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On the relative K-group in the ETNC
Part III

Oliver Braunling

Abstract. The previous papers in this series were restricted to regular
orders. In particular, we could not handle integral group rings, one
of the most interesting cases of the ETNC. We resolve this issue. We
obtain versions of our main results valid for arbitrary non-commutative
Gorenstein orders. This encompasses the case of group rings. The only
change we make is using a smaller subcategory inside all locally compact
modules.
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This paper is concerned with the non-commutative equivariant Tamagawa
number conjecture (ETNC) in the formulation of Burns and Flach [BF01].
We assume some familiarity with this framework and use the same notation.
Let A be a finite-dimensional semisimple Q-algebra and A ⊂ A an order.
Using the Burns–Flach theory, a Tamagawa number is an element

TΩ ∈ K0(A,R)

in the relative K-group K0(A,R). In our previous paper [Bra19b] we have
proposed the following viewpoint: Originally Tamagawa numbers were de-
fined as volumes in terms of the Haar measure. Then we argued that the
universal determinant functor of the category of locally compact abelian
(LCA) groups is the Haar measure in a suitable sense. Thus, when wanting
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to define an equivariant Tamagawa number, one should work with an equi-
variant Haar measure. This led us to consider the category of A-equivariant
LCA groups, denoted by LCAA. The universal determinant functor of this
category should be a reasonable approach to an ‘equivariant Haar measure’,
and thus to equivariant Tamagawa numbers.

Unfortunately, the above picture turned out to be true only for regular
orders. However, in this case it works perfectly: We proved

K0(A,R) ∼= K1(LCAA),

showing that our Haar measure based philosophy leads to exactly the same
group as in the original Burns–Flach formulation. One of the most attractive
cases of the ETNC is for integral group rings A = Z[G], where G is a finite
group. These orders are regular only for the trivial group, so [Bra19b] fails
to deliver in this interesting case.

In the present paper, we introduce a full subcategory

LCA∗A ⊆ LCAA

which fulfills the above picture for arbitrary Gorenstein orders A. This
encompasses hereditary orders (which we could also handle previously), but
more importantly group rings. Besides switching to this smaller category,
the formulation of the results remains the same:

Theorem 1. Suppose A is a finite-dimensional semisimple Q-algebra and
let A ⊂ A be a Gorenstein order. There is a canonical long exact sequence
of algebraic K-groups

· · · → Kn(A)→ Kn(AR)→ Kn(LCA∗A)→ Kn−1(A)→ · · ·

for positive n, ending in

· · · → K0(A)→ K0(AR)→ K0(LCA∗A)→ K−1(A)→ 0.

Here K−1 denotes non-connective K-theory. There is a canonical isomor-
phism

K1(LCA∗A) ∼= K0(A,R),

where K0(A,R) is the relative K-group appearing in the Burns–Flach for-
mulation of the non-commutative ETNC in [BF01].

This will be Theorem 5.3. If A is additionally a regular order (e.g., hered-
itary), this sequence agrees with the one of [Bra19b, Theorem 11.2], and
moreover Kn(LCA∗A) = 0 for n ≤ −1 in this case. Although they have the
same K-theory, the category LCA∗A will be strictly smaller than LCAA also in
this case. As before, in the case A = Z the universal determinant functor is
the ordinary Haar measure. This remains true also for our smaller category
LCA∗Z ⊂ LCAZ.

Theorem 2. The Haar functor Ha : LCA∗×Z → Tors(R×>0) is the universal
determinant functor of the category LCA∗Z. Here
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(1) for any LCA group G, Ha(G) denotes the R×>0-torsor of all Haar
measures on G, and

(2) Deligne’s Picard groupoid of virtual objects for LCA∗Z turns out to be
isomorphic to the Picard groupoid of R×>0-torsors.

This is exactly as [Bra19b, Theorem 12.8], which was for the bigger cate-
gory LCAZ. In Part II of this series [Bra18], we had introduced double exact
sequences 〈〈P,ϕ,Q〉〉.

Theorem 3. Let A be a finite-dimensional semisimple Q-algebra and A ⊂ A
an order. Then the map

K0(A,R) −→ K1(LCA∗A) (0.1)

sending [P,ϕ,Q] to the double exact sequence 〈〈P,ϕ,Q〉〉 is a well-defined
morphism from the Bass–Swan to the Nenashev presentation. If A is a
Gorenstein order, then this map is an isomorphism.

See Theorem 5.6. Again, the same statement holds for the bigger category
LCAA if A is regular, as we had shown in [Bra18].

All this fits into a bigger picture, which we will not recall in this text.
Instead, in the manuscript [Bra19a] we explain an alternative construction
of the non-commutative Tamagawa numbers based on our viewpoint. It
defines the same Tamagawa numbers as Burns–Flach [BF01], i.e. leads to a
fully equivalent formulation, but the way the Tamagawa number is defined
is quite different.

The category LCA∗A as well as the bigger LCAA are closely connected to
firstly Clausen’s work on a K-theoretic enrichment of the Artin map [Cla17],
as well as the Clausen–Scholze theory of condensed mathematics [Sch19] as
well as the pyknotic mathematics of Barwick–Haine [BH19].

Acknowledgement. I heartily thank B. Chow, D. Clausen, B. Drew, and
B. Köck for discussions and in part helping me with proofs and fixing prob-
lems. I thank R. Henrard and A.-C. van Roosmalen for interesting dis-
cussions around how their technology in [Hv19b], [Hv19a] might lead to a
quicker proof. Finally, let me thank the anonymous referee for several sug-
gestions improving the exposition.

1. Conventions

In this text the word ring refers to a unital associative (not necessarily
commutative) ring. Ring homomorphisms preserve the unit of the ring.
Unless said otherwise, modules are right modules.

Given an exact category C, we write Cic for the idempotent completion,
“↪→” for admissible monics, “�” for admissible epics, and we generally
follow the conventions of Bühler [Büh10].

Differing from any convention, we call objects X ∈ C in a cocomplete cate-
gory C categorically compact if HomC(X,−) commutes with filtered colimits.
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Usually, such objects are merely called compact, but since this potentially
conflicts with the topological meaning of compact, which plays a far bigger
rôle in this text, it seems best to be careful. These objects are also called
‘finitely presented’, but again this could potentially cause confusion, so it is
best only to refer to the ring-theoretic concept by these terms.

2. PI-presentations

Definition 2.1. Suppose C is an exact category. Let

(1) P be a full subcategory of projective objects in C which is closed under
finite direct sums,

(2) I be a full subcategory of injective objects in C which is closed under
finite direct sums.

We write C 〈P, I〉 for the full subcategory of objects X ∈ C such that an
exact sequence

P ↪→ X � I

with P ∈ P and I ∈ I exists in C. We call any such exact sequence a
PI-presentation for X.

If C denotes a category, a morphism r : X → Y is called a retraction if
there exists a morphism s : Y → X (then called section) such that rs = idY .
An exact category is called weakly idempotent complete if every retraction
has a kernel. Note that sr : X → X is an idempotent, i.e. every idempotent
complete category is also weakly idempotent complete (check that the kernel
of the idempotent also provides a kernel for the retraction itself). We refer
to [Büh10, §7] for a thorough review of these concepts.

Lemma 2.2. Suppose we are in the situation of Definition 2.1. Assume C
is weakly idempotent complete. Suppose

X ′ ↪→ X � X ′′ (2.1)

is an exact sequence in C such that X ′, X ′′ ∈ C 〈P, I〉. Suppose we have
chosen any PI-presentations for X ′ and X ′′ (where we denote the objects
accordingly with a single prime or double prime superscript). Then one can
extend Sequence 2.1 to a commutative diagram

P ′� _

��

� � // P ′ ⊕ P ′′� _

��

// // P ′′� _

��

X ′

����

� � // X

����

// // X ′′

����

I ′ �
�

// I ′ ⊕ I ′′ // // I ′′

(2.2)

with exact rows and exact columns. In particular, the middle column is a
PI-presentation for X.
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Proof. First, use the PI-presentation of X ′. We get a commutative diagram

P ′� _

��

� p

  

X ′ �
�

//

����

X

I ′

and thus the admissible filtration P ′ ↪→ X ′ ↪→ X with P ′ ∈ P. Noether’s
Lemma ([Büh10, Lemma 3.5]) yields the exact sequence X ′/P ′ ↪→ X/P ′ �
X/X ′, which after unravelling the outer terms, is isomorphic to

I ′ ↪→ X/P ′ � X ′′.

