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Monochromatic infinite sumsets

Imre Leader and Paul A. Russell

Abstract. We show that there is a rational vector space V such that,
whenever V is finitely coloured, there is an infinite set X whose sumset
X + X is monochromatic. Our example is the rational vector space of

dimension sup{ℵ0, 2
ℵ0 , 22ℵ0

, . . . }. This complements a result of Hind-
man, Leader and Strauss, who showed that the result does not hold for
dimension below ℵω. So our result is best possible under GCH.
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1. Introduction

It is a well-known consequence of Ramsey’s theorem that, whenever the
naturals are finitely coloured, there is an infinite set X such that all pairwise
sums of distinct elements of X have the same colour. If one asks for a
stronger conclusion, that the entire sumset X + X = {x + y : x, y ∈ X}
is monochromatic, then the answer is no: this is because such a sumset
automatically contains two numbers with one roughly twice the other, and
this can easily be ruled out by a suitable 3-colouring (see e.g. [3]).

We mention in passing that it is, surprisingly, unknown as to whether or
not this can be achieved with a 2-colouring: this is called Owings’ problem
[6]. For background on this, and other results mentioned in this introduction,
see [4] – although we mention that this paper is self-contained and does not
rely on any results from [4].

What happens if one passes to a larger ambient space, for example the
rationals? Here again, the answer is no: there is a finite colouring of Q with
no infinite sumset monochromatic (see e.g. [4]). What about for the reals?

Hindman, Leader and Strauss [4] showed that, for every rational vector
space of dimension smaller that ℵω, there is a finite colouring without an
infinite monochromatic sumset. Note that this establishes the answer for
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the reals if we assume CH. (It is still unknown if the reals have such a bad
colouring if we do not make extra set-theoretic assumptions – but see [5] for
some very recent work on this question.) However, they were unable to find
a vector space with the positive property (of having no bad colourings).

Our aim in this paper is to show that such a vector space does exist.
We show that this is the case for any dimension that is at least iω (read

‘beth-omega’), which is defined to be sup{ℵ0, 2
ℵ0 , 22ℵ0 , . . . }. Note that if we

assume GCH then this is exactly ℵω, which would be best possible in light
of the result of [4]. We do not know if the vector space of dimension ℵω has
this property if we do not assume GCH.

We also prove a similar result for multiple sums such as X +X +X and
so on. The proof involves a perhaps unexpected use of the Hales-Jewett
theorem.

For a finite or infinite cardinal κ, we write Qκ to denote the vector space
of dimension κ over Q. That is, Qκ is the direct sum of κ copies of Q, not
the direct product. We shall take Qκ to come equipped with a basis e0, e1,
e2, . . . that is well-ordered by the smallest ordinal of cardinality κ.

2. Main result

Consider Qiω , the iω-dimensional vector space over Q. As remarked
above, we shall consider Qiω to come equipped with a well-ordered basis B
whose elements we shall denote by e0, e1, e2, . . . .

Suppose x ∈ Qiω with x 6= 0. We may write x in terms of the basis B
and delete all zero entries to obtain a finite list of non-zero rationals. We
call this list the pattern of x. More formally, given a non-zero x ∈ Qiω ,
there is a unique way to express x in the form x =

∑n
i=1 xieαi where n is

a positive integer, each xi is a non-zero rational and α1 < α2 < · · · < αn
are ordinals. The pattern of x is (x1, x2, . . . , xn). We shall often denote
the pattern (x1, x2, . . . , xn) simply by x1x2 . . . xn. We say that the pattern
x1x2 . . . xn has length n and write `(x1x2 . . . xn) = n.

Given a finite colouring of Qiω , we seek an infinite set X ⊂ Qiω with
X +X monochromatic. There are two stages to the proof.

We first show (Lemma 2.1) that, given a finite set Π of patterns, there
is a large subspace of Qiω on which the colour of an x with pattern in Π
depends only on the pattern. The subspace produced is spanned by a subset
of the original basis B of Qiω . This part of the proof is a fairly standard
application of the Erdős-Rado theorem [1].

