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Multiplication operators defined by
twisted proper holomorphic

maps on Bergman spaces

Hansong Huang and Pan Ma

Abstract. The paper studies the structure and commutative proper-
ties of von Neumann algebras induced by multiplication operators on
the Bergman space of a bounded domain in the complex space Cd. We
show that there is a close interplay between operator theory, geometry,
and function theory.
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1. Introduction

Let Ω denote a bounded domain in the complex space Cd and dA be the
Lebesgue measure on Ω. The Bergman space L2

a(Ω) is the Hilbert space
consisting of all holomorphic functions over Ω which are square integrable
with respect to the Lebesgue measure dA. For a bounded holomorphic
function φ on Ω, let Mφ denote the multiplication operator with the symbol
φ on L2

a(Ω), given by

Mφf = φf, f ∈ L2
a(Ω).

In general, for a tuple Φ = {φj : 1 ≤ j ≤ n}, let {MΦ}′ denote the
commutant of {Mφj : 1 ≤ j ≤ n}, consisting of all bounded operators
commuting with each operator Mφj (1 ≤ j ≤ n). Here, we emphasize that
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MΦ denotes a family of multiplication operators rather than a single vector-
valued multiplication operator. Let V∗(Φ,Ω) denote the von Neumann al-
gebra {Mφj , M

∗
φj

: 1 ≤ j ≤ n}′ which consists of all bounded operators

on L2
a(Ω) commuting with both Mφj and M∗φj for each j. It is known that

there is a close connection between orthogonal projections in V∗(Φ,Ω) and
all joint reducing subspaces of {Mφj : 1 ≤ j ≤ n}. Precisely, the range of
an orthogonal projection in V∗(Φ,Ω) is exactly a joint reducing subspace of
{Mφj : 1 ≤ j ≤ n}, and vice versa.

In the single-variable case, commutants and reducing subspaces of multi-
plication operators has caught many people’s interest, and steady progress
has been made during the past dozen years [Cow78, Cow80a, Cow80b,
DPW12, DSZ11, GH11a, GH11b, GH14, GH15, SZZ10, Tho77, Tho76]. For
the multi-variable case, this seems to be a new area [DanH14, Gu18, GW16,
HZ15, LZ10, SL13, WDH15].

We mention that on the Bergman space of the unit disk, the relevant topic
was initiated by Zhu’s conjecture in 2000 [Zhu00] on the number k(B) of
minimal reducing subspaces of a single multiplication operator induced by a
finite Blaschke product B. As the investigations went further, a more deli-
cate conjecture was raised by Guo, Sun, Zheng and Zhong [DSZ11, GSZZ09].
The modified conjecture establishes a direct connection between k(B) and
the number of connected components of the Riemann surface associated
with B. Different techniques and methods are developed during the attack
to this conjecture [GSZZ09, SZZ10, GH11a], and finally it was affirmatively
solved by Douglas, Putinar and Wang [DPW12]. It is thus of interest to
study the multi-variable case for similar phenomena that seeks to establish
a link between operator theory, function theory, and geometry.

Observe that the finite Blaschke products are the only proper holomor-
phic maps from the unit disk onto itself [Rud69]. It is natural to consider
holomorphic proper maps in several complex variables. Recently, the frame-
work of von Neumann algebras associated with such maps has been raised in
[HZ15]. Following this line, we consider the properties of the von Neumann
algebras generated by multiplication operators defined by twisted holomor-
phic proper maps. As one will see, new phenomena emerge, and techniques
of geometry, complex analysis and operator theory are intrinsic in this paper.

The paper is arranged as follows. In Section 2, we state our main the-
orems. Some preliminaries are given in Section 3. Section 4 provides the
proofs for our main results.

2. Statement of main results

Suppose Ω1 and Ω2 are two bounded domains in C, φ and ψ are holomor-
phic on Ω1 and Ω2, respectively. Define

Υφ,ψ(z1, z2) =
(
φ(z1) + ψ(z2), φ(z1)2 + ψ(z2)2

)
, z1 ∈ Ω1, z2 ∈ Ω2,
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and

Sφ,ψ =
{

(z, w) ∈ Ω1 × Ω2 : z 6∈ φ−1
(
ψ(Z(ψ′))

)
, w 6∈ ψ−1

(
φ(Z(φ′))

)}
,

where Z(ψ′) and Z(φ′) denote the zeros of ψ′ and φ′, respectively. Under
some situations, Sφ,ψ turns out to be a Riemann surface, and then let n(φ, ψ)
denote the number of components of Sφ,ψ. Our first main result is the
dimension formula for V∗(Υφ1,φ2 ,Ω1 × Ω2).

Theorem 2.1. Suppose that φ1 and φ2 are holomorphic proper maps over
bounded domains Ω1 and Ω2 in C, respectively. If φ1(Ω1) = φ2(Ω2), then

dimV∗(Υφ1,φ2 ,Ω1 × Ω2) = n(φ1, φ1)n(φ2, φ2) + n(φ1, φ2)2.

In this case, V∗(Υφ1,φ2 ,Ω1 × Ω2) is not ∗-isomorphic to the von Neumann
algebra V∗(φ1(z1), φ2(z2),Ω1 × Ω2) = V∗(φ1,Ω1)⊗ V∗(φ2,Ω2).

The condition φ1(Ω1) = φ2(Ω2) can not be replaced by φ1(Ω1) = φ2(Ω2),
as illustrated by Example 4.2.

If both φ1 and φ2 are finite Blaschke products in Theorem 2.1, the abelian
property of V∗(ΥB1,B2 ,D2) relies heavily on the connectedness of the Rie-
mann surface SB1,B2 (see Subsection 2.2 for the definition of SB1,B2).