Since I ′ ∈ I is injective, the sequence splits. We get

X/P ′ ∼= I ′ ⊕X ′′. (2.3)

Next, use the PI-presentation of X ′′. The direct sum of the exact sequences

P ′′ ↪→ X ′′
q′′

� I ′′ and 0 ↪→ I ′
1
� I ′ (2.4)

is again exact. As a composition of admissible epics is an admissible epic,
the kernel Y in the following commutative diagram exists.

Y � o

��

P ′′� _

��

P ′

OO

� � // X // //

"" ""

X/P ′

1⊕q′′
����

I ′ ⊕ I ′′

(2.5)

The right column comes from the sum of sequences in Equation 2.4 and the
isomorphism of Equation 2.3 in the middle term of the right column. By the
universal property of kernels, we obtain a unique arrow P ′ → Y . Since C is
weakly idempotent complete, we may apply the dual of [Büh10, Corollary
7.7] and deduce that this arrow must be an admissible monic. Thus, we
obtain the admissible filtration P ′ ↪→ Y ↪→ X and again by Noether’s

Lemma the exact sequence Y/P ′ ↪→ X/P ′
a
� X/Y . Unravelling the right

term, this exact sequence is isomorphic to

Y/P ′ ↪→ X/P ′ � I ′ ⊕ I ′′.
Inspecting Diagram 2.5 note that under the isomorphism of Equation 2.3
the map a is identified with 1⊕ q′′. Thus, Y/P ′ is a kernel of this, and thus
isomorphic to P ′′. Hence, P ′ ↪→ Y � Y/P ′ is isomorphic to P ′ ↪→ Y � P ′′,
which splits since P ′′ ∈ P is projective, and thus Y ∼= P ′ ⊕ P ′′. Then the
diagonal exact sequence of Diagram 2.5 is a PI-presentation, and moreover
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the one in our claim. Going through the maps which we have constructed,
we obtain all the arrows in Diagram 2.2. �

Corollary 2.3. Suppose we are in the situation of Definition 2.1 and C
is weakly idempotent complete. Then C 〈P, I〉 is extension-closed in C. In
particular, it is a fully exact subcategory of C.

Proof. The lemma shows that X also has a PI-presentation, so X ∈ C 〈P, I〉.
�

Lemma 2.4. If X ∈ C 〈P, I〉 is injective (resp. projective) as an object in
C, it is also injective (resp. projective) as an object in C 〈P, I〉.

Proof. Immediate. �

In particular, all objects of P are still projective in C 〈P, I〉 and corre-
spondingly for the injectives in I.

3. Construction of the category PLCAA

Suppose A is a finite-dimensional semisimple Q-algebra and A ⊂ A an
order. We shall use the category LCAA of [Bra19b]. We recall that its

(1) objects are locally compact topological right A-modules, and
(2) morphisms are continuous A-module homomorphisms.

An admissible monic is a closed injective morphism, an admissible epic
is an open surjective morphism. This makes LCAA a quasi-abelian exact
category, generalizing an observation due to Hoffmann–Spitzweck [HS07].

Proposition 3.1. The category LCAA is a quasi-abelian exact category.
There is an exact functor

(−)∨ : LCAopA −→ LCAAop M 7−→ Hom(M,T),

where the continuous right A-module homomorphism group Hom(M,T) is
equipped with the compact-open topology (that is: on the level of the under-
lying LCA group (M ; +) this is the Pontryagin dual), and the left action

(α · ϕ)(m) := ϕ(m · α) for all α ∈ A, m ∈M . (3.1)

There is a natural equivalence of functors from the identity functor to double
dualization,

η : id −→ (−)∨ ◦
[
(−)∨

]op
.

In other words: For every object M ∈ LCAA there exists a reflexivity iso-
morphism η(M) : M

∼−→ M∨∨, and the isomorphisms η(M) are natural in
M .

See [Bra19b, Proposition 3.5]. If A is commutative, it is even an exact
category with duality in the sense of [Sch10, Definition 2.1].

Let R be a ring. We write P (R) for the category of all projective right
R-modules, and Pf (R) for the finitely generated projective right R-modules.
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These are both exact categories in the standard way. These categories are
idempotent complete and split exact.

Write P⊕(R) for the full subcategory of P (R) whose objects are at most
countable direct sums of objects in Pf (R). This is an extension-closed full
subcategory and thus itself an exact category. This category may also be
realized as

P⊕(R) = Indaℵ0(Pf (R)), (3.2)

because by [BGW16, Corollary 3.19] it is the full subcategory of countable
direct sums of objects in Pf (R) inside Lex(Pf (R)) and by [BGW16, Lemma
2.21] the latter category is Mod(R).

The following is (in different formulation) due to Akasaki and Linnell.

Lemma 3.2 (Akasaki–Linnell). Suppose G is a finite group and R := Z[G].
Then P⊕(R) is idempotent complete if and only if G is solvable.

Proof. By Equation 3.2 and [BGW16, Proposition 3.25] the idempotent
completion of P⊕(R) is the category Pℵ0(R) of at most countably generated
projective R-modules. If G is solvable, Swan [Swa63, Theorem 7] has shown
that every projective R-module is either finitely generated or free (or both),
so each such is a direct sum of finitely generated projectives, hence lies in
P⊕(R). On the other hand, if G is non-solvable, Akasaki exhibits a non-
zero countably generated projective R-module P ∈ Pℵ0(R) with trace ideal
τ(M) $ Z[G], see [Aka82, Theorem] (or Linnell [Lin82]). If P has a non-
zero finitely generated projective summand P ′ ⊂ P , then τ(P ′) = Z[G]
by [Aka72, Corollary 1.4], and thus we would have τ(P ) = Z[G] because all
maps from a direct summand extend to maps of all of P . However, the latter
is impossible by Akasaki’s construction. Thus, P has no finitely generated
projective summands and thus P /∈ P⊕(R). �

Note that P⊕(A) lies inside LCAA when being regarded as a full subcate-
gory of objects with the discrete topology. Define IΠ(A) as the Pontryagin
dual of P⊕(Aop). In other words, this is the category of at most count-
able products

∏
P∨i , where Pi ∈ Pf (Aop). Under Pontryagin duality these

projective left A-modules (i.e. right Aop-modules) become injective right
A-modules in LCAA.

Define

PLCAA := LCAA 〈P⊕(A), IΠ(A)〉 . (3.3)

Since LCAA is quasi-abelian, it is in particular weakly idempotent complete
and thus PLCAA is a fully exact subcategory of LCAA by Corollary 2.3.

We get a natural extension of Proposition 3.1.

Proposition 3.3. The category PLCAA is an exact category. The exact
Pontryagin duality functor (−)∨ of Proposition 3.1 restricts to an exact
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equivalence of exact categories

(−)∨ : PLCAopA −→ PLCAAop

M 7−→ Hom(M,T).

We usually regard the objects of PLCAAop as topological left A-modules. If A
is commutative, A = Aop, and this functor makes PLCAA an exact category
with duality.

Proof. If P ↪→ X � I is a PI-presentation for X, the duality functor sends
it to

I∨ ↪→ X∨ � P∨,

but by construction I∨ ∈ P⊕(Aop) and P∨ ∈ IΠ(Aop). Hence, this gives us
a PI-presentation of X∨. �

Lemma 3.4. All objects in IΠ(A) are compact1 connected.

Proof. We use that IΠ(A) is the Pontryagin dual to P⊕(Aop). Each object
P ∈ P⊕(Aop) is discrete, so P∨ ∈ IΠ(A) is compact. As P is projective, it
is also Z-torsionfree, and thus P∨ is connected by [Mor77, Corollary 1 to
Theorem 31]. �

The following observation is trivial.

Lemma 3.5. Suppose P ∈ P⊕(A). If F is a finitely generated submodule of
P , then there exists a direct sum splitting

P ∼= P0 ⊕ P∞ (3.4)

with P0 ∈ Pf (A), P∞ ∈ P⊕(A) and F ⊆ P0. In other words: Every finitely
generated A-submodule of P is contained in a finitely generated projective
direct summand of P .

Proof. Write P =
⊕

i∈I Pi with Pi ∈ Pf (A). Let m1, . . . ,mn be A-module
generators of F . Since F ⊆ P , we can write mj =

∑
αj,i such that αj,i ∈ Pi

and these are finite sums. Hence, collecting all the indices i which occur
in these finite sums where j = 1, . . . , n, we get a finite subset I0 of indices
within I. Define

P0 :=
⊕
i∈I0

Pi and P∞ :=
⊕
i∈I\I0

Pi.

Then P ' P0 ⊕ P∞ as desired, P0 ∈ Pf (A) because I0 is finite, and F ⊆
P0. �

Example 3.6. The property discussed in the previous lemma would in general
be false if P were allowed to be an arbitrary (countably generated) projective
module. For example, if G is a non-solvable finite group, by Lemma 3.2 one
can find a countably generated indecomposable projective. Since it admits
no non-trivial direct sum decompositions at all, no splitting as in Equation
3.4 can exist.

