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Toeplitz operators on the space of
all entire functions

Micha l Jasiczak

Abstract. We introduce and characterize the class of Toeplitz opera-
tors on the Fréchet space of all entire functions. We completely describe
Fredholm, semi-Fredholm, invertible and one-sided invertible operators
in this class.

Contents

1. Introduction 756

2. Basic example. Characterization of Toeplitz operators and the
symbol space. 763

3. Fredholm and Semi-Fredholm Toeplitz operators. 767

4. Invertible Toeplitz operators 775

5. One-sided invertibility 776

Acknowledgment 786

References 786

1. Introduction

The theory of Toeplitz operators on the Hardy, Bergman or Fock space
is well-established. The latter space is a subspace of the space of all entire
functions. In this paper we show that there also exists an interesting theory
of Toeplitz operators on the space of all entire functions H(C). This is a
Fréchet space and importantly the fundamental tools of functional analysis
such as the Hahn-Banach theorem, the uniform boundedness principle and
the Open mapping/Closed graph theorem are available – this will play an
important role in the proofs. In our study we are primarily guided by the
known results in the Hardy space case and our recent results for Toeplitz
operators on the space of real analytic functions ([9], [23], [24], [25]). There
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are excellent references for the classical Hardy space theory of Toeplitz op-
erators ([7], [29]). For the Fock space we refer the reader to [42]. In [37] the
author studies the algebras generated by Toeplitz operators on the Bergman
spaces. Below we first present our results, underline the differences and sim-
ilarities comparing to the Hardy space case and the real analytic case. Then
we describe the motivation which led us to our study.

A continuous linear operator on H(C) is a Toeplitz operator if its matrix
is a Toeplitz matrix. The matrix of an operator is the one defined with
respect to the Schauder basis (zn)n∈N0 . We shall write down the details in
Section 2. Our first result says that such an operator is necessarily of the
form CMF , where MF is the operator of multiplication by the symbol F
and C is the (appropriately defined) Cauchy transform. This is an analog
of the classical result of Brown and Halmos [6] which characterizes Toeplitz
operators on the Hardy space as operators of the form PMφ, where P is
the Riesz projection and Mφ is multiplication by a bounded function φ, [7,
Theorem 2.7]. In the case of the space of all entire functions H(C) the
symbol space S(C) turns out to be

H(C)⊕H0(∞).

The symbol H0(∞) stands for the space of all germs at ∞ of holomorphic
functions which vanish at ∞. This is our Theorem 2.2. Hence any function
F which is holomorphic in a punctured neighborhood U \ {∞} of ∞ (the
neighborhood U of ∞ may be assumed simply connected in the Riemann
sphere C∞, since we work with germs) defines the Toeplitz operator TF by
the formula

(TF f)(z) :=
1

2πi

∫
γ

F (ζ) · f(ζ)

ζ − z
dζ.

Here, f is entire and γ ⊂ C is a C∞ smooth Jordan curve such that both
C \ U and the point z ∈ C are contained in the interior I(γ) of the curve γ
(recall Jordan’s theorem) – we emphasize that the interior is relative to C.
The characterization of Toeplitz operators on H(C) is a consequence of the
Köthe-Grothendieck-da Silva characterization of the spaces dual to H(G), G
a domain in C. We work down the details in Section 2. The space of all entire
function is isomorphic as a Fréchet space with the power series space Λ∞(n),
which is a sequence space. We therefore formulate our characterization also
in terms of this space. This is just as in the Hardy space H2(T), which is
isometrically isomorphic with the sequence space l2(N). This will also be
presented in Section 2.

Our next main result characterizes semi-Fredholm and Fredholm Toeplitz
operators.

Theorem 1. Assume that TF : H(C)→ H(C) with F ∈ S(C) is a Toeplitz
operator.

(i) The operator TF is always a Φ+-operator.
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(ii) The operator TF is a Φ−-operator if and only if TF is a Fredholm
operator.

(iii) The operator TF is a Fredholm operator if and only if F does not
vanish. In this case

indexTF = −windingF.

