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Non-unital ASH algebras arising as
crossed products of graph algebras

Christopher Chlebovec and Andrew J. Dean

Abstract. We study the structure of crossed products of graph alge-
bras by quasi-free actions and show that they can be written as inductive
limits of one-dimensional NCCW complexes for at least some dense Gδ
set of the action parameters. The K-theory of certain AF algebras used
in the construction is computed.
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1. Introduction

Recently, there have been major advances in the Elliott program to clas-
sify C∗-algebras using K-theoretic invariants. In particular, all unital, sep-
arable, simple C∗-algebras satisfying the UCT and having finite nuclear
dimension are classified. Furthermore, the finite algebras in this class can
be expressed as ASH algebras [ElN16], [ElGLN15], [TWW17]. Attention has
now shifted to the non-unital case, where there has also been a lot of progress
[GL16], [GL17]. Because of these results, it has become very interesting to
know when a crossed product will have finite nuclear dimension. Recently, it
was shown that if X is a finite dimensional locally compact Hausdorff space,
then the crossed product of C0(X) by any automorphism has finite nuclear
dimension [HW17]. The analysis naturally led to actions of the reals and
it was shown that crossed products of flows with finite Rokhlin dimension
have finite nuclear dimension [HSWW17].
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The C∗-algebras that are considered in this paper are examples of non-
unital Approximately Subhomogeneous C∗-algebras; that is, C∗-algebras that
are inductive limits of C∗-subalgebras of C∗-algebras whose irreducible rep-
resentations all have the same (finite) dimension. We call such C∗-algebras
ASH algebras. In this paper, the ASH algebras arise as crossed products of
graph algebras by quasi-free actions (see Definition 2.2). A large class of
the crossed products are non-unital simple stably projectionless C∗-algebras
but it is unclear if these crossed products have finite nuclear dimension.

Over the years, crossed products of graph algebras by quasi-free auto-
morphisms have garnered significant attention and have been a useful con-
struction in generating examples of interesting C∗-algebras. Consider the
quasi-free action αλ on On given by αλ(Si) = eiλitSi. Kishimoto [Kis80]
showed that the crossed product Onoαλ R is simple if and only if one of the
following two cases occur:

1. All the labels λk are of the same sign and {λ1, . . . , λn} generate
R as a closed group.

2. The closed subsemigroup generated by all λk is R.

It was shown that in Case 1, the crossed product is stably projectionless
[KisK96], while in Case 2, the crossed product is purely infinite [KisK97]. In
[Kat03], Katsura completely described the ideal structure of crossed prod-
ucts of On and O∞ by quasi-free actions, giving another proof of Kishimoto’s
simplicity result. As an extension to [Kat03], Elliott and Fang [ElF10] in-
vestigated the ideal structure and simplicity of crossed products of graph
algebras by quasi-free actions, where the corresponding graph is row-finite
and without sinks. In [Kat02], a sufficient condition was obtained for the
AF-embeddability of a crossed product of On and O∞ by quasi-free actions
and along with being stably projectionless, On oαλ R is AF embeddable in
Case 1 [Kat03]. The AF-embeddability of crossed products of certain graph
C∗-algebras by quasi-free actions in [Fan09] shows that the methods are not
easily extended to general graph algebras using the methods of Katsura, as
the graphs are quite restrictive.

In [Dea01, Theorem 5.1], it was shown that for at least a dense Gδ set
of labels, the crossed product of a Cuntz algebra by a quasi-free action can
be written as an inductive limit of one-dimensional noncommutative CW-
complexes, abbreviated NCCW complexes (See Definition 2.6). The special
case of O2 was considered in order to simplify calculations and book-keeping,
however, the general argument also extends to On. The crossed products
were viewed as fibres in a continuous field of C∗-algebras and the rational
ones reduced to studying the mapping torus of O2 oα T by an automor-
phism generating the dual action of Z [Dea01, Theorem 3.1]. Dean showed
that O2 oα R is isomorphic to the mapping torus of a simple AF algebra
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A(p, q) ∼= O2 oα T by α̂, where A(p, q) was a universal C∗-algebra given
by generators and relations. The mapping torus was then deconstructed as
an inductive limit of one-dimensional NCCW complexes [Dea01, Corollary
3.5]. The rational fibres satisfy a local approximation property and by sta-
ble relations and a Baire category argument, it followed that a dense Gδ
set of the fibres have this local approximation property. Since they satisfy
a local approximation property, they can be written as inductive limits of
one-dimensional NCCW complexes [Dea01, Lemma 4.6].

As in [Dea01], the basis of our construction is viewing these crossed prod-

ucts as fibres in a continuous field over RE1
, where E1 the the set of edges

associated to the graph. The main result of this article extends the results of
[Dea01, Theorem 5.1] to row-finite graph algebras. The case for finite graph
algebras is proved in Theorem 4.3 and then, as a consequence, the row-finite
case is addressed in Theorem 4.8. As a consequence of the construction, the
crossed products are AF-embeddable.

In §5, the K-Theory of the AF algebras used in the construction of the
mapping torus is calculated for the case when the graph has no sinks and
the labels of the edges are either all positive integers or all negative integers
(Theorem 5.2). Also, the ordered K0-group is calculated for the Cuntz
algebra case (Theorem 5.6).

2. Notation and preliminaries

2.1. Graph algebras. The definitions and terminology for directed graphs
given below can be found in [Tom06, p. 3] and [Rae05, pp. 5–6]. A directed
graph E = (E0, E1, r, s) consists of countable sets E0 and E1 of vertices and
edges, respectively, with range and source maps r, s : E1 −→ E0. A directed
graph E = (E0, E1, r, s) is called finite if both E0 and E1 are finite, and
it is called row-finite if |s−1(v)| < ∞ for all v ∈ E0. A path of length
n ≥ 1 is a finite sequence of edges µ := µ1µ2 · · ·µn with r(µi) = s(µi+1) for
1 ≤ i ≤ n−1. We regard vertices as paths of length 0. For n ≥ 0, we let En

denote the set of all paths of length n and define E∗ :=
⋃
n≥0E

n. The range
and source maps extend to E∗ in a natural way. For vertices v and w, we
define vEnw to be the set {µ ∈ En : s(µ) = v and r(µ) = w}. The vertex
matrix is the matrix AE ∈ ME0(N) such that AE(v, w) = |vE1w|. A cycle
is a path with its range and source equal; namely, a path µ := µ1µ2 · · ·µn
is a cycle provided that r(µn) = s(µ1). A cycle µ := µ1µ2 · · ·µn has an exit
if there is an edge f ∈ E1 with the property that s(f) = s(µi) but µi 6= f
for some i ∈ {1, 2, . . . , n}. A vertex that does not emit an edge is called a
sink and we write E0

sinks for the set of all sinks in E0. A vertex that does
not receive an edge is called a source and we write E0

sources for the set of all
sources in E0. For v, w ∈ E0 we write v ≥ w if vE∗w 6= ∅ and we can define
an equivalence relation ∼ on E0 by v ∼ w ⇐⇒ v ≥ w and w ≥ v. We write
E/∼ for the set of equivalence classes of E0 and refer to the equivalence
classes as the strongly connected components of E. We say that a graph E
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is cofinal if for every v ∈ E0 and every infinite path µ ∈ E∞ there is an
i ∈ N with v ≥ s(µi).

