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Expansive automorphisms on
locally compact groups

Riddhi Shah

Abstract. We show that any connected locally compact group which
admits an expansive automorphism is nilpotent. We also show that for
any locally compact group G, an automorphism α of G is expansive if
and only if for any α-invariant closed subgroup H which is either com-
pact or normal, the restriction of α to H is expansive and the quotient
map on G/H corresponding to α is expansive. We get a structure theo-
rem for locally compact groups admitting expansive automorphisms. We
prove that an automorphism of a non-discrete locally compact group can
not be both distal and expansive.
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1. Introduction

Let G be a locally compact (Hausdorff) group with the identity e. An
automorphism α of G is said to be expansive if ∩n∈Zαn(U) = {e} for some
neighbourhood U of e; here U is called an expansive neighbourhood for α.
Equivalently, α is expansive if there exists a neighbourhood V of e such
that for every pair x, y ∈ G, x 6= y, there exists n = n(x, y) ∈ Z, such
that αn(y−1x) 6∈ V . Expansive automorphisms on compact groups have
been studied extensively and are well understood (see Lam [Lam70], Law-
ton [Law73], Kitchens and Schmidt [Kit87, KS89], Schmidt [Sch90, Sch95]
and references cited therein). There has been some work on expansivity
on connected solvable groups and Lie groups (see Eisenberg [Eis66], Aoki
[Aok79] and Bhattacharya [Bha04]) and also on totally disconnected groups
(see Willis [Wil14] and Glöckner and Raja [GR17]).
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The main aim of this paper is to study expansivity on general locally
compact groups. Any connected locally compact solvable group admitting
an expansive automorphism is nilpotent (cf. [Aok79], Theorem 1). We gen-
eralise this to all connected locally compact groups. (see Theorem 2.6). For
a class of compact groups and that of totally disconnected locally compact
groups, it is known that expansivity carries over to quotients modulo closed
invariant normal subgroups (see Corollary 6.15 in [Sch95] and Theorem A in
[GR17]). We generalise this to all locally compact groups (see Theorem 2.7).
In addition, we show that the expansivity carries over to quotients modulo
compact invariant (not necessarily normal) subgroups (see Theorem 2.5).

LetG be a locally compact group with an expansive automorphism α. IfG
is compact, then it has an open α-invariant subgroup H of finite index such
that α|H , the restriction of α to H, is ergodic (see [Sch95]). The structure
of compact groups admitting expansive automorphisms is well understood
(See [Sch95]). If G is connected, Theorem 2.6 shows that G is nilpotent. If
G is totally disconnected, the structure of such a pair (G,α) is studied in
[GR17] and a structure theorem is obtained (cf. [GR17], Theorem B). We
generalise the same to all locally compact groups G (see Theorem 2.8).

In the end, we show that an automorphism of a locally compact group can
not be both distal and expansive unless the group is discrete (see Theorem
2.9).

A homeomorphism α of a topological (Hausdorff) space X is said to
be distal if for every pair of distinct elements x, y ∈ X, the closure of
{(αn(x), αn(y)) | n ∈ Z} in X ×X does not intersect the diagonal {(g, g) |
g ∈ X}. An automorphism α of a topological group G is distal if and only
if the closure of {αn(x) | n ∈ Z} in G does not contain the identity e, for
every x 6= e. Distal maps on compact spaces were introduced by David
Hilbert. Distal automorphisms on locally compact groups have been stud-
ied extensively. We refer the reader to Raja and Shah [RS10, RS19], Shah
[Sha12], and the references cited therein. Although we show that the dis-
tality and expansivity are mutually exclusive phenomena for a non-discrete
locally compact group, they do satisfy some similar properties. It is easy
to see that if the restriction of the automorphism α to the closed invariant
subgroup and the corresponding map on the quotient have one of the prop-
erties, then so does α. It has also been shown that distality carries over to
quotients modulo closed invariant subgroups which are either compact or
normal (cf. [RS10] and [Sha12]).

2. Groups with expansive automorphisms

Any locally compact groupG admitting an expansive automorphism α has
a countable neighbourhood basis of the identity e given by {∩kn=−kαn(U) |
k ∈ N}, where U is an expansive neighbourhood (of e) for α in G. Therefore,
G is metrizable and it has a left invariant metric d compatible with the
topology of G (see [HR79]). The definitions of expansivity given in the
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introduction are equivalent to the following definition in terms of the metric
d: α is expansive if there exists an ε > 0 such that for every pair x, y ∈ G,
x 6= y, there exists n = n(x, y) ∈ Z such that d(αn(x), αn(y)) > ε. (Note
that this is how expansivity for a homeomorphism α on a metrizable space
X is defined). It is well-known and easy to see that if αn is expansive for
some n ∈ Z \ {0}, then αn is expansive for every n ∈ Z \ {0}.

If H is a closed subgroup of G, we consider the quotient space G/H,
the set of left cosets {xH | x ∈ G}, with the usual quotient topology. For
α ∈ Aut(G) and a α-invariant closed subgroup H, we have the canonical
map ᾱ on G/H, defined as ᾱ(xH) = α(x)H. It is a homeomorphism of G/H.
We say that the map ᾱ on G/H is expansive if there exists a neighbourhood
U of H in G/H such that ∩n∈Zᾱn(U) = {H}. Equivalently, there exists
a neighbourhood V of H in G/H such that for every pair x, y ∈ G with
xH 6= yH, there exists n = n(xH, yH) ∈ Z such that ᾱn(y−1xH) 6∈ V .
This definition coincides with the definition given above for a group when
H is normal in G and G/H is a group. If G is metrizable and if a closed
subgroup H is normal or compact, then G/H is also metrizable with a G-
invariant metric, say d, i.e. d(xH, yH) = d(y−1xH,H) = d(gxH, gyH) for
all g, x, y ∈ G. For such a metrizable group G, the definition of expansivity
on the quotient G/H is equivalent to the one given above in terms of the
metric d if (the closed invariant subgroup) H is either normal or compact.

We first note the following well-known result which is easy to prove.