The statement of (iii) in Theorem 1 is deceptively similar to the Hardy
space case. A symbol F ∈ S(C) is essentially a germ. We say that F

does not vanish if F is the equivalence class of a function F̃ holomorphic
in a punctured neighborhood of ∞, which does not vanish. Observe that
in general F which does not vanish may be the equivalence class in S(C)

of a function G̃ ∈ H(U \ {∞}), U an open neighborhood of ∞ in C∞,

such that G̃(z) = 0 for some z ∈ U \ {∞}. However, the infinity cannot

be an accumulation point of the zeros of any F̃ which represents F . If
∞ is an accumulation point of zeros of any F̃ , which represents F , then
we shall say that F vanishes. Thus our theory is essentially asymptotic
in nature. One should therefore be careful as far as the definition of the
winding number of F ∈ S(C) is concerned. In order to prove (iii) we invoke
our results concerning Fredholm Toeplitz operators on the spaces of germs
H(K), where K is a finite closed interval [24, Theorem 5.3].

Let us recall that an operator T : H(C) → H(C) is a Φ+-operator if the
range of T is closed and the kernel is finite dimensional. It is a Φ−-operator
if the range of T is of finite codimension. Just as in the Banach space case,
a continuous linear operator, the range of which is of finite codimension in
H(C) has necessarily closed range. The proof of this fact relies on the Open
mapping theorem [28, Theorem 24.30], which holds true for Fréchet spaces.
Since we shall use this profound theorem, we recall it below as Theorem 3.4.
A Fréchet space has a web [28, Corollary 24.29], and is ultrabornological
[28, Proposition 24.13, Remark 24.15 (b)]. We shall refrain from writing
down the details of the proof that the range of a continuous linear operator
which is of finite codimension is closed. Instead we refer the reader to [9,
Proposition 5.1] for essentially the same argument.

We shall show that if F vanishes, that is, if ∞ is an accumulation point
of the zeros of any F̃ , which represents F , then the operator TF is injective
and has closed range (Theorem 3.5 and Corollary 3.6). In order to prove
that the range is closed we shall represent the space H(C) as

lim projH2(rT),

where H2(rT) is the Hardy space on the disk of radius r > 0 and use the
Fredholm index theory of Toeplitz operators on the Hardy spaces. Injectivity
is in turn a consequence of density of the image of the adjoint operator T

′
F ,

which follows from our previous results [24, Theorem 5.6]. We also show

that if F vanishes and (zn) are the zeros of F̃ , which represents F , then for
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any g in the range of TF it holds that

lim
n→∞

g(zn) = 0.

Hence, the range R(TF ) is of infinite codimension. This suffices to prove (ii)
of Theorem 1.

We remark that in the case of the Hardy spaces there are Toeplitz opera-
tors of class Φ−, which are not Fredholm. Also, not every Toeplitz operator
is a Φ+-operator. A characterization of these classes of operators was given
by Douglas and Sarason [17], see also [7, Theorem 2.75]. For instance, for a
unimodular symbol ϕ ∈ L∞ it holds that the Toeplitz operator with symbol
ϕ is a Φ+-operator if and only if dist L∞(ϕ,C + H∞) < 1. This is a met-
ric characterization. One can therefore rather not expect such a result in
the case of real analytic functions, the topology of which is not metrizable.
Instead we proved in [23, Main Theorem 1.2] that a Toeplitz operator is a
Φ+-operator if and only if the symbol has no non-real zeros accumulating
at a real point. We also proved that a Toeplitz operator is Φ−-operator if
and only if the symbol has no real zeros going to infinity [24, Main Theorem
1.3]. The methods worked out in that case can be applied to prove Theorem
1. We emphasize however that the symbol spaces in the H(C) case and the
A(R) case are different. Roughly speaking there is ’only one infinity’ in the
H(C) space case. This is the key difference comparing with the real analytic
case which is responsible for the difference between Theorem 1 above and
[24, Main Theorem 1.2 and Main Theorem 1.3].

Next we characterize invertible Toeplitz operators.

Theorem 2. Assume that TF : H(C)→ H(C) with F ∈ S(C) is a Toeplitz
operator.

(i) Either kerTF = {0} or kerT
′
F = {0}.

(ii) The operator TF is invertible if and only if it is a Fredholm operator
of index 0.