Theorem 2.2. Let B1 and B2 be two finite Blaschke products. Then the von
Neumann algebra V∗(ΥB1,B2 ,D2) is abelian if and only if SB1,B2 is connected.

Let Ω be a domain in C2 and

Φ(z1, z2) = (φ1(z1, z2), φ2(z1, z2)), Ψ(z1, z2) = (ψ1(z1, z2), ψ2(z1, z2)),

where (z1, z2) ∈ Ω. Write

P (z) =

 4∑
j=1

zj ,
4∑
j=1

z2
j , · · · ,

4∑
j=1

z4
j

 ,

and define

ΥΦ,Ψ(z1, z2, z3, z4) = P ◦
(
Φ(z1, z2),Ψ(z3, z4)

)
, (z1, z2, z3, z4) ∈ Ω2,

which is called the twisted map of Φ and Ψ. The following theorem presents
a comparison with Theorem 2.1.

Theorem 2.3. Suppose Φ and Ψ are holomorphic proper maps over Ω such
that Φ(Ω) 6= Ψ(Ω). If both Φ and Ψ are holomorphic on Ω and ΥΦ,Ψ

has no nontrivial compatible equation, then V∗(ΥΦ,Ψ,Ω
2) is ∗-isomorphic

to V∗(Φ,Ω)⊗ V∗(Ψ,Ω).

The condition of ΥΦ,Ψ having no nontrivial compatible equation is quite
geometric (see Theorem 4.7). Practically, in many cases it is easy to check
whether this condition holds. In addition, an analogue of Theorem 2.3 still
holds if Ω is a domain in Cd, d ≥ 1.
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3. Some preliminaries

3.1. Proper map and zero variety. This subsection gives some prelim-
inaries, including the notions of proper map and zero variety.

Let Ω,Ω′ be domains in Cd. A holomorphic function Ψ : Ω → Ω′ is
called a proper map if each compact subset K of Ω′, Ψ−1(K) is compact. A
holomorphic function Ψ on Ω is called proper if Ψ(Ω) is open and the map
Ψ : Ω→ Ψ(Ω) is proper. In particular, if Ψ is holomorphic on Ω, then Ψ is
proper on Ω if and only if Ψ(Ω) is open and

Ψ(∂Ω) ⊆ ∂Ψ(Ω).

In general, a holomorphic proper map is open, which is a direct conse-
quence of the following [Rud80, Theorem 15.1.6].

Theorem 3.1. Suppose F : Ω→ Cd is a holomorphic function and for each
w ∈ Cd, F−1(w) is compact. Then F is an open map.

Let F : Ω → Cd be a holomorphic map and let Z be the zero set of the
determinant of the Jacobian of F . Then its image F (Z) is called the critical
set of F . Each point in F (Z) is called a critical value, and each point in
F (Ω)−F (Z) is called a regular point. A holomorphic proper map is always
an m-folds map, and its critical set is a zero variety as follows.

Theorem 3.2. [Rud80, Theorem 15.1.9] Given two domains Ω and Ω0 in
Cd, suppose F : Ω→ Ω0 is a holomorphic proper function. Let ](w) denote
the number of points in F−1(w) with w ∈ Ω0. Then the following hold:

(1) There is an integer m such that ](w) = m for all regular values w of
F and ](w′) < m for all critical values w′ of F ;

(2) The critical set of F is a zero variety in Ω0.

A subset E of Ω is called a zero variety of Ω if there is a non-constant
holomorphic function f on Ω such that E = {z ∈ Ω|f(z) = 0}. A relatively
closed subset V of Ω is called an (analytic) subvariety of Ω if for each point w
in Ω there is a neighborhood N of w such that V ∩N equals the intersection
of zeros of finitely many holomorphic functions over N .

An easier version of Remmert’s Proper Mapping Theorem reads as follows
(see [Chi89, p. 65] or [Rem56, Rem57]).

Theorem 3.3. If f : Ω0 → Ω1 is a holomorphic proper map and Z is a
subvariety of Ω0, then f(Z) is a subvariety of Ω1.

3.2. Analytic continuation. Some notions are needed on analytic con-
tinuation ([Rud87, Chapter 16]). A function element is an ordered pair
(f,D), where D is an open ball in Cd and f is a holomorphic function on D.
Two function elements (f0, D0) and (f1, D1) are called direct continuation if
D0∩D1 is not empty and f0 = f1 holds on D0∩D1. A curve is a continuous
map from [0, 1] into Cd. For a function element (f0, D0) and a curve γ with
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γ(0) ∈ D0, if there is a partition of [0, 1]:

0 = s0 < s1 < · · · < sn = 1

and function elements (fj , Dj)(0 ≤ j ≤ n) such that

1. (fj , Dj) and (fj+1, Dj+1) are direct continuation for all j with
0 ≤ j ≤ n− 1;

2. γ[sj , sj+1] ⊆ Dj(0 ≤ j ≤ n− 1) and γ(1) ∈ Dn,

then (fn, Dn) is called an analytic continuation of (f0, D0) along γ ; and
(f0, D0) is called to admit an analytic continuation along γ. In this case,
we write f0 ∼ fn. Clearly, ∼ defines an equivalence and we write [f ] for the
equivalent class of f .

