New York Journal of Mathematics

New York J. Math. 26 (2020) 218–229.

Subgroup growth of all Baumslag-Solitar groups

Andrew James Kelley

ABSTRACT. This paper gives asymptotic formulas for the subgroup growth and maximal subgroup growth of all Baumslag-Solitar groups.

Contents

1.	Introduction	218
2.	The largest residually finite quotient	219
3.	When $gcd(a, b) = 1$: redoing Gelman's formula	222
4.	When $gcd(a, b) \neq 1$: an asymptotic formula for $m_n(BS(a, b))$	224
5.	When $gcd(a, b) \neq 1$: an asymptotic formula for $a_n(BS(a, b))$	227
Acknowledgments		229
References		229

1. Introduction

For a finitely generated group G, let $a_n(G)$ denote the number of subgroups of G of index n, and let $m_n(G)$ denote the number of maximal subgroups of G of index n. Also, for a, b nonzero integers, let BS(a, b) denote the Baumslag-Solitar group $\langle x, y | y^{-1}x^ay = x^b \rangle$, which was introduced in [1].

In [4], Gelman counts $a_n(BS(a, b))$ exactly for the case when gcd(a, b) = 1. Exact formulas in the area of subgroup growth are rare, and so his formula (Theorem 3.1 below) is indeed very nice. Can a simple formula also be given for $m_n(BS(a, b))$ when gcd(a, b) = 1? Yes, see Corollary 3.6. More importantly to this paper, what about the case when $gcd(a, b) \neq 1$?

From the work of Moldavanskii [8], it is apparent that the largest residually finite quotient of BS(a, b) is a group, which we will denote \overline{G} , which has a normal subgroup of the form $A \cong \mathbb{Z}[1/k]$ (for appropriate k) with $\overline{G}/A \cong \mathbb{Z} * \mathbb{Z}/m\mathbb{Z}$, where $m = \gcd(a, b)$. When m = 1, this explains why the formula for $a_n(BS(a, b))$ is so simple; \overline{G} turns out to be of the form

Received September 26, 2018.

²⁰¹⁰ Mathematics Subject Classification. 20E07.

Key words and phrases. Subgroup growth, Baumslag-Solitar groups.

 $\mathbb{Z}[1/k] \times \mathbb{Z}$, and so Section 3 gives a more enlightening proof of Gelman's formula.

When m = gcd(a, b) > 1, one has to deal with the free product $\mathbb{Z} * \mathbb{Z}/m\mathbb{Z}$. In [9], Müller studies such groups (and in fact many more: any free product of groups that are either finite or free). With this, one can give an asymptotic formula for $m_n(\mathbb{Z} * \mathbb{Z}/m\mathbb{Z})$. Note that Müller's main results are even better than asymptotic formulas.

Next, a small argument shows that the vast majority of maximal subgroups (of any fixed, large index) of BS(a,b) contain the normal subgroup A (mentioned above), and hence, we obtain an asymptotic formula for $m_n(BS(a,b))$. As it turns out, the vast majority of all subgroups of BS(a,b)(of any fixed, large index) contain A. As a result, we can combine the two main results of this paper, Theorems 4.10 and 5.3, to obtain the following.

Theorem. Let m = gcd(a, b), and assume that m > 1. Then

$$a_n(BS(a,b)) \sim m_n(BS(a,b)) \sim nf(n)$$

where

$$f(n) := K n^{(1-1/m)n} \exp\left(-(1-1/m)n + \sum_{\substack{d < m \\ d \mid m}} \frac{n^{d/m}}{d}\right)$$

with

$$K \coloneqq \begin{cases} m^{-1/2} & \text{if } m \text{ is odd} \\ m^{-1/2} e^{-1/(2m)} & \text{otherwise.} \end{cases}$$

For related work on the Baumslag-Solitar groups, note that in [2], Button gives an exact formula for counting the normal subgroups of any index in BS(a, b), when gcd(a, b) = 1. For a survey of subgroup growth up until 2003, see [7], the book by Lubotzky and Segal.

The goal of Section 2 is to describe \overline{G} , the largest residually finite quotient of BS(a, b). In Section 3, a new proof is given for Gelman's formula, and it is shown there what it simplifies to for $m_n(BS(a,b))$. In Section 4, an asymptotic formula is given for $m_n(BS(a,b))$ when gcd(a,b) > 1. Finally, in Section 5, it is shown that the asymptotic formula for $m_n(BS(a,b))$ is also asymptotic to $a_n(BS(a,b))$ (where still gcd(a,b) > 1).

2. The largest residually finite quotient

The goal of this section is Corollary 2.7. Let G = BS(a, b).