Lemma 2.1. Let G be a locally compact group, α ∈ Aut(G) and let H be a
closed α-invariant subgroup of G. Then the following hold:

(1) If α is expansive, then α|H is expansive.
(2) If α|H is expansive and ᾱ on G/H is expansive, then α is expansive.

A Lie projective locally compact group is said to be finite-dimensional
if it is a projective limit of Lie groups each of which has the same dimen-
sion. Any compact connected group admitting an expansive automorphism
is abelian and finite-dimensional (see [Lam70], [Law73] and also Theorems
5.3 and 6.1 of [KS89]). An almost connected locally compact group G has
the largest compact normal (characteristic) subgroup K such that G/K is
a Lie group, hence G is finite-dimensional if K0 is so, where K0 is the con-
nected component of the identity e in K. Therefore, Lemma 2.1(1) implies
that such a G is finite-dimensional if it admits an expansive automorphism;
(more generally, if K or K0 admits an expansive automorphism).

For a closed subgroup H of G, let H0 denote the connected component
of the identity e in H. It is a closed (normal) characteristic subgroup of H.
For x ∈ G, let innx denote the inner automorphism of G by the element
x; i.e. innx(g) = xgx−1, g ∈ G. Let Inn(G) denote the group of inner
automorphisms of G. We first state a useful lemma which essentially follows
from well-known results of Iwasawa [Iwa49] and a result in [Lam70].
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Lemma 2.2. Let G be a connected locally compact group. Let K be a com-
pact normal subgroup of G. If K0 is abelian, then K is abelian and central
in G. In particular, if G, K or K0 admits an expansive automorphism, then
K is abelian and central in G.

Proof. Suppose K0 is abelian. Since G is connected and K0 is abelian and
normal in G, by Theorem 4 of [Iwa49], K0 is central in G. By Theorem
1′ of [Iwa49], [Aut(K)]0 = [Inn(K)]0 = {inn k | k ∈ K0}. As K0 is cen-
tral, [Aut(K)]0 is trivial. As G is connected, the restriction of any inner
automorphism of G to K belongs to [Aut(K)]0 and hence it is trivial. This
implies that K is central in G.

Let α ∈ Aut(K) be expansive. Then K0 is characteristic in K and α|K0

is expansive (cf. Lemma 2.1(1)). We get that K0 is abelian (cf. [Lam70],
Corollary 3.3). Now it follows from the first assertion that K is central in
G.

Let α ∈ Aut(G) be expansive. Then so is α|L, where L is the largest
compact normal subgroup of G. Arguing as above for L instead of K, we
get that L is central in G. As K ⊂ L, K is also central in G. �

For a connected Lie group G, let G denote the Lie Algebra of G and let
exp : G → G be the exponential map. There is a neighbourhood U of 0 in G
such that exp |U is a homeomorphism onto a neighbourhood of the identity
e in G. For α ∈ Aut(G), let dα : G → G be the Lie algebra automorphism
such that exp ◦ dα(X) = α ◦ exp(X), X ∈ G. We note the following which
essentially follows from Theorem A and Propositions 2.1 and 2.3 of [Bha04].

Proposition 2.3. Let G be a (nontrivial) connected Lie group and let α ∈
Aut(G). Then the following are equivalent :

(1) α is expansive.
(2) dα is expansive on the Lie algebra G of G.
(3) dα does not have any eigenvalue of absolute value 1.

In particular, if G admits an expansive automorphism, then it is nilpotent.

Proof. (1) ⇒ (2) is proven in the proof of Theorem A of [Bha04] just by
using the fact that one can choose a neighbourhood U of 0 in G such that
exp(U) is an expansive neighbourhood for α. (2)⇔ (3) follows from Proposi-
tion 2.3 of [Bha04] (see also [Eis66]), and (3)⇒ (1) follows from Proposition
2.1 and Theorem A of [Bha04]. If G admits an expansive automorphism α,
then dα satisfies condition (3), and G is a nilpotent Lie algebra (see Exercise
21(b) among the exercises for Part I of [Bou89], §4, or Theorem 2 of [Jac55]),
which in turn implies that G is nilpotent. �

We now focus on connected locally compact abelian groups. Following
definitions and notations are standard; see [HM98]. Let G be a connected
locally compact abelian group and let L(G) denote the space Hom(R, G)
of all continuous homomorphisms from R to G endowed with the topology
of the uniform convergence on the compact subsets of R. Then L(G) is
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a topological vector space with respect to pointwise addition and scalar
multiplication (see Proposition 7.36 in [HM98]). Let the exponential map
exp : L(G) → G be defined as exp(X) = X(1), X ∈ L(G). Then exp is
continuous and it is a homomorphism; i.e. exp(X + Y ) = X(1)Y (1). Also
exp(tX) = X(t), t ∈ R. For α ∈ Aut(G), let dα : L(G) → L(G) be
defined as dα(X) = α ◦X, X ∈ L(G). Note that dα defines a vector space
isomorphism of L(G) and exp ◦ dα = α ◦ exp.

As G is connected, abelian and locally compact, G is isomorphic to Rm×
K, where K is the largest compact connected (abelian) subgroup of G, and
L(G) is isomorphic to Rm × L(K). As K is connected and α-invariant, we
get ᾱ, the automorphism of G/K corresponding to α. Moreover, dα keeps
L(K) invariant and we get dα, the vector space isomorphism on L(G)/L(K)
corresponding to dα. Note that dᾱ = dα (under the isomorphism of L(G/K)
and L(G)/L(K)).

If G is a (linear) Lie group, then L(G) coincides with the Lie algebra G
of G. In case G is compact, L(G) is isomorphic to Hom(Ĝ,R), where Ĝ is
the character group of G. Suppose K as above is finite-dimensional, then
L(G) = Rm ×L(K) is also finite-dimensional and it is isomorphic to Rm+n,
where L(K) is isomorphic to Rn. Moreover, the kernel of exp is contained
in L(K). If K (and hence G) is a (linear) Lie group, then exp is a local
isomorphism, i.e. there exists a neighbourhood U of 0 in L(G) (resp. V of
e in G) such that exp : U → V is a homeomorphism. If G is isomorphic to
Rn (i.e. if K is trivial), then exp is a vector space isomorphism. Note that
G/K, being a finite-dimensional real vector space, is isomorphic to L(G/K)
under the exponential map. We refer the reader to Ch. 7 of [HM98] for
more details. (We use same notations for the exponential map on L(G) and
also on the Lie algebra G of a Lie group G. Similarly, we use the same
notation for the corresponding vector space isomorphism on L(G) as well as
for the Lie algebra automorphism when it is induced by an automorphism
of a group or a Lie group.)