3.3. Local solution. As follows, we will generalize the notion of local in-
verse. For convenience, assume both Φ and Ψ are holomorphic maps from
Ω to Cd. Rewrite

Z(JΦ) = ZΦ and Z(JΨ) = ZΨ,

where JΦ and JΨ denote the determinants of the Jacobian of Φ and Ψ,
respectively. Let

SΦ,Ψ = {(z, w) ∈ Ω : Ψ(w) = Φ(z), z 6∈ Φ−1
(
Ψ(ZΨ))}. (3.1)

and

SΨ,Φ = {(z, w) ∈ Ω : Φ(w) = Ψ(z), z 6∈ Ψ−1
(
Φ(ZΦ))}. (3.2)

It can happen that SΦ,Ψ or SΨ,Φ is empty, but in many cases they are
Riemann manifolds.

Definition 3.4. If there is a subdomain ∆ of Ω and a holomorphic function
ρ over ∆ such that

Ψ(ρ(z)) = Φ(z), z ∈ ∆,

then ρ is called a local solution for SΦ,Ψ, denoted by

ρ ∈ Ψ−1 ◦ Φ.

In particular, if Φ = Ψ, then ρ is a local inverse of Φ [Tho77] and we
rewrite SΦ for SΦ,Φ.

Following [HZ15], we give the definition of admissible local solution.

Definition 3.5. A local solution ρ for SΦ,Ψ is called admissible if for each

curve γ in Ω − Φ−1
(
Ψ(ZΨ)), ρ admits analytic continuation with values in

Ω.

In this case, we say ρ is admissible with respect to
Φ−1

(
Ψ(ZΨ)). It can be shown that Ω−Φ−1

(
Ψ(ZΨ)) is connected if both Φ

and Ψ are holomorphic on Ω ([Rud80, Chapter 14]).
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Remark 3.6. One can also define SΦ,Ψ and SΨ,Φ if both Φ and Ψ are holo-
morphic proper maps on Ω and

Φ(Ω) = Ψ(Ω).

In this case,

Ω− Φ−1
(
Ψ(ZΨ))

is also connected. Furthermore, by Theorem 3.2(2)

Ψ−1
(
Φ(ZΦ)) = Ψ−1

(
Φ(ZΦ)),

and

Φ−1
(
Ψ(ZΨ)) = Φ−1

(
Ψ(ZΨ)).

To define SΦ,Ψ and SΨ,Φ one thus can replace Φ(ZΦ) and Ψ(ZΨ) with Φ(ZΦ)
and Ψ(ZΨ), respectively in (3.1) and (3.2).

Given an admissible local inverse ρ of Φ, [ρ] denotes the equivalent class
of ρ under analytic continuation. Set

E[ρ]h(z) =
∑
σ∈[ρ]

h ◦ σ(z)Jσ(z), h ∈ L2
a(Ω), z ∈ Ω− Φ−1

(
Φ(ZΦ)).

Then we get the following [HZ15], which is the key to our results.

Theorem 3.7. Suppose Φ : Ω → Cd is holomorphic on Ω and the image
of Φ contains an interior point. Then dimV∗(Φ,Ω) < ∞, and V∗(Φ,Ω) is
generated by E[ρ], where ρ runs over admissible local inverses of Φ.

Theorem 3.8. Let Ω and Ω0 be bounded domains in Cd. Suppose
Φ : Ω → Ω0 is a holomorphic proper map. Then V∗(Φ,Ω) is generated by
E[ρ], where ρ are local inverses of Φ. In particular, the dimension of V∗(Φ,Ω)
equals the number of components of SΦ.

For a domain Ω in Cd, if both Φ and Ψ are holomorphic on Ω, then SΦ,Ψ is
a nonempty set. For two local solutions ρ and σ for SΦ,Ψ, if ρ is an analytic
continuation of σ, then their images lie in a same component of SΦ,Ψ, and
vice versa. Therefore, the number of equivalent classes of local solutions
equals the number of components of SΦ,Ψ.

Now we will modify SΦ,Ψ a bit by setting

SΦ,Ψ =
{

(z, w) ∈ Ω : Ψ(w) = Φ(z), z 6∈ Φ−1
(
Ψ(ZΨ)), z 6∈ Ψ−1

(
Φ(ZΦ))

}
.

(3.3)
Note that the numbers of components of SΦ,Ψ and SΨ,Φ remain invariant.
Since SΦ,Ψ and SΨ,Φ are equal up to a permutation of coordinates, they have
the same number of components. Hence the numbers of equivalent classes of
local solutions for SΦ,Ψ and SΨ,Φ are exactly equal. Letting n(Φ,Ψ) denote
the number of components of SΦ,Ψ, we have the following proposition.

Proposition 3.9. Suppose one of the following holds:
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(i) both Φ : Ω→ Φ(Ω) and Ψ : Ω→ Ψ(Ω) are holomorphic proper maps
and Φ(Ω) = Ψ(Ω);

(ii) both Φ and Ψ are holomorphic over Ω and their images in Cd contain
an interior point.

Then SΦ,Ψ and SΨ,Φ have the same number of components; that is,
n(Φ,Ψ) = n(Φ,Ψ).

Under Condition (i), the local solutions for SΦ,Ψ turn out to be admissible.
The special case of Φ = Ψ was discussed in the proof of [HZ15, Theorem
1.4].

4. Proof of main results

In this section, we will present the proofs of main theorems. We begin
with a lemma.

Lemma 4.1. Suppose both Φ and Ψ are holomorphic proper maps on Ω
with same images. Then each local solution ρ for SΦ,Ψ is admissible in Ω.

Proof. Suppose both Φ and Ψ are holomorphic proper maps on Ω with the
same images. Write

A = Φ−1
(
Ψ(ZΨ)

)
.