Theorem 2 is in perfect analogy with the Hardy space case. In particular,
statement (i) is the classical Coburn-Simonenko theorem [8], [34], also [7,
Theorem 2.38]. Theorem 2 is essentially a consequence of Liouville’s theo-
rem. We proved such results also in the real analytic case [23, Theorem 1.2
and Theorem 1.3].

It is a consequence of standard functional analytic arguments that an in-
jective Fredholm operator is left invertible and a surjective Fredholm opera-
tor is right invertible. In other words, in view of Theorem 2, if F ∈ S(C) does
not vanish and windingF ≥ 0, then TF is left invertible. If windingF ≤ 0,
then TF is right invertible. Our next main result concerns symbols which
vanish. We shall show that if F ∈ S(C) vanishes then there exists a sequence

of functionals ξn ∈ H(C)
′

such that

R(TF ) =

∞⋂
n=1

ker ξn. (1.1)
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This is Theorem 5.2 below. Then for these functionals we consider a gener-
alized interpolation (Toeplitz) problem and study the map

Ξ: H(C) 3 f 7→ (ξn(f))n∈N ∈ ω.

Here, the symbol ω stands for the Fréchet space of all sequences. We show
that the map Ξ is surjective by means of Eidelheit’s theorem, which we recall
as Theorem 5.4 below. Then we show that ker Ξ, which by (1.1) is equal to
R(TF ), is not a complemented subspace of H(C). This part of the argument
is essentially that of [32, p. 162]. This establishes our third main result.

Theorem 3. If F ∈ S(C) vanishes then the range of the operator

TF : H(C)→ H(C)

is not a complemented subspace of H(C).
As a result, the operator TF is left invertible if and only if F does not

vanish and windingF ≥ 0. The operator TF is right invertible if and only if
F does not vanish and windingF ≤ 0.

We initiated the research on operators on the space of real analytic func-
tions on the real line A(R) defined by Toeplitz matrices in [9]. This was
continued in [23], [24] and [25]. As we mentioned above, we characterized
Fredholm, semi-Fredholm, invertible and one sided invertible Toeplitz oper-
ators on the space A(R). We worked out ibid. some methods to investigate
this class of operators. We apply them, with necessary modifications, in the
case of the space of all entire functions in this paper. Actually the case of
entire functions is essentially easier. The reader who knows our previous
research notices that some arguments could be made shorter. We could just
indicate the difference between the current case and the case of real analytic
functions. This would be at the cost of clarity and completeness. We how-
ever strive to make the paper self-contained. We emphasize again that the
most important difference lies in the symbol space.

It seems natural to study operators defined by Toeplitz matrices also
on the other locally convex spaces of holomorphic functions, not only on
A(R). These operators played important roles in mathematics before they
were called Toeplitz operators – below we give some interesting examples.
In some sense A(R) is a large space, the other extreme case is the space
of all entire functions H(C). This is arguably rather a small space. We
emphasize that there is nowadays growing interest in operators on different
locally convex spaces, especially spaces of holomorphic and differentiable
functions, which are not Banach spaces. The literature is really vast, we
mention therefore here only these papers which have some influence on our
research [1], [3], [5] and [4]. In [25] we presented the motivation which led us
to the study of Toeplitz operators on A(R). The arguments for the current
research are essentially the same. We feel however that we should at least
sketch them here to place our study in the correct perspective.
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Perhaps the most important example of operators which we investigate is
given by the following Cauchy’s integral

1

2πi

∫
γ

f(ζ)∏n
k=0(ζ − zk)

dζ

ζ − z
. (1.2)

Here, z0, . . . , zn ∈ C and γ is a C∞-smooth Jordan curve such that the point
z and the points z0, . . . , zn are contained in the interior I(γ) of the curve γ.
For any z ∈ C such a curve can be chosen, by Cauchy’s theorem the value of
(1.2) does not depend on γ. Hence, the integral defines an entire function,
when f is entire.

An important situation occurs when zk = k, k = 0, 1, . . . , n. Then

1

2πi

∫
γ

f(ζ)∏n
k=0(ζ − k)

dζ

ζ − z
=

(−1)n

n!

n∑
k=0

(
n

k

)
(−1)kf(k) =

(−1)n

n!
Dn[f ].