We will denote the intersection of all finite index subgroups of G by $\operatorname{Res}(G)$. In [8], Moldavanskii determines what $\operatorname{Res}(G)$ is. Let $m := \operatorname{gcd}(a, b)$.

Theorem 2.1 (Moldavanskii, 2010). The group $\operatorname{Res}(G)$ is the normal closure in G of the set of commutators $\{[y^k x^m y^{-k}, x] : k \in \mathbb{Z}\}.$

Let $\overline{G} = G/\operatorname{Res}(G)$ the largest residually finite quotient of G = BS(a, b). (\overline{G} does depend on a and b.) We then have the following presentation of \overline{G} :

$$\overline{G} = \langle x, y \mid y^{-1}x^a y = x^b, [y^k x^m y^{-k}, x] \text{ for all } k \in \mathbb{Z} \rangle.$$

We next define a subgroup of \overline{G} (denoted \overline{C} in [8]):

$$A \coloneqq \langle y^k x^m y^{-k} : k \in \mathbb{Z} \rangle \le \overline{G}.$$

Lemma 2.2 (Moldavanskii). The group A is an abelian normal subgroup of \overline{G} .

Note: This is a small part of Propositions 3 and 4 in [8].

Proof. We have $A \trianglelefteq \overline{G}$ because conjugating the generators of A by y just shifts them and because x commutes with all the generators (because of the commutators in Res(G)).

We have that $[y^k x^m y^{-k}, x] \in \operatorname{Res}(G)$ implies that x^m commutes with $y^k x^m y^{-k}$, and hence for all $j, k \in \mathbb{Z}$ we get $[y^k x^m y^{-k}, y^j x^m y^{-j}] \in \operatorname{Res}(G)$. \Box

It turns out that \overline{G}/A is the free product of a finite cyclic group with the infinite cyclic group: (Recall that $m \coloneqq \gcd(a, b)$.)

Corollary 2.3 (Moldavanskii). The group \overline{G}/A has presentation $\langle x, y | x^m \rangle$, and therefore, $\overline{G}/A \cong \mathbb{Z} * (\mathbb{Z}/m\mathbb{Z})$.

Note that the x here does indeed correspond to the x in the presentation of \overline{G} .

Proof. Any group with the relation $x^m = 1$ also has the relations $y^k x^m y^{-k} = 1$ as well as $[y^k x^m y^{-k}, x] = 1$, and since *m* divides *a* and *b*, that group will also have the relation $y^{-1}x^a y = x^b$. Therefore, \overline{G}/A has presentation $\langle x, y | x^m \rangle$.

Since we know that A is abelian, we will write A additively instead of multiplicatively. Let a = um, b = vm. (So gcd(u, v) = 1.)

Proposition 2.4 (Moldavanskii). The group A has the following presentation as an abelian group (using additive notation)

$$A = \langle c_i, i \in \mathbb{Z} \mid uc_i = vc_{i+1} \text{ for all } i \in \mathbb{Z} \rangle.$$

Moldavanskii also shows in Proposition 4 of [8] that A is a residually finite abelian group of rank 1. (For A to have rank 1 means that all of its finitely generated subgroups are cyclic.) We will show in Lemma 2.6 something similar, that A is isomorphic to $\mathbb{Z}[u/v, v/u] = \{a_1(u/v)^{t_1} + \cdots + a_k(u/v)^{t_k} : a_i, t_i \in \mathbb{Z} \ \forall i\}$. We remind the reader that the ring $\mathbb{Z}[u/v, v/u]$ is \mathbb{Z} together with the two rational numbers u/v and v/u adjoined. See Lemma 2.5 below for a well-known alternative perspective.

We let $\pi(uv)$ denote the product of the distinct primes that divide uv.

Lemma 2.5. Assume still that gcd(u, v) = 1. As subrings of \mathbb{Q} , we have

 $\mathbb{Z}[v/u, u/v] = \mathbb{Z}[1/u, 1/v] = \mathbb{Z}[1/(uv)] = \mathbb{Z}[1/\pi(uv)]$

Lemma 2.5 is well-known.

Lemma 2.6. We have that $A \cong \mathbb{Z}[u/v, v/u]$ as groups.

Proof. Let $\varphi : \{c_i : i \in \mathbb{Z}\} \to \mathbb{Z}[u/v, v/u]$ be defined by $\varphi(c_i) := (u/v)^i$.

Step 1. φ gives a homomorphism: To get a homomorphism from A to $\mathbb{Z}[u/v, v/u]$, all we need to check is that $u\varphi(c_i) = v\varphi(c_{i+1})$. And indeed, it is true that $u(u/v)^i = v(u/v)^{i+1}$.