1in the sense of topology
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Lemma 3.7. Suppose X ∈ PLCAA has the PI-presentation

P ↪→ X � I. (3.5)

Then for any finitely generated A-module F ⊆ P there exists

(1) a direct sum splitting

P ∼= P0 ⊕ P∞
with F ⊆ P0, P0 ∈ Pf (A) and P∞ ∈ P⊕(A), and

(2) a direct sum splitting

X ∼= M ⊕ P∞
with M ∈ PLCAA such that P0 ↪→ M � I is a PI-presentation for
M .

It might be worth unpacking what we are saying here: Given any object X
and any finitely generated submodule in P , we can up to a direct summand
from P⊕(A) isomorphically replace X by an object whose PI-presentation
has only a finitely generated P , and we can demand that the given F lies
entirely in this P .

Proof. By [Bra19b, Lemma 6.5] in the bigger category LCAA we get an
exact sequence

V ⊕ C ↪→ X � D (3.6)

with V a vector A-module, C a compact A-module and D a discrete A-
module. Define

J := P ∩ (V ⊕ C) (3.7)

in LCAA. Note that both P and V ⊕C are closed in X. As J is closed in P , J
is discrete. Further, since P is a projective A-module, it is Z-torsionfree, so
J is Z-torsionfree as well. As J is closed in V ⊕C, its underlying LCA group
must be Zb for some b ∈ Z≥0 (reason: If J ↪→ V ⊕ C, then V ∨ ⊕ C∨ � J∨

under Pontryagin duality. Here V ∨ ⊕C∨ is a vector module plus a discrete
module. All quotients of such must be Ra ⊕ Tb ⊕ D̃ with D̃ discrete as
an LCA group by [Mor77, Corollary 2 to Theorem 7]. Dualizing back, the

underlying LCA group of J must be Ra ⊕ Zb ⊕ C̃ with C̃ compact. As we
already know that J is discrete and torsionfree, we must have a = 0 and
C̃ = 0). Combining these facts, J is a discrete A-module with underlying
LCA group Zb. It follows that J is a finitely generated A-submodule of P .
Next, define

J ′ := J + F .

This is still a finitely generated A-submodule of P . Thus, by Lemma 3.5 we
can find a direct sum splitting

P ' P0 ⊕ P∞ (3.8)

with J ′ ⊆ P0 and P0 ∈ Pf (A). In the category LCAA we define

M := (V ⊕ C) + P0 inside X. (3.9)



RELATIVE K-GROUP IN THE ETNC, III 665

Since D in Equation 3.6 was discrete, V ⊕ C is an open submodule of X.
Thus, the sum defining M is also an open submodule, thus clopen. It follows
that the inclusion M ↪→ X is an open admissible monic in LCAA. Both P∞
and M are closed submodules of X. We claim that

P∞ ∩M = 0.

(Proof: Suppose x ∈ P∞ ∩M . As x lies in M , we can write x = xvc + x0

with xvc ∈ V ⊕ C and x0 ∈ P0 by Equation 3.9. Hence, xvc = x − x0. As
x ∈ P∞ ⊆ P and x0 ∈ P0 ⊆ P , we find xvc ∈ P . Thus, xvc ∈ P ∩ (V ⊕ C)
and thus xvc ∈ J by Equation 3.7. As J ⊆ P0 by Equation 3.8, we obtain
xvc ∈ P0. It follows that x ∈ P0. We also have x ∈ P∞ by assumption and
therefore x ∈ P0 ∩ P∞ = 0, giving the claim.) Thus, M and P∞ are closed
submodules of X with trivial intersection. We get an exact sequence

M ⊕ P∞ ↪→ X � Q

for some quotient Q in LCAA. As P ⊆ M ⊕ P∞, it follows that Q is an
admissible quotient of I by Equation 3.5. Since I is (compact) connected by
Lemma 3.4, so must be Q. On the other hand, since M is open (or: since it
contains V ⊕ C), Q is also necessarily discrete. Being both connected and
discrete, we must have Q = 0. We get

X 'M ⊕ P∞ (3.10)

in LCAA. Next, by Noether’s Lemma ([Büh10, Lemma 3.5]) the admissible
filtration

P∞ ↪→ P ↪→ X

gives rise to the exact sequence

P/P∞ ↪→ X/P∞ � X/P .

We have P/P∞ ∼= P0 from Equation 3.8, X/P ∼= I from Equation 3.5,
and X/P∞ ∼= M by Equation 3.10. Thus, P0 ↪→ M � I is exact. Since
P0 ∈ Pf (A) and I ∈ IΠ(A), we deduce M ∈ PLCAA from Equation 3.3.
Finally, since P∞ ∈ P⊕(A), Equation 3.10 is not only a direct sum splitting
in LCAA, but even in the fully exact subcategory PLCAA. Finally, F ⊆ P0

holds by construction. �

The previous result implies that the objects of PLCAA can, up to di-
rect summands from P⊕(A) and IΠ(A), be reduced to such where the PI-
presentation is made from finitely generated discrete projectives and their
Pontryagin duals.

Proposition 3.8. Every object in PLCAA is isomorphic to an object of the
shape

X ' P∞ ⊕ I∞ ⊕B
with P∞ ∈ P⊕(A), I∨∞ ∈ P⊕(Aop) and B ∈ PLCAA has a PI-presentation

P0 ↪→ B � I0

with P0 ∈ Pf (A), I∨0 ∈ Pf (Aop).
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Proof. Let X ∈ PLCAA be any object. Pick a PI-presentation P ↪→ X � I.
We apply Lemma 3.7 with F = 0. We get a direct sum splitting X 'M⊕P∞
in PLCAA, where M has a PI-presentation of the shape

P0 ↪→M � I

such that P0 ∈ Pf (A). Now apply Pontryagin duality, giving the exact
sequence

I∨ ↪→M∨ � P∨0
in PLCAAop . This is a PI-presentation in PLCAAop . Now apply Lemma 3.7
(again with F = 0). Then dualize back. �

We recall the following standard concept from the theory of topological
groups.

Definition 3.9. A subset U of a topological group G is called symmetric if
it is closed under taking inverses. A topological group G is called compactly
generated if there exists a compact symmetric neighbourhood U ⊆ G of the
neutral element such that G =

⋃
n≥1 U

n.

Remark 3.10. Unfortunately, the word “compactly generated” is also used
with a different meaning elsewhere. Either in a category-theoretic sense
related to categorically compact objects, or in a further topological mean-
ing, probably most familiar in the setting of compactly generated Hausdorff
spaces in homotopy theory; e.g., [Sch19] uses both of these other meanings.
This is most unfortunate, but all uses of these words are well-established in
their respective community of mathematics.

Let PLCAA,cg be the full subcategory of PLCAA of compactly generated
A-modules,

PLCAA,cg := PLCAA ∩ LCAA,cg. (3.11)

Since compactly generated topological modules are closed under extension
in LCAA ([Bra19b, Corollary 7.2]), this is an extension-closed subcategory
of PLCAA.

Lemma 3.11. We have PLCAA,cg = LCAA 〈Pf (A), IΠ(A)〉, i.e. the same
category can also be described as the full subcategory of objects in PLCAA

which admit a PI-presentation

P ↪→ X � I

with P finitely generated projective.

Proof. (Step 1) Suppose X lies in LCAA 〈Pf (A), IΠ(A)〉. Then

P ↪→ X � I

is exact with P finitely generated projective and I ∈ IΠ(A). By Lemma
3.4 the module I is compact, hence compactly generated, and P has Zn for
some finite n ≥ 0 as its underlying LCA group, so it is compactly generated,
too. Thus, X is an extension of compactly generated LCA groups, and thus
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X ∈ PLCAA,cg.
(Step 2) Conversely, suppose X ∈ PLCAA,cg. Proposition 3.8 gives a direct
sum splitting X = P∞ ⊕M ⊕ I∞. By Step 1 we know that M is compactly
generated and I∞ is compact, so X is compactly generated if and only if
P∞ is. However, the underlying LCA group of P∞ is

⊕
Z, over some index

set, and this is compactly generated only if P∞ is finitely generated. �

Proposition 3.12. The inclusion Pf (A) ↪→ P⊕(A) is left s-filtering.2

Proof. (Left filtering) Suppose we are given an arrow g : Y → X with Y ∈
Pf (A) and X ∈ P⊕(A). The set-theoretic image of Y in X is again a finitely
generated module, so by Lemma 3.5 we find a direct sum decomposition

X ∼= P0 ⊕ P∞
with P0 ∈ Pf (A), P∞ ∈ P⊕(A) and imSet(g) ⊆ P0. It follows that the arrow
g factors as Y → P0 ↪→ X, showing the left filtering property.
(Left special) Suppose e : X � X ′′ is an admissible epic with X ∈ P⊕(A)
and X ′′ ∈ Pf (A). As X ′′ is projective, the epic splits. We obtain a diagram

0 �
�

//

��

0⊕X ′′ // //

��

X ′′

X ′ �
�

// X // // X ′′

showing the left special property. �

Proposition 3.13. The inclusion PLCAA,cg ↪→ PLCAA is left s-filtering.