Since Ψ are proper, Ψ(ZΨ) is a zero variety by Theorem 3.2. Then Ψ(ZΨ)
is relatively closed in Ψ(Ω), and thus A is relatively closed in Ω.

For each curve γ in Ω − A, write z0 = γ(0). Given a local solution ρ
satisfying

Ψ(ρ(z0)) = Φ(z0),

it suffices to show that ρ admits analytic continuation along γ. To see this,
note that Φ and Ψ have the same images. For each point w on γ,

Φ(w) ∈ Ψ(Ω)

and

Φ(γ) ∩Ψ(ZΨ) = ∅
since γ ⊆ Ω− A. By Theorem 3.2, there is an integer n depending only on
Ψ so that Ψ−1(Φ(w)) has exactly n distinct points. Furthermore, there is
an open ball Uw centered at w and n holomorphic maps ρw1 , · · · , ρwn over Uw
satisfying

Ψ(ρwj (z)) = Φ(z), z ∈ Uw, 1 ≤ j ≤ n.
Since γ is compact, by Henie-Borel’s theorem there are finitely many such
balls Uw whose union contains γ. Then by rolling the balls along the curve
γ, it is straightforward to prove that all ρz0j (1 ≤ j ≤ n) admit analytic

continuation along γ. Since one of ρz0j (1 ≤ j ≤ n) is the direct continuation
of ρ, ρ admits analytic continuation along γ. �
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4.1. Dimension formulas. In this subsection, we will present the proof
of Theorem 2.1.

Proof of Theorem 2.1. Suppose that both φ1 and φ2 are holomorphic
proper maps over bounded domains Ω1 and Ω2 in C, respectively, and
φ1(Ω1) = φ2(Ω2). Let

Ω = φ1(Ω1) = φ2(Ω2).

By using Theorem 3.1 one can show that (z1 + z2, z
2
1 + z2

2) is an open map,
and in fact it is a proper map on Ω×Ω. As a composition of (z1 +z2, z

2
1 +z2

2)
and (φ1(z1), φ2(z2)), Υφ1,φ2 is a holomorphic proper map on Ω1 ×Ω2. Then
by Theorem 3.8 the von Neumann algebra V∗(Υφ1,φ2 ,Ω1 ×Ω2) is generated
by Eρ, where ρ runs over local inverses of Υφ1,φ2 . By Lemma 4.1 all these ρ
are necessarily admissible.

Next we will determine the local inverses of Υφ1,φ2 . The idea is to find out
the candidate of such local inverse defined first at a single point, and then
to pick out the admissible local inverses as desired. As below the letters
w = (w1, w2) and z = (z1, z2) stand for both a single point and variables,
which means that they can go from a point to almost everywhere of the
whole domain. Observe that

(λ1 + λ2, λ
2
1 + λ2

2) = (µ1 + µ2, µ
2
1 + µ2

2) (4.1)

is equivalent to
(λ1 + λ2, λ1λ2) = (µ1 + µ2, µ1µ2),

Then (λ1, λ2) and (µ1, µ2) are the same zeros of the polynomial p counting
multiplicity, where p(x) = x2 +(λ1 +λ2)x+λ1λ2. Thus the solutions of (4.1)
are

(λ1, λ2) = (µ1, µ2)

and
(λ1, λ2) = (µ2, µ1).

Hence the equation

Υφ1,φ2(w1, w2) = Υφ1,φ2(z1, z2)

is equivalent to {
φ1(w1) = φ1(z1),
φ2(w2) = φ2(z2),

or {
φ1(w1) = φ2(z2),
φ2(w2) = φ1(z1).

Then we get either

(w1, w2) = (σ1(z1), σ2(z2)), σ1 ∈ φ−1
1 ◦ φ1, σ2 ∈ φ−1

2 ◦ φ2, (4.2)

or
(w1, w2) = (τ1(z2), τ2(z1)), τ1 ∈ φ−1

1 ◦ φ2, τ2 ∈ φ−1
2 ◦ φ1.

Since both φ1 and φ2 are holomorphic proper maps, by Lemma 4.1 the
above local solutions σ1, σ2, τ1 and τ2 are all admissible, and then the
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local inverses of Υφ1,φ2 , (σ1(z1), σ2(z2)) and (τ1(z2), τ2(z1)), are admissible.
Hence by Proposition 3.9, Υφ1,φ2 has exactly n(φ1, φ1)n(φ2, φ2) +n(φ1, φ2)2

equivalent classes for admissible local inverses. Since V∗(Υφ1,φ2 ,Ω1 ×Ω2) is
generated by Eρ where ρ are admissible local inverses of Υφ1,φ2 , it follows
that

dimV∗(Υφ1,φ2 ,Ω1 × Ω2) = n(φ1, φ1)n(φ2, φ2) + n(φ1, φ2)2.

Since dimV∗(φj ,Ωj) = n(φj , φj), j = 1, 2,

dimV∗(φ1,Ω1)⊗V∗(φ2,Ω2) = n(φ1, φ1)n(φ2, φ2) < dimV∗(Υφ1,φ2 ,Ω1×Ω2).

Therefore, V∗(Υφ1,φ2 ,Ω1 × Ω2) is not ∗-isomorphic to the von Neumann
algebra V∗(φ1,Ω1)⊗V∗(φ2,Ω2). Besides, the map (φ1(z1), φ2(z2)) is a proper
map whose local inverses are exactly of the form (4.2), and by Theorem 3.8

V∗(φ1(z1), φ2(z2),Ω1 × Ω2) = V∗(φ1,Ω1)⊗ V∗(φ2,Ω2),

which immediately leads to the desired conclusion. �

In Theorem 2.1, the condition φ1(Ω1) = φ2(Ω2) is sharp in the sense that

it can not be replaced with φ1(Ω1) = φ2(Ω2). Here is an example.