As noted earlier, any connected locally compact abelian group G admit-
ting an expansive automorphism is finite-dimensional, and hence, so is L(G).
Therefore, we can discuss the expansivity of the corresponding map on L(G)
in the following lemma which will be useful for the proof of Theorem 2.5.

Lemma 2.4. Let G be a connected locally compact abelian group and let
α ∈ Aut(G) be expansive. Let K be the largest compact (normal) subgroup
of G and let ᾱ be the corresponding automorphism on G/K. Then dα on
L(G) and ᾱ on G/K are expansive.

Proof. Here, G = Rm ×K for some m ∈ N ∪ {0}, where K is the largest
compact (connected) abelian characteristic subgroup as in the hypothesis.
As α is expansive, K as well as G is finite-dimensional. Here, L(G) = Rm+n,
where n = dimK and L(K) = Rn. Let V be an expansive neighbourhood
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of e in G for α. Let exp : L(G) → G be as above. As L(G) is a finite-
dimensional real vector space, there is a vector space norm on it. As exp is
continuous, we can choose r > 0 such that for the open neighbourhood U =
{X ∈ L(G) | ‖X‖ < r} of 0 in L(G), we have exp(U) ⊂ V . Observe that
tU ⊂ U for all t ∈ [−1, 1]. We show that U is an expansive neighbourhood
of 0 in L(G) for dα. Let X ∈ U be such that dαn(X) ∈ U for all n ∈ Z.
Then for all t ∈ [−1, 1] and n ∈ Z, dαn(tX) = t dαn(X) ∈ U , and hence,
exp(dαn(tX)) = αn(exp(tX)) ∈ V . As V is expansive for α, exp(tX) =
X(t) = e for all t ∈ [−1, 1]. Since X is a (real) one parameter subgroup, the
preceding assertion implies that X(t) = e for all t ∈ R, and hence, X = 0.
Therefore, U is an expansive neighbourhood of 0 for dα, and hence, dα is
expansive on L(G).

By Proposition 2.3 of [Bha04], the eigenvalues of dα do not have absolute
value 1. As α keeps K invariant, dα keeps L(K) invariant. Let dα be
the map corresponding to dα on L(G)/L(K). As noted earlier, dᾱ = dα.
Therefore, the eigenvalues of dα, and hence of dᾱ, do not have absolute
value 1. By Proposition 2.3 of [Bha04], dα, and hence, dᾱ is expansive.
Since G/K is a finite-dimensional real vector space, the exponential map
from L(G)/L(K) to G/K is a vector space isomorphism and it is easy to see
that the preceding assertion implies that ᾱ is expansive (see also Proposition
2.3). �

Remark. It follows from Theorems 8.20 and 8.22 of [HM98] that for a
connected finite-dimensional abelian group G, exp : L(G) → G is injective
on a small neighbourhood of 0, i.e. given a neighbourhood V of e in G,
there exists a neighbourhood U of 0 in L(G) such that exp(U) ⊂ V and
exp |U is injective. Hence, for an expansive α ∈ Aut(G), if V is an expansive
neighbourhood for α, then it is easy to see using the injectivity of exp |U
that U is an expansive neighbourhood for dα. This provides an alternative
proof for the first part of the assertion in Lemma 2.4.

Now we prove that expansivity carries over to quotients modulo compact
invariant (not necessarily normal) subgroups.

Theorem 2.5. Let G be a locally compact group and let α ∈ Aut(G). Let
K be a compact α-invariant subgroup of G and let ᾱ : G/K → G/K be the
map corresponding to α. If α is expansive, then so is ᾱ; equivalently there
exists an open set O containing K in G such that ∩n∈Zαn(O) = K.

Proof of Theorem 2.5 for the case when K is normal. Here G/K is
a group and ᾱ ∈ Aut(G/K).

Step 1: Suppose K is central in G. Let W be an expansive neighbourhood
of the identity e in G for α, i.e. ∩n∈Zαn(W ) = {e}. Let V be an open

symmetric relatively compact neighbourhood of e in G such that V
4 ⊂ W .

Let A = ∩n∈Z[αn(V )K] = {x ∈ V | αn(x) ∈ V K for all n ∈ Z}K. Then
K ⊂ A ⊂ V K and α(A) = A = AK. If x, y ∈ A, then as K is central in
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G, αn(xyx−1y−1) ∈ V 4 ⊂ W , for all n ∈ Z and hence, xyx−1y−1 = e since
W is an expansive neighbourhood for α. This implies that the elements
of A, and hence, A commute. Let H be the closed subgroup generated by
A. Since A ⊂ V K is compact, H is compactly generated. Moreover, H is
abelian and locally compact. Therefore, H is isomorphic to Rd × Zk × C
and H0 = Rd × C0, where C ⊂ H, C is compact and d, k ∈ N ∪ {0}. Since
K ⊂ A, K ⊂ C. Since α(A) = A, H is α-invariant and α|H is expansive
(cf. Lemma 2.1(1)). Note that α(C) = C and α(C0) = C0, as C is the
largest compact (normal) subgroup of H. Since C is compact and abelian,
the restriction of ᾱ to C/K is expansive (cf. [Sch90], Corollary 3.11). As
H0C/C is isomorphic to H0/C0, the corresponding action of α on H0C/C
is expansive by Lemma 2.4. As H0C/C is isomorphic to (H0C/K)/(C/K),
by Lemma 2.1(2) we get that the restriction of ᾱ to H0C/K is expansive.
As H0C is open in H, the restriction of ᾱ to H/K is also expansive. Let
π : G → G/K be the natural projection. Let V ′ ⊂ V be a neighbourhood
of e in G such that π(V ′) ∩ (H/K) is an expansive neighbourhood for the
restriction of ᾱ to H/K.