If E is a graph, a Cuntz-Krieger E-family in a C∗ -algebra is a set of
mutually orthogonal projections {pv : v ∈ E0} and partial isometries {se :
e ∈ E1} with mutually orthogonal ranges that satisfy the following Cuntz-
Krieger relations:

(CK1) s∗ese = pr(e)
(CK2) pv =

∑
{e∈E1:s(e)=v} ses

∗
e whenever 0 < |s−1(v)| <∞, and

(CK3) ses
∗
e ≤ ps(e).

The graph C∗-algebra (or, simply, the graph algebra) of E is the C∗-
algebra generated by the universal Cuntz-Krieger E-family, and it is denoted
C∗(E).

Remark 2.1. In this paper, we use the convention that the partial isometries
go in a direction opposite the edges as in [Tom06, p. 3]. A path µ1µ2 · · ·µn
traverses edges from left to right since r(µi) = s(µi+1) for i = 1, . . . , n − 1.
The other convention is to have the isometries go in the same direction of
the edges as seen in [Rae05, pp. 5–6]. In any case, the convention will not
change the final results.

2.2. Quasi-free actions. Given a group G, we call a map c : E1 → G
a labeling map on the set of edges E1. We naturally extend c to E∗ by
c(µ) = c(µ1)c(µ2) · · · c(µn) for µ = µ1 · · ·µn ∈ E∗\E0 and c(v) = 1G for
v ∈ E0.

When the group is abelian, we will write the labeling map additively.
For the case when G = R, we will use λ to denote a labeling map, where
λ : E∗ → R is given by λµ = λµ1 + · · ·+ λµn for µ = µ1 · · ·µn ∈ E∗\E0 and
λv = 0 for v ∈ E0.

Definition 2.2. Given a labeling map λ : E1 → R, there is a strongly
continuous action αλ : R → AutC∗(E) such that αt(se) = eiλetse for all
e ∈ E1 and αt(pv) = pv for all v ∈ E0. Actions of this form are referred to
as quasi-free actions.

2.3. Skew-product graph. General theory for skew-product graphs can
be found in [KumP99] and [KalQR01]. The skew-product graph defined
below is the same as the one described in [KalQR01]. The skew-product
graphs used in [KumP99], although defined differently, are isomorphic to
the ones used in this paper [KalQR01, Remark 2.2].

Let E be a graph and G be a countable group. Given a labeling map
c : E1 → G, we define the skew-product graph, denoted E ×c G, to be
the graph having vertex set E0 × G, edge set E1 × G, and with range and
source maps defined by r(e, g) = (r(e), g) and s(e, g) = (s(e), c(e)g) for
(e, g) ∈ E1 ×G.
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Note that E ×c G is row-finite if and only if E is row-finite. Also, (v, g)
is a sink if and only if v is a sink. The C∗-algebra of a skew-product graph
is an AF algebra if and only if c(µ) 6= 1G for every cycle µ ∈ E.

The group G acts on the skew-product graph via right translation:

g · (v, h) = (v, hg−1)

g · (e, h) = (e, hg−1).

This induces an action β : Gy C∗(E ×c G) such that

βg(s(e,h)) = s(e,hg−1)

βg(p(v,h)) = p(v,hg−1)

(see [KalQR01]). Below, we will use G = Z. Then, we have the skew-product
graph E ×c Z, with range and source maps as follows:

s(e, n) = (s(e), n− c(e)) and r(e, n) = (r(e), n).

The induced action β : Z → AutC∗(E ×c Z) satisfies βm(s(e,n)) = s(e,n+m)

and βm(p(v,n)) = p(v,n+m).
The proposition below will be useful in analyzing the crossed products of

graph algebras by periodic quasi-free actions.

Proposition 2.3. [Rae05, Lemma 7.10],[KalQR01, Theorem 2.4] Let E be
a row-finite directed graph. Then, there is an isomorphism Φ of C∗(E×c Z)
onto C∗(E)oα T such that Φ ◦ βm = α̂m ◦ Φ.

Definition 2.4 and Proposition 2.5 below will be useful for the proof of
Proposition 3.1, where the skew-product graph algebra is written as an
inductive limit of finite-dimensional C∗-algebras.

Definition 2.4. [MT04, Definition 3.6] Let E = (E0, E1, r, s) be a graph
and let F = (F 0, F 1, rF , sF ) be a subgraph of E. Define a graph EF =
(E0

F , E
1
F , rEF , sEF ) as follows.

Set S := {v ∈ F 0 : |s−1F (v)| <∞, ∅  s−1F (v)  s−1E (v)}, and let

E0
F := F 0 ∪ {v′ : v ∈ S} and E1

F := F 1 ∪ {e′ : e ∈ F 1 and r(e) ∈ S},

with range and source maps given by

sEF (e) = s(e), sEF (e′) = s(e), rEF (e) = r(e), rEF (e′) = r(e)′.

Proposition 2.5 shows that the C∗-subalgebra of C∗(E) generated by ele-
ments that come from a subgraph F is isomorphic to a graph algebra whose
corresponding graph EF is defined above.

Proposition 2.5. [MT04, Theorem 3.7, Example 3.8] Let E be a graph,
{se, pv} be a generating Cuntz-Krieger E-family in C∗(E), and F be a sub-
graph of E. Then, the C∗-subalgebra of C∗(E) generated by {se : e ∈
F 1} ∪ {pv : v ∈ F 0}, denoted by C∗({se : e ∈ F 1} ∪ {pv : v ∈ F 0}), is
isomorphic to C∗(EF ). Furthermore, if we define
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qw :=


pv if w ∈ F 0\S∑
{e∈F 1:s(e)=w} ses

∗
e if w ∈ S

pv −
∑
{e∈F 1:s(e)=v} ses

∗
e if w = v′ for some v ∈ S

tf :=

{
sfqr(f) if f ∈ F 1

seqr(e)′ if f = e′ for some e ∈ F 1,

then {tf , qw} will be a generating Cuntz-Krieger EF -family in C∗({se : e ∈
F 1} ∪ {pv : v ∈ F 0}).