Example 4.2. Put Ω = D\[−1, 0]. Write f(z) = z, z ∈ D and g is the
restriction of f on Ω. Obviously, fand g are proper maps on D and Ω
respectively. Set

Υf,g(z1, z2) = (z1 + z2, z
2
1 + z2

2), z1 ∈ D, z2 ∈ Ω.

We will prove that

V∗(Υf,g,D× Ω) = CI;

equivalently, V∗(Υf,g,D× Ω) is ∗-isomorphic to V∗(f,D)⊗ V∗(g,Ω).

For this, let ρ(z1, z2) = (z2, z1), and each operator S in V∗(Φf,g,D×Ω) is
of the form

Sh(z1, z2) = c1h(z1, z2) + c2h ◦ ρ(z1, z2), (z1, z2) ∈ D× Ω.

If V∗(Υf,g,D × Ω) 6= CI, h 7→ h ◦ ρ defines a bounded linear operator on
L2
a(D×Ω), and it maps L2

a(D)⊗L2
a(Ω) to L2

a(D×Ω). By the form of ρ, each
function in L2

a(Ω) extends holomorphically to a function in L2
a(D). However,

this can not be true because ln z1 ∈ L2
a(Ω) but ln z1 6∈ L2

a(D) as ln z1 can
not be extended to an holomorphic function over D.

4.2. Twisted finite Blaschke products. This subsection mainly estab-
lishes Theorem 2.2. One can see that there is an interplay between operator
theory and geometry of Riemann manifold.

Proof of Theorem 2.2. Let B1 and B2 be finite Blaschke products and

ΥB1,B2(z) = (B1(z1) +B2(z2), B1(z1)2 +B2(z2)2), (z1, z2) ∈ D2.
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Since ΥB1,B2 is the composition of two holomorphic proper maps
(z1 +z2, z

2
1 +z2

2) and (B1(z1), B2(z2)) on D2, ΥB1,B2 is a holomorphic proper
map on D2.

By Theorem 3.7, studying V∗(ΥB1,B2 ,D2) reduces to studying admissible
local inverses of ΥB1,B2 . For this, write

ΥB1,B2(w) = ΥB1,B2(z), w, z ∈ D2.

Then following the proof of Theorem 2.1, we get either

(w1, w2) = (ρ(z1), σ(z2)), ρ ∈ B−1
1 ◦B1, σ ∈ B−1

2 ◦B2, (4.3)

or
(w1, w2) = (ζ(z2), η(z1)), ζ ∈ B−1

1 ◦B2, η ∈ B−1
2 ◦B1. (4.4)

By Lemma 4.1, all of ρ, σ, ζ and η are admissible, and thus the local solutions
of ΥB1,B2 defined in (4.3) and (4.4) are also admissible. In order to prove
the abelian property of V∗(ΥB1,B2 ,D2), we need determine whether their
equivalent classes commute with each other under composition. To clarify
what is the composition of two equivalent classes [GH14], observe that for
any local inverses [τ1] and [τ2], E[τ1]E[τ2] has the form∑

j

E[σj ],

where the sum is finite, and σj can lie in the same class for distinct j; and
we define the composition

[τ1] ◦ [τ2]

to be the formal sum
∑

j [σj ]. Thus

E[τ1]E[τ2] = E[τ2]E[τ1]

if and only if [τ1] ◦ [τ2] = [τ2] ◦ [τ1]. The formal sum of k same equivalent
classes [σ] is denoted by k[σ].

Suppose order B1 = m and order B2 = n. Let a1, · · · , am be m distinct
points on T and b1, · · · , bn be n distinct points on T, both in anti-clockwise
direction and

B1(aj) = B2(bk) = 1, 1 ≤ j ≤ m, 1 ≤ k ≤ n. (4.5)

First, suppose SB1,B2 has more than one component, we will prove that
V∗(ΥB1,B2 ,D2) is not abelian. Since a finite Blaschke product has no critical
point on the unit circle T, it is conformal on T. Thus for j, k = 1, 2 the local
solutions for SBj ,Bk

are holomorphic on a neighborhood of each point on T.

Let [ζ](a1) denote the set of all ζ̃(a1) as ζ̃ runs over all analytic continuations
along loops in T beginning at a1. Since SB1,B2 has more than one component,
we have

[ζ](a1) 6= {b1, · · · , bn}.
Thus there is at least a local solution η of SB1,B2 such that η(a1) 6∈ [ζ](a1).
Denote

η(a1) = bj0 .
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By conformal property of B1 and B2 on T, local solutions for SB1,B2 (or
SB2,B1) admit continuation along any curve in T. In particular, by (4.5)
there is an aj such that ζ−1(bj0) = aj , forcing

ζ(aj) = bj0 .

Let ρ be the identity map, and let σ be the local inverse of B1 determined
by σ(a1) = aj . Then it follows that

bj0 ∈ ζ ◦ σ(a1).

Since η(a1) = bj0 , we deduce that [ζ] ◦ [σ] must contain [η]. But

[ρ] ◦ [ζ] = [ζ] 6= [η].

Therefore, [ρ] ◦ [ζ] 6= [ζ] ◦ [σ], forcing

([ρ] ◦ [ζ](z2), [σ] ◦ [η](z1)) 6= ([ζ] ◦ [σ](z2), [η] ◦ [ρ](z1)).

That is, there are two equivalent classes of admissible local inverses of
ΥB1,B2 , (4.3) and (4.4), do not commute. Then by Theorem 3.7, V∗(ΥB1,B2 ,D2)
is not abelian.

