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Connectedness and
Lusternik-Schnirelmann categories of the

spaces of persistence modules

Tane Vergili

Abstract. The classes of various interval decomposable persistence
modules in literature were analyzed, the sets were determined, and some
topological characteristics that these sets gained through interleaving
metric were studied. In this study, connectedness of these spaces and
their Lusternik-Schnirelmann categories were considered.
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1. Introduction

In topological data analysis, a persistence module is obtained with apply-
ing homology with coefficients in some fixed field to the increasing family of
topological spaces or complexes [14]. The distance between two persistence
modules can be measured with the interleaving metric [6]. The collection
of persistence modules with the interleaving metric fails to be a topological
space since it is not a set but a class.

For this, the collections of persistence modules were classified under spe-
cific characteristics in [5], and the collections, which constitute sets, were
proven. Then the authors restrict themselves to the identified sets together
with the interleaving metric in order to study their basic topological proper-
ties such as countability, separability, compactness, completeness and path
connectedness.
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The majority of the spaces included in this study are not contractible or
path-connected. Here, we will first discuss whether these spaces are con-
nected or not. On the other hand, since a Lusternik-Schnirelmann category,
or LS-category for short, shows how far a topological space from contractibil-
ity, we will calculate LS-categories of these spaces discussed in this study.

This paper is organised as follows. Since this study is sub-study of [5], we
will only provide the bare minimum of necessary background in Section 2.
We will provide brief definitions of persistence module, interleaving metric,
and the persistence module sets included in this study. In Section 3, we will
analyze the connectedness of the topologies of these sets, which were gained
through interleaving metric, and then we will compute their LS-categories
in Section 4.

2. Preliminaries

In this section, we give the concepts of persistence modules, the interleav-
ing metrics and the sets of persistence modules on which we work on.

2.1. Persistence modules. We start with the definition of persistence
modules [8, 14] Let k be a fixed field. A persistence module M is a set of
k-vector spaces {M(a) | a ∈ R} together with k-linear maps {vba : M(a)→
M(b) | a ≤ b} such that

i): for all a, vaa : M(a)→M(a) is the identity map, and
ii): if a ≤ b ≤ c then vca = vcb ◦ vba.

The definiton of a persistence module M can be given in terms of functors
in a categorical way. Let R be the category whose set of objects is R and
whose morphisms are the inequalities a ≤ b. Then a persistence module is a
functor M : R→ Vectk, where Vectk is the category of k-vector spaces and
k-linear maps. For more details, we refer to [1, 2, 3, 4].

Example 2.1 (Zero persistence module). The zero persistence module, de-
noted by 0, is a persistence module such that 0(a) = 0 for all a.

Example 2.2. Consider the interval [1,∞) in R. We define the persistence
module [1,∞) by

[1,∞)(a) =

{
k a ∈ [1,∞)

0 otherwise
and [1,∞)(a ≤ b) =

{
1 a, b ∈ [1,∞)

0 otherwise

where 1 is the identity map on k.

Generalization of the previous example to an arbitrary interval in R yields
a concept of a persistence modules called interval modules. For an interval
I in R, we define the persistence module I given by

I(a) =

{
k a ∈ I
0 otherwise

and I(a ≤ b) =

{
1 a, b ∈ I
0 otherwise
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A morphism between two persistence modules can be given in the follow-
ing way.

Definition 2.3 (Morphism between persistence modules). Let M and N
be the two persistence modules. Then a morphism ϕ : M → N is a set of
k-linear maps {ϕa : M(a)→ N(a) | a ∈ R} such that the following diagram
commutes for each pair a ≤ b:

M(a) M(b)

N(a) N(b)

vba

ϕa ϕb

wb
a

(1)

Such a morphism is an isomorphism if and only if each linear map ϕa is an
isomorphism.

Example 2.4. Consider the interval modules I = [3,∞) and J = [2, 8).
Then a nonzero morphism ϕ : I → J is given by

ϕ(a) =

{
1 a ∈ [3, 8)

0 otherwise
.