The main result of this chapter deals with writing crossed products as
inductive limits of NCCW-complexes. The definition is provided below.

Definition 2.6. [Ped99, Definition 11.2] A zero dimensional NCCW-complex
is any finite dimensional C∗-algebra A0. An n-dimensional NCCW-complex
is defined as any C∗-algebra An, arising a pull-back of a diagram of the form:

An−1

C([0, 1]n, Fn) C(Sn−1, Fn)

φn

δ

where An−1 is an (n−1)-dimensional-NCCW complex, Fn is a finite dimen-
sional C∗ algebra, δ is the boundary restriction map, and φn is an arbitrary
morphism called the connecting morphism. An NCCW complex An is called
unital if if An−1 is unital and the connecting morphism φn is also unital.

In this paper, we construct a one-dimensional NCCW complex in the
following way. Let F0 and F1 be two finite dimensional C∗-algebras with
maps α1, α2 : F0 → F1. Let ev(0), ev(1) denote the maps from F1 ⊗ C[0, 1]
to F1, given by evaluation at zero and one, respectively. Then, we get a
one-dimensional NCCW-complex as the pull-back of the following diagram:

F0

F1 ⊗ C[0, 1] F1 ⊕ F1

α1⊕α2

ev(0)⊕ev(1)

3. The rational fibres

Let E be a graph and c : E1 → R a labeling map. A scaling of the pa-
rameters produces an isomorphic crossed product, and an action is periodic
if and only if by a scaling we may assume labels are all integers. From now
on, when αc is referred to as a periodic action, we will assume the labeling
map is c : E1 → Z.
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The ‘rational’ (periodic) fibres are viewed as mapping tori over skew-
product graph algebras. In Proposition 3.1 below, the ‘rational’ (periodic)
fibres C∗(E) oαc R are shown to be inductive limits of one-dimensional
NCCW complexes, extending [Dea01, Corollary 3.5] to finite-graph algebras.

Proposition 3.1. Let E be a finite graph and let αc be a periodic action
on C∗(E) with corresponding labeling map c. If c(µ) 6= 0 for any cycle
µ ∈ E∗, then C∗(E)oαc R is an inductive limit of one-dimensional NCCW-
complexes.

Proof. Since αc is a periodic action, by rescaling we may assume c : E1 →
Z. Let E ×c Z := (E0 ×c Z, E1 ×c Z, r, s) denote the skew-product graph.
By Proposition 2.3, we have that there is an isomorphism Φ of C∗(E ×c Z)
onto C∗(E)oα T with Φ ◦ βm = α̂m ◦ Φ.

Let E = (E0, E1, r, s) be a finite graph and let K be the set K := {v ∈
E0 : r−1(v) = ∅, s−1(v) = ∅}. For each n, define a subgraph Fn of E ×c Z
by F 0

n
= {r(e, k) : e ∈ E1, −n ≤ k ≤ n} ∪ {s(e, k) : e ∈ E1, −n ≤ k ≤

n} ∪ {(v, k) : v ∈ K, −n ≤ k ≤ n} and F 1
n = {(e, k) : e ∈ E1, −n ≤ k ≤ n}.

Then, Fn ⊂ Fn+1 and E ×c Z =
⋃
n Fn.

Let {s(e,k), p(v,k) : e ∈ E1, v ∈ E0, k ∈ Z} be the canonical Cuntz-Krieger
family generating C∗(E×cZ). Define An to be C∗-subalgebra of C∗(E×cZ)
generated by {s(e,k) : (e, k) ∈ F 1

n} ∪ {p(v,k) : (v, k) ∈ F 0
n}. Then,

A1 ⊆ A2 ⊆ · · · is an increasing sequence of C∗-subalgebras of C∗(E ×c Z)
with

C∗(E ×c Z) =
⋃
n≥1

An.

Since c(µ) 6= 0 for any cycle µ ∈ E∗, E×cZ has no cycles. Thus, each An
is isomorphic to a finite graph algebra (see Proposition 2.5), in which the
graph has no cycles. So, An is finite dimensional.

Lastly, since An and β(An) are both included into An+1, we can now
define the NCCW-complex Bn, as in [Dea01]. That is,

Bn = {f ∈ C([0, 1], An+1) : f(0) ∈ An, β(f(0)) = f(1)}.

Then, Bn ⊆ Bn+1 for all n and

C∗(E)oα R ∼= Mα̂(C∗(E)oα T) ∼= Mβ(C∗(E ×c Z)) =
⋃
n

Bn,

where Mα̂(C∗(E)oα T) denotes the mapping torus of α̂ on C∗(E)oα T and
Mβ(C∗(E ×c Z)) denotes the mapping torus of β on C∗(E ×c Z). �

4. The structure of the generic crossed product

Below we introduce the local approximation property and show in Propo-
sition 4.2, the periodic fibres satisfy a local approximation property.
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Definition 4.1. We say that a C∗-algebra A has the local approximation
property with respect to the class of C∗-algebras C if, for every finite set F
of elements of A and every ε > 0, there is a C ∈ C and a ∗-homomorphism
φ : C → A such that each element of F lies within ε of the image of φ.

Given a finite graph E = (E0, E1, r, s) with edges E1 = {e1, e2, . . . , em}
we write Lm := {(λe1 , λe2 , . . . , λem) ∈ Qm : λ is a labeling map on E∗ and
λµ 6= 0 for any cycle µ ∈ E∗}.

Proposition 4.2. Let E be a finite graph with edges E1 = {e1, e2, . . . , em}
and λ0 := (λe1 , λe2 , . . . , λem) ∈ Lm so that αλ0 is a periodic action of R on
C∗(E). Suppose further that ε > 0 and f1, . . . , fn ∈ Cc(R, C∗(E)). Then,
there exists a neighbourhood U of λ0 in Rm, a non-unital one-dimensional
NCCW-complex A, and for every s ∈ U , a ∗-homomorphism ψs : A →
C∗(E)oαs R such that {ϕs(f1), . . . , ϕs(fn)} ⊆ε ψs(A), where ϕs denotes the
canonical inclusion of Cc(R, C∗(E)) into C∗(E)oαs R.