Step 2. φ is surjective: This is evident because for all i, $(u/v)^i$ is in the image of φ .

Step 3. φ is injective: Let $g \in \ker(\varphi)$. Assume by contradiction that $g \neq 0$. Then there exist $n_i \in \mathbb{Z}$ such that $g = \sum_{i=s}^t n_i c_i$ with $n_s, n_t \neq 0$. We will show that we can assume that the sum has only one term in it (i.e. that s = t) and then easily get a contradiction.

We have $\varphi(g) = \sum_{i=s}^{t} n_i (u/v)^i = 0$. Assume t > s. Multiplying by v^t and dividing by u^s yields

$$n_s v^{t-s} + n_{s+1} v^{t-s-1} u + n_{s+2} v^{t-s-2} u^2 + \dots + n_t u^{t-s} = 0.$$

Therefore $u \mid n_s v^{t-s}$, and since $gcd(u, v^{t-s}) = 1$, we get $u \mid n_s$. Thus we can rewrite g and then apply the relation $uc_i = vc_{i+1}$ to get

$$g = \frac{n_s}{u}uc_i + \sum_{i=s+1}^t n_i c_i = \frac{n_s}{u}vc_{i+1} + \sum_{i=s+1}^t n_i c_i.$$

Since we assumed t > s, we showed that we can rewrite g as $\sum_{i=s+1}^{t} \tilde{n}_i c_i$, decreasing the number of terms in the summation (by at least 1). Continuing in this way, we see that $g = nc_t$ for some $n \in \mathbb{Z}$. Because we assumed $g \neq 0$, we know that $n \neq 0$. Therefore $0 = \varphi(g) = \varphi(nc_t) = n(u/v)^t$, and this is a contradiction since $n \neq 0$.

Recall that $m = \gcd(a, b)$, and a = um, b = vm.

Corollary 2.7. The group \overline{G} (defined after Theorem 2.1) satisfies a short exact sequence of the form

$$1 \to \mathbb{Z}[1/(uv)] \to \overline{G} \to \mathbb{Z} * (\mathbb{Z}/m\mathbb{Z}) \to 1$$

Writing $\mathbb{Z} * \mathbb{Z}/m\mathbb{Z} = \langle x, y | x^m \rangle$, the action of x on $\mathbb{Z}[1/(uv)]$ is trivial, and the action of y on $\mathbb{Z}[1/(uv)]$ is multiplication by u/v.

Proof. Indeed, this is just a summary of the previous results: By Lemma 2.2, $A \trianglelefteq G$. By Lemma 2.6, $A \cong \mathbb{Z}[u/v, v/u]$, which is isomorphic to $\mathbb{Z}[1/(uv)]$ by Lemma 2.5. Finally, Corollary 2.3 gives us the rest of the short exact sequence.

We know that x acts trivially on $\mathbb{Z}[1/(uv)]$ (by conjugation) because in \overline{G} , the element x commutes with x^m , and x^m normally generates $A = \mathbb{Z}[1/(uv)]$.

Finally, consider the relation $y^{-1}x^a y = x^b$ in \overline{G} . Recall that a = um and b = vm. So solving the relation for x^a , we can rewrite it as $(x^m)^u = y(x^m)^v y^{-1}$. Written additively, this says that y acts on x^m (a generator of A) by multiplication by u/v.

3. When gcd(a, b) = 1: redoing Gelman's formula

In this section, we give a new proof of a beautiful result of Gelman (Theorem 3.1 below). In my opinion, this proof better explains the result. Gelman's formula makes sense in light of the free product $\mathbb{Z} * (\mathbb{Z}/\gcd(a,b)\mathbb{Z})$ simplifying to \mathbb{Z} and so giving the semidirect product in Lemma 3.2.

As before, we let $BS(a, b) := \langle x, y | y^{-1}x^a y = x^b \rangle$. Assume gcd(a, b) = 1. In [4], Gelman gives the following exact formula for $a_n(BS(a, b))$, the number of *all* subgroups of index *n* in BS(a, b):

Theorem 3.1 (Gelman, 2005). Recall that gcd(a, b) = 1. We have

0

$$u_n(\mathrm{BS}(a,b)) = \sum_{\substack{d|n\\ \gcd(d,ab)=1}} d$$

In order to (re)prove this, we state a few lemmas. First, we state the isomorphism type of \overline{G} , the largest residually finite quotient of BS(a, b).