Second, we conclude that V∗(ΥB1,B2 ,D2) is abelian if SB1,B2 is connected.
By Theorem 3.7, it suffices to show that all admissible local inverses of
ΥB1,B2 commute with each other under composition. There are three cases
to distinguish: both local solutions lie in (4.3), or both in (4.4), or one in
(4.3) and another in (4.4).

Case 1. Both local solutions lie in (4.3). In fact, since B1 is a finite
Blaschke product, by [DPW12, Theorem 1.1] V∗(B1,D) is abelian. Since
V∗(B1,D) is generated by E[ρ] where ρ are local inverses of B1, we have

[ρ1] ◦ [ρ2] = [ρ2] ◦ [ρ1], ρ1, ρ2 ∈ B−1
1 ◦B1.

Similarly,
[σ1] ◦ [σ2] = [σ2] ◦ [σ1], σ1, σ2 ∈ B−1

2 ◦B2.

Therefore, we have

([ρ1](z1), [σ1](z2))◦([ρ2](z1), [σ2](z2)) = ([ρ2](z1), [σ2](z2))◦([ρ1](z1), [σ1](z2)).

Case 2. Both local solutions lie in (4.4). In this case, the correspond-
ing equivalent classes of local solutions commute with each other since by
assumption they are exactly the same one.

Case 3. One local solution lies in (4.3) and another local solution lies
in (4.4). Since SB1,B2 is connected, we assume [ζ] and [η] are the only
equivalent class for local solutions of SB1,B2 and SB2,B1 , respectively. We
will prove that

[ρ] ◦ [ζ] = ][ρ] · [ζ] and [σ] ◦ [η] = ][σ] · [η].

In fact, for each polynomial p we have

E[ζ]E[ρ]p(z) =
∑

ρ̃∈[ρ],ζ̃∈[ζ]

p(ρ̃ ◦ ζ̃(z)) (ρ̃ ◦ ζ̃)′(z), z ∈ T (4.6)



314 HANSONG HUANG AND PAN MA

where z is allowed in T since members in [ρ] and [ζ] are well defined on T
(and then in a neighborhood of T). Since ρ ∈ B−1

1 ◦B1 and ζ ∈ B−1
1 ◦B2, it

follows that ρ̃ ◦ ζ̃ ∈ B−1
1 ◦B2. Since [ζ] is the only equivalent class for local

solutions of SB1,B2 ,

ρ̃ ◦ ζ̃ ∈ [ζ],

and by (4.6) there is a positive integer k such that

E[ζ]E[ρ] = E[ρ]◦[ζ] = kE[ζ].

With z = a1,

{ρ̃ ◦ ζ̃(a1) : ρ̃ ∈ [ρ]}
has exactly ][ρ] points,

{ρ̃ ◦ ζ̃(a1) : ρ̃ ∈ [ρ], ζ̃ ∈ [ζ]}

is a sequence of ][ρ] · ][ζ] points, and {ζ̃(a1) : ζ̃ ∈ [ζ]} has ][ζ] points.

Therefore by comparing (4.6) with E[ζ]p(z) =
∑

ζ̃∈[ζ]
p(ζ̃(z)) ζ̃ ′(z), z ∈ T,

k =
][ρ] · ][ζ]

][ζ]
= ][ρ].

Hence E[ρ]◦[ζ] = ][ρ] · E[ζ]; that is [ρ] ◦ [ζ] = ][ρ] · [ζ]. By similar reasoning,
[σ] ◦ [η] = ][σ] · [η].

Thus,

([ρ] ◦ [ζ](z2), [σ] ◦ [η](z1)) = ][ρ] · ][σ]([ζ](z2), [η](z1)).

Similarly,

([ζ] ◦ [σ](z2), [η] ◦ [ρ](z1)) = ][ρ] · ][σ]([ζ](z2), [η](z1)),

which gives

([ρ] ◦ [ζ](z2), [σ] ◦ [η](z1)) = ([ζ] ◦ [σ](z2), [η] ◦ [ρ](z1)).

Thus, the equivalence of a local inverse (4.3) commutes with the equivalence
of (4.4).

In summary, all admissible local inverses of ΥB1,B2 commute with each
other under composition. Therefore, if SB1,B2 is connected, V∗(ΥB1,B2 ,D2)
is abelian. The proof is complete. �

Special cases of Theorem 2.2 are of interest.
If B1 = B2, one component of SB1,B2 is {(z, z) : z ∈ D − J}, where J is

a finite set. Therefore, SB1,B1 is connected if and only if order B1=1. This
immediately gives [HZ15, Example 6.5].

IfB1 6= B2, we have the following result on abelian property of V∗(ΥB1,B2 ,D2).

Corollary 4.3. Let B1 and B2 be two finite Blaschke products. Write
m = orderB1, and n = orderB2. If GCD(m,n) = 1, then V∗(ΥB1,B2 ,D2) is
abelian.
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Proof. Recall that SB1,B2 is connected if and only if all local solutions for
SB1,B2 are equivalent in the sense of analytic continuation. By Theorem
2.2, it suffices to show that if GCD(m,n) = 1, then all local solutions for
SB1,B2 are equivalent. In the proof of Theorem 2.2, we have shown that a
local solution for SB1,B2 admits continuation along any curve contained in
T. Without loss of generality, m > n. Let aj and bk be chosen as in the
proof of Theorem 2.2. Suppose ζ is a local solution satisfying

ζ(a1) = b1.