Now we show that π(V ′) is an expansive neighbourhood of π(e) for ᾱ
in G/K. Let x ∈ V ′ be such that π(x) ∈ ∩n∈Zᾱn(π(V ′)). Then x ∈
∩n∈Z[αn(V ′)K] ⊂ A. Therefore, x ∈ V ′ ∩A ⊂ V ′ ∩H. As π(V ′)∩ (H/K) is
an expansive neighbourhood for the restriction of ᾱ to H/K, we have that
π(x) ∈ π(K), and hence, x ∈ K. This implies that π(V ′) is an expansive
neighbourhood of π(e) for ᾱ in G/K; i.e. ᾱ is expansive on G/K.

Step 2: Now suppose K is normal but not central in G. If G is compact,
then the assertion follows from Corollary 6.15 of [Sch95]. Let L be the
largest compact normal subgroup of G0. Since α|G0 is expansive, by Lemma
2.2, L is central in G0. Here, L is a compact characteristic, and hence,
α-invariant normal subgroup in G. Therefore, KL is a compact normal α-
invariant subgroup of G. As G/(KL) is isomorphic to (G/K)/((KL)/K)
and the restriction of ᾱ to (KL)/K is expansive (cf. [Sch95], Corollary
6.15), by Lemma 2.1(2) it is enough to prove that the automorphism of
G/(KL) corresponding to α is expansive. Therefore, replacing K by KL
if necessary, we may assume that L ⊂ K, i.e. G0 ∩ K = L. Since L is
central in G0, it follows from the assertion in Step 1 that the automorphism
of G0/L corresponding to α|G0 is expansive. As (G0K)/K is isomorphic to
G0/L, the preceding assertion implies that the restriction of ᾱ to (G0K)/K
is expansive.

As G/G0 is totally disconnected, it admits an open compact subgroup.
Therefore, G admits an open almost connected subgroup, say M ′. Let M =
M ′K. It is an open almost connected subgroup containing K. Let W be
an expansive neighbourhood of the identity e in G for α, with an additional
property that W ⊂ M . As M is Lie projective, there exists a compact
subgroup C ′ ⊂ W such that C ′ is normal in M and M/C ′ is a Lie group.
Let C = C ′L. Then C is a closed normal subgroup in M and M/C is
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a Lie group. As K ⊂ M and M is open, G0 ⊂ M and both K and G0

normalise C. Now CG0 is an open almost connected subgroup, C ∩G0 = L
and (CG0)/L = C/L×G0/L. As K normalises C as well as G0, we get that
CKG0 is an open subgroup, CG0 has finite index in CKG0. Moreover, C
(resp. CK) is the largest compact normal subgroup of CG0 (resp. CKG0)
and C ∩G0 = L = K ∩G0.

As the restriction of ᾱ to G0K/K is expansive, we can choose an open
symmetric relatively compact neighbourhood U of e such that U ⊂ CG0∩W
and the image of U ∩G0K in (G0K)/K is an expansive neighbourhood for
the restriction of ᾱ to (G0K)/K. Let B = ∩n∈Z[αn(U)K]. Here K ⊂ B ⊂
UK ⊂ CKG0. If B = K, then the image of U in G/K is an expansive
neighbourhood for ᾱ. Now suppose B 6= K. From the choice of U , it follows
that B ∩G0K = K.

Let H ′ be the closed subgroup generated by B in G. Then H ′ is α-
invariant and K ⊂ H ′. We first show that the restriction of ᾱ to H ′/K
is expansive. Note that H ′ ⊂ CKG0; where CKG0 is an open almost
connected subgroup of G. Let H ′′ be the closure of H ′G0. Then H ′′ ⊂
CKG0 and H ′′ is an almost connected α-invariant subgroup of G. Let E
be the largest compact normal subgroup of H ′′. Then E is characteristic
in H ′′, K ⊂ E and H ′′ ∩ CK ⊂ E. Therefore, H ′′ = (H ′′ ∩ CK)G0 ⊂
EG0. This implies that H ′′ = EG0 and, H ′′/K = E/K × (G0K)/K as
E ∩G0 = L = K ∩G0. Note that E is α-invariant and α|E is expansive. As
E is compact, by Corollary 6.15 of [Sch95], the restriction of ᾱ to E/K is
expansive. As the restriction of ᾱ to (G0K)/K is also expansive, it follows
that the restriction of ᾱ to H ′′/K is expansive. Since H ′ ⊂ H ′′, by Lemma
2.1 (1) the restriction of ᾱ to H ′/K is expansive.

Let U ′ ⊂ U be a neighbourhood of the identity e in G such that the image
of U ′ ∩H ′ in H ′/K is an expansive neighbourhood for the restriction of ᾱ
to H ′/K. Concluding the argument as in Step 1, replacing V ′, A and H by
U ′, B and H ′ respectively, it is easy to deduce that the image of U ′ in G/K
is an expansive neighbourhood for ᾱ. This completes the proof for the case
when K is normal. �

We will complete the proof of Theorem 2.5 after the next result. An
invertible linear map on Rn is expansive if it does not have any eigenvalue of
absolute value 1 (cf. Proposition 2.3). For expansive automorphisms on non-
abelian nilpotent Lie groups, see an example in §3 of [Bha04]. There are also
examples of compact connected abelian finite-dimensional groups (which are
not Lie groups) admitting expansive automorphisms (cf. see [Sch95]). The
following theorem shows that there is no connected locally compact non-
nilpotent group which admits expansive automorphisms.