Lemma 3.2. Let \overline{G} be the group defined just after Theorem 2.1. Then

$$\overline{G} \cong \mathbb{Z}[1/(ab)] \rtimes \mathbb{Z},$$

where the action of $1 \in \mathbb{Z}$ on $\mathbb{Z}[1/(ab)]$ is multiplication by a/b.

Proof. By Corollary 2.7, (and since d = gcd(a, b) = 1), this is exact:

$$1 \to \mathbb{Z}[1/(ab)] \to \overline{G} \to \mathbb{Z} \to 1$$

Because \mathbb{Z} is a free group, every such short exact sequence splits.

The statement about the action also follows from Corollary 2.7: Indeed, recall that since m = gcd(a, b) = 1, we have in the notation of that corollary, u = a and v = b.

Once we have Lemma 3.2, proving Theorem 3.1 is standard. Notice that the group \overline{G} is an example of a group included in Lemma 3.4, part (i) in [11], and Shalev has the formula (i.e. the one in Theorem 3.1) there in his remark (on page 3804) following his proof of his Lemma 3.4. Nevertheless, we will give a few more details anyways.

Lemma 3.3 is well-known. (We will use it in the following section as well.)

Lemma 3.3. Let $0 \neq k \in \mathbb{Z}$. We have

$$a_n(\mathbb{Z}[1/k]) = \begin{cases} 1 & \text{if } \gcd(n,k) = 1\\ 0 & \text{otherwise.} \end{cases}$$

Also, the nonzero ideals of $\mathbb{Z}[1/k]$ are exactly the subgroups of finite index.

Definition 3.4. Let G be a group acting on an abelian group N. A derivation is a function $\delta: G \to N$ such that $\delta(gh) = \delta(g) + g \cdot \delta(h)$ for all $g, h \in G$. The set of all derivations from G to N is denoted Der(G, N).

Lemma 3.5 (quoted from Shalev). Suppose A is an abelian group, and let $G = A \rtimes B$. Then

$$a_n(G) = \sum_{A_0, B_0} |\text{Der}(B_0, A/A_0)|$$

where the sum is taken over all subgroups $A_0 \leq A$, $B_0 \leq B$ such that A_0 is B_0 -invariant, and $[A:A_0][B:B_0] = n$.

This is Lemma 2.1 part (iii) in [11].

Proof of Theorem 3.1. In the notation of Lemma 3.5, let $A = \mathbb{Z}[1/(ab)]$ and $B = \mathbb{Z}$, so that as in Lemma 3.2, we have $\overline{G} \cong A \rtimes B$.

Let $B_0 \leq_f B$ (i.e. let B_0 be a subgroup of finite index in B). Then a subgroup $A_0 \leq_f A$ is B_0 -invariant iff it is B-invariant iff A_0 is an ideal of A. Recall that since \mathbb{Z} is a free group, regardless of its action on $\mathbb{Z}/d\mathbb{Z}$, we get that $|\text{Der}(\mathbb{Z}, \mathbb{Z}/d\mathbb{Z})| = d$. Combining the previous two sentences with Lemmas 3.5 and 3.3, we conclude that

$$a_n(\overline{G}) = \sum_{d|n} a_{n/d}(\mathbb{Z}) a_d(\mathbb{Z}[1/(ab)])d.$$
(1)

But $a_{n/d}(\mathbb{Z}) = 1$, and then using Lemma 3.3 again, (1) becomes

$$a_n(\overline{G}) = \sum_{\substack{d|n\\ \gcd(d,ab)=1}} d$$

We are done because \overline{G} is the largest residually finite quotient of BS(a, b).

Gelman's formula simplifies to the following when counting maximal subgroups:

Corollary 3.6. Recall that here, gcd(a,b) = 1. Every maximal subgroup of BS(a,b) has prime index, and

$$m_p(BS(a,b)) = \begin{cases} p+1 & if \ p+ab \\ 0 & otherwise \end{cases}$$

Proof. The reason why BS(a, b) has no maximal subgroups of non-prime index is if $M \leq G$ with M maximal of index n then $M \cap \mathbb{Z}[1/(ab)]$ is a maximal ideal of $\mathbb{Z}[1/(ab)]$ of index n, and such an n can only be prime. The present corollary then follows from Theorem 3.1.

4. When $gcd(a, b) \neq 1$: an asymptotic formula for $m_n(BS(a, b))$

Let $m := \gcd(a, b)$ and assume m > 1. The goal of this section is to prove Theorem 4.10. We first state formula (8) on page 115 of [9].