Proof. Suppose λ0 ∈ Rm, ε > 0 and f1, . . . , fn ∈ Cc(R, C∗(E)). Let ϕλ0 de-
note the canonical inclusion of Cc(R, C∗(E)) into C∗(E)oαλ0 R. By Propo-

sition 3.1, C∗(E)oλ0 R ∼=
⋃
nBn, where Bn are non-unital one-dimensional

NCCW complexes. Thus, by choosing n large enough, there exists a ∗-
homomorphism ψ : Bn → C∗(E)oλ0 R such that

{ϕλ0(f1), ϕλ0(f2), . . . , ϕλ0(fn)} ⊆ε/2 C∗(E)oλ0 R.

The rest follows from [Dea01, Lemma 4.8]. �

As in [Dea01], we use stable relations and a Baire category argument to
show that for a dense Gδ set of labels, the associated crossed products satisfy
the local approximation property. Since they satisfy a local approximation
property, they can be written as inductive limits of one-dimensional NCCW
complexes by [San15, Proposition 6 (xiii)].

Theorem 4.3. (Finite Graph Case) Let E be a finite graph with edges E1 =
{e1, e2, . . . , em}. Then, the set of points λ ∈ Lm, for which C∗(E)oαλ R is
an inductive limit of one-dimensional NCCW-complexes contains a dense Gδ
set in Lm. For such λ, the crossed product C∗(E)oαλ R is AF embeddable.

Proof. The first statement follows from the same argument as in Theo-
rem 4.10 of [Dea01]. As in the proof of [Dea01, Theorem 4.10], we need
to show that the local approximation property with respect to the class of
one-dimensional NCCW-complexes holds for such a set. Pick a countable
dense subset of Cc(R, C∗(E)) and call it D. Let ϕs be the canonical inclu-
sion of Cc(R, C∗(E)) into C∗(E) oαs R. From Proposition 4.2 above, for
each finite subset F ⊂ D, ε > 0 and λ ∈ Lm, there is a neighbourhood
V (λ, F, ε) of λ, a one-dimensional NCCW-complex B(λ, F, ε), and for every
s ∈ V (λ, F, ε), a ∗-homomorphism ψ(λ, s, F, ε) : B(λ, F, ε) → C∗(E) oαs R
such that ϕs(F ) ⊆ε ψ(λ, s, F, ε)B(λ, F, ε). Let G(ε, F ) =

⋃
λ∈Lm V (λ, F, ε).

Then, for every s in G(ε, F ), ϕs(F ) is approximately contained to within
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ε by the image of a one-dimensional NCCW complex. Also, G(ε, F ) con-
tains a dense open set in Lm. Let εn be a sequence of positive numbers
converging to zero and let F(D) denote the set of finite subsets of D. Then
the set G =

⋂
F∈F(C)

⋂
εn
G(εn, F ) is contained in the set of points s in Lm

for which C∗(E)oαs R has the local approximation property and G clearly
contains a dense Gδ set in Lm . Since one-dimensional NCCW complexes
are subhomogenous algebras, we have that C∗(E)oαsR is an approximately
subhomogenous (ASH) algebra for all s ∈ G. By Proposition 8.5.1 in [BO08],
we have that C∗(E)oαs R is AF embeddable for all s ∈ G. �

Remark 4.4. The condition on the labels comes from the fact that the skew
product graph is AF. In [Dea01, Theorem 4.10], Dean scaled the action and
made λ1 = 1. In this case, the labels are all positive since the skew-product
On ×c Z is AF if and only if c(E1) ⊆ Z+ or c(E1) ⊆ Z−.

We can now recover Theorem 5.1 in [Dea01].

Corollary 4.5. The set of points

(1, λ2, . . . , λn) ∈ (0,∞)n−1,

for which On oαλ R is an inductive limit of non-unital one-dimensional
NCCW-complexes, contains a dense Gδ set.

Proof. Since λ1 = 1 we have that Ln−1 = (Q+)n−1 and thus Ln−1 =
[0,∞)n−1. The rest follows from Theorem 4.3. �

Remark 4.6. Theorem 5.1 of [Dea01] assumes λ1 = 1 by rescaling. In this
case, we get a continuous field over Rn−1 with fibres On oαλ R, where λ =
(1, λ2, . . . , λn). It was not necessary for us to rescale, as in our case, we can
obtain a continuous field over Rn instead. Then, Ln will be a larger set than
(Q+)n.

The next proposition shows that a large family of crossed products are
stably projectionless.

Proposition 4.7. Let E be a finite graph that is cofinal and in which every
cycle has an exit. If E contains a strongly connected component that is not
a single cycle and λ : E1 → R is a labeling map with λe > 0 for all e ∈ E1,
then C∗(E)oαλ R is stably projectionless.

Proof. We note that C∗(E) is a simple unital C∗-algebra. Since E is a
graph having a strongly connected component that is not a single cycle,
there exists a β > 0, with ρ(Cβ) = 1 [Chl16, Proposition 4.3, 4.4]. By
[Chl16, Corollory 4.5] , there exists a KMSβ state with β 6= 0. By [KisK96,
Corollary 3.4], C∗(E)oαω R is stably projectionless. �

Let E = (E0, E1, r, s) be an infinite graph with edges E1 = {e1, e2, . . .}.
Write L∞ := {(λe1 , λe2 , . . .) ∈ Q∞ : λ is a labeling map on E∗ and λµ 6=
0 for any cycle µ ∈ E∗} equipped with the product topology on R∞.
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Theorem 4.8. (Infinite Graph Case) Let E be an row-finite graph. Then,
the set of points λ ∈ L∞ for which C∗(E) oαλ R is an inductive limit of
one-dimensional NCCW-complexes contains a dense Gδ set. For such λ,
the crossed product C∗(E)oαλ R is AF embeddable.

Proof. Using Proposition 2.4 , we can construct a sequence of finite sub-
graphs F1 ⊆ F2 ⊆ · · · ⊆ E with E = ∪∞n=1Fn, so that C∗(E) is an inductive
limit of finite graph algebras C∗(Fn) that are invariant under α. Hence,
C∗(E) oαλ R = lim−→C∗(Fn) oαλ(n) R. Let {sk}∞k=1 be a strictly increasing

sequence with |F 1
n | = sn. By Theorem 4.3, we have that C∗(Fn)oαλ(n) R is

an inductive limit of one-dimensional NCCW complexes for all λ(n) ∈ G(n),
where G(n) contains a dense Gδ set in Lsn . Let L∞sn := {(λesn+1

, λesn+2
, . . .) ∈

Q∞ : λ is a labeling map and λµ 6= 0for any cycle µ ∈ E∗}. Then, G(n) ×
L∞sn contains a dense Gδ set in L∞ and so does G :=

⋂
nG(n)×L∞sn . We have

that C∗(E)oαλR is an inductive limit of one-dimensional NCCW complexes
for all λ ∈ G. �

5. K-theory: rational fibres

In [Rob12], a classification result was obtained for C∗-algebras that are
stably isomorphic to inductive limits of one-dimensional NCCW complexes
with trivial K1 group. There are many examples of crossed products of
graph algebras by quasi-free actions that are not classified under the results
of [Rob12].