Proof. (Left filtering) Suppose we are given an arrow Y → X with Y ∈
PLCAA,cg and X ∈ PLCAA. We apply Proposition 3.8 to X and get the
diagram

M ⊕ I∞� _

��

Y

h
&&

// P∞ ⊕M ⊕ I∞

����

P∞.

We first work entirely on the level of LCAZ: Since Y is compactly generated,
we get some isomorphism Y ' C ⊕Zn ⊕Rm for some n,m and C compact,
[Mos67, Theorem 2.5]. As C is compact, its set-theoretic image under h
is compact, but since P∞ is discrete and torsionfree, h(C) must be zero.
Moreover, the set-theoretic image of Rm under h is connected and thus also
zero. It follows that the set-theoretic image of h agrees with the image
h(Zn), and thus must be a finitely generated Z-submodule of P∞. Now

2This concept originates from the work of Schlichting [Sch04]. We use the formulation
of [BGW16, §2.2.2].
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return to LCAA. By the previous consideration, the image under h must
be a finitely generated A-submodule of P∞. Thus, by Lemma 3.5 we find
some P∞,0 ∈ Pf (A) and P∞,∞ ∈ P⊕(A) such that P∞ ' P∞,0 ⊕ P∞,∞ and
im(h) ⊆ P∞,0. Thus, we obtain a new diagram

P∞,0 ⊕M ⊕ I∞� _

��

Y

88

0
&&

// P∞ ⊕M ⊕ I∞

����

P∞,∞.

and by the universal property of kernels, we learn that Y → X factors
over Y ′ := P∞,0 ⊕M ⊕ I∞, which lies in PLCAA,cg since all summands do.
This gives the required factorization to see that PLCAA,cg ↪→ PLCAA is left
filtering.
(Left special) (Step 1) Suppose X � X ′′ is an admissible epic with X ∈
PLCAA and X ′′ ∈ PLCAA,cg. Being an epic, there exists an exact sequence

X ′ ↪→ X � X ′′ (3.12)

in PLCAA. Pick PI-presentations forX ′ andX ′′, where we denote the objects
accordingly with a single prime or double prime superscript. For P ′′ we may
assume P ′′ ∈ Pf (A) since X ′′ ∈ PLCAA,cg. By Lemma 2.2 we may extend
Equation 3.12 to the diagram

P ′� _

��

� � // P ′ ⊕ P ′′� _

��

// // P ′′� _

��

X ′

����

� � // X

����

// // X ′′

����

I ′ �
�

// I ′ ⊕ I ′′ // // I ′′.

Next, apply Lemma 3.7 to X with F := P ′′. Write Xnew ∈ PLCAA,cg for its
output M . We can now change the above diagram to

P ′� _

��

� � // P∞ ⊕ P0� _

1⊕i
��

q
// // P ′′� _

��

X ′

����

� � // P∞ ⊕Xnew

����

// // X ′′

����

I ′ �
�

// 0⊕ (I ′ ⊕ I ′′) // // I ′′.

As P ′′ ⊆ P0, we have q(P∞) = 0 in P ′′. Since q is an admissible epic to the

projective object P ′′, the map q splits, so we may decompose P0 ' P̃ ⊕ P ′′
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for some P̃ ∈ Pf (A) and our diagram becomes

P ′� _

��

� � // P∞ ⊕ (P̃ ⊕ P ′′)� _

1⊕i
��

q
// // P ′′� _

��

X ′

����

� � // P∞ ⊕Xnew

����

// // X ′′

����

I ′ �
�

// 0⊕ (I ′ ⊕ I ′′) // // I ′′.

(3.13)

(Step 2) Following the arrows of the diagram, we see that both P ′ as well
as Xnew are closed submodules of X (= P∞ ⊕Xnew ). Define

J := P ′ ∩Xnew. (3.14)

We claim that this is a finitely generated discrete A-submodule of P ′. The
argument is the same as in the proof of Lemma 3.7 (namely: write C⊕V ↪→
Xnew � D with C compact, V a vector module, D discrete. Then C∩P ′ = 0
since C is compact, P ′ discrete, but P ′ is also torsionfree. So it suffices to
consider V ∩P ′, and since this is a closed subgroup, J can only be a lattice
in V ). Next, observe that the top row in Diagram 3.13 is actually split, i.e.

P ′ ∼= P∞ ⊕ P̃ ,

i.e. we can interpret P̃ as a submodule of P ′. Now apply Lemma 3.7 to X ′

with F := J + P̃ . Write X ′new ∈ PLCAA,cg for its output M . Hence, we can
rewrite the left downward column

P ′ ↪→ X ′ � I ′

as

P ′∞ ⊕ P ′0
1⊕i′
↪→ P ′∞ ⊕X ′new � 0⊕ I ′,

where J ⊆ P ′0 and P ′0 ∈ Pf (A). By inspection of the proof of the lemma,
we pick P ′∞ ⊕ P ′0 as direct summands and we can without loss of generality

assume P̃ to be a sub-summand appearing in P ′0, say P ′0
∼= P ′00⊕ P̃ . We can

thus rewrite Diagram 3.13 as

P ′∞ ⊕ P ′00 ⊕ P̃� _

1⊕i′
��

� � b // P∞ ⊕ (P̃ ⊕ P ′′)� _

1⊕i
��

q
// // P ′′� _

��

P ′∞ ⊕X ′new

����

� � // P∞ ⊕Xnew

����

// // X ′′

����

0⊕ I ′ �
�

// 0⊕ (I ′ ⊕ I ′′) // // I ′′

(3.15)

such that b is the inclusion of a direct summand and the identity on P̃ . It
follows that b makes P ′∞ a direct summand of P∞ (so that P∞ ∼= P ′∞⊕P ′00).
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It follows that we can compatibly remove the direct summands P ′∞ resp.
P∞ in Diagram 3.15. We get

P ′00 ⊕ P̃� _
i′

��

� � // P ′00 ⊕ P̃ ⊕ P ′′� _

1⊕i
��

q
// // P ′′� _

��

X ′new

����

� � // P ′00 ⊕Xnew

����

// // X ′′

����

I ′ �
�

// 0⊕ (I ′ ⊕ I ′′) // // I ′′.

(3.16)

Now compare the middle row of the previous diagram with the middle row
in the previous diagrams: We have merely replaced X ′ (resp. X) by a direct
summand of itself. Thus, we get a commutative diagram

X ′new
� � //

��

P ′00 ⊕Xnew
// //

��

X ′′

X ′ �
�

// X // // X ′′,

where the top row comes from the middle row in Diagram 3.16 and the
downward arrows are the inclusions of the respective direct summands. All
objects in the top row lie in PLCAA,cg. This shows the left special property.

�

Lemma 3.14. There is an exact equivalence of exact categories

P⊕(A)/Pf (A)
∼−→ PLCAA/PLCAA,cg,

sending a projective module to itself, equipped with the discrete topology.

Proof. We clearly have an exact functor P⊕(A) → PLCAA, basically using
that P⊕ is a full subcategory of the latter. Since every finitely generated
projective A-module has underlying abelian group Zn for some n, it is com-
pactly generated, so we get the exact functor

P⊕(A)/Pf (A) −→ PLCAA/PLCAA,cg.