Theorem 4.1 (Müller, 1996). Let G be a finite group of order m. (Recall m > 1.) Then |Hom(G, Sym(n))| is asymptotic to

$$K_G n^{(1-1/m)n} \exp\left(-(1-1/m)n + \sum_{\substack{d < m \\ d \mid m}} \frac{a_d(G)}{d} n^{d/m}\right)$$

where

$$K_G := \begin{cases} m^{-1/2} & \text{if } m \text{ is odd} \\ m^{-1/2} e^{-a_{m/2}(G)^2/(2m)} & \text{otherwise.} \end{cases}$$

We will use the following easy consequence of Theorem 4.1:

Corollary 4.2. Recall m > 1. We have $|\text{Hom}(\mathbb{Z}/m\mathbb{Z}, \text{Sym}(n))|$ is asymptotic to f(n), where

$$f(n) := K n^{(1-1/m)n} \exp\left(-(1-1/m)n + \sum_{\substack{d < m \\ d \mid m}} \frac{n^{d/m}}{d}\right),$$

and

$$K \coloneqq \begin{cases} m^{-1/2} & \text{if } m \text{ is odd} \\ m^{-1/2} e^{-1/(2m)} & \text{otherwise.} \end{cases}$$

We will use this function f throughout the rest of this paper.

Notation 4.3. We let

$$h_n(G) := |\operatorname{Hom}(G, \operatorname{Sym}(n))|,$$

$$i_n(G) := t_n(G) - p_n(G),$$

where $t_n(G)$ is the number of transitive permutation representations of G of degree n and $p_n(G)$ is the number of primitive permutation representations of G of degree n.

The i is because we say that an imprimitive permutation representation is a transitive permutation representation that is not primitive.

Lemma 4.4. With the above notation, we have

 $a_n(G) = t_n(G)/(n-1)!$

and

$$m_n(G) = p_n(G)/(n-1)!$$

for all n.

For a proof, see Proposition 1.1.1 on page 12 of [7].

Lemma 4.5 (Müller, 1996). Let f be as in Corollary 4.2. Then

$$a_n(\mathbb{Z} * \mathbb{Z}/m\mathbb{Z}) \sim nf(n).$$

Proof. This is one small case of the Corollary on page 123 of [9].

Lemma 4.6. We have that $t_n(\mathbb{Z} * \mathbb{Z}/m\mathbb{Z}) \sim h_n(\mathbb{Z} * \mathbb{Z}/m\mathbb{Z}) \sim n!f(n)$.

Proof. By Corollary 4.2 we have that $h_n(\mathbb{Z} * \mathbb{Z}/m\mathbb{Z}) \sim n!f(n)$. Also, by Lemmas 4.4 and 4.5, we get $t_n(\mathbb{Z} * \mathbb{Z}/m\mathbb{Z}) \sim n!f(n)$.

Theorem 4.7. Let $G = \mathbb{Z} * \mathbb{Z}/m\mathbb{Z}$. Let f be as in Corollary 4.2. Then

 $m_n(G) \sim nf(n).$

Proof. Recall that $i_n(G) \coloneqq t_n(G) - p_n(G)$. So $t_n(G) = p_n(G) + i_n(G)$. Thus, $1 = p_n(G)/t_n(G) + i_n(G)/t_n(G)$. By Lemma 4.6, we have $t_n(G) \sim h_n(G)$. So in order to show $p_n(G) \sim t_n(G)$, we need only show that $i_n(G)/h_n(G) \to 0$. The present theorem would then follow by Lemmas 4.4 and 4.6.

This paragraph is based on Dixon's Lemma 2 in [3]. First, notice that the number of imprimitive permutation representations of G with r blocks each of size d = n/r is at most $t_r(G)(h_d(G))^r < h_r(G)(h_d(G))^r$. Also, the number of ways an n element set can be partitioned into r blocks, each with d elements is $n!/((d!)^r r!)$. Therefore,

$$i_n(G) \le \sum_{\substack{d,r>1\\dr=n}} \frac{h_r(G)(h_d(G))^r n!}{(d!)^r r!}.$$

Let a = 1 - 1/m. Let c be such that $\sum_{\substack{d \le m \\ d \mid m}} \frac{n^{d/m}}{d} < c\sqrt{n}$; (obviously, c = m works). We have by Lemma 4.6 that (for large j and n) that