Note that for 1 ≤ j ≤ m − 1 and 1 ≤ k ≤ n − 1, the image of the circular

arc ãjaj+1 under B1 is the same as that of the circular arc b̃kbk+1 under B2.
Then we get

ζ̃(aj) = bj , 1 ≤ j ≤ m.
where ζ̃ denotes an analytic continuation along a circular curve γ in T.
Letting γ go a bit further, and noting ζ̃(am) = bm, we have

ζ̆(a1) = bm+1,

where ζ̆ is also an analytic continuation of ζ. This procedure can be repeated.
Since GCD(m,n) = 1, for each k(1 ≤ k ≤ n) there exists an analytic
continuation η of ζ such that

η(a1) = bk.

Thus all local solutions for SB1,B2 are an analytic continuation of ζ. �

Example 4.4. Write B1(λ) = λk and B2(λ) = λl, where λ ∈ D and k, l are
positive integers. Then SB1,B2 is connected if and only if

GCD(k, l) = 1.

Then by Theorem 2.2 V∗(zk1 + zl2, z
2k
1 + z2l

2 ,D2) is abelian if and only if

GCD(k, l) = 1.

Specifically, by direct computations one can check that V∗(z2
1 + z4

2 , z
2
1 +

z4
2 ,D2) is not abelian ([HZ15, Example 6.5]).

4.3. General twisted proper maps. This subsection mainly focuses on
the proof of Theorem 2.3.

Suppose that both Φ and Ψ are holomorphic proper maps on Ω with
the same images. The following proposition tells us that the closure of the
ranges of an admissible local solution and all its continuations equal Ω.

Proposition 4.5. If both Φ and Ψ are holomorphic proper maps on Ω with
same images, then for each local solution σ for SΦ,Ψ

Image [σ] = Ω. (4.7)

In particular, in the case of Φ = Ψ, (4.7) holds for each local inverse σ of a
holomorphic proper map Φ over Ω.
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Proof. Let σ be an admissible local solution for SΦ,Ψ and [σ] denote the
equivalent class of σ, Image [σ] denotes the union of all images of local
solutions in the equivalent class [σ] of σ. By definition we have

Image [σ] ⊆ Ω.

Then the inverse σ− of σ is a local solution of SΨ,Φ. By Lemma 4.1, both σ
and σ− are admissible with respect to the set E defined by

E = Φ−1(Ψ(ZΨ))
⋃

Ψ−1(Φ(ZΦ).

Since σ− or its continuation is well defined at each given point of Ω−E , the
union of the images of σ and all its continuation contain Ω− E . That is,

Ω− E ⊆ Image [σ],

forcing

Ω− E ⊆ Image [σ] ⊆ Ω.

Since E is relatively closed subset of Ω with zero Lebesgue measure, we have
Image [σ] = Ω. �

Remark 4.6. If Φ is holomorphic over Ω and σ is an admissible local inverse
of Φ, then (4.7) still holds. The reasoning is similar to the above discussion.

We propose a general setting. Let F = (f1, · · · , fd) be a holomorphic
function over a domain on Cd. Define

ΥF (z) = (ϕ1(z), · · · , ϕd(z)), (4.8)

where

ϕk(z) =

d∑
j=1

fkj (z), k = 1, 2, · · · , d.

Let

ψ1 = ϕ1, ψ2(z) =
∑

1≤j<k≤d
fj(z)fk(z), · · ·

and ψd(z) = Π1≤j≤dfj(z). Consider the equation

ΥF (w) = ΥF (z);

that is,

(ϕ1(w), · · · , ϕd(w)) = (ϕ1(z), · · · , ϕd(z)).
This is equivalent to

(ψ1(w), · · · , ψd(w)) = (ψ1(z), · · · , ψd(z)).

Note that

xd − ψ1(z)xd−1 + · · ·+ (−1)d−1ψd−1(z)x+ (−1)dψd(z) =

d∏
j=1

(x− fj(z)),
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and then the solutions for the equation ΥF (w) = ΥF (z) are the solution for
these equations:

fπ(j)(w) = fj(z), 1 ≤ j ≤ d, (4.9)

where π runs over all permutations of {1, · · · , d}.
Let us focus on a special case. Let Ω be a bounded domain in C2, and

let Φ = (φ1, φ2) and Ψ = (ψ1, ψ2) be holomorphic proper maps over Ω such
that

Φ(Ω) = Ψ(Ω),

and both Φ and Ψ are holomorphic on Ω. Write

f1(z) = φ1(z1, z2), f2(z) = φ2(z1, z2),

and

f3(z) = ψ1(z3, z4), f4(z) = ψ2(z3, z4).

Put F = (f1, · · · , f4), and rewrite ΥΦ,Ψ = ΥF . To investigate the structure
of V∗(ΥΦ,Ψ,Ω

2), we must determine all admissible local inverses for ΥΦ,Ψ on
Ω2. It is easy to get two admissible local inverses for ΥΦ,Ψ on Ω2. Precisely,
let

(Φ(w1, w2),Ψ(w3, w4)) = (Φ(z1, z2),Ψ(z3, z4)),

and

(Φ(w1, w2),Ψ(w3, w4)) = (Ψ(z3, z4),Φ(z1, z2)).

Then the solutions w = (w1, w2, w3, w4) are

w = (σ1(z1, z2), σ2(z3, z4)), σ1 ∈ Φ−1 ◦ Φ, σ2 ∈ Ψ−1 ◦Ψ, (4.10)

and

w = (η1(z3, z4), η2(z1, z2)), η1 ∈ Φ−1 ◦Ψ, η2 ∈ Ψ−1 ◦ Φ, (4.11)

respectively. By Lemma 4.1, both (4.10) and (4.11) give admissible local
inverses of ΥΦ,Ψ.