This functor is essentially surjective: Given any X ∈ PLCAA, let P ↪→
X � I be a PI-presentation. Since I ∈ PLCAA,cg it follows that P ↪→ X
is an isomorphism in the quotient exact category ([BGW16, Proposition
2.19, (2)]), but P ∈ P⊕(A). We next show that the functor is fully faithful:
Morphisms Y1 → Y2 in PLCAA/PLCAA,cg are roofs

Y1
e
� Y ′1 → Y2, (3.17)

where e is an admissible epic with compactly generated kernel K. For Y1, Y2

in the strict image of the functor, these objects carry the discrete topology.
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Using the structure theorem of LCAA for Y ′1 , [Bra19b, Lemma 6.5], we get
a decomposition

C ⊕ V ↪→ Y ′1 � D

with C a compact A-module, V a vector A-module and D a discrete A-
module. Since the image of a compactum in a discrete group is compact,
it must be finite, hence torsion, but Y1, Y2 are projective A-modules, so the
image of C in both Y1, Y2 must be zero. Similarly, V is connected and hence
its image in Y1, Y2 must be zero. Thus, without loss of generality, the roof
in Equation 3.17 can be assumed to have Y ′1 discrete, as any roof is equiv-
alent to such a roof. However, if Y1 is discrete, the compactly generated
kernel K must be finitely generated. Thus, as Y1 is projective, the epic
e in Equation 3.17 is split and such that Y ′1

∼= Y1 ⊕ K with K (then by
necessity) a finitely generated projective A-module. Thus, the roofs repre-
senting morphisms in PLCAA/PLCAA,cg are precisely the same roofs as for
morphisms in P⊕(A)/Pf (A), and up to the same equivalence relation, prov-
ing full faithfulness. Combining all these facts, the functor in our claim is
an exact equivalence. �

The next proposition relies on the concept of localizing invariants in the
sense of [BGT13].

Proposition 3.15. Let A be any finite-dimensional semisimple Q-algebra
and A ⊆ A an order. Let A be a stable ∞-category. Suppose K : Catex

∞ → A
is a localizing invariant with values in A.

(1) There is a fiber sequence

K(A)
g−→ K(PLCAA,cg)

h−→ K(PLCAA) (3.18)

in A. Here the map g is induced from the exact functor sending a
finitely generated projective right A-module to itself, equipped with
the discrete topology. The map h is induced from the inclusion
PLCAA,cg ↪→ PLCAA.

(2) There is a morphism of fiber sequences3 from Sequence 3.18 to

K(ModA,fg)
g−→ K(LCAA,cg)

h−→ K(LCAA),

based on the fully exact inclusions

Pf (A) ⊆ ModA,fg and PLCAA ⊆ LCAA

and the compactly generated modules respectively.

Proof. The proof is a mild variation of [Bra19b, Proposition 11.1], but using
the fully exact subcategory PLCAA instead of LCAA. However, especially

3that is: when we write the fiber sequences as their underlying bi-Cartesian square
along with a null homotopy for the fourth vertex, then we have a morphism of bi-Cartesian
squares, in particular the null homotopies are compatible
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since the proofs are compatible otherwise, the second claim is automatically
true. For the first claim, we set up the diagram

K(Pf (A)) //

g

��

K(P⊕(A)) //

��

K(P⊕(A)/Pf (A))

Φ
��

K(PLCAA,cg) // K(PLCAA) // K(PLCAA/PLCAA,cg)

(3.19)

as follows: By Proposition 3.12 and 3.13 we get fiber sequences in K, forming
the rows. The equivalence Φ stems from the equivalence of the underlying
exact categories, coming from Lemma 3.14. The downward arrows come
from the exact functors sending the respective A-modules to themselves,
equipped with the discrete topology. As P⊕(A) is closed under countable
direct sums, K(P⊕(A)) = 0 by the Eilenberg swindle. �

4. Gorenstein orders

For any order A ⊂ A define

A∗ := HomZ(A,Z). (4.1)

The left A-module structure on this is given by

(α · ϕ)(q) := ϕ(qα) (4.2)

(and correspondingly for the right module structure, for which we however
have no need).

Example 4.1. A general order is far from being reflexive, i.e. A∗∗ is usually
strictly bigger than A under the natural inclusion A → A∗∗ (view both as

submodules of A
∼→ A∗∗). If A is a maximal order, the inclusion is the

identity A
=→ A∗∗, and in our situation over the ring Z this is an equiva-

lent characterization of maximality by Auslander–Goldman [Rei03, (11.4)
Theorem].

Definition 4.2. An order A ⊂ A is called a Gorenstein order if one (then
all) of the following properties hold:

(1) A/A is an injective left A-module,
(2) left-injdimA(A) = 1,
(3) A∗ is a categorically compact projective generator4 for the category

of left A-modules,
(4) or any of (1), (2), (3) as a right module.

The concept was introduced in [DKR67]. Most of the equivalence of these
conditions is proven in [DKR67, Proposition 6.1], [Rog70, Chapter IX, §4,
§5], while the characterization (1) is due to Roggenkamp [Rog73, Lemma 5].

4sometimes this is also called a progenerator. In the situation at hand being categori-
cally compact is equivalent to being a finitely presented A-module.
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Non-commutative Gorenstein rings are rings with finite left and right
injective dimension, so Gorenstein orders are in particular Gorenstein rings.

We collect a few well-known facts, only in order to exhibit the usefulness
of the concept.

Lemma 4.3. For any finite group G, Z[G] ⊂ Q[G] is a Gorenstein order.

Proof. ([Rog73, Corollary 6]) For any g ∈ G \ {e} the action of g is a fixed-
point free permutation of the Z-module generators G, so tr(g) = 0, while
for g = e we have tr(e) = |G|. It follows that A∗ = 1

|G|A inside Q[G]. �

Remark 4.4. If we want to work with group rings Z[G] ⊂ Q[G] we are
basically forced to work at least in the generality of Gorenstein orders. The
slightly more specialized class of Bass orders is in general not sufficient,
[Kle90]. A group ring Z[G] has finite global dimension if and only ifG = 1, so
the even more specialized classes of regular or hereditary (let alone maximal)
orders are hopeless.

Lemma 4.5. Any hereditary order is Gorenstein.

Proof. Consider A ↪→ A � A/A. As A is semisimple, A is an injective
A-module, but since A is hereditary, quotients of injectives are injective,
so A/A is injective. An order is left hereditary if and only if it is right
hereditary, so there is no question about left or right here. �

Lemma 4.6 ([JT15, Prop. 3.6]). If A is a number field, then any order of
the shape Z[α] with α ∈ A is Gorenstein.

The paper [JT15] also provides some examples of non-Gorenstein orders.

Recall that AR := R⊗Q A denotes the base change to the reals.

Proposition 4.7. Suppose A is a finite-dimensional semisimple Q-algebra.
If A ⊂ A is a Gorenstein order, then

A ↪→ AR � AR/A (4.3)

is a PI-presentation for AR. In particular, AR ∈ PLCAA.

Proof. It is clear that A is a projective right A-module, so we only need to
show that (AR/A)∨ is a projective left A-module.
(Step 1) First of all, we recall that there is a non-degenerate symmetric trace
pairing

tr : A×A −→ Q
on any finite-dimensional separable Q-algebra, [Rei03, (9.26) Theorem].
Now define

Ã := {p ∈ AR | tr(pq) ∈ Z for all q ∈ A}. (4.4)

This is a subset of AR (it corresponds to the inverse different, [Rei03, p.
150]). We give it the natural left A-module structure induced from AR. We
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claim that there is an isomorphism of left A-modules

h : Ã −→ (AR/A)∨

p 7−→
(
q 7→ e2πi tr(pq)

)
,

where the term on the right refers to the corresponding character on AR/A.
For the left scalar action we compute

h(αp) =
(
q 7→ e2πi tr(αpq)

)
=
(
q 7→ e2πi tr(pqα)

)
by using that tr(xy) = tr(yx) for all x, y (the symmetry of the trace pairing).
However, the left scalar action on characters amounts to pre-composing with
the right scalar action in the argument, see Equation 3.1, so the character
on the right agrees with α · h(p) as required. Next, h is an isomorphism

because really Ã is just the orthogonal complement under the Pontryagin
duality pairing,

Ã = {p ∈ AR | e2πi tr(pq) = 1 for all q ∈ A} = A⊥,

so that h being an isomorphism of groups is just the standard fact A⊥ ∼=
(AR/A)∨ [Fol16, (4.39) Theorem].
(Step 2) Next, we claim that there is an isomorphism of left A-modules

g : Ã −→ A∗

p 7−→ (q 7→ tr(pq))

(with A∗ as in Equation 4.1). Firstly, for the left scalar action we find

g(αp) = (q 7→ tr(αpq)) = (q 7→ tr(pqα))

using the same argument as before and this is in line with the natural left
action as we had recalled in Equation 4.2. The map g is injective. If not,
we find a p 6= 0 such that q 7→ tr(pq) is the zero pairing, contradicting
the non-degeneracy of the trace pairing. Surjective: Given any functional
ϕ ∈ HomZ(A,Z), by the non-degeneracy of the trace pairing, we find some
p ∈ AQ such that ϕ(q) = tr(pq). Since we know that for all q ∈ A we have

ϕ(q) ∈ Z, we literally get that p meets the condition to lie in Ã.
(Step 3) Combining h and g, we obtain an isomorphism of left A-modules,

(AR/A)∨ ∼= A∗,

but by Definition 4.2 one of the characterizations of Gorenstein orders im-
plies that A∗ is a projective left module. This is what we had to show. �

Definition 4.8. Let PLCAA,R be the full subcategory of PLCAA of objects
which are also vector A-modules. In other words, this is the full subcategory
whose objects have the underlying LCA group Rn for some n.