$$h_j(G) \le K j^{aj} e^{-aj+c\sqrt{j}} j!$$
 and $h_n(G) > K n^{an} e^{-an} n!$

Recall n = dr. For large n, and assuming c is large enough,

$$\begin{split} \frac{i_n(G)}{h_n(G)} &\leq \sum_{\substack{d,r>1\\dr=n}} \frac{Kr^{ar}e^{-ar+c\sqrt{r}}r!(Kd^{ad}e^{-ad+c\sqrt{d}}d!)^r n!}{Kn^{an}e^{-an}n!(d!)^r r!} \\ &= \sum_{\substack{d,r>1\\dr=n}} \frac{r^{ar}e^{-ar+c\sqrt{r}}K^r d^{an}e^{-an+c\sqrt{d}r}}{d^{an}r^{an}e^{-an}} \\ &= \sum_{\substack{d,r>1\\dr=n}} \frac{K^r e^{-ar+c\sqrt{r}+c\sqrt{d}r}r^{ar}}{r^{an}} \\ &< \sum_{\substack{d,r>1\\dr=n}} \frac{e^{c\sqrt{r}+c\sqrt{d}r}}{e^{ar+a(n-r)\ln(r)}} = \sum_{\substack{d,r>1\\dr=n}} \frac{e^{c\sqrt{r}+c\sqrt{nr}}}{e^{ar+a(n-r)\ln(r)}}, \end{split}$$

225

where the last inequality is because 0 < K < 1. Let

$$g(n,r) \coloneqq e^{c\sqrt{r}+c\sqrt{nr}-ar-a(n-r)\ln(r)}$$

Also let

$$G(n) := \sum_{r=2}^{\lfloor n/2 \rfloor} g(n,r),$$

$$A(n) := \sum_{r=2}^{\lfloor \sqrt{n} \rfloor} g(n,r),$$

$$B(n) := \sum_{r=\lceil \sqrt{n} \rceil}^{\lfloor n/2 \rfloor} g(n,r).$$

We have then that $G(n) \leq A(n) + B(n)$ with

$$A(n) < \sqrt{n}e^{cn^{1/4} + cn^{3/4} - 2a - a(n - \sqrt{n})\ln(2)} \to 0$$

and

$$B(n) < n e^{c\sqrt{n} + cn - a\sqrt{n} - \frac{a}{2}n\ln(\sqrt{n})} \to 0$$

as $n \to \infty$. Thus $G(n) \to 0$, and so $i_n(G)/h_n(G) \to 0$ as $n \to \infty$.

We almost have Theorem 4.10. We only need to show that the groups BS(a, b) have very few maximal subgroups that are not contained in the quotient $\mathbb{Z} * \mathbb{Z}/m\mathbb{Z}$. So our goal is to show that Theorem 4.7 is sufficient to count almost all of the maximal subgroups.

Lemma 4.8. Let G be a f.g. group with $A \leq G$ and A abelian. Then

$$m_n(G) \le m_n(G/A) + \sum_{A_0} |\text{Der}(G/A, A/A_0)|$$
 (2)

where the sum is taken over all A_0 such that $A_0 \leq G$, $A_0 \leq A$ and such that A/A_0 is a simple $\mathbb{Z}[G/A]$ -module with $|A/A_0| = n$. When we have $G \cong A \rtimes G/A$, then the inequality in (2) is an equality.

Lemma 4.8 is Lemma 5 in [6].

Lemma 4.9. Let \overline{G} and A be as in Section 2. Also, we will let

$$m_n^c(\overline{G}) \coloneqq m_n(\overline{G}) - m_n(\overline{G}/A).$$

Then $m_n^c(\overline{G}) = 0$ if n is not prime and $m_p^c(\overline{G}) \leq p^2$ if p is prime.

Proof. Because $A \cong \mathbb{Z}[1/(uv)]$ has no maximal submodules that are not of prime index, Lemma 4.8 implies that $m_n^c(\overline{G}) = 0$ for such n.

Let n = p be prime. We know that $\mathbb{Z}[1/(uv)]$ has at most 1 maximal ideal of index p (by, say Lemma 3.3). Therefore, to show that $m_p^c(\overline{G}) \leq p^2$, by Lemma 4.8, we just need to show that

$$|\operatorname{Der}(\mathbb{Z} * \mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/p\mathbb{Z})| \le p^2.$$

226

This is immediate because the number of functions from a two element generating set of $\mathbb{Z} * \mathbb{Z}/m\mathbb{Z}$ to $\mathbb{Z}/p\mathbb{Z}$ is at most p^2 .

227

Theorem 4.10. Let m = gcd(a, b), and assume that m > 1. Then

$$m_n(BS(a,b)) \sim Kn^{(1-1/m)n+1} \exp\left(-(1-1/m)n + \sum_{\substack{d < m \\ d \mid m}} \frac{n^{d/m}}{d}\right),$$

where

$$K := \begin{cases} m^{-1/2} & \text{if } m \text{ is odd} \\ m^{-1/2} e^{-1/(2m)} & \text{otherwise.} \end{cases}$$

Proof. Let f be as in Corollary 4.2, \overline{G} from immediately after Theorem 2.1, A from Lemma 2.2, and $m_n^c(\overline{G})$ as in Lemma 4.9.