Theorem 2.6. Any connected locally compact group admitting an expansive
automorphism is nilpotent.
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Proof. Let G be a connected locally compact group and let α ∈ Aut(G)
be expansive. Let K be the largest compact normal subgroup of G. By
Lemma 2.2, K is abelian and central in G. Moreover, we get from Theorem
2.5 for the normal case (proven above) that the automorphism on G/K
corresponding to α is expansive. Note that G is nilpotent if G/K is so.
Therefore, it is enough if we assume that G is a connected Lie group without
any nontrivial compact normal subgroup. Now the assertion follows from
Proposition 2.3. �

For a compact group G and α ∈ Aut(G), we say that (G,α) satisfies the
descending chain condition if for every sequence G ⊃ G1 ⊃ · · · ⊃ Gk ⊃ . . .
of closed α-invariant subgroups, there exists N ∈ N such that Gk = GN for
all k ≥ N . If a compact group G admits an expansive automorphism α,
then (G,α) satisfies the descending chain condition; the converse holds in
the special case when G is totally disconnected (cf. [KS89], Theorem 5.2).

Proof of Theorem 2.5 for the general case. Here, the compact group
K is not assumed to be normal in G. As in the hypothesis, α ∈ Aut(G)
is expansive and K is α-invariant. We want to show that the α-action on
G/K is expansive. By Lemma 2.1(1), α|G0 is expansive and hence, G0 is
nilpotent by Theorem 2.6. Observe that G0 has the largest compact normal
subgroup, say L such that G0/L is a connected nilpotent group without any
nontrivial compact normal subgroups. Therefore, the center Z of G0/L is
connected and simply connected and hence G0/L itself is simply connected
(see Lemma 3.6.4 of [Var84] and its proof). In particular, G0/L has no
nontrivial compact subgroups and hence, any compact subgroup of G0 is
contained in L. Note that L is characteristic in G0 and hence, α-invariant
and normal in G. By Lemma 2.2 of [Iwa49], L0 is abelian, and hence, by
Lemma 2.2, L is central in G0. Here, K∩G0 = K∩L is central in G0. Also,
LK is an α-invariant compact subgroup of G. Observe that L/(L ∩ K)
is isomorphic to (LK)/K under the natural isomorphism, say ϕ defined
as ϕ(x(L ∩ K)) = xK, x ∈ L. Also, ϕ(α(x)(L ∩ K)) = α(x)K x ∈ L.
Therefore, the α-action on (LK)/K is expansive if and only if the α-action
on L/(L∩K) is expansive. Since α is expansive and L is abelian, by Lemma
3.11 of [Sch90], the α-action on L/(L ∩K) is expansive. Therefore, the α-
action on (LK)/K is also expansive. Now, to prove that the α-action on
G/K is expansive, one can easily see that it is enough to prove that the
α-action on G/(LK) is expansive.

Note that G/(LK) is isomorphic to (G/L)/((LK)/L) and, as L is normal,
from the proof of the normal case above, the α-action on G/L is expansive.
Therefore, replacing G by G/L and LK by (LK)/L, without loss of any
generality, we may assume that L is trivial. Now G0 is a connected nilpotent
Lie group without any nontrivial compact subgroups. In particular, K ∩G0

is trivial and K is totally disconnected.
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Let U be an open relatively compact expansive neighbourhood of e in G
for α. We first construct a sequence {Cn} of compact totally disconnected
groups contained in U with certain properties. Let V be an open relatively
compact neighbourhood of e in G such that V 2 ⊂ U . Let π : G → G/G0

be the natural projection. Since G/G0 is totally disconnected, it admits a
neighbourhood basis of compact open subgroups. Let B be a compact open
subgroup in G/G0 and let B′ = ∩k∈Kπ(k)Bπ(k)−1. As K is compact, so is
π(K), and hence B′ is a compact open subgroup in G/G0 (this follows from
Theorem 4.9 of [HR79]). Let H ′ = π−1(B′). Then H ′ is an open subgroup
normalised by elements of K, and H ′/G0 is compact. Let H = KH ′. Then
H is an open subgroup in G and H/G0 is compact. Therefore, H is Lie
projective. As α is expansive, we have that G is metrizable, and hence, so is
H. Therefore, H admits a sequence of compact normal subgroups {Cn}n∈N
such that C1 ⊂ V ∩H, Cn+1 ⊂ Cn, H/Cn is a Lie group with finitely many
connected components, n ∈ N, and ∩nCn = {e}. In particular, for each
n ∈ N, CnG

0 is an open subgroup in H, and hence, in G. As KG0 ⊂ H,
elements of KG0 normalise Cn, n ∈ N. Moreover, C1 ∩G0 = {e} as G0 has
no nontrivial compact subgroups. Therefore, Cn is totally disconnected and
CnG

0 = Cn ×G0, n ∈ N.
We choose a neighbourhood basis {Wn}n∈N of the identity e in G0 such

that W1 ⊂ V , Wn+1 ⊂ Wn and Un = Cn × Wn ⊂ V 2 ⊂ U , n ∈ N.
Here, {Un}n∈N forms a neighbourhood basis of the identity e in G such
that Un+1 ⊂ Un and Wn = Un ∩G0, n ∈ N.

Fix any n ∈ N. Suppose x ∈ Un is such that αm(x) ∈ UnK, for all
m ∈ Z. We show that x ∈ Cn and αm(x) ∈ CnK for all m ∈ Z. As
Un = Cn ×Wn, we have that x = wc = cw for some c ∈ Cn and w ∈ Wn.
Now, for m ∈ Z, αm(x) = cmwmkm = αm(c)αm(w) = αm(w)αm(c), where
cm ∈ Cn, wm ∈ Wn, km ∈ K, c0 = c, w0 = w and k0 = e. Let m ∈ Z be
fixed. As both Cn and αm(Cn) centralise G0, we get that

αm(c−1)cmkm = w−1m αm(w) = cmkmα
m(c−1).

Recall that Cn is normalised by K, and hence, CnK is a compact sub-
group. Also, αm(Cn) is a compact subgroup and αm(c−1) and cmkm com-
mute with each other, hence we get that w−1m αm(w) = αm(c−1)cmkm gen-
erates a compact subgroup contained in G0 ∩ αm(Cn)CnK. As G0 has no
nontrivial compact subgroup, we get that w−1m αm(w) = e, and hence, that
αm(w) = wm ∈ Wn ⊂ U . Since this holds for all m ∈ Z and since U is
expansive for α, we get that w = e = wm, m ∈ Z, and hence, x = c ∈ Cn.
Now αm(x) = cmkm ∈ CnK, for all m ∈ Z. Let C ′n = {c ∈ CnK | αm(c) ∈
CnK for all m ∈ Z}. Then x ∈ C ′n.