Lemma 4.9. If A ⊂ A is a Gorenstein order, there is an exact equivalence
of exact categories

Pf (AR)
∼−→ PLCAicA,R,
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sending a right AR-module to itself, equipped with the real vector space topol-
ogy. Moreover, the fully exact subcategory inclusion PLCAA ↪→ LCAA induces
the equality

PLCAicA,R
∼−→ LCAA,R

with the category of all vector A-modules in LCAA.

Proof. Suppose F (AR) denotes the category of finitely generated free right
AR-modules. We have an exact functor

F (AR) −→ PLCAA,R

sending AR to itself, equipped with the real topology. We have AR ∈ PLCAA

thanks to Proposition 4.7. By the 2-functoriality of idempotent completion
[Büh10, §6], we get a unique induced exact functor C : Pf (AR) −→ PLCAicA,R.
By the same argument, the inclusion

PLCAA ↪→ LCAA

functorially induces an exact functor C ′ : PLCAicA,R −→ LCAA,R since LCAA

is already idempotent complete (as it is quasi-abelian), and moreover the
image consists only of vector modules. We show that C is essentially sur-
jective: Every vector module X is a right AR-module, necessarily finitely
generated since it must be finite-dimensional as a real vector space. Since
AR is semisimple, all its modules are projective and therefore X is a finitely
generated projective right AR-module. Hence, X is a direct summand of
some AnR. However, by Proposition 4.7 we have AR ∈ PLCAA,R, so the idem-
potent completion settles the claim. Note that this argument did not use
X ∈ PLCAA, so it also settles essential surjectivity of C ′. For C ′ it is clear
that the functor is fully faithful. For C it follows from continuity. (More pre-
cisely: Any AR-module homomorphism is also an R-linear map and all linear
maps between real vector spaces are continuous in the real topology. Con-
versely, any abelian group homomorphism between uniquely divisible groups
must be a Q-vector space map. By continuity, it then must be an R-linear
map using the density of Q ⊂ R. Finally, this means that the A-module
homomorphisms are even A⊗Z R = AR module homomorphisms) �

Example 4.10. We point out that this lemma would not hold without the
idempotent completion. Take A := Q[

√
2], a number field. Then A := Z[

√
2]

is the ring of integers, and thus a maximal order. We have AR ' Rσ ⊕ Rσ′ ,
where σ, σ′ correspond to the two real embeddings

√
2 7→ ±

√
2, giving the

two possible A-module structures on the reals. While Rσ is a vector module,
we have Rσ /∈ PLCAA, for otherwise there would be a PI-presentation

P ↪→ Rσ � I.

Here P ∈ Pf (A). As A has class number one, A is a principal ideal domain,
so all projective A-modules are free. As the underlying abelian group of A
is Z2, it follows that the underlying LCA group of P can only be Z2n. On



676 OLIVER BRAUNLING

the other hand, I is compact (Lemma 3.4). However, all cocompact closed
subgroups of R are isomorphic to Z. Thus, no PI-presentation can exist.

Corollary 4.11. If A ⊂ A is a Gorenstein order, all vector right A-modules
lie in PLCAicA , and they are both injective and projective objects in this cat-
egory.

Proof. As vector A-modules are projective (resp. injective) objects in LCAA

by [Bra19b, Proposition 8.1], they remain so in PLCAA (Lemma 2.4). �

Proposition 4.12. Suppose A ⊂ A is a Gorenstein order.

(1) Then for every finitely generated projective right A-module P the
sequence

P ↪→ PR � PR/P (4.5)

is a PI-presentation, where PR := R ⊗Z P is regarded as equipped
with the real vector space topology. In particular, PR/P ∈ IΠ(A).

(2) Moreover, this is a projective resolution of PR/P in PLCAA.
(3) Moreover, this is an injective resolution of P in PLCAA.

Proof. (1) Since P is projective, there exists some n ≥ 0 and idempotent
e with P = eAn. After tensoring with the reals, this cuts out the exact
sequence of Equation 4.5 as a direct summand of a direct sum of sequences
of Proposition 4.7. Thus, (PR/P )∨ is a direct summand of (AR/A)∨ and
thus injective, and Pf (A) is closed under direct summands in all right A-
modules as well. We arrive at the said PI-presentation. (2) As P and PR
are projective objects in LCAA by [Bra19b, Proposition 8.1], they remain
projective in PLCAA by Lemma 2.4, and the claim follows. (3) Use [Bra19b,
Proposition 8.1] analogously. �

Remark 4.13. Note that all discrete modules in the above proof are finitely
generated, so we do not run into the issue that P⊕(A) itself need not be
idempotent complete in general (Lemma 3.2).

Definition 4.14. Let PLCAA,RD be the full subcategory of PLCAA of objects
which can be written as a direct sum

X ' P ⊕ V

with P ∈ P⊕(A) and V a vector right A-module.

Lemma 4.15. PLCAA,RD is an extension-closed subcategory of PLCAA (and
even in LCAA).

Proof. Take C := LCAA, which is weakly idempotent complete. We want to
apply Lemma 2.2 to C with P := P⊕(A) and I the full subcategory of vector
A-modules. This works since vector modules are injective in LCAA [Bra19b,
Proposition 8.1]. Every object X ∈ PLCAA,RD has the PI-presentation

P ↪→ X � V
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with respect to this choice of P and I. Now let

X ′ ↪→ X � X ′′

be an exact sequence with X ′, X ′′ ∈ PLCAA,RD and X ∈ LCAA. Use Lemma
2.2. It provides a PI-presentation for X of the shape

P ↪→ X � V ,

with P ∈ P, V ∈ I, but since vector modules are also projective [Bra19b,
Proposition 8.1], this splits, giving X ' P ⊕ V , proving the claim. �

It follows that PLCAA,RD is a fully exact subcategory of LCAA.

Lemma 4.16. The category PLCAA,R is left s-filtering in PLCAA,RD.

Proof. (Left filtering) If f : V ′ → P ⊕ V is any morphism with V ′ ∈
PLCAA,R, then since V ′ is connected, we get a factorization V ′ → V ↪→ P⊕V
of f . (Left special) If

X ′ ↪→ X � V

is an exact sequence with V ∈ PLCAA,R, then since V is projective, we get
a splitting, providing us with the commutative diagram

0 �
�

//

��

V
1 // //

��

V

X ′ �
�

// X // // V

settling left specialness. �

Lemma 4.17. There is an exact equivalence of exact categories

P⊕(A)
∼−→ PLCAA,RD/PLCAA,R.

Proof. Send a module P ∈ P⊕(A) to itself, equipped with the discrete
topology. This is an exact functor. It is essentially surjective, directly by
the definition of PLCAA,RD. Homomorphisms X → X ′ on the right between
objects in the strict image correspond to roofs

X
e
� V ⊕ P → X ′

with V a vector module and e having vector module kernel. However, since
V is connected but X,X ′ discrete, any such roof is trivially equivalent to
one with V = 0. But for these the vector module kernel of e must be trivial,
i.e. e must be an isomorphism in PLCAA,RD. Thus, any roof is equivalent

to X
1
� X → X ′, i.e. we get just ordinary right A-module homomorphisms.

This shows that the functor in our claim is fully faithful. �

Lemma 4.18. Suppose

X ′ ↪→ V ⊕ P � V ′′ ⊕ P ′′

is an exact sequence in PLCAA whose middle and right object lie in the
subcategory PLCAA,RD. Then X ′ ∈ PLCAA,RD.
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Proof. (Step 1) Let us work in the category LCAA. First of all, we show
that it suffices to handle the case where V ′′ = 0 and P ′′ ∈ Pf (A). Consider

X ′ ↪→ V ⊕ P � V ′′ ⊕ P ′′.