However, any morphism ψ : J → I is zero. To see this, let a ∈ [2, 8). Then
the diagram

J (a) J (8)

I(a) I(8)

ψa ψ8
transforms into

k 0

I(a) k

0

ψa ψ8

0 or 1

and is commutative only if ψa = 0.

Definition 2.5 (Direct sum of persistence modules). Let M and N be two
persistence modules. Then the direct sum of M and N , M ⊕ N , is a per-
sistence module such that (M ⊕ N)(a) = M(a) ⊕ N(a) and (M ⊕ N)(a ≤
b) = M(a ≤ b) ⊕ N(a ≤ b). If {Mi | i ∈ A} is a collection of persistence
modules indexed by an arbitrary set A, their direct sum ⊕i∈AMi is defined
in the same way that (⊕i∈AMi)(a) = ⊕i∈AMi(a) and (⊕i∈AMi)(a ≤ b) =
⊕i∈AMi(a ≤ b).

A persistence module is said to be indecomposable if it is not isomorphic
to a nontrivial direct sum. Note that interval modules are indecomposable.

Theorem 2.6 (Structure Theorem). [11, 12] Let M be a persistence module.
If M(a) is finite dimensional for each a ∈ R, then M is isomorphic to a
direct sum of interval modules.

In this study, we will only focus on persistence modules that are isomor-
phic to the direct sum of interval modules.
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2.2. Sets of persistence modules. We have already mentioned that the
class of persistence modules is not a set. Since we first need to have a set in
order to talk about topology, we want to restrict ourselves with the sets of
persistence modules.

In this paper, we work on the subsets of the class of interval decomposable
persistence modules given in [5]. These sets and their abbreviations are as
follows:

• (rid) is the set of persistence modules isomorphic to
⊕

α∈A Iα where
the cardinality of the index set A is at most the cardinality of R and
each Iα is an interval module.
• (cid), the countably interval-decomposable persistence modules, is

the subset of (rid) where the index set A is countable.
• (cfid), the countably finite-interval decomposable persistence mod-

ules, is the subset of (cid) in which each interval Iα is finite.
• (fid), the finitely interval-decomposable persistence modules, is the

subset of (cid) where the index set A is finite.
• (ffid), the finitely finite-interval decomposable persistence modules,

is the subset of (fid) in which each Ik is a finite interval.

• Given c < d, (ffid[c,d]) is the subset of (ffid) in which each Ik ⊂ [c, d].
• (pfd), the pointwise finite dimensional persistence modules, is the

set of all persistence modules M with each M(a) finite dimensional.
By Theorem 2.6, any element in (pfd) are interval decomposable so
that (pfd) is the subset of (rid).

The Figure 1 is the Hasse diagram for the sets of persistence modules
under consideration in this study [5]. Note that the arrows in this diagram
represent the inclusions.

2.3. Interleaving Distance. We now define the interleaving distance be-
tween two persistence modules [9]. Note that the interleaving distance is
also given from a categorical point of view in [1].

Definition 2.7. Let M and N be two persistence modules and ε ≥ 0. An ε-
interleaving between M and N is a pair of morphisms ϕa : M(a)→ N(a+ε)
and ψa : N(a) → M(a + ε) for all a such that the following four diagrams
commute for all a ≤ b, where the horizontal maps are given by the respective
persistence modules.

M(a) M(b)

N(a+ ε) N(b+ ε)

ϕa

ϕb

M(a+ ε) M(b+ ε)

N(a) N(b)

ψa

ψb

(2)

M(a) M(a+ 2ε)

N(a+ ε)

ϕa ψa+ε

M(a+ ε)

N(a) N(a+ 2ε)

ϕa+εψa (3)
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(rid)

(cid) (pfd)

(cfid) (fid)

(ffid)

(ffid[c,d])

Figure 1. Sets of persistence modules

Note that M and N are isomorphic persistence modules if and only if M
and N are 0-interleaved. Then the interleaving distance dI(M,N) between
M and N is defined as

dI(M,N) := inf
(
ε ∈ [0,∞) | M and N are ε-interleaved

)
If no such ε exists, then dI(M,N) =∞.