For each n ∈ N, C ′n is a closed (compact) subgroup of CnK, K ⊂ C ′n+1 ⊂
C ′n ⊂ C ′1, α(C ′n) = C ′n, and ∩n∈NC ′n = K. As α|C′

1
is expansive, it satisfies

the descending chain condition (cf. [KS89], Theorem 5.2), and hence there
exists N ∈ N such that for all n ≥ N , C ′n = C ′N . Therefore, C ′N = ∩nC ′n =
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K. This implies that if x ∈ UN = CN ×WN is such that αm(x) ∈ UNK
for all m ∈ Z, then x ∈ C ′N = K. This shows that the α-action on G/K is
expansive. �

The following theorem generalises Theorem A of [GR17], which is for
totally disconnected locally compact groups, to all locally compact groups.

Theorem 2.7. Let G be a locally compact group and let α ∈ Aut(G). Let H
be a closed normal α-invariant subgroup of G and let ᾱ be the automorphism
of G/H corresponding to α. Then α is expansive if and only if α|H and ᾱ
are expansive.

Proof. The ‘if’ statement follows from Lemma 2.1(2). Now suppose α is
expansive. Let H be a closed normal α-invariant subgroup of G. Then
α|H is expansive by Lemma 2.1(1). We show that ᾱ on G/H is expansive.
If H is compact or G is totally disconnected, then the assertion follows
from Theorem 2.5 above or Theorem A of [GR17] respectively. Let K be
the largest compact normal subgroup of G0. Then K is characteristic in
G and HK is a closed normal α-invariant subgroup. Note that (HK)/H
is isomorphic to K/(K ∩ H). Since the α-action on K is expansive, so is
the corresponding action on K/(K ∩H) (cf. [Sch95], Corollary 6.15). This
implies that the α-action on HK/H is expansive. By Lemma 2.1(2), it
is enough to show that the α-action on G/HK is expansive, i.e. we may
assume that K ⊂ H. Moreover, G/H is isomorphic to (G/K)/(H/K) and
from Theorem 2.5, the α-action on G/K is expansive. Replacing G by G/K
and H by H/K, we may assume that G0 has no nontrivial compact normal
subgroup. As α is expansive, by Theorem 2.6, G0 is nilpotent, and hence, a
simply connected nilpotent Lie group.

Suppose H is connected. Then H ⊂ G0 and G0/H is a connected (nilpo-
tent) Lie group. Let G (resp. H) denote the Lie algebra of G0 (resp. H)
and let α0 = α|G0 . By Proposition 2.3, the eigenvalues of dα0 on G do
not have absolute value 1. The same holds for the eigenvalues of dᾱ0, the
corresponding map on the Lie algebra G/H of G0/H. By Proposition 2.3,
ᾱ0, the restriction of ᾱ to G0/H is expansive.

Let U be an expansive open symmetric relatively compact neighbourhood
of the identity e in G for α. As G has an open Lie projective subgroup, there
exists a compact subgroup C normalised by G0 such that C ⊂ U and CG0 is
open in G. As G0 has no nontrivial compact subgroup, C ∩G0 = {e}, i.e. C
is totally disconnected, and CG0 = C ×G0, which is open in G. Replacing
U by a smaller open symmetric neighbourhood of e, we may assume that
U = C ×W , where W = U ∩G0 = W−1 is open in G0, and that the image
of W in G0/H is an expansive neighbourhood for ᾱ0.

Let x ∈ U be such that αn(x) ∈ UH for all n ∈ Z. Then x = cw = wc,
for some c ∈ C and w ∈ W . As H is connected, UH = CWH ⊂ CG0, and
we have

αn(c)αn(w) = αn(w)αn(c) = αn(x) = cnwnhn ∈ C ×G0,
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where cn ∈ C, wn ∈W and hn ∈ H ⊂ G0 for all n ∈ Z. We can assume that
c0 = c, w0 = w and h0 = e. Fix any n ∈ Z. Using the fact that both C and
αn(C) centralise G0, we have that αn(c) and cn commute with each other,
and we get that c−1n αn(c) = αn(w−1)wnhn generates a compact subgroup
in Cαn(C) ∩ G0. As G0 has no nontrivial compact subgroup, we get that
αn(c) = cn. Since this holds for all n ∈ Z and U is expansive for α, we get
that c = e = cn, n ∈ Z. Hence x = w ∈W ⊂ G0 and αn(x) = wnhn ∈WH,
n ∈ Z. This implies that x ∈ H, as the image of W in G0/H is an expansive
neighbourhood for ᾱ0, the restriction of ᾱ to G0/H. This proves that ᾱ is
expansive if H is connected.

Now suppose H is not connected. Observe that H0 is α-invariant and
normal in G and we have that the α-action on G/H0 is expansive. As H0

is a connected normal subgroup in the simply connected nilpotent group
G0, we get that G0/H0 is a simply connected nilpotent group (cf. [Hoc65],
Ch. XII, Theorem 1.2). In particular, G0/H0 has no nontrivial compact
subgroup. Since G/H is isomorphic to (G/H0)/(H/H0), we may replace
G by G/H0 and H by H/H0 and assume that H0 = {e} (i.e. H is totally
disconnected) and that G0 has no nontrivial compact subgroup.

As noted earlier, we can choose a compact totally disconnected subgroup
C of G and an expansive open symmetric relatively compact neighbourhood
U of the identity e in G such that C ×G0 is open and U = C ×W , where
W = U ∩ G0 is an open symmetric relatively compact neighbourhood of e
in G0. Observe that CH is a closed subgroup. Note that CH/H, being
isomorphic to C/(C ∩ H), is totally disconnected as C is so. Therefore,
(CH)0 ⊂ H and hence, (CH)0 = H0 = {e} as H is totally disconnected.
Therefore, CH is also totally disconnected.

