F = Fq, and L = Fq2. Set

E1 : y2 = x3 + 90x+ 101

E2 : y2 = x3 + 196x+ 159

and observe E2 = E1/〈(−10, 0)〉, so E1 and E2 are 2-isogenous. One can
check that

E1(F )[2∞] ' E2(F )[2∞] ' Z/2× Z/2,
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but

E2(L)[2∞] = Z/4× Z/16 and E2(L)[2∞] = Z/8× Z/8.

Therefore, in contrast to the case of odd `, it is not enough to have
E1(F ) ' E2(F ) with non-trivial 2-Sylow subgroups to conclude that E1(L) '
E2(L) for all L/F . In this paper we answer Question 1.1 for vertical 2-
isogenies.

The proof of Theorem 1.2, Part (1) applies when ` = 2 also, so it suffices
to determine necessary and sufficient conditions for the 2-Sylow subgroups
of E1(L) and E2(L) to be isomorphic when E1 and E2 are vertically 2-
isogenous. Similarly as in [2], our main result can be viewed as a certificate
for checking whether or not the groups E1(L) and E2(L) are isomorphic, for
any finite extension L/F , based only on computations performed over F .

To put this paper into the context of related works, we recall that in [3]
the authors determine necessary and sufficient conditions for elliptic curves
E1 and E2 defined over a finite field F to have isomorphic groups of rational
points in extensions L/F of degree k, for k ≥ 1, extending the results of
Wittman for k = 1. Our approach is different and focuses only on the case
` = 2, in light of Theorem 1.2. In particular, we start with the hypothesis
that the `-Sylow subgroups of E1(F ) and E2(F ) are isomorphic and then ask
about isomorphic groups of rational points in towers over F . The examples
of [3] where the elliptic curves have isomorphic groups of rational points
for certain extensions and not others stems from the fact that the curves
they consider are `-isogenous but do not possess a point of order ` over the
ground field; it is only when the curves acquire an `-torsion point in a finite
extension that the groups are revealed to be non-isomorphic.

To state our main result precisely we set some preliminary notation which
we will expand in Section 2. The endomorphism rings O1 and O2 of the
ordinary elliptic curves E1 and E2 are orders in an imaginary quadratic
number ring Z[δ], where δ =

√
d if d ≡ 2, 3 (mod 4) and (1 +

√
d)/2 if d ≡ 1

(mod 4), for some negative, square-free, integer d. Write π for the Frobenius
endomorphism and set

π = a+ bδ ∈ Z[δ].

As we will recall in Section 2, we can assume that a is odd and b is even.
If g1 and g2 are the conductors of O1 and O2, respectively, then write s2 =
max{v2(g1), v2(g2)}, where v2 is the 2-adic valuation. Our main theorem
can then be stated as follows.

Theorem 1.4. Let E1 and E2 be ordinary, 2-isogenous elliptic curves de-
fined over a finite field F such that the isogeny is also defined over F . Sup-
pose E1(F ) ' E2(F ). Let the endomorphism ring of each curve be an order
in the quadratic imaginary ring Z[δ] and write π = a + bδ ∈ Z[δ], where a
is odd and b is even, for the Frobenius endomorphism. Then:

(1) if v2(a− 1) > 1, or if v2(a− 1) = 1 and v2(a+ 1) + 1 ≤ v2(b)− s2,
then E1(L) ' E2(L) for all finite extensions L/F , otherwise
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(2) E1(L) ' E2(L) for all odd-degree extensions L/F only.

Just like in [2], this result can be viewed as a certificate for checking
whether or not E1(L) ' E2(L) for any finite extension L/F by performing
an F -computation only. In fact, one way in which this result is simpler
than the one in [2] is that if the 2-isogeny is defined over F , then E1 and
E2 necessarily have non-trivial 2-Sylow subgroups over F . Therefore, one
does not need to perform an initial base-field extension to check whether the
`-Sylow subgroups are isomorphic, as in the case of odd `.

In the next section we give a brief background on isogenous elliptic curves
and set up the necessary notation to prove Theorem 1.4. Section 3 is dedi-
cated to the proof of Theorem 1.4. In Section 4 we address Question 1.1 for
supersingular curves. Finally, we conclude with a remark that contextual-
izes our result in terms of isogeny volcanoes.

Acknowledgments. We thank the anonymous referee for a careful read-
ing of the draft and detailed comments which improved the exposition and
content of the paper.