Based on the proof of Proposition 3.1, the rational fibres are mapping
tori over skew-graph algebras that are inductive limits of one-dimensional
NCCW complexes. In this section, the K-theory of these skew-graph alge-
bras is computed as well as the ordered K0 group of the skew-graph algebras
C∗(Õn ×c Z).

Lemma 5.1. Suppose G is a countable abelian group. Then, E ×c G ∼=
E ×−c G.

Proof. Let φ0 : (E ×c G)0 → (E ×−c G)0 be defined by φ0(v, n) = (v,−n)
and φ1 : (E ×c G)1 → (E ×−c G)1 be defined by φ0(e, n) = (e,−n). Then,
φ0 and φ1 are bijective maps that satisfy rE×−cG ◦ φ1 = φ0 ◦ rE×cG and

sE×−cG ◦ φ1 = φ0 ◦ s0E×cG. �

Theorem 5.2. Let E be a finite graph without sinks and α : T y C∗(E)

be an action such that αz(se) = zc(e)se, where c : E1 → Z is a labelling
map with c(E1) ⊆ Z+ or c(E1) ⊆ Z−. If v is not a source, define Mv :=
max{|c(e)| : r(e) = v}. Let M := |E0

sources|+
∑
{v∈E0:r−1(v)6=∅}Mv. Then,

K0(C
∗(E)oα T) = lim−→(ZM , B)

for some M ×M matrix B and K1(C
∗(E)oα T) = 0.
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Proof. By Proposition 2.3, we know that C∗(E)oα T is isomorphic to the
graph algebra C∗(E ×c Z), where E ×c Z = ((E ×c Z)0, (E ×c Z)1, r, s). By
Lemma 5.1, we may assume c(E1) ⊆ Z+.

Let {s(e,k), p(v,k) : k ∈ Z, e ∈ E1, v ∈ E0} be the canonical Cuntz-Krieger
family generating C∗(E×cZ). Since the skew product has no cycles, C∗(E×c
Z) is AF.

Let Vm = {(v, k) : v ∈ E0, k ∈ Z and − ∞ ≤ k ≤ m} for m ≥ 0. For
m ≥ 1, define Fm to be the subgraph of E ×c Z with vertices

F 0
m = Vm ∪ {(v,m+ 1), . . . , (v,m− 1 +Mv) : v ∈ E0, r−1(v) 6= ∅}

and edges

F 1
m := s−1(Vm−1).

We have that each Fm is a graph without loops, where Fm ⊆ Fm+1

for m ≥ 1 and E ×c Z =
⋃∞
n=1 Fm. Let Am denote the C∗-subalgebra of

C∗(E ×c Z) generated by {s(e,`) : (e, `) ∈ F 1
m} ∪ {p(v,n) : (v, n) ∈ F 0

m}. The
generating set for Am is a Cuntz-Krieger Fm family in C∗(E ×c Z) with all
projections nonzero. Hence, by the Cuntz-Krieger uniqueness theorem, there
is an injection of C∗(Fm) into C∗(E×cZ) and this map gives C∗(Fm) ∼= Am.

Thus, C∗(Fm) ⊆ C∗(Fm+1) and C∗(E ×c Z) =
⋃∞
m=1C

∗(Fm).
A typical element in the spanning set for C∗(Fm) is sµs

∗
ν with r(µ) = r(ν).

Suppose r(µ) = r(ν) = (w, k). If (w, k) is not a sink, we can apply the Cuntz-
Krieger relations, so that sµs

∗
ν can be written as a finite sum of terms of the

form sαs
∗
β, where r(α) = r(β) is a sink. The set of all sinks in the graph

Fm, denoted by SFm , is the set

{(v,m) : v ∈ E0} ∪ {(v,m+ 1), . . . , (v,m− 1 +Mv) : v ∈ E0, r−1(v) 6= ∅}.

Therefore,

C∗(Fm) = span{sαs∗β : r(α) = r(β) ∈ SFm}.

Fix an element (v, k) ∈ SFm . Let

F (v,k)
m = {α ∈ F ∗m : r(α) = (v, k)}

and

A(v,k) = span{sαs∗β : α, β ∈ F (v,k)
m }.

The elements sαs
∗
β with α, β ∈ F

(v,k)
m form a family of matrix units, and

thus, A(v,k) is isomorphic to the algebra of compact operators on `2(F
(v,k)
m ).

For any two elements (v, k), (w, n) ∈ SFm , A(v,k) is orthogonal to A(w,n)

when (v, k) 6= (w, n). Hence,

C∗(Fm) =
⊕

(v,k)∈SFm

A(v,k).
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Since p(v,k) is a rank one projection in A(v,k), we have that K0(A(v,k)) is
a free abelian group generated by [p(v,k)]. Therefore,

K0(C
∗(Fm)) = K0

 ⊕
(v,k)∈SFm

A(v,k)


=

⊕
(v,k)∈SFm

K0(A(v,k))

=
⊕

(v,k)∈SFm

Z[p(v,k)].

Continuity of K0 gives K0(C
∗(E ×c Z)) = lim−→K0(C

∗(Fm)).

To calculate the bonding maps φm,m+1 : K0(C
∗(Fm)) −→ K0(C

∗(Fm+1)),
we will see how the projections [p(v,k)], with (v, k) ∈ SFm , decompose in

K0(C
∗(Fm+1)). If v ∈ E0, then

[p(v,m)] =
∑

s(e,n)=(v,m)

[s(e,n)s
∗
(e,n)]

=
∑

s(e,n)=(v,m)

[pr(e,n)]

=
∑
s(e)=v

[p(r(e),m+c(e))],

where m < m+ c(e) ≤ m+Mr(e).

Since SFm ∩ SFm+1 = SFm\{(v,m) : v ∈ E0}, we have that

[p(v,k)]
φm,m+17−−−−−→

{
[p(v,k)] if (v, k) ∈ SFm\{(v,m) : v ∈ E0}∑

s(e)=v[p(r(e),m+c(e))] otherwise.