Let (g1, g2, g3, g4) be a permutation of (f1, f2, f3, f4). By (4.9), we get

(g1(w), g2(w), g3(w), g4(w)) = (f1(z), f2(z), f3(z), f4(z)).

Letting ρ be a local inverse of ΥΦ,Ψ gives

(g1(ρ(z)), g2(ρ(z)), g3(ρ(z)), g4(ρ(z))) = (f1(z), f2(z), f3(z), f4(z)), z ∈ Ω−E ,
where E is a subset of Ω with zero Lebesgue measure. Then by (4.7) we get

(g1, g2, g3, g4)(Ω2) = (f1, f2, f3, f4)(Ω2). (4.12)

The equation

(g1(w), g2(w), g3(w), g4(w)) = (f1(z), f2(z), f3(z), f4(z)).

is called compatible if (4.12) holds. If the only possible compatible equations
are

(Φ(w1, w2),Ψ(w3, w4)) = (Φ(z1, z2),Ψ(z3, z4)),
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and
(Φ(w1, w2),Ψ(w3, w4)) = (Ψ(z3, z4),Φ(z1, z2)),

then we call ΥΦ,Ψ has no nontrivial compatible equation.
The above discussions immediately give the following theorem.

Theorem 4.7. Suppose Φ and Ψ are holomorphic proper maps over Ω such
that Φ(Ω) = Ψ(Ω), and both maps are holomorphic on Ω. Assume that ΥΦ,Ψ

has no nontrivial compatible equation. Then V∗(ΥΦ,Ψ,Ω
2) is generated by

E[ρ], where ρ is of the form ( 4.10) or ( 4.11).

Note that in Theorem 4.7 V∗(ΥΦ,Ψ,Ω
2) is trivial if and only if Φ = Ψ and

Φ is biholomorphic.

Corollary 4.8. Under the conditions in Theorem 4.7, V∗(ΥΦ,Ψ,Ω
2) is not

∗-isomorphic to V∗(Φ,Ω)⊗ V∗(Ψ,Ω).

Theorem 2.3 provides a comparison with Theorem 4.7, and we now come
to its proof.

Proof of Theorem 2.3. Suppose Φ and Ψ are two holomorphic proper
maps over Ω and both maps are holomorphic on Ω. We need to determine all
admissible local inverses of ΥΦ,Ψ. Since ΥΦ,Ψ has no nontrivial compatible
equation, it reduces to two cases of (4.9):

(Φ(w1, w2),Ψ(w3, w4)) = (Φ(z1, z2),Ψ(z3, z4)) (4.13)

and
(Φ(w1, w2),Ψ(w3, w4)) = (Ψ(z3, z4),Φ(z1, z2)) (4.14)

If there is an admissible local solution for (4.14), then by Remark 4.6 and
(4.7)

Φ(Ω)×Ψ(Ω) = Ψ(Ω)× Φ(Ω),

forcing Φ(Ω) = Ψ(Ω). This is a contradiction. Therefore, there is no admis-
sible local solution for (4.14).

For (4.13), it is clear that each admissible local solution η of (4.13) is
exactly of the form (ρ(z1, z2), σ(z3, z4)), where ρ and σ are admissible local
inverses of Φ and Ψ in Ω, respectively. Since Φ is a holomorphic proper map
over Ω, all local inverses ρ are admissible, and those associated operators Eρ
generate V∗(Φ,Ω) (see Theorem 3.7). The same is true for V∗(Ψ,Ω). Then
by putting

E[ρ(z1,z2),σ(z3,z4)] 7→ E[ρ] ⊗ E[σ],

we obtain a ∗-isomorphism between V∗(ΥΦ,Ψ,Ω
2) and V∗(Φ,Ω)⊗ V∗(Ψ,Ω)

to finish the proof of Theorem 2.3. �

As an application of Theorem 2.3, the following corollary has its own
interest.

Corollary 4.9. Suppose both f and g are holomorphic maps over D such
that f(D) 6= g(D), then V∗(Υf,g,D2) is ∗-isomorphic to V∗(f,D)⊗V∗(g,D).
Furthermore, V∗(Υf,g,D2) is abelian.
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Proof. Suppose f and g are holomorphic over D. Following the proof
of Theorem 2.3, one obtains a ∗-isomorphism between V∗(Φf,g,D2) and
V∗(f,D)⊗ V∗(g,D).

Since f is holomorphic over D, by Thomson’s theorem [Tho77] there is a
finite Blaschke product Bf such that

V∗(f,D) = V∗(Bf ,D).

Recall that for each finite Blaschke product B, V∗(B,D) is abelian [DPW12,
Theorem 1.1]. Then so is V∗(f,D), as well as V∗(g,D). Therefore, the von
Neumann algebra V∗(f,D) ⊗ V∗(g,D) is abelian, and hence V∗(Φf,g,D2) is
abelian. �

To conclude this section, we present an example that does not satisfy the
condition in Theorem 2.3.

Example 4.10. Put

(Φ,Ψ)(z) = (z1 + z2, z1, z3, z3 + z4), z = (z1, z2, z3, z4) ∈ D4,

and rewrite w = (w1, w2, w3, w4) ∈ D4,

(Φ,Ψ)(w) = (w1 + w2, w1, w3, w3 + w4).

Then the equation

(w1 + w2, w1, w3, w3 + w4) = (z3 + z4, z3, z1, z1 + z2)

is compatible. This tells us that ΥΦ,Ψ does have a nontrivial compatible
equation.
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