2. Background and setup

We import much of the notation from [3]. Let E1 and E2 be ordinary `-
isogenous elliptic curves defined over a finite field F of characteristic coprime
to `. Let O1 and O2 be the endomorphism rings of E1 and E2, which can
be viewed as orders in the imaginary quadratic ring Z[δ], such that δ =

√
d

if d ≡ 2, 3 (mod 4) or δ = (1 +
√
d)/2 if d ≡ 1 (mod 4). Associated to

each elliptic curve is the Frobenius endomorphism π, which has the same
representative in Z[δ] for both curves; we write

π = a1 + b1δ

for some a1, b1 ∈ Z. For k a positive integer we have

πk = ak + bkδ,

for ak, bk ∈ Z. The main result [3, Thm. 2.4] can then be stated as follows.
If [L : F ] = k, then

E1(L) ' E2(L)⇔ v2(ak − 1) ≤ v2(bk)− s2 (2)

where s2 is a non-negative integer supported on a finite set of primes P. It
remains to describe the set P explicitly.

The endomorphism rings O1 and O2 are orders of conductor g1 and g2
in Z[δ], respectively, and both g1 and g2 divide b1. The fact that there is
a vertical 2-isogeny between E1 and E2 means either g2/g1 = 2 or g1/g2 =
2. In general, the set P of [3, Thm. 2.4] is the set of primes p for which
vp(g1) 6= vp(g2) and

sp = max{vp(g1), vp(g2)}. (3)
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Because we are restricting to 2-isogenies, we have P ⊆ {2}. However, be-
cause we assume the isogeny is vertical, P is nonempty and so we have
P = {2}. Since both g1 and g2 divide b, we have that b is even. By [3,
Rmk. 2], a is coprime to the elements of P or else E would be supersingular.

Altogether, we seek necessary and sufficient conditions for (2) to hold
when P = {2}, bk is even for all k and ak is odd for all k (which follow from
b1 and a1 being even and odd, respectively). This is the topic of Section 3
below. We conclude this section by observing that it suffices to restrict to
the case where k is a power of 2.

Lemma 2.1. Let E be an elliptic curve defined over a field K of odd char-
acteristic. Let L/K be an extension of odd degree. Suppose that E(F )[2] is
nontrivial. Then E(F )[2∞] = E(L)[2∞].

Proof. If E(F )[2] is nontrivial, then E(F ) achieves full 2-torsion in an ex-
tension F2 of degree 2 or 1, depending on whether E(F )[2] is cyclic or not,
respectively. In general, the kernel of the reduction map GL(2,Z/`n+1) →
GL(2,Z/`n) is isomorphic to (Z/`)4, hence the 2n-torsion of E is defined over
a 2-power extension of F2. Thus if L/F has odd degree then E(L)[2∞] =
E(F )[2∞], as desired. �

Lemma 2.1 applies to our setup since by hypothesis the elliptic curves E1

and E2 are 2-isogenous by an F -rational isogeny, which means each curve
has an F -rational 2-torsion point.

3. Proof of Theorem 1.4

Recall that throughout the paper we fix a finite field F of odd character-
istic. Define the tower L = {Li/F}∞i=0 where Li is the unique extension of
F of degree 2i. Recalling our notation from Section 2, write πk = ak + bkδ

for k ≥ 1. Then the Frobenius in the field Li is π2
i

with representative

a2i + b2iδ ∈ Z[δ].

An easy calculation shows that for i ≥ 1,

(a2i − 1, b2i) =
(
a22i−1 − 1 + b22i−1d, 2a2i−1b2i−1

)
when d ≡ 2, 3 (mod 4), and

(a2i − 1, b2i) =

(
a22i−1 − 1 + b22i−1

(
d− 1

4

)
, 2a2i−1b2i−1 + b22i−1

)
when d ≡ 1 (mod 4). The initial setup and the hypothesis E1(F ) ' E2(F )
constrains the 2-valuations as follows. Since ak is odd and bk is even for all
k ≥ 1, we can write

a1 − 1 = 2nα1, b1 = 2mβ1,
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for some odd integers α1 and β1. Moreover, since v2(a1 − 1) ≤ v2(b1) − s2,
we have

1 ≤ n ≤ m− s2, (4)

from which it follows that m = v2(b1) ≥ 2, since s2 ≥ 1.
We have

v2(b2i) = v2(b1) + i, (5)

which follows immediately the formulas above and the fact that a2i is odd
for all i ≥ 0, when d ≡ 2, 3 (mod 4). When d ≡ 1 (mod 4), (5) is true as
well, but uses both the fact that a2i is odd and that m = v2(b1) ≥ 2, as
established in the previous paragraph. The valuation v2(a2i − 1) is slightly
more complicated, though when n > 1 we easily prove the following lemma.