We note that

|SFm | = |E0|+ |F 0
m\Vm|

= |E0|+
∑

{v∈E0:r−1(v)6=∅}

(Mv − 1)

= |E0|+

 ∑
{v∈E0:r−1(v)6=∅}

Mv

− |E0\E0
sources|

= |E0
sources|+

∑
{v∈E0:r−1(v)6=∅}

Mv

= M.

The matrix representations of the bonding maps φm,m+1 are all the same
and we will denote them by B. Hence, K0(C

∗(E ×c Z)) ∼= lim−→(ZM , B). �
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As a consequence of Theorem 5.2, we can now recover the result for the
gauge action (see Corollary 7.14 of [Rae05]).

Corollary 5.3. Let C∗(E) be a row-finite graph without sinks and let γ :
T y C∗(E) be the standard gauge action. Then, K0(C

∗(E) oγ T) =

lim−→(ZE0
, AtE), where AE is the vertex matrix.

Proof. For the standard gauge action, we have c(e) = 1 for all edges e ∈ E1.
Thus, C∗(E)oγ T ∼= C∗(E×1Z). Using Theorem 5.2, we see that F 0

m = Vm,
F 1
m := s−1(Vm−1) and SFm := {(v,m) : v ∈ E0}. We note M = |E0| and for

all v ∈ E0, we have that

φm,m+1([p(v,m)]) =
∑
s(e)=v

[p(r(e),m+1))]

=
∑
w∈E0

AE(v, w)[p(w,m+1))].

Hence, in this case, the bonding map is multiplication by the transpose of
the vertex matrix, as required. �

The Cuntz Algebra Case

Let On be the Cuntz algebra with corresponding graph Õn having vertex
v and edges {ei}ni=1. The skew-product graph algebra C∗(Õn ×c Z) is AF
if and only if c(E1) ⊆ Z+ or c(E1) ⊆ Z−. Without loss of generality,
we assume c(E1) ⊆ Z+. Suppose we have s ≤ n distinct labels; namely,
k1 < k2 < · · · < ks.

Here, we note that ks = M . For all j = 1, 2, . . . , ks, define

cj :=

{
|{e ∈ E1 : c(e) = j}| if j ∈ {k1, k2, . . . , ks}
0 otherwise.

Using Theorem 5.2, we have SFm = {(v,m), (v,m+ 1), . . . , (v,m− 1 +Mv)}
and the bonding maps φm,m+1 send

[p(v,m)] 7−→
∑
s(e)=v

[p(r(e),m+c(e))]

=
n∑
i=1

[p(v,m+c(ei))]

=
s∑
i=1

cki [p(v,m+ki)],
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while the remaining elements remain fixed under φm,m+1. Hence,

B =


c1 1 0 · · · 0
c2 0 1 · · · 0
...

...
...

. . .
...

cks−1 0 0 · · · 1
cks 0 0 · · · 0

 (1)

is the matrix representation of the bonding maps φm,m+1. Therefore, we

have that K0(C
∗(Õn ×c Z)) ∼= lim−→(ZMv , B).

Also, the determinant of B is cks(−1)ks+1 6= 0. So, if we suppose that

cks = 1, then the bonding maps are bijective and in this case, K0(C
∗(Õn×c

Z)) ∼= ZMv .
Next, we consider the positive cones of the K0 groups. A matrix A is

called unimodular if the determinant of A is +1 or −1 and primitive if A is
nonnegative and Am > 0 for some positive integer m, where B > 0 means
bij > 0 for all i, j. The bonding maps in Proposition 5.4 are nonnegative
unimodular primitive matrices in Mk(Z).

Proposition 5.4. [She81, p. 464] Suppose we are given a sequence

Zk A−→ Zk A−→ Zk A−→ · · ·

where A is a nonnegative unimodular primitive matrix in Mk(Z). Then, the
resulting stationary dimension group lim−→(Zk, A) has a unique state, and we
can express its positive cone as

P(1,α2,...,αn) = {(x1, . . . , xn) ∈ Zk : x1 + α2x2 + · · ·αnxn > 0} ∪ {(0, . . . , 0)},

where (1, α2, . . . , αn) is the eigenvector of the Perron-Frobenius eigenvalue
of Atr, at least one of αi is irrational, and α2, . . . , αn > 0.

For the rest of the section, we will suppose that s = n and gcd(k1, . . . , kn) =
1. Then ck1 = ck2 = · · · ckn = 1 and cj = 0 otherwise. We will use the nota-

tion On(k1, k2, . . . , kn) to represent C∗(Õn ×c Z), where c is a labeling map
with distinct labels kn > kn−1 > · · · > k1 > 0. We denote the transpose of
the matrix B in (1) as

A(k1,...,kn) =


c1 c2 c3 · · · ckn
1 0 0 · · · 0
0 1 0 · · · 0
...

. . . 0
0 0 · · · 1 0

 .

This matrix is known in the literature as the Leslie matrix [CFR05, p. 140].
The matrix A(k1,...,kn) has characteristic polynomial

xkn − xkn−k1 − · · · − xkn−kn−1 − 1.
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In order to apply Proposition 5.4, a description of the Perron-Frobenius
eigenvalue and its corresponding eigenvector for A(k1,k2,...,kn) is needed. This
is described in Lemma 5.5, along with the fact that α is the limit of a ratio of
terms from a difference equation. The description of α in this way was given
in [Flo11], but with more cumbersome calculations as the size of the matrix
increased (for example, [Flo11, p.26]). The proof of Lemma 5.5 makes use
of some standard results from matrix theory.

Lemma 5.5. The matrix A(k1,k2,...,kn) has eigenvector (1, α−1, . . . , α−kn+1)tr,
where α is the Perron-Frobenius eigenvalue of A(k1,k2,...,kn) and is irrational.

It satisfies α = lim
m→∞

fm+kn

fm+kn−1
, where

fm+kn = fm+kn−k1 + fm+kn−k2 + · · ·+ fm

is a difference equation with initial conditions f0 = f1 = · · · = fkn−2 = 0
and fkn−1 = 1.

Proof. The matrix A(k1,k2,...,kn) yields a difference equation of the form

fm+1 = fm−k1+1 + fm−k2+1 + · · ·+ fm−kn+1,

with initial conditions f0 = f1 = · · · = fkn−2 = 0 and fkn−1 = 1 or equiva-
lently, in matrix form

fm+kn
...

fm+2

fm+1

 = A(k1,k2,...,kn)


fm+kn−1

...
fm+1

fm

 ,


fkn−1

fkn−2
...
f0

 =


1
0
...
0



(see [Mey00, pp. 683–684]). If we let g(m) =


fm+kn−1

...
fm+1

fm

, then it is not

hard to see that g(m) = Am(k1,k2,...,kn)g(0).