Note that V ′′ is a projective object in LCAA. Hence, there is a section
g : V ′′ ↪→ V ⊕P to the epic, and since V ′′ is connected, the image of g must
lie in V . We split off this direct summand, giving

X ′ ↪→ V ⊕ P � P ′′ (4.6)

after having changed the definition of V . Next, P ′′ is projective, so we get
a section h : P ′′ ↪→ V ⊕ P . The intersection V ∩ h(P ′′) must be a discrete
finitely generated A-module (we refer to Equation 3.7 for a completely anal-
ogous construction, where we give a detailed argument). Thus, by Lemma
3.5 and since P ′′ ∈ P⊕(A) we can find a direct sum splitting P ′′ ∼= P ′′0 ⊕P ′′∞
such that h(P ′′∞) lies entirely in P and P ′′0 ∈ Pf (A). Thus, Sequence 4.6
becomes

X ′ ↪→ V ⊕ P � P ′′0 ⊕ P ′′∞
and h |P ′′

∞ is a section for P ′′∞, giving

X ′ ↪→ V ⊕ P0 ⊕ P ′′∞ � P ′′0 ⊕ P ′′∞,

(where P0 denotes a complement of the image of the section) and after we
split off the summand P ′′∞, we obtain X ′ ↪→ V ⊕P0 � P ′′0 with P ′′0 ∈ Pf (A).
It follows that if we prove the claim of the lemma for this special case, it
implies the general case.
(Step 2) Since the underlying LCA group of V ⊕ P0 has the shape Rn ⊕
(discrete), the closed subgroup X ′ must also have the shape R` ⊕ (discrete)
by [Mor77, Corollary 2 to Theorem 7 and Remark]. This direct sum splitting
on the level of LCA groups lifts to a direct sum splitting in LCAA by [Bra19b,
Lemma 6.1, (1)], so we can write

X ′ ∼= V ′ ⊕D′ (4.7)

with V ′ a vector A-module and D′ discrete in the category LCAA. Next,
we apply Proposition 3.8 to X ′, giving a further direct sum decomposition
X ′ ' P ′∞⊕ I ′∞⊕B′. We note that I ′∞ is compact connected by Lemma 3.4,
but by Equation 4.7 X ′ has no non-trivial compact connected subgroup at
all, so we must have I ′∞ = 0. Hence, X ′ ' P ′∞⊕B′. Since P ′∞ ∈ PLCAA,RD,
we conclude that the lemma is proven if we can prove B′ ∈ PLCAA,RD.
(Step 3) Thus, we may prove the claim of the lemma in the special case where
X ′ has a PI-presentation P ′ ↪→ X ′ � I ′ with P ′ ∈ Pf (A) and I ′∨ ∈ Pf (Aop).
In the isomorphism X ′ ∼= V ′⊕D′ of Equation 4.7 this implies that D′ must
be a finitely generated A-module. Then our sequence reads (thanks to the
simplification in Step 1)

V ′ ⊕D′ ↪→ V ⊕ P � P ′′ (4.8)
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with P ′′ ∈ Pf (A). We get an admissible filtration V ′ ↪→ V ′ ⊕D′ ↪→ V ⊕ P
and Noether’s Lemma yields the exact sequence

D′ ↪→ V ⊕ P
V ′

�
V ⊕ P
V ′ ⊕D′

in LCAA. We note that the term on the right is P ′′ in view of Equation
4.8. Moreover, the image of the connected V ′ inside V ⊕ P will again be
connected, so it must lie in V . Thus, we get the exact sequence

D′ ↪→ V

V ′
⊕ P � P ′′.

Since D′ and P ′′ are discrete, so must be the group in the middle. This forces
V/V ′ = 0. We get D′ ↪→ P � P ′′. As both P ′′ and D′ are finitely generated
A-modules, so must be P , i.e. P ∈ Pf (A). Since P ′′ is projective, the
sequence must split, i.e. P ∼= D′ ⊕ P ′′. Since P ∈ Pf (A) and this category
is idempotent complete, we deduce that D′ ∈ Pf (A). Since X ′ ∼= V ′ ⊕ D′
this implies X ′ ∈ PLCAA,RD as desired. �

Remark 4.19. The intermediate reduction to finitely generated modules in
the proof was necessary because we used idempotent completeness and this
holds for Pf (A), but not necessarily for P⊕(A).

Lemma 4.20. Suppose A ⊂ A is a Gorenstein order. Suppose X ∈ PLCAA

has a PI-presentation
P ↪→ X � I

with P ∈ Pf (A) and I∨ ∈ Pf (Aop). Then there exists a projective resolution

P ′1 ↪→ P ′0 � X

with P ′1, P
′
0 ∈ PLCAA,RD.

Proof. (Step 1) Since I∨ ∈ Pf (Aop), we apply Proposition 4.12 to get an
injective resolution in PLCAAop . Under Pontryagin duality, this gives us a
projective resolution

P1 ↪→ P0

q
� I,

where P0 is a vector right A-module and P1 ∈ Pf (A). We consider the
commutative diagram

P1� _

��

P0

q
����

f

~~

P �
� i // X // // I,

(4.9)

where we obtain the lift f by exploiting that P0 is a projective object. Now
consider the morphism i + f : P ⊕ P0 → X. Since i, f are continuous, so
is i + f . Moreover, the map is clearly surjective. Next, since P is finitely
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generated and P0 a vector module, the underlying LCA group of P ⊕ P0 is
of the shape Zn ⊕Rm for suitable n,m ≥ 0, and thus P ⊕ P0 is σ-compact.
Thus, by Pontryagin’s Open Mapping Theorem [Mor77, Theorem 3] i + f
must be an open map. Hence, i + f is an admissible epic in LCAA. Let K
be its kernel in LCAA. Consider the commutative diagram

0� _

��

� � // P� _

��

1 // // P� _

i
��

K

∼
��

� � // P ⊕ P0

����

i+f
// // X

����

K �
�

// P0
i+f

// // I

(4.10)

in LCAA. It can be constructed by first setting up the top two rows, which
obviously commute, and which then gives rise to the bottom row by a näıve
version of the snake lemma. We note that the quotient map i+ f agrees
with q because any p ∈ P0 can be lifted to (0, p) in P ⊕ P0 and then the
remaining arrows to I agree with q in Diagram 4.9. Thus, K is a kernel for q,
which provides us with an isomorphism K ∼= P0. It follows that K ∈ PLCAA.
It follows that Diagram 4.10 is actually a diagram in the category PLCAA.
Note that the middle row now provides a projective resolution of X. �

Define the full subcategory of modules with no small subgroups,

PLCAA,nss := PLCAA ∩ LCAA,nss,

much in the spirit of Equation 3.11. As Pontryagin duality exchanges groups
without small subgroups with compactly generated ones, we can also de-
fine PLCAA,nss as the Pontryagin dual of the full subcategory PLCAAop,cg of
PLCAAop . In particular, it is clear that PLCAA,nss is a fully exact subcategory
of PLCAA.

Corollary 4.21. Suppose that A ⊂ A is a Gorenstein order. Then every
object X ∈ PLCAA,nss has a projective resolution

P ′1 ↪→ P ′0 � X

with P ′1, P
′
0 ∈ PLCAA,RD.

Proof. Use Proposition 3.8 to write X as X ' P∞ ⊕M ⊕ I∞ such that M
satisfies the conditions of Lemma 4.20 (and therefore has a projective resolu-
tion as required). Further, P∞ ∈ P⊕(A) is projective and lies in PLCAA,RD,
so this also satisfies our claim. Finally, the underlying LCA group of I∞ is∏
i∈I T for some index set, but this has no small subgroups if and only if
I is finite ([Mos67, Theorem 2.4]). In that case, and since we know that
I∨∞ ∈ Pf (Aop), it follows that I∞ also satisfies the conditions of Lemma
4.20. �
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Theorem 4.22. Let A ⊂ A be a Gorenstein order. Let A be a stable ∞-
category. Suppose K : Catex

∞ → A is a localizing invariant with values in A.
Then there is an equivalence

K(AR)
∼−→ K(PLCAA,nss),

induced from the exact functor sending a right AR-module to itself, equipped
with the real vector space topology.

Proof. (Step 1) First of all, we show that the inclusion of the fully exact
subcategory PLCAA,RD ↪→ PLCAA,nss induces an equivalence

K(PLCAA,RD)
∼−→ K(PLCAA,nss),

because this exact functor induces a derived equivalence [Kel96, §12, The-
orem 12.1]. The assumptions of the cited theorem are met, because the
inclusion functor satisfies (the categorical opposite of) the axiom C1 by
Corollary 4.21. Further, it satisfies the stronger condition implying C2 by
Lemma 4.18.
(Step 2) Next, by Lemma 4.16 and 4.17 we have the localization fiber se-
quence

K(PLCAA,R) −→ K(PLCAA,RD) −→ K(P⊕(A)),

where K(P⊕(A)) = 0 since P⊕(A) is closed under countable coproducts and
we may thus apply the Eilenberg swindle. Next, since K is localizing, it is
invariant under going to idempotent completion, so the exact equivalence of
exact categories Pf (AR)

∼−→ PLCAicA,R of Lemma 4.9 induces an equivalence

K(AR)
∼−→ K(PLCAicA,R)

∼−→ K(PLCAA,R)

in A. Combine both results and check that the equivalence is indeed induced
by the functor claimed. �

Theorem 4.23. Let A ⊂ A be a Gorenstein order. Let A be a stable ∞-
category. Suppose K : Catex

∞ → A is a localizing invariant with values in A.
Then there is an equivalence

K(AR)
∼−→ K(PLCAA,cg),

induced from the exact functor sending a right AR-module to itself, equipped
with the real vector space topology.