Lemma 3.1. With all notation as above, suppose n > 1. Then E1(F ) '
E2(F ) if and only if E1(L) ' E2(L) for all finite extensions L/F .

Proof. One direction is trivial, so we assume E1(F ) ' E2(F ). It suffices to
show E1(L) ' E2(L) for all L ∈ L by Lemma 2.1. Let d′ = d when d ≡ 2, 3
(mod 4) and (d− 1)/4 when d ≡ 1 (mod 4). Then

v2 (a2 − 1) = v2(2
nα1(2

nα1 + 2) + 22mβ21d
′) = n+ 1 = v2(a− 1) + 1,

because 2n−1α1 + 1 is odd and 2m > n + 1. An easy induction argument
shows

v2 (a2i − 1) = v2(a1 − 1) + i

for all i ≥ 0. Combined with (5) and applying (2), this shows E1(Li) '
E2(Li) for all i ≥ 0, and the lemma is proved. �

If n = 1 then 2nα1 +2 is divisible by 4, and so v2(a2−1) might be strictly
greater than v2(a1−1)+1. If this happens, then we may have E1(L1)[2

∞] 6'
E2(L1)[2

∞] even though E1(F ) ' E2(F ). And since E1(L1) (resp. E2(L1))
is a subgroup of E1(L) (resp. E2(L)) for all L ∈ L, we consequently have
E1(L) 6' E2(L) for all L ∈ L.

To see this phenomenon explicitly, write

a1 + 1 = 2α1 + 2 = 2ρα′1,

with ρ ≥ 2. Then

v2(a2 − 1) = v2(2
ρ+1α1α

′
1 + 22mβ21d

′) ≥ min(1 + ρ, 2v2(b1)), (6)

while v2(b2) = v2(b1) + 1. In the next lemma we show that this potential
“quadratic obstruction” is the only one that affects whether or not E1(L) '
E2(L) for L ∈ L. See Example 3.3 following the lemma for an example in
coordinates.

Lemma 3.2. With all notation as above, suppose v2(a1−1) = 1 and suppose
E1(F ) ' E2(F ). Then E1(L) ' E2(L) for all L ∈ L if and only if v2(a1 +
1) ≤ v2(b1)− s2.
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Proof. If L1 is the quadratic extension of F , then E1(L1) ' E2(L1) if and
only if v2(a2−1) ≤ v2(b2)−s2. As above, set ρ = v2(a1+1) and m = v2(b1).
If ρ > m−s2, then by (6) v2(a2−1) ≥ min(ρ+1, 2m) > m+1−s2 = v2(b2)−
s2, and so E1(L1) 6' E2(L1). Since E1(L1) (resp. E2(L1)) is a subgroup of
E1(Li) (resp. E2(Li)) for all i > 0, we conclude that E1(Li) 6' E2(Li) for
all i > 0.

Conversely, suppose ρ ≤ m− s2. We first check that E1(L1) ' E2(L1):

v2(a2 − 1) = v2(a
2
1 − 1 + b21d

′) = v2(2
ρ+1α1α

′
1 + 22mβ21d

′).

Since ρ ≤ m− s2, we have ρ+ 1 < 2m and so

v2(a2 − 1) = 1 + ρ ≤ 1 + v2(b1)− s2 = v2(b2)− s2,

whence E1(L1) ' E2(L1).
If i = 2, then

a4 − 1 = (a2 − 1)︸ ︷︷ ︸
v2=ρ+1

(a2 + 1)︸ ︷︷ ︸
v2=1

+ b22︸︷︷︸
v2=2m+2

d′,

and so v2(a4 − 1) = ρ + 2 = v2(a1 + 1) + 2. By induction, for all i ≥ 2 we
have

v2 (a2i − 1) = v2(a1 + 1) + i.

Combined with (5), and the fact that E1(L1) ' E2(L1), we get that E1(L) '
E2(L) for all L ∈ L. �

We conclude this section with two examples. First, we revisit Example
1.3 from the introduction to see the failure of the group isomorphism in
towers in light of our main result.