The matrix A(k1,k2,...,kn) is primitive if and only if the gcd(k1, . . . , kn) = 1
(see, for example, Theroem 6.11 in [CFR05]). If r = ρ(A(k1,k2,...,kn)), then

lim
m→∞

(
A(k1,k2,...,kn)

r

)m
=

pqtr

qtrp
> 0, where p and q are the Perron-Frobenius

eigenvectors of A(k1,k2,...,kn) and Atr(k1,k2,...,kn), respectively [Mey00, p. 674].

From this, we get that

lim
m→∞

g(m)

||g(m)||1
= p,

where p is the Perron-Frobenius eigenvector of A(k1,k2,...,kn) (see [Mey00,

p. 684]). For 0 ≤ q ≤ kn − 1, lim
m→∞

fm+q

||g(m)||1
exists and is positive. Hence,
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so is lim
m→∞

fm+q

fm+kn−1
. Since

fm+kn

fm+kn−1
=
fm+kn−k1
fm+kn−1

+
fm+kn−k2
fm+kn−1

+ · · ·+ fm
fm+kn−1

, (2)

we have that lim
m→∞

fm+kn

fm+kn−1
exists and we will denote it by α.

Taking the limit of both sides of equation (2), we get α = α−(k1−1) +

α−(k2−1) + · · ·+ α−(kn−1), or equivalently,

αkn − αkn−k1 − αkn−k2 − · · · − 1 = 0.

Therefore, α satisfies the characteristic polynomial of A(k1,k2,...,kn). By
Descartes’ rule of signs, the characteristic polynomial has one positive root
and since α is positive, it must be the Perron-Frobenius eigenvalue.

Lastly, we have that
c1 c2 c3 · · · ckn
1 0 0 · · · 0
0 1 0 · · · 0
...

. . . 0
0 0 · · · 1 0




1
α−1

α−2

...
α−kn+1

 =


α−k1+1 + α−k2+1 + · · ·+ α−kn+1

1
α−1

...
α−kn



= α


1
α−1

α−2

...
α−kn+1

 .

The only possible rational root of the characteristic polynomial is −1, hence
α must be irrational. �

Theorem 5.6. Let v = (1, α−1, . . . , α−kn+1)tr be the eigenvector of
A(k1,k2,...,kn), where α is the corresponding Perron-Frobenius eigenvalue. Then,

K0(On(k1, . . . , kn)) = Zkn

and

K+
0 (On(k1, . . . , kn)) = Pv,

where

Pv = {(x1, . . . , xkn) ∈ Zkn : x1 + α−1x2 + · · ·+ α−kn+1xkn > 0}
∪ {(0, 0, . . . , 0)}.
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Furthermore, if the characteristic polynomial of A(k1,k2,...,kn) is irreducible
over the rationals, then(

K0(On(k1, k2, . . . , kn)),K+
0 (On(k1, k2, . . . , kn)),

(
1 0 0 · · · 0

)tr)
∼= (Z+ α−1Z+ · · ·+ α−kn+1Z, (Z+ α−1Z+ · · ·+ α−kn+1Z) ∩ R+, 1).

Proof. By Theorem 5.2, Lemma 5.5 and Proposition 5.4, we have the K0

group and its cone are described as above. The map (1, α−1, . . . , α−kn+1) :
Zkn → Z+α−1Z+ · · ·+α−kn+1Z is a positive surjective homomorphism that
preserves the order unit and the image of the cone K+

0 (On(k1, k2, . . . , kn))
is exactly (Z+α−1Z+ · · ·+α−kn+1Z)∩R+. Furthermore, if the characteris-
tic polynomial is irreducible, then the map (1, α−1, . . . , α−kn+1) is injective
since the set {1, α−1, . . . , α−kn+1} is linearly independent. Indeed, the set
{1, α, . . . , αkn−1} is linearly independent since the characteristic polynomial
is irreducible and therefore, so is the set {1, α−1, . . . , α−kn+1}. Hence, we
have an order isomorphism, as required. �

Remark 5.7. K0(On(k1, k2, . . . , kn)) is not totally ordered when the number
of nonzero even entries is one greater than the number of nonzero odd entries
in the first row of the bonding maps A(k1,k2...,kn), since the characteristic
polynomial will have −1 as a root (see [Han81, pp. 63–64]).

The K-theory of the standard Fibonacci algebra was calculated in [Dav96]
and extended for the generalized Fibonacci algebras in [Flo11]. The standard
embedding was given by the matrix A(k1,k2,...,kn), where kj = j for j =
1, . . . , n. As a consequence of Theorem 5.6, we arrive at the same results,
but in a more indirect way.

Corollary 5.8. Suppose kj = j for j = 1, 2, . . . , n. Then,(
K0(On(k1, k2, . . . , kn)),K+

0 (On(k1, k2, . . . , kn)),
(
1 0 0 · · · 0

)tr)
∼= (Z+ α−1Z+ · · ·+ α−kn+1Z, (Z+ α−1Z+ · · ·+ α−kn+1Z) ∩ R+, 1).

Proof. By [Bra51, Theorem 2], the characteristic polynomial of A(k1,k2...,kn)

is irreducible over the rationals. Then, the result follows from Theorem
5.6. �

Example 5.9. Suppose we have the Cuntz-algebra O3 with the following
labels:

01

2

3

Then, we have the following skew-product graph:
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· · · • • • • • • · · ·

Hence, K0(O3(1, 2, 3)) = lim−→

Z3,

1 1 0
1 0 1
1 0 0

 ∼= Z3. In this case,

α ≈ 1.83929 is the Perron-Frobenus eigenvalue of the above bonding map
and (

K0(O3(1, 2, 3)),K+
0 (O3(1, 2, 3)),

(
1 0 0 · · · 0

)tr)
∼= (Z+ α−1Z+ α−2Z, (Z+ α−1Z+ α−2Z) ∩ R+, 1).