The heart of the proof comes in the second stage. The main obstacle
to overcome is to determine how we should proceed following the reduction
given by Lemma 2.1. That is to say, which patterns should we consider
and how do we force all the elements of X +X to have the desired pattern
or patterns? While we are able to work within a subspace spanned by
a countable subset A ⊂ B, it is interesting to note that our proof often
requires this subset A to have an order-type greater than ω. We therefore
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ask the subspace produced in Lemma 2.1 to have dimension ℵ1; this allows
us to always find A as required.

We now proceed to the first of the two stages detailed above. First, we
recall the Erdős-Rado theorem. As usual, we denote by expr(κ) the r-fold

exponential of κ, i.e. exp0(κ) = κ and expr+1(κ) = 2expr(κ).

Erdős-Rado theorem ([1]). Let r be a non-negative integer and let κ be an
infinite cardinal. Suppose the (r + 1)-element subsets of a set of cardinality
expr(κ)+ are coloured with κ colours. Then there is a subset of cardinality
κ+ all of whose (r + 1)− element subsets are the same colour.

In particular, this immediately implies that for every positive integer r,
if the r-element subsets of a set of cardinality iω are coloured with finitely
many colours then there is a subset of cardinality ℵ1 all of whose r-element
subsets are the same colour.

Lemma 2.1. Let k be a positive integer and suppose Qiω is k-coloured. Let
Π be a finite set of patterns. Then there is a subset A ⊂ B of cardinality ℵ1

such that for each π ∈ Π the set

{x ∈ Qiω : x is in the span of A and has pattern π}

is monochromatic.

Proof. Let c be the given k-colouring of Qiω .
Let r be the length of the longest pattern in Π. Let

Π′ = {00 . . . 0︸ ︷︷ ︸
r−`(π)

π : π ∈ Π}.

Write Π′ = {π(1), π(2), . . . , π(n)}. We define n k-colourings c1, c2, . . . , cn
of the r-element subsets of B as follows. Given S ⊂ B with |S| = r, write
S = {eα1 , eα2 , . . . , eαr} with α1 < α2 < · · · < αr. Then set

ci(S) =
r∑
j=1

π
(i)
j eαj .

Now define a single kn-colouring c′ of the r-element subsets of B by

c′(S) = (c1(S), c2(S), . . . , cn(S)).

We apply the Erdős-Rado theorem to this final colouring c′ to obtain
A′ ⊂ B with all r-subsets of A′ the same colour and |A′| = ℵ1. Removing
the r least elements of A′, we obtain our set A as required. �

We are now ready to proceed to the main part of the proof.

Theorem 2.2. Let k be a positive integer, and suppose Qiω is k-coloured.
Then there is an infinite set X ⊂ Qiω such that the sumset X + X is
monochromatic.
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Proof. Let c be the given k-colouring of Qiω .
For a = 0, 1, 2, . . . , k, let πa be the pattern

πa = 22 . . . 2︸ ︷︷ ︸
a

11 . . . 1︸ ︷︷ ︸
2(k−a)

and let Π = {πa : 0 6 a 6 k}. By Lemma 2.1, we can find A ⊂ B with
|A| = ℵ1 and colours ca (0 6 a 6 k) such that if x is in the span of A and
has pattern πa then c(x) = ca. By the pigeonhole principle, we must have
ca = cb for some a and b with 0 6 a < b 6 k.

Let C be a subset of A of order-type α = ω(b−a+2) and list the elements
of C in order as f0, f1, f2, . . . .

Now let X = {xi : i < ω}, where, for each i < ω, we define

xi =
a−1∑
r=0

fr +
b−a∑
r=1

fωr+i +

2(k−b)−1∑
r=0

1

2
fω(b−a+1)+r.

Then for all i, j ∈ N, we observe that xi +xj has pattern πa or πb according
as i 6= j or i = j. Thus X +X is monochromatic, as claimed. �

3. Extensions

There are two obvious directions in which one might seek to extend The-
orem 2.2.

First, what if instead of simply requiring that X be infinite, we seek an
X of cardinality ℵ1, say, or of some larger specified cardinality? This is
possible if we start with a vector space of sufficiently large cardinality, and
requires only a trivial modification to the proof of Theorem 2.2.