Example 3.3 (Example 1.3, Revisited). Recall from above that q = 257,
F = Fq, and E1 and E2 are the 2-isogenous curves with Weierstrass equa-
tions

E1 : y2 = x3 + 90x+ 101

E2 : y2 = x3 + 196x+ 159.

We compute π = −9 + 4
√
−11 so that a1 = −9 and b1 = 4.

The endomorphism algebra of each curve is Q(
√
−11) and the fundamen-

tal discriminant of the maximal order is −11. The discriminant of Z[π] is
−64 · 11, hence the conductors g1 and g2 belong to the set {1, 2, 4, 8} with
either g1/g2 = 2 or g2/g1 = 2. Applying the methods of [1], we compute
s2 = max{v2(g1), v2(g2)} = 1. With this pre-computation in place, we are
in a position to apply our main results.

Observe

v2(a1 − 1) = 1 ≤ 2− 1 = v2(b1)− s2,
so that E1(F ) ' E2(F ). But now we check

v2(a1 + 1) = 3 > 1 = v2(b1)− s2,
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so E1(L1) 6' E2(L1), where L1 is the unique quadratic extension of F . Since
Ei(L1) is a subgroup of Ei(L) for every L ∈ L, we have E1(L) 6' E2(L) for
all L ∈ L. It follows that E1(K) ' E2(K) only when [K : F ] is odd.

We remark that although we did not need to perform an L1-computation to
conclude that E1(L1) 6' E2(L2) (some of the impetus behind this paper was
to perform F -computations only), it is worth pointing out that v2(a1−1) = 1
and v2(a2 − 1) = v2(−1856) = 6. This large increase is behind the failure of
E1(L1) and E2(L1) to be isomorphic, according to the results of [3].

Next, we revisit the motivating example of Wittmann [8, Appendix] in
which he exhibits two non-isomorphic elliptic curves over a finite field F
such that the groups E1(L) ' E2(L) are isomorphic for any finite extension
L/F . We examine this example in the context of Lemma 3.2.

Example 3.4. Let q = 73 and F = Fq. Let E1 and E2 be the elliptic curves
over F with Weierstrass equations

E1 : y2 = x3 + 25x

E2 : y2 = x3 + 53x+ 55.

Then E2 = E1/〈(−11, 0)〉 and so E1 and E2 are 2-isogenous. Additionally,
he shows End(E1) ' Z[i] and End(E2) ' Z[2i] (so the isogeny is vertical),
and

π = 3 + 8i.

Observe that v2(a1 − 1) = 1 and m = v2(b1) = 3 ≥ 2 and so we are in a
position to apply Lemma 3.2. Because the associated conductors g1 and g2
are equal to 1 and 2, respectively, we see that s2 = 1 by ( 3). We then check

v2(a1 + 1) = 2 ≤ 3− 1 = v2(b1)− s2
and conclude from Lemma 3.2 that E1(L) ' E2(L) for all L ∈ L, the 2-tower
over F . Because the prime-to-2 parts of the groups E1(K) and E2(K) are
isomorphic in all finite extensions K/F , we conclude that E1(K) ' E2(K)
for every finite extension K/F .

4. Supersingular curves

If E1 and E2 are supersingular, then the situation is potentially much
different. Neither we in [2] nor the authors in [3] considered Question 1.1
in the context of supersingular curves, though in [8] the author worked
out the group structure of supersingular curves in towers. In this section
we attempt to consolidate known results and answer Question 1.1 for su-
persingular curves. We start by recalling the group structure in towers of
supersingular curves defined over prime finite fields, as determined in [8].

Theorem 4.1 (Theorem 4.1 of [8]). Let E/Fp be a supersingular elliptic
curve. Then

E(Fp2k) ' Z/((−p)k − 1)× Z/((−p)k − 1).
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Further:

• If p 6≡ 3 (mod 4) or p ≡ 3 (mod 4) and E[2] 6⊆ E(Fp) we have

E(Fp2k+1) ' Z/(p2k+1 + 1) and EndFp(E) ' Z[
√
−p].

• If p ≡ 3 (mod 4) and E[2] ⊆ E(Fp) we have

E(Fp2k+1) ' Z/2× Z/

(
p2k+1 + 1

2

)
and EndFp(E) ' Z[(1 +

√
−p)/2].

Using this result, we present the following corollary on supersingular,
isogenous elliptic curves, regardless of the degree of the isogeny.