Example 2.8. Consider the interval modules I = [1, 6) and J = [2,∞).
Let ε be a nonnegative real number. We’ll show that I and J can not be
ε-interleaved hence dI(I,J ) =∞. If ε ≤ 4, then the diagram

I(6) = 0

J (6− ε) = k J (6 + ε) = k

00

1

does not commute. If ε > 4, then the diagram

I(10 + ε) = 0

J (10) = k J (10 + 2ε) = k

00

1

does not commute.

Example 2.9. Consider the interval modules I1 = [a1,∞) and I2 = [a2,∞)
by assuming a1 < a2. Then for an ε ≥ |a1 − a2| the diagrams in ( 2) and
( 3) commute hence I1 and I2 are ε-interleaved. Assume that ε < |a1 − a2|.
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Then the diagram

I1(a1) = k I1(a1 + 2ε) = k

I2(a1 + ε) = 0

1

0 0

does not commute. Hence dI(I1, I2) = |a1 − a2|.

Note that for two families of persistence modules {Mi | i ∈ A} and
{Ni | i ∈ A} indexed by the same set A, we have [8, Proposition 5.5],

dI(⊕i∈AMi,⊕i∈ANi) ≤ sup
i∈A

dI(Mi, Ni).

2.4. Pseudometric spaces. The interleaving metric dI on a set of per-
sistence modules X satisfies the (extended) pseudometric conditions: for
persistence modules M,N,K in X,

M1): dI(M,M) = 0
M2): dI(M,N) = 0 implies M and N being isomorphic
M3): dI(M,N) = dI(N,M)
M4): dI(M,N) ≤ dI(M,K) + dI(K,N).

Here, the word ”extended” means that dI may take infinite value.
For any set X of persistence modules, the interleaving distance induces a

topology generated by the open balls

Br(x) = {y ∈ X | dI(x, y) < r}

where x ∈ X and r > 0 [13].
Thus, each set of persistence modules in Figure 1 is a topological space

together with the interleaving metric dI . Various topological characteristics
of these spaces were studied in [5]. In this study, connectedness of these
spaces and their LS-categories will be discussed.

Example 2.10. Consider the subset S = {[a,∞) | a ∈ R} of (pfd). For
I1 = [a1,∞) and I1 = [a2,∞) in S, we have dI(I1, I2) = |a1 − a2| by
Example 2.9. The continuous map f : S → R defined by f([a,∞)) = a has
a continuous inverse so that S has all topological properties which R with
the Euclidean metric has.

3. Connectedness of the spaces of persistence modules

Note that all but (ffid) and (ffid[c,d]) in Figure 1 are not path connected [5,
Corollary 8]. In this section we determine whether the spaces are connected.
A topological space is said to be connected if it is not the union of a pair
of disjoint non-empty open sets. Note that the only clopen (both open and
closed) subsets in a connected space are the empty set and the space itself
[13].
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The corollary below follows from the fact the spaces (ffid) and (ffid[c,d])
are path connected since they are contractible to the zero module 0 [5,
Proposition 15].

Corollary 3.1. (ffid) and (ffid[c,d]) are connected.

We’ll show that the rest of the spaces in the Figure 1 are not connected.

Theorem 3.2. (fid) is not connected.

Proof. Let M be a persistence module in (fid) and consider N = M ⊕
[a,∞) so that N is also an element of (fid) and dI(0, N) = ∞. Also for
any persistence module K in (ffid), dI(0,K) is finite. This is true since
in an extended pseudometric space having an infinite distance between two
elements in that space implies that no path can exist between them [5,
Lemma 13] while (ffid) is path connected. Thus the triangle inequality
dI(0, N) ≤ dI(0,K) + dI(K,N) implies dI(K,N) = ∞. This shows that

N cannot be in the closure of (ffid): N /∈ (ffid). This concludes that any
persistence module N in (fid) containing an infinite interval module can not

be in the closure of (ffid). Hence (ffid) = (ffid), so that (ffid) is closed in
(fid). By [5, Proposition 9], we know that (ffid) is also an open subset of
(fid), hence (ffid) is both open and closed subset of (fid). �

Theorem 3.3. (cid) is not connected.