We know that $m_n(\mathbb{Z} * \mathbb{Z}/m\mathbb{Z}) \leq m_n(BS(a, b))$, because Corollary 2.7 tells us that $\overline{G}/A \cong \mathbb{Z} * \mathbb{Z}/m\mathbb{Z}$. So by Theorem 4.7, we observe that $m_n(BS(a, b)) = m_n(\overline{G})$ grows at least as fast as nf(n).

By definition of $m_n^c(\overline{G})$ (in Lemma 4.9) we can write

$$m_n(G) = m_n(G/A) + m_n^c(G).$$

We are done because Lemma 4.9 gives us that $m_n^c(\overline{G})$ is bounded above by a polynomial of degree 2.

5. When $gcd(a, b) \neq 1$: an asymptotic formula for $a_n(BS(a, b))$

The goal of this section is Theorem 5.3. We will again denote gcd(a, b) by m, and we assume m > 1.

Lemma 5.1. Let G be a group, and let $A \leq G$ with A abelian. Then

$$a_n(G) \le \sum_{d|n} a_{n/d}(G/A)a_d(A)D_{n,d},$$

where $D_{n,d} = \max_{A_0,G_0} |\operatorname{Der}(G_0/A, A/A_0)|$, where the max is over the subgroups $A_0 \leq A \leq G_0 \leq G$ with $[A:A_0] = d$, $[G:G_0] = n/d$, and $A_0 \leq G_0$.

This is part of Lemma 2.1 part (ii) in [11].

In what follows, a = um and b = vm.

Lemma 5.2. Let \overline{G} be the group defined just after Theorem 2.1. Let $A \cong \mathbb{Z}[1/(uv)]$ be the subgroup of \overline{G} in Corollary 2.7 so that $\overline{G}/A \cong \mathbb{Z} * \mathbb{Z}/m\mathbb{Z}$. Fix n > 1, and let $d \mid n$. Let $G_0 \trianglelefteq \overline{G}$ with $[\overline{G} : G_0] = n/d$, and let $A_0 \leq_d A$. Then

$$|\text{Der}(G_0/A, A/A_0)| \le 3^{2n/3}.$$

This basically follows from the proof of Proposition 1.3.2 part (i) in [7].

Proof. Recall that for a f.g. group H, we let d(H) denote the minimal size of a generating set for H. Hopefully this notation will not be confusing because n/d is the index of G_0 in \overline{G} .

We have that $2 = d(\overline{G}/A)$. By Schreier's formula (Result 6.1.1 in [10]), we have that

$$d(G_0/A) \le 1 + [\overline{G}:G_0](2-1) = 1 + \frac{n}{d} \le \frac{2n}{d}.$$

Therefore,

$$Der(G_0/A, A/A_0)| \le |A/A_0|^{d(G_0/A)} \le d^{2n/d} \le 3^{2n/3},$$

since $d^{1/d} \leq 3^{1/3}$ for every $d \in \mathbb{N}$.

Theorem 5.3. Let m = gcd(a, b), and assume that m > 1. Then

$$a_n(BS(a,b)) \sim Kn^{(1-1/m)n+1} \exp\left(-(1-1/m)n + \sum_{\substack{d < m \\ d \mid m}} \frac{n^{d/m}}{d}\right),$$

where

$$K := \begin{cases} m^{-1/2} & \text{if } m \text{ is odd} \\ m^{-1/2} e^{-1/(2m)} & \text{otherwise.} \end{cases}$$

Proof. Let G = BS(a, b), and let \overline{G} and A be as in §2. (So $\overline{G}/A \cong \mathbb{Z} * \mathbb{Z}/m\mathbb{Z}$.) It follows from Lemma 4.5 that the function $a_n(\overline{G}/A)$ is eventually increasing. Also, we have $a_d(A) \leq 1$ for all d. Therefore by Lemmas 5.1 and 5.2, for large (even) n,

$$a_n(G) - a_n(\overline{G}/A) \le \sum_{d|n,d>1} a_{n/d}(\overline{G}/A) \cdot a_d(A) \cdot 3^{2n/3}$$
$$\le n \cdot 3^{2n/3} \cdot a_{n/2}(\overline{G}/A).$$
(3)

Let a = 1 - 1/m. By Lemma 4.5 (and since $\sum_{\substack{d \le m \\ d \mid m}} \frac{n^{d/m}}{d} = O(n)$), for some $\beta > 1$, we have that $a_{n/2}(\overline{G}/A) \le K n^{an/2+1} \beta^n$ and $a_n(\overline{G}/A) \ge K n^{an+1} e^{-an}$. We have then that for some C > 1 that

$$\frac{a_{n/2}(\overline{G}/A)}{a_n(\overline{G}/A)} \le \frac{C^n}{n^{an/2}}$$

Combining this with (3), we get that

$$\frac{a_n(G)}{a_n(\overline{G}/A)} - 1 \le \frac{n \cdot 3^{2n/3}C^n}{n^{an/2}} \to 0 \quad \text{as } n \to \infty.$$

Therefore $a_n(G) \sim a_n(\overline{G}/A)$. We are done by Lemma 4.5.