Corollary 4.2. Let p be a prime number and Fp the field of p elements.
Let E1 and E2 be supersingular, isogenous elliptic curves defined over Fp.
Suppose E1(Fp) ' E2(Fp). Then E1(K) ' E2(K) for every finite extension
K/Fp.

Proof. This is immediate: Theorem 4.1 shows that the group structure of
a supersingular elliptic curve over a prime finite field determines uniquely,
and with only one possibility, the group structure in any finite extension
K/Fp. �

If q is a power of a prime p, then we have the following theorem from [8]:

Theorem 4.3 (Theorem 4.2 of [8]). Let E/Fq be supersingular.

(a) If π ∈ Z, then E(Fqk) ' Z/(πk − 1)× Z/(πk − 1).
(b) Otherwise the groups of Fqk-rational points that occur are precisely

Og/(πk − 1),

where d = (q + 1 − #E(Fq))
2 − 4q < 0, K = Q(

√
d), and Og

is the order of OK of conductor g. Moreover, all orders Og with
Z[π] ⊆ Og ⊆ OK and g coprime to p occur.

Remark 4.4. In Theorem 4.3(a) the endomorphism ring of E has Z-rank
4, while in (b) the endomorphism ring is an order in an imaginary quadratic
number field.

Similar to Corollary 4.2 above, we see that if E/Fq is supersingular with
π ∈ Z, then the group structure in towers over Fq is uniquely determined
by the group structure over Fq. The only unresolved case of Question 1.1
in the context of supersingular elliptic curve is the case of Theorem 4.3(b).

However, in this case we may now apply [2, Thm. 1] or Theorem 1.4 of
the present work, depending on whether ` is odd or even. Indeed, the group
structure of each curve is given by a quotient of an order in an imaginary
quadratic number ring, where one ring is of index ` in the other, and the fact
that the curves are supersingular is irrelevant. By our standing hypothesis,
` is coprime to the characteristic of the field, and so the conductor g will
not equal ` (the only extra requirement of Theorem 4.3(b)).
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To recap, the answer to Question 1.1 for supersingular curves is exactly
the same as for ordinary curves when the endomorphism ring is an order in
an imaginary quadratic number field and, in every other case, if E1(F ) '
E2(F ), then E1(L) ' E2(L) for all finite extensions L/F trivially, since the
group structure over L is determined uniquely, and with only one possibility,
by the group structure over F .

5. Remarks on volcanoes

The `-isogeny graph of an elliptic curve over a finite field has a rich struc-
ture known as an `-volcano. In this paper we did not use the structure of
the 2-volcano to prove our main theorem, but, because it may be of inde-
pendent interest, we give a brief description of the 2-volcanoes associated
to the elliptic curves that we are studying in this paper. Our treatment is
intentionally brief and we refer to [7] for an extensive background.

The `-Sylow subgroup of an elliptic curve on the floor of an `-volcano is
cyclic of order `v, where v = v`(#E(F )). All of the elliptic curves on the
first level of the volcano (so in the image of a vertical `-isogeny from a curve
on the floor) has `-Sylow subgroup Z/`v−1 × Z/`. This pattern continues:
at the jth level up from the floor the `-Sylow subgroup is Z/`v−j ×Z/`j . If
the `-Sylow subgroups are distinct at all levels, then the `-volcano is called
regular. If not, it is called irregular.

On an irregular volcano, there will necessarily be a level where the `-Sylow
subgroup equals Z/`v/2 × Z/`v/2 and will remain unchanged for all levels
up to, and including, the crater. The minimum level for which the `-Sylow
subgroup has this structure is called the stability level of the volcano.
Proofs of these assertions can be found in [4, §2].

When E1 and E2 are vertically `-isogenous with E1(F ) ' E2(F ), it must
be the case that the `-volcano of E1 is irregular, otherwise it would be impos-
sible for the `-Sylow subgroups of the Ei(F ) to be isomorphic. Altogether,
we can contextualize our result in terms of 2-volcanoes as follows:

Either both curves lie on the crater of the 2-isogeny volcano and we triv-
ially have E1(L) ' E2(L) for all extensions L/F , or the curves are vertically
isogenous on an irregular volcano above the stability level. In the latter
case, we either have E1(L) ' E2(L) for all finite extensions L/F , or only
for odd-degree extensions, where the distinction is determined by a compu-
tation over F .
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