References

[Bra51] Brauer, Alfred. On algebraic equations with all but one root in the interior
of the unit circle. Math. Nachr. 4 (1951), 250–257. MR41975 (13,32c), Zbl
0042.01501, doi: 10.1002/mana.3210040123. 462

[BO08] Brown, Nathanial P.; Ozawa, Narutaka. C∗-algebras and finite-
dimensional approximations. Graduate Studies in Mathematics, 88. Amer-
ican Mathematical Society, Providence, RI, 2008. xvi+509 pp. ISBN: 978-
0-8218-4381-9; 0-8218-4381-8. MR2391387 (2009h:46101), Zbl 1160.46001,
doi: 10.1090/gsm/088. 454

[Chl16] Chlebovec, Christopher. KMS states for quasi-free actions on finite-graph
algebras. J. Operator Theory 75 (2016), no. 1, 119–138. MR3474099, Zbl
06658772, doi: 10.7900/jot.2014nov10.2050. 454

[CFR05] Cull, Paul; Flahive, Mary; Robson, Robby. Difference equations.
From rabbits to chaos. Undergraduate Texts in Mathematics. Springer, New
York, 2005. xiv+392 pp. ISBN: 0-387-23233-8. MR2131908 (2006j:39001), Zbl
1085.39002, doi: 10.1007/0-387-27645-9. 459, 460

[Dav96] Davidson, Kenneth R. C∗-algebras by example. Fields Institute
Monographs, 6. American Mathematical Society, Providence, RI, 1996.
xiv+309 pp. ISBN:0-8218-0599-1. MR1402012 (97i:46095), Zbl 0956.46034,
doi: 10.1090/fim/006. 462

[Dea01] Dean, Andrew. A continuous field of projectionless C∗-algebras. Canad. J.
Math. 53 (2001), no. 1, 51–72. MR1814965 (2002a:46087), Zbl 0981.46050,
doi: 10.4153/CJM-2001-003-2. 447, 448, 452, 453, 454

[Eff81] Effros, Edward G. Dimensions and C∗-algebras. CBMS Regional Confer-
ence Series in Mathematics, 46. Conference Board of the Mathematical Sci-
ences, Washington, D.C., 1981. v+74 pp. ISBN: 0-8218-1697-7. MR0623762
(84k:46042), Zbl 0475.46050.

[EiLP98] Eilers, Søren; Loring, Terry A.; Pedersen, Gert K. Stability of an-
ticommutation relations: an application of noncommutative CW complexes.
J. Reine Angew. Math. 499 (1998), 101–143. MR1631120 (99e:46067), Zbl
0897.46056, doi: 10.1515/crll.1998.055.

[ElF10] Elliott, George A.; Fang, Xiaochun. Ideals and simplicity of crossed
products of graph C∗-algebras by quasi-free actions. Münster J. Math. 3
(2010), 11–28. MR2775353 (2012e:46129), Zbl 1378.46044. 447

[ElGLN15] Elliott, George A.; Gong, Guihua; Lin, Huaxin ; Niu, Zhuang. On
the classification of simple amenable C∗-algebras with finite decomposition
rank, II. Preprint, 2015. arXiv:1507.03437. 446

http://www.ams.org/mathscinet-getitem?mr=41975
http://www.emis.de/cgi-bin/MATH-item?0042.01501
http://www.emis.de/cgi-bin/MATH-item?0042.01501
http://dx.doi.org/10.1002/mana.3210040123
http://www.ams.org/mathscinet-getitem?mr=2391387
http://www.emis.de/cgi-bin/MATH-item?1160.46001
http://dx.doi.org/10.1090/gsm/088
http://www.ams.org/mathscinet-getitem?mr=3474099
http://www.emis.de/cgi-bin/MATH-item?06658772
http://www.emis.de/cgi-bin/MATH-item?06658772
http://dx.doi.org/10.7900/jot.2014nov10.2050
http://www.ams.org/mathscinet-getitem?mr=2131908
http://www.emis.de/cgi-bin/MATH-item?1085.39002
http://www.emis.de/cgi-bin/MATH-item?1085.39002
http://dx.doi.org/10.1007/0-387-27645-9
http://www.ams.org/mathscinet-getitem?mr=1402012
http://www.emis.de/cgi-bin/MATH-item?0956.46034
http://dx.doi.org/10.1090/fim/006
http://www.ams.org/mathscinet-getitem?mr=1814965
http://www.emis.de/cgi-bin/MATH-item?0981.46050
http://dx.doi.org/10.4153/CJM-2001-003-2
http://www.ams.org/mathscinet-getitem?mr=0623762
http://www.emis.de/cgi-bin/MATH-item?0475.46050
http://www.ams.org/mathscinet-getitem?mr=1631120
http://www.emis.de/cgi-bin/MATH-item?0897.46056
http://www.emis.de/cgi-bin/MATH-item?0897.46056
http://dx.doi.org/10.1515/crll.1998.055
http://www.ams.org/mathscinet-getitem?mr=2775353
http://www.emis.de/cgi-bin/MATH-item?1378.46044
http://arXiv.org/abs/1507.03437


464 CHRISTOPHER CHLEBOVEC AND ANDREW J. DEAN

[ElGLN17] Elliott, George A.; Gong, Guihua; Lin, Huaxin ; Niu, Zhuang. The
classification of simple separable unital Z-stable locally ASH algebras. J.
Funct. Anal. 272 (2017), no. 12, 5307–5359. MR3639530, Zbl 1380.46046,
doi: 10.1016/j.jfa.2017.03.001.

[ElN16] Elliott, George A.; Niu, Zhuang. On the classification of sim-
ple amenable C∗-algebras with finite decomposition rank. Operator alge-
bras and their applications, 117–125, Contemp. Math., 671. Amer. Math.
Soc., Providence, RI, 2016. MR3546681, Zbl 1366.46046, arXiv:1507.07876,
doi: 10.1090/conm/671/13506. 446

[Fan09] Fang, Xiaochun. AF embedding of crossed products of certain graph
C∗-algebras by quasi-free actions. C. R. Math. Acad. Sci. Soc. R. Can.
31 (2009), no. 3, 76–86. MR2555387 (2010h:46078), Zbl 1183.46064,
arXiv:math/0510551. 447

[Flo11] Flournoy, Cecil Buford, Jr. N-parameter Fibonacci AF C∗-Algebras.
Thesis (Ph.D.) - The University of Iowa, 2011. 51 pp. ISBN: 978-1124-87331-
2. MR2942140, doi: 10.17077/etd.e3l4hbia. 460, 462

[GL16] Gong, Guihua; Lin, Huaxin. On classification of non-unital simple
amenable C∗-algebras, I. Preprint, 2016. arXiv:1611.04440. 446

[GL17] Gong, Guihua; Lin, Huaxin. On classification of simple non-unital
amenable C*-algebras, II. Preprint, 2017. arXiv:1702.01073. 446

[Han81] Handelman, David. Positive matrices and dimension groups affiliated to C∗-
algebras and topological Markov chains. J. Operator Theory 6 (1981), no. 1,
55–74. MR637001 (84i:46058), Zbl 0495.06011. 462
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