Proof. The proof is the same as the proof of Theorem 3.2 replacing (fid)
with (cid) and (ffid) with (cfid). �

Theorem 3.4. (pfd) is not connected.

Proof. Consider the path component (hence the connected component) of
the zero persistence module 0 in (pfd) and denote this by O. Then any
element N inO is of the form ⊕α∈AIα ∈ (pfd) such that supα∈A length(Iα) <
∞ [5, Proposition 14]. Note that dI(N, 0) is finite by [5, Lemma 13] since
O is path connected. We claim that O is both open and closed in (pfd).
Let M be a persistence module in (pfd) which contains an interval module
with an infinite length so that dI(0,M) = ∞. Then the triangle inequality
dI(0,M) ≤ dI(0, N) + dI(N,M) implies dI(M,N) = ∞. Therefore for a
persistence module N in O, B1(N) ⊂ O. This implies that O is an open
subset in (pfd). Next we show that O is closed in (pfd). Let N ∈ O. Then
Bε(N) ∩ O 6= ∅ for any ε > 0. If M ∈ Bε(N) ∩ O, then dI(M,N) < ε so
that N must be in O. This implies that O is closed. �

Theorem 3.5. (cfid) and (rid) are not connected.

Proof. The proof is the same as the proof of Theorem 3.4 replacing (pfd)
with (cfid) and (pfd) with (rid). �
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4. LS-Categories of the spaces of persistence modules

The Lusternik-Schnirelmann (or LS-) category of a topological space X is
the least integer n such that there exists an open covering U1, U2, . . . , Un+1

of X with each inclusion map ιi : Ui ↪→ X is nullhomotopic. We denote the
LS-category of X by cat(X) = n and call such a covering {Ui} categorical.
Write cat(X) =∞ if no such integer exists [10].

Note that if a topological space X is contractible, then cat(X) = 0. Hence
we have the following corollary.

Corollary 4.1. cat((ffid)) = 0 = cat((ffid[c,d])).

Let X be a topological space with cat(X) = n and U be subset of X in
the categorical covering. Then the inclusion map ι : U → X induces a path
α : [0, 1] → X from any element in U to a fixed element in X defined by
α(t) = H(u, t) where H is the homotopy between ι and the constant map
at the fixed point. This concludes that there exists a path in X for any pair
of elements in U .

Theorem 4.2. The LS-category of the space (fid) is infinite.

Proof. Consider the persistence modules Nn = [0,∞)n for n ∈ N in (fid).
Since dI(N

n, Nk) = ∞ for n 6= k, there exists no path between Nn and
Nk by [5, Lemma 13]. Let (fid) have a categorical cover {Ui}. By the
observation given above, Nn and Nk must be contained in a distinct pair
of U ’s for n 6= k. This concludes that no such a finite open cover exists for
(fid). �

Corollary 4.3. The LS-categories of the spaces (pfd), (cid), and (rid) are
infinite.

Proof. Let X be one of the spaces. Since (fid) is a subset of X, we can
choose the interval modules Nn = [0,∞)n for n ∈ N in the proof of Theo-
rem 4.2 for X and observe that Nn and Nk must be containd in a distinct
pair of U ’s for n 6= k. �

Theorem 4.4. The LS-category of the space (cfid) is infinite.

Proof. Consider the persistence modules N i =
⊕

m∈N[m, 2im) for i ∈ N in

(cfid). Then again, there exists no path between N i and N j for i 6= j since
dI(N

i, N j) =∞. If {Un} is a categorical covering of (cfid), N i and N j must
be contained in a distinct pair of U ’s for i 6= j. This concludes that no such
a finite open cover exists for (cfid). �
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