This integral is usually called Nörlund-Rice integral. This is an impor-
tant object in theoretical computer science and discrete mathematics. The
method of estimating it is considered ’one of the basic asymptotic techniques
of the analysis of algorithms’ [18], [30]. We refer the reader especially to [18]
for the fascinating presentation of the problem of estimating finite differ-
ences. The methods used ibid. show the unity of the whole mathematics,
its discrete and continuous faces.

Observe that for (1.2) to make sense, it suffices that f is holomorphic in
some neighborhood of the real line R. This was our starting point in [9],
[23], [24] and [25]. However in many applications one can assume that f is
entire. This is our perspective here.

For a general choice of the points z0, . . . , zn ∈ C we have

1

2πi

∫
γ

f(ζ)∏n
k=0(ζ − zk)

dζ

ζ − z
= [z, z0, . . . , zn].

The symbol [z, z0, . . . , zn] is the divided difference

[z, z0] :=
[z]− [z0]

z − z0
=
f(z)− f(z0)

z − z0

. . .

[z, z0, . . . , zn] :=
[z, z0, . . . , zn−1]− [z0, . . . , zn]

z − zn
.

This is an object of fundamental importance in interpolation theory. We
refer the reader to the beautiful books [19] and [27] and our previous research
[25] for further information. Here we only say that the divided differences are
discrete analogs of the derivatives and they are used in Newton interpolation
formula. Some holomorphic functions develop into Newton series

a0 +

∞∑
n=1

an
n!

(z − z0) · · · · · (z − zn−1). (1.3)
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Then
an
n!

= [z0, . . . , zn]

and the convergence of (1.3) is governed by the Toeplitz operator (1.2). In
fact, for an entire function f

f(z) = [z0] + [z0, z1](z − z0) + [z0, z1, z2](z − z0)(z − z1) + · · ·+
+ [z0, . . . , zn](z − z0)(z − z1) . . . (z − zn−1) +Rn(z),

where the rest

Rn(z) =
(z − z0) . . . (z − zn)

2πi

∫
γ

f(ζ)∏n
k=0(ζ − zk)

dζ

ζ − z
is the product of Toeplitz operators, which we study in the current paper
[19, p. 12 and p. 34], see also [27, II.2.11]. This is the well-known Newton
interpolation formula.

We mention here that some answers to the question of the convergence
of Newton series are known exactly for entire functions [19, Satz 1, p. 43,
Satz 1, p. 47] and also [19, Chapter II, §2 and §3]. The fact that a holomor-
phic function develops into Newton series may have profound consequences.
Pólya characterized functions holomorphic in some half-space <z > α, sat-
isfying certain growth condition which take integer values at integers as
polynomials 1 (see [19, p. 113, Satz 3]. The estimate of integrals of the type
(1.2) is also one of the key elements in the theorem which says that α and
eα cannot be simultaneously algebraic numbers [19, p. 167, Satz 9].

This paper is a part of a project, the aim of which is to build on locally
convex spaces of functions, especially on the space of real analytic functions,
a theory of concrete operators following the ideas of the theory of operators
on Hilbert spaces. The main object of interest is the (appropriately defined)
matrix associated to an operator. The idea to consider operators determined
by matrices associated with them comes from the work of Domański and
Langenbruch. In a series of papers [10], [11], [12] they created the theory of
the so-called Hadamard multipliers on the space of real analytic functions.
These are the operators the associated matrix of which is just diagonal. This
research was continued by Domański, Langenbruch and Vogt [16] and also
by Vogt in [39], [40] for spaces of distributions, in [38] for spaces of smooth
functions and by Trybu la in [36] for spaces of holomorphic functions. In [14]
and [15] Domański and Langenbruch showed that this theory provides the
correct framework to study Euler’s equation. This equation on temperate
distributions was studied in [41] by Vogt. Golińska in [20] and [21] studies
operators defined by Hankel matrices. The results of this paper are the
analogs for the space of entire functions of the results obtained previously
for the space of real analytic functions on the real line ([9], [23], [24], [25]).

The paper is divided into five sections. In the next one we obtain the
aforementioned characterization of Toeplitz operators on H(C). The third

1The formulation of this theorem was not correct in our previous paper [25].
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section is devoted to the proof of Theorem 1. In the fourth we provide
a proof of Theorem 2. Lastly, we study one-sided invertibility of Toeplitz
operators, that is, we prove Theorem 3. We conclude the paper by applying
our result to the Toeplitz operators, the symbols of which are (classes of)
rational functions.