Theorem 3.1. Let k be a positive integer and let κ be an infinite cardinal.
Then there is an infinite cardinal λ such that whenever the λ-dimensional
rational vector space Qλ is k-coloured, there is a subset X ⊂ Qλ with |X| = κ
and X +X monochromatic.

Indeed, with a similar application of the Erdős-Rado theorem as above,
we may take

λ = sup{κ, 2κ, 22κ , . . . }.
More interestingly, what if rather than simply looking for the sumset

X + X we seek a monochromatic sum of many copies of X? For example,
define the triple sumset of X to be

X +X +X = {x+ y + z : x, y, z ∈ X}.
If we finitely colour Qiω , can we always find an infinite X ⊂ Qiω with
X +X +X monochromatic?

Let us first consider informally how one might try to extend the proof of
Theorem 2.2 to deal with this problem. Previously, we split our basis vectors
into “stretches” of length ω. Depending on the colouring, we then defined
each xi to either take value 1

2 or 1 on certain fixed coordinates in the stretch
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(a “fixed stretch”), or we defined each xi to take value 1 on coordinate i of
the stretch and 0 elsewhere (a “variable stretch”). This resulted in xi + xj
always having a pattern consisting of 1’s and 2’s. More precisely, the pattern
on a given fixed stretch is always the same, whereas the pattern on a variable
stretch could be either 11 or 2.

Now, suppose we consider xh + xi + xj with a similar definition of the xi.
The variable stretches will now have pattern 111 or 21 or 12 or 3. To deal
with this, it turns out that we need a somewhat unexpected application of
the Hales-Jewett Theorem [2].

Theorem 3.2. Let k and t be positive integers and suppose Qiω is k-
coloured. Then there is an infinite set X ⊂ Qiω such that X +X + · · ·+X︸ ︷︷ ︸

t
is monochromatic.

Proof. Let c be the given k-colouring of Qiω .
Let Π be the set of all patterns of the form x1x2 . . . xn where x1, x2, . . . , xn

are positive integers summing to t. Note that Π is finite. Let N be a positive
integer such that whenever ΠN is k-coloured it contains a monochromatic
combinatorial line. (Such N exists by the Hales-Jewett Theorem.) Let Π′

be the set of patterns obtained by concatenating N patterns from Π.
By Lemma 2.1, there exist a subset A ⊂ B with |A| = ℵ1 and colours cπ

(π ∈ Π′) such that if x is in the span of A and has pattern π then c(x) = cπ.
We induce a colouring of ΠN by giving (π1, . . . , πN ) ∈ ΠN the colour of
any x in the span of A with pattern π1π2 . . . πN . (Note that this does not
depend on the choice of x).

We may now find a monochromatic combinatorial line L in ΠN . Let J
be the set of active coordinates of L and, for each π ∈ Π, let Iπ be the set
of inactive coordinates where L takes constant value π. (Note that we take
our coordinates to range from 0 to N − 1.)

Let C be a subset of A of order-type ωN and list the elements of C in
order as f0, f1, f2, . . . . Let X = {xi : i < ω} where

xi =
∑
r∈J

fωr+i +
∑
π∈Π

∑
r∈Iπ

`(π)∑
s=1

πs
t
fωr+s.

Then each element ofX +X + · · ·+X︸ ︷︷ ︸
t

has pattern in L, soX +X + · · ·+X︸ ︷︷ ︸
t

is monochromatic. �

We remark that, exactly as the proof of Theorem 2.2 was adapted to yield
Theorem 3.1, we may similarly adapt the proof of Theorem 3.2 to give:

Theorem 3.3. Let k and t be positive integers and let κ be an infinite
cardinal. Then there is an infinite cardinal λ such that whenever Qλ is k-
coloured there is an infinite set X ⊂ Qλ with |X| = κ and X +X + · · ·+X︸ ︷︷ ︸

t
monochromatic.
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As with Theorem 3.1, it suffices to take

λ = sup{κ, 2κ, 22κ , . . .}.
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[5] Komjáth, Péter; leader, Imre; Russell, Paul A.; Shelah, Saharon; Soukup,
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