Corollary 5.4. Assume that gcd(a,b) > 1. Then $m_n(BS(a,b)) \sim a_n(BS(a,b))$. **Proof.** This follows from Theorems 4.10 and 5.3.

228

Acknowledgments

I completed much of the work in this paper while I was a graduate student at Binghamton University. See [5], my dissertation. Also, I would like to thank the referee for pointing out that Lemma 2 of [3] shortens my proof of Theorem 4.7 and for showing me the present proof of Theorem 5.3. (Longer proofs of these theorems, which I found, are in the arXiv version of this paper.)

References

- BAUMSLAG, GILBERT; SOLITAR, DONALD. Some two-generator one-relator non-Hopfian groups. Bull. Amer. Math. Soc. 68 (1962), 199–201. MR142635, Zbl 0108.02702 (26 #204), doi: 10.1090/s0002-9904-1962-10745-9. 218
- BUTTON, JACK O. A formula for the normal subgroup growth of Baumslag–Solitar groups. J. Group Theory 11 (2008), no. 6, 879–884. MR2466914 (2009i:20052), Zbl 1153.20024, doi: 10.1515/jgt.2008.056. 219
- [3] DIXON, JOHN D. The probability of generating the symmetric group. Math. Z. 110 (1969), 199–205. MR251758 (40 #4985), Zbl 0176.29901, doi:10.1007/bf01110210. 225, 229
- [4] GELMAN, EFRAIM. Subgroup growth of Baumslag–Solitar groups. J. Group Theory 8 (2005), no. 6, 801–806. MR2179671 (2006h:20032), Zbl 1105.20018, doi:10.1515/jgth.2005.8.6.801. 218, 222
- KELLEY, ANDREW JAMES. Maximal subgroup growth of some groups. Thesis (PhD), State University of New York at Binghamton, 2017. 114 pp. ISBN: 978-0355-50746-1. MR3755478. 229
- [6] KELLEY, ANDREW JAMES. Maximal subgroup growth of some metabelian groups. Preprint, 2018. arXiv:1807.03423. 226
- [7] LUBOTZKY, ALEXANDER; SEGAL, DAN. Subgroup growth. Progress in Mathematics, 212. Birkhauser Verlag, Basel, 2003. xxii+453 pp. ISBN: 3-7643-6989-2. MR1978431 (2004k:20055), Zbl 1071.20033, doi: 10.1007/978-3-0348-8965-0. 219, 225, 227
- [8] MOLDAVANSKIĬ, D. I. On the intersection of subgroups of finite index in the Baumslag–Solitar groups. *Mat. Zametki* 87 (2010), no. 1, 92–100; translation in *Math. Notes* 87 (2010), no. 1–2, 88–95. MR2730386 (2011j:20069), Zbl 1204.20041, doi: 10.1134/s0001434610010116. 218, 219, 220
- MÜLLER, THOMAS. Subgroup growth of free products. Invent. Math. 126 (1996), no. 1, 111–131. MR1408558 (97f:20031), Zbl 0862.20019, doi: 10.1007/s002220050091.
 219, 224, 225
- [10] ROBINSON, DEREK J. S. A course in the theory of groups. Second edition. Graduate Texts in Mathematics, 80. Springer-Verlag, New York, 1996. xviii+499 pp. ISBN: 0-387-94461-3. MR1357169 (96f:20001), Zbl 0836.20001, doi: 10.1007/978-1-4419-8594-1. 228
- SHALEV, ANER. On the degree of groups of polynomial subgroup growth. Trans. Amer. Math. Soc. 351 (1999), no. 9, 3793–3822. MR1475693 (99m:20063), Zbl 0936.20021, doi: 10.1090/S0002-9947-99-02220-5. 222, 223, 227

(Andrew James Kelley) DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, COL-ORADO COLLEGE, COLORADO SPRINGS, COLORADO 80903, USA akelley2500@gmail.com

This paper is available via http://nyjm.albany.edu/j/2020/26-11.html.