2. Basic example. Characterization of Toeplitz operators
and the symbol space.

Let U be an open simply connected neighborhood of ∞ in the Riemann
sphere C∞. Assume that F is holomorphic in the punctured neighbor-
hood U \ {∞} of the point ∞. We assign to the function F an operator
TF : H(C)→ H(C) and argue that it is reasonable to call the operator TF a
Toeplitz operator. Then we show, essentially following the arguments of [9,
Theorem 1], that all Toeplitz operators on H(C) are of the form TF for some
F of the form described above. We provide these (elementary) arguments
to motivate our further study.

Let f ∈ H(C) and let z ∈ C. Choose a C∞ smooth Jordan curve γ ⊂
(U \{∞}) such that the point z belongs to the interior I(γ) (recall Jordan’s
theorem) of the curve γ and also the connected set C \ U is contained in
I(γ). That is, Ind γ(z) = Ind γ(w) = 1 for any w /∈ U .

Put

(TF f)(z) :=
1

2πi

∫
γ

F (ζ) · f(ζ)

ζ − z
dζ. (2.1)

Naturally, for any z ∈ C we can choose such a curve γ. By Cauchy’s theorem
the value of integral (2.1) does not depend on γ. This implies that (TF f)(z)
is well-defined for any z ∈ C and it is a holomorphic function.

Recall that H(C) is a Fréchet space when equipped with the topology
of uniform convergence on compact sets, i.e. the topology induced by all
seminorms

‖f‖K := sup
z∈K
|f(z)|,

with K ⊂ C compact. Our reference text as far as the theory of locally
convex spaces is concerned is [28]. We refer the reader also to [33] and [35],
where some information on Fréchet spaces can also be found.

The following fact is immediate

Proposition 2.1. The operator TF : H(C)→ H(C) is continuous.

Let as above F be holomorphic in U \ {∞}, where U is an open simply
connected in C∞ neighborhood of the infinity. Assume further that z ∈ U .
It follows from Cauchy’s theorem that

F (z) =
1

2πi

∫
γouter

F (ζ)

ζ − z
dζ +

1

2πi

∫
γinner

F (ζ)

ζ − z
dζ,

where γouter, γinner are C∞ smooth Jordan curves such that γinner is con-
tained in the interior I(γouter) of γouter and C \ U ⊂ I(γinner). Also, the
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point z belongs to the intersection of the interior I(γouter) of γouter and
the exterior E(γinner) of the curve γinner. The orientation of the curves
γinner, γouter is induced by the natural orientation of C. This implies that

F = F+ + F−, (2.2)

where F+ is entire and F− is holomorphic in some neighborhood of ∞ and
vanishes at ∞. Develop the functions F+ and F− into Laurent series

F+(z) =
∞∑
m=0

amz
m,

F−(z) =

∞∑
m=1

a−m
zm

.

The second series converges for |z| > R with an R large enough, while the
first is convergent in C.

Then

(TF f)(z) = (F+ · f)(z) +
1

2πi

∫
γ

F−(z) · f(z)

ζ − z
dζ (2.3)

for an appropriate curve γ. We compute now TF f for f(z) = zn. It is
elementary that for |z| < R

1

2πi

∫
|ζ|=2R

F−(ζ) · ζn

ζ − z
dζ =

∞∑
m=1

a−m ·
1

2πi

∫
|ζ|=2R

ζn

ζ − z
dζ

ζm

=

∞∑
m=1

∞∑
k=0

a−m ·
( 1

2πi

∫
|ζ|=2R

ζn

ζk+m+1
dζ
)
· zk

= a−n + a−n+1z + · · ·+ a−1z
n−1.

In view of (2.3) we have

(TF ζ
n)(z) = a−n + a−n+1z + · · ·+ a−1z

n−1 + zn
( ∞∑
m=0

amz
m
)

= a−n + a−n+1z + . . .

Now create an infinite matrix M by putting the Taylor series coefficients of
the entire functions TF ζ

n, n ∈ N in the consecutive columns:

M :=


a0 a−1 a−2 . . .
a1 a0 a−1 . . .
a2 a1 a0 . . .