Proof. Pontryagin duality is an exact functor exchanging the full subcate-
gories of compactly generated modules with those without small subgroups.
Thus, Proposition 3.3 restricts to an exact equivalence of exact categories

PLCAA,cg
∼→ PLCAopAop,nss.

Along with Theorem 4.22 applied to Aop, we get the two equivalences

K(PLCAA,cg)
∼−→ K(PLCAopAop,nss)

∼−→ K(Pf (AopR )op).
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Note that if A ⊂ A is a Gorenstein order in a semisimple algebra, so is its
opposite Aop ⊂ Aop, see Definition 4.2, so using Theorem 4.22 was legiti-
mate. Next, for any ring R the functor P 7→ HomR(P,R) induces an exact

equivalence Pf (Rop)
∼−→ Pf (R)op, relating the opposite ring with the oppo-

site category. Applied to R := AR this yields K(Pf (AopR )op)
∼−→ K(Pf (AR)).

This proves our claim. �

5. Main theorems

We may now collect all our results to obtain a locally compact topological
analogue of the relative K-group appearing in the Burns–Flach formulation
of the ETNC with non-commutative coefficients [BF01].

Theorem 5.1. Suppose A is a finite-dimensional semisimple Q-algebra and
let A ⊂ A be a Gorenstein order. Let A be a stable ∞-category. Suppose
K : Catex

∞ → A is a localizing invariant with values in A. Then there is a
fiber sequence

K(A) −→ K(AR) −→ K(PLCAA)

in A. If A is regular, there is a morphism of fiber sequences to the one of
[Bra19b, Theorem 11.2]

K(ModA,fg) −→ K(AR) −→ K(LCAA),

coming from the inclusion Pf (A) ⊆ ModA,fg and PLCAA ⊆ LCAA. This
morphism is an equivalence of fiber sequences.

Proof. Use Proposition 3.15 and Theorem 4.23. Unravelling the maps gives
all the claims about the compatibility with [Bra19b]. �

Finally, we may apply this to usual algebraic K-theory.

Definition 5.2. Suppose A is a finite-dimensional semisimple Q-algebra
and let A ⊂ A be an order. Define

LCA∗A := PLCAicA ,

i.e. as the idempotent completion of PLCAA.

Theorem 5.3. Suppose A is a finite-dimensional semisimple Q-algebra and
let A ⊂ A be a Gorenstein order. There is a long exact sequence of algebraic
K-groups

· · · → Kn(A)→ Kn(AR)→ Kn(LCA∗A)→ Kn−1(A)→ · · ·
for positive n, ending in

· · · → K0(A)→ K0(AR)→ K0(LCA∗A)→ K−1(A)→ 0.

Here K−1 denotes non-connective K-theory. Classically, these groups are
simply called the “negative K-groups”. Moreover,

Kn(LCA∗A) ∼= Kn−1(A)



RELATIVE K-GROUP IN THE ETNC, III 683

for all n ≤ −1. If A is additionally a regular order (e.g. hereditary),
this sequence agrees with the one of [Bra19b, Theorem 11.2], and moreover
Kn(LCA∗A) = 0 for n ≤ −1 in this case.

Proof. Connective K-theory is not a localizing invariant, so we first need
to work with non-connective K-theory, which we shall denote by K, instead.
It takes values in A := Sp, the stable ∞-category of spectra. From the
fiber sequence of spectra provided by Theorem 5.1, we obtain the long exact
sequence of homotopy groups (i.e. non-connective K-groups)

· · · → Kn(A)→ Kn(AR)→ Kn(PLCAA)→ Kn−1(A)→ · · · .

Next, for K denoting connective K-theory, recall that Kn(Cic) ∼= Kn(C) for
all n ≥ 0 and any exact category [Sch06]. The underlying category of Kn(A)
is Pf (A), which is idempotent complete, so we deduce

Kn(A) = Kn(A)

for all n ≥ 0. The ring AR is semisimple and in particular any module is
projective, so Kn(AR) = Kn(AR) for n ≥ 0, but moreover since this is a
regular ring, Kn(AR) = 0 for all n < 0. Thus, our sequence can be rewritten
as

· · · → K1(PLCAA)→ K0(A)→ K0(AR)→ K0(PLCAicA )→ K−1(A)→ 0

as well as Kn(PLCAA) ∼= Kn−1(A) for n ≤ −1. �

The case of group rings is of particular relevance.

Corollary 5.4. Suppose G is a finite group. Take A = Q[G] and A := Z[G].
There is a long exact sequence of algebraic K-groups

· · · → Kn(Z[G])→ Kn(R[G])→ Kn(LCA∗Z[G])→ Kn−1(Z[G])→ · · ·

for positive n, ending in

· · · → K0(Z[G])→ K0(R[G])→ K0(LCA∗Z[G])→ K−1(Z[G])→ 0

and Kn(LCA∗Z[G]) = 0 for n < 0.

The group K−1(Z[G]) is well-understood by the work of Carter. He has
shown that

K−1(Z[G]) ∼= Za ⊕ (Z/2)b

for suitable a, b ∈ Z≥0, which are a little involved to describe explicitly,
[Car80b, Theorem 1].

A lot of explicit computations can be found for example in [LMO10],
[Mag13]. Although this shows that some literature and research exists, it
appears that in general the study of negative K-groups of orders in semisim-
ple algebras is not very developed.
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Proof. Apply Theorem 5.3. This is possible because Z[G] is a Gorenstein
order by Lemma 4.3. Moreover, Kn(Z[G]) = 0 for n ≤ −2 by work of Carter
[Car80b], [Car80a].5 �

We also observe the following consequence.

Corollary 5.5. The non-connective K-theory spectrum K(LCA∗Z[G]) for the

integral group ring of any finite group is actually connective.

Finally, let us discuss the analogue of the comparison map in [Bra18]. We
refer to that paper for background on the terms and notation we employ.

Theorem 5.6. Let A be a finite-dimensional semisimple Q-algebra and A ⊂
A any order. Then the map

ϑ : K0(A,R) −→ K1(LCA∗A) (5.1)

which sends the Bass–Swan representative [P,ϕ,Q] to the double exact se-
quence 〈〈P,ϕ,Q〉〉 (as defined in [Bra18]) is a well-defined morphism from
the Bass–Swan to the Nenashev presentation. If A is a Gorenstein order,
then this map is an isomorphism.

Proof. One can adapt the proof of [Bra18] with only a few changes. First
of all, note that all objects which occur in the Nenashev representative
〈〈P,ϕ,Q〉〉 lie in the full subcategory PLCAA ⊂ LCAA, so the map naturally
lands in K1(LCA∗A) = K1(PLCAA). Moreover, all the proofs that the map is
well-defined carry over verbatim. This already suffices to show that the map
exists. It only remains to prove that it is an isomorphism if A is Gorenstein.
To this end, we also copy the proof of [Bra18]. Replace the diagram in the
statement of [Bra18, Theorem 3.2] by

· · · // K1(A,R) //

��

K1(A) // K1(AR)
δ // K0(A,R)

ϑ
��

// K0(A) // · · ·

· · · // K2(LCAA) // K1(A) // K1(AR) // K1(LCA∗A)
∂
// K0(A) // · · · ,

where ϑ is the map of Equation 5.1 and the bottom row is the one coming
from Theorem 5.3. Then proceed in the proof exactly as loc. cit., except
for the following changes: The diagram

ModA,fg //

g

��

ModA //

��

ModA/ModA,fg

Φ
��

LCAA,cg
// LCAA

// LCAA/LCAA,cg

5We remark that Hsiang has conjectured that Kn(Z[G]) = 0 for n ≤ −2 for any finitely
presented group. This remains open.
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needs to be replaced by the one of categories underlying Diagram 3.19. The
exact equivalence of exact categories

ModA/ModA,fg
∼−→ LCAA/LCAA,cg

needs to be replaced by P⊕(A)/Pf (A)
∼−→ PLCAA/PLCAA,cg of Lemma 3.14.

The rest works verbatim, always just using that all the objects which the
proof uses already lie in the full subcategory LCA∗A of LCAA. �
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