Let CH = {c ∈ CH | αn(c) ∈ CH for all n ∈ Z}. Then CH is a closed α-
invariant group and H ⊂ CH is co-compact. As CH is totally disconnected,
so is CH . By Theorem A in [GR17], the restriction of ᾱ to CH/H is expan-
sive. Let U ′ be a neighbourhood of the identity e in G such that U ′U ′ ⊂ U
and the image of U ′H ∩CH in CH/H is an expansive neighbourhood for the
restriction of ᾱ to CH/H. As CH is totally disconnected, replacing U ′ by a
smaller neighbourhood of e if necessary, we may assume that U ′U ′ ∩CH is
contained in a compact open subgroup, say P of CH.

Since U ′ is open and α and α−1 are continuous, we may choose an open
symmetric (relatively compact) neighbourhood V ′ of the identity e in G such
that V ′α(V ′)α−1(V ′) ⊂ U ′. Let W ′ = V ′ ∩ G0. Then W ′ ⊂ W and W ′ is
an open symmetric (relatively compact) neighbourhood of the identity e in
G0. As C is a compact totally disconnected group and V ′ ∩C is open in C,
there exists a compact subgroup, say C ′, which is contained in V ′ ∩ C and
it is open in C.

Let V = C ′ ×W ′. Here, V is an open symmetric neighbourhood of the
identity e inG and V α(V )α−1(V ) ⊂ U ′U ′ ⊂ U . Also, V α(V )α−1(V )∩CH ⊂
U ′U ′∩CH ⊂ P , where P , chosen as above, is an open compact subgroup of
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CH. Now W ′α(W ′)α−1(W ′)∩CH ⊂ G0∩P = {e}, as G0 has no nontrivial
compact subgroup. We also have that C ′α(C ′)α−1(C ′) ⊂ U = C × W ,
and hence, that for any x ∈ C ′, α(x) = cw = wc for some c ∈ C and
w ∈ W ⊂ G0. This implies that c−1α(x) = α(x)c−1 generates a compact
group in Cα(C ′) ∩ G0. As G0 has no nontrivial compact subgroup, we get
that c−1α(x) = e. This shows that α(C ′) ⊂ C and C ′α(C ′) ⊂ C. Similarly,
we get that C ′α−1(C ′) ⊂ C.

Let x ∈ V be such that αm(x) ∈ V H for all m ∈ Z. Then

αm(x) = cmwmhm, where cm ∈ C ′, wm ∈W ′ and hm ∈ H,

for all m ∈ Z. As V = C ′ ×W ′, we have x = cw = wc for some c ∈ C ′ and
w ∈W ′, and we may assume that c0 = c, w0 = w and h0 = e.

We show that αm(w) = wm and αm(c) ∈ cmH for all m ∈ N by in-
duction. For m = 1, α(x) = α(c)α(w) = c1w1h1, and hence, c−11 α(c) =
w1h1α(w−1) = w1α(w−1)h′1 for some h′1 ∈ H; here h′1 exists as H is normal.
Therefore, w1α(w−1) ∈ W ′α(W ′) ∩ C ′α(C ′)H ⊂ W ′α(W ′) ∩ CH = {e}, as
C ′α(C ′) ⊂ C; and hence, α(w) = w1. Now α(c) = c1h

′
1, i.e. α(c) ∈ c1H.

This concludes the base case of the induction.
For a fixed k ∈ N, suppose αk(w) = wk and αk(c) ∈ ckH. We have

αk+1(x) = α(αk(c)αk(w)) = α(ck)α(wk)α(hk) = ck+1wk+1hk+1.

This implies that α(ck)α(wk) = ck+1wk+1h
′, where h′ = hk+1α(h−1k ) ∈ H.

Arguing as above for ck, wk instead of c, w and, ck+1, wk+1, h
′ instead of

c1, w1, h1 respectively, we get that α(wk) = wk+1 and α(ck) ∈ ck+1H. Using
the induction hypothesis for k, we have αk+1(w) = α(wk) = wk+1 and
αk+1(c) ∈ α(ck)H = ck+1H. This proves the statement for all m ∈ N by
induction. Replacing α by α−1 and using the facts that C ′α−1(C ′) ⊂ C and
W ′α−1(W ′) ∩CH = {e}, we get that α−m(w) = w−m and α−m(c) ∈ c−mH
for all m ∈ N. Now αm(w) = wm ∈W ′ ⊂ U , m ∈ Z, and U is expansive for
α, it follows that w = e, and hence, x = c ∈ C ′ and αm(x) ∈ C ′H, for all
m ∈ Z. Since C ′ ⊂ C, we have that x ∈ C ′ ∩ CH and αm(x) ∈ C ′H ∩ CH

for all m ∈ Z. As C ′ ⊂ V ⊂ U ′, and the image of U ′H ∩ CH in CH/H
is expansive for the restriction of ᾱ to CH/H, we get that x ∈ H. This
implies that the image of V H in G/H is an expansive neighbourhood for ᾱ.
Therefore, ᾱ is expansive. �

Note that Theorem 2.5 and Lemma 2.1 imply that Theorem 2.7 also holds
when H is a compact (not necessarily normal) subgroup.

We have shown in Theorem 2.6 that a connected locally compact group
admitting expansive automorphisms is nilpotent. In [GR17], a structure
theorem for totally disconnected locally compact groups admitting expansive
automorphisms is obtained (cf. [GR17], Theorem B). The following theorem
generalises the same to all locally compact groups. A locally compact group
is said to be topologically perfect if its commutator subgroup is dense in the
whole group.
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Theorem 2.8. Let G be a locally compact group and let α ∈ Aut(G) be
expansive. Then there exist finitely many α-invariant closed subgroups

G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = {e}
of G such that Gj is normal in Gj−1 for j ∈ {1, ..., n} and each of the quo-
tient groups Gj−1/Gj is discrete, abelian or topologically perfect. Moreover,
one can choose {Gj} in such a way that every αj-invariant closed normal
subgroup of Gj−1/Gj is discrete or open, where αj : Gj−1/Gj → Gj−1/Gj

is defined as gGj 7→ α(g)Gj for all g ∈ Gj−1, for all j.

Proof. Let ᾱ : G/G0 → G/G0 be the automorphism of G/G0 correspond-
ing to α. Then by Theorem 2.7, ᾱ is expansive. As G/G0 is totally discon-
nected, by Theorem B of [GR17], assertions hold for G/G0 and ᾱ. Hence,
it is enough to show that assertions hold for a connected group G. We first
produce a finite sequence of closed normal subgroups satisfying the first as-
sertion. By Theorem 2.6, G is a (connected) nilpotent group. Let K be the
largest compact normal subgroup of G. Then K is characteristic and G/K
is a simply connected nilpotent Lie group. As observed in the proof of The-
orem 2.6, K is central in G. Moreover, K is connected as G is connected,
nilpotent and Lie projective and the largest compact normal subgroup of
a connected nilpotent Lie group is connected (see Lemma 3.6.4 of [Var84]
and its proof). Observe that G has a central series of connected character-

istic subgroups G(1) = [G,G], the closure of the commutator subgroup of

G, and G(m+1) = [G,G(m)] such that for some k ∈ N, G(k−1) is nontrivial

and G(k) is trivial. We choose G0 = G, Gm = G(m)K, m ∈ {1, . . . , k − 1},
and if Gk−1 = K, then we choose Gk = {e}, otherwise we choose Gk = K
and Gk+1 = {e}. We have that G has a finite sequence of closed con-
nected characteristic (normal) decreasing subgroups {Gm} whose successive
quotients, being simply connected and abelian, are isomorphic to Rnm (for
some nm ∈ N) except for the last one, which is equal to K, a compact con-
nected abelian group. Therefore, the first assertion in the theorem holds.
Now we expand this finite sequence to a possibly larger finite sequence of
closed normal subgroups for which the second assertion in the theorem also
holds. As Gm−1/Gm is central in G/Gm for all m, we have that any sub-
group of Gm−1, which contains Gm, is normal in the connected group G.
Since the automorphism corresponding to α on each Gm−1/Gm is expansive
(cf. Theorem 2.7), it is enough to assume that G = Rn or G = K, a compact
connected abelian group.

Now suppose G = Rn and α is an invertible linear map. We take a
sequence of α-invariant subspaces {Vj} such that V0 = G and for j ≥ 1, if
Vj−1 6= {0}, then we choose Vj as any proper (closed) α-invariant subspace in
Vj−1 of maximum possible dimension; it is possible to choose such a subspace
because dim(Vj−1) ≤ n. It follows that there is no other proper α-invariant
subspace of Vj−1 which contains Vj . This implies that dimVj < dimVj−1
unless Vj−1 = {0}. Therefore, there exists k such that Vk = {0}, and hence,
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the sequence {Vj} is finite. If αj : Vj−1/Vj → Vj−1/Vj is the natural quotient
map defined from the restriction of α to Vj−1, then from the choice of {Vj} as
above, any αj-invariant subgroup in Vj−1/Vj is either discrete or the whole
of Vj−1/Vj . So far the expansivity of α on the connected group is used only
to ascertain that it is nilpotent, the assertions in the theorem would follow
for any (not necessarily expansive) automorphism on a simply connected
nilpotent group.

Now suppose G = K, a compact connected abelian group. Then G is
finite-dimensional. Let G0 = G and for j ≥ 1, if Gj−1 6= {e}, then we
chooseGj to be any proper closed connected (compact) α-invariant subgroup
in Gj−1 of maximum possible dimension. As G is connected and finite-
dimensional, it is possible to choose such a sequence {Gj}. Note that since
G is Lie projective and finite-dimensional, for any two closed connected
subgroups H1 ⊂ H2 in G, either H1 = H2 or dimH1 < dimH2. It follows
that there is no other proper closed connected α-invariant subgroup of Gj−1
containing Gj . As (G,α) satisfies the descending chain condition (or as G is
finite-dimensional), we have that there exists k such that Gk = {e}. For αj :
Gj−1/Gj → Gj−1/Gj , we have that αj is expansive (cf. [Sch90], Corollary
3.11), and hence, (Gj−1/Gj , αj) satisfies the descending chain condition for
each j (cf. [KS89], Theorem 5.2). Moreover, each Gj−1/Gj is connected and
finite-dimensional. Due to the choice of Gj , we have that any proper closed
αj-invariant subgroup in Gj−1/Gj is totally disconnected, and hence, it is
finite (cf. [Jaw12], Propositions 6.2 and 6.4). This completes the proof. �

Recall that an automorphism α of a locally compact group G is distal
if the closure of {αn(x) | n ∈ Z} does not contain the identity e for every
x 6= e.

Theorem 2.9. Let G be a locally compact group and let α ∈ Aut(G). Then
G is discrete if and only if α is both expansive and distal.

Proof. The ‘only if’ statement is obvious. Now suppose α is both expansive
and distal. Suppose, in the first case, that G is a connected Lie group. As
α is expansive, by Theorem 2.6, G is nilpotent. Moreover, either G is trivial
or dα, the corresponding Lie algebra automorphism on the Lie algebra of
G, does not have any eigenvalue of absolute value 1 (cf. Proposition 2.3).
On the other hand, since α is distal, all the eigenvalues of dα have absolute
value 1 (cf. [Abe79, Abe81]). This implies that G is trivial.

Now suppose that G is a compact group. Since α is expansive, (G,α)
satisfies the descending chain condition (cf. [KS89], Theorem 5.2). This,
together with the fact that α is distal, implies that G is a Lie group (cf.
[RS19], Lemma 2.4).

We now turn to the case when G is a general locally compact group. Let
K be the largest compact normal subgroup of G0. Then K is characteristic
in G, G0/K is a Lie group and α|K is expansive as well as distal. It follows
from above that K is a Lie group. Hence G0 itself is a Lie group. As
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α|G0 is expansive as well as distal, we get that G0 is trivial, and hence,
G is totally disconnected. As α is distal, by Proposition 2.1 of [JR07], G
has a neighbourhood basis of compact open α-invariant subgroups. As α is
expansive, it leads to a contradiction unless G is discrete. �
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