· · · · · · · · · . . .

 . (2.4)

This is an infinite Toeplitz matrix. Naturally, we may create such a matrix
for any operator T : H(C) → H(C). Indeed, let T (ζn)(z) =

∑∞
m=0 amnz

m

be the Taylor series development of the entire function T (ζn). Then the
corresponding matrix is just MT := (amn)m,n∈N0 . We claim that if for a
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continuous linear operator T : H(C) → H(C) the matrix MT is a Toeplitz
matrix, then T is the operator TF for a function F , which is holomorphic in
a punctured neighborhood of ∞.

Indeed, assume that T : H(C)→ H(C) is a continuous linear operator for
which the matrix MT is a Toeplitz matrix. Assume that MT is given by
(2.4) for some complex number an, n ∈ Z. Put F+ := T1. Then F+(z) =∑∞

n=0 anz
n is an entire function. Consider now the continuous functional

φ : H(C) → C defined by the condition φ(f) := (Tf)(0). We have φ(zn) =
a−n. Recall that

H(C)
′
b
∼= H0(∞). (2.5)

This characterization of the space dual to H(C) is known as the Grothen-
dieck-Köthe-da Silva duality [26, pp 372–378], also [2, Theorem 1.3.5]. The
duality between H(C) and H0(∞) is given by the integral

1

2πi

∫
γ
f(z)G(z)dz, (2.6)

where f is entire, G is holomorphic in some neighborhood U of ∞ (which
as usual may be assumed simply connected in C∞) and vanishes at ∞.
The C∞-smooth Jordan curve is chosen in such a way that C \ U ⊂ I(γ).
Naturally, the value of (2.6) depends only on the equivalence class of G in
the space of germs H0(∞).

The subscript b in (2.5) indicates that the dual space of H(C) is equipped
with the strong topology, that is with the topology of uniform convergence
on bounded sets of H(C). We remark that in general, unlike in the Banach
space case, there is no distinguished topology on the dual space of a locally
convex space. We refer the reader to [28, Chapter 23] for a presentation of
the duality theory of locally convex spaces.

Recall that for an entire function f , φ(f) = (Tf)(0). There exists there-
fore a function G ∈ H0(V ), where V is a simply connected in C∞ neighbor-
hood of the infinity such that

φ(f) =
1

2πi

∫
γ
f(z)G(z)dz, (2.7)

where γ ⊂ C is a C∞ smooth Jordan curve such that C \ V ⊂ I(γ). For

an R > 0 large enough we have G(z) =
∑∞

n=1
G−n
zn when |z| > R. It

follows from (2.7) that φ(zn) = G−(n+1). That is, a−n = G−(n+1). Set
F := F+ + z ·G− a0. Then F is a function holomorphic in some punctured
neighborhood of∞ and the matrix of TF is given by (2.4). This means that
T and TF are equal on polynomials. Hence, they are equal. We proved the
following theorem:

Theorem 2.2. The following conditions are equivalent:

(i) T : H(C) → H(C) is a continuous linear operator, the matrix of
which is given by (2.4) for some complex numbers an, n ∈ Z;



766 MICHA L JASICZAK

(ii) There exists a function F , which is holomorphic in a punctured
neighborhood U \ {∞} of ∞ in C∞ such that T = TF . Then

an =
1

2πi

∫
γ
F (z)z−n−1dz, n ∈ Z,

where γ is a C∞ smooth Jordan curve in U \ {∞} (the set U may
be assumed to be simply connected in C∞) such that C \ U ⊂ I(γ)
and 0 ∈ I(γ).

The proof of Theorem 2.2 is essentially the same as [9, Theorem 1]. We
feel it was better to repeat it, since the other results are based on this
Theorem.

Observe that if Fi, i = 1, 2 are functions holomorphic in Ui \ {∞}, Ui are
neighborhoods of ∞ in C∞, such that

F1|U\{∞} = F2|U\{∞} (2.8)

for some open neighborhood U of the infinity, then TF1 = TF2 . In is natural
therefore to define the symbol space S(C) of Toeplitz operators on the space
H(C) as the inductive limit of the spaces H(U \{∞}), where U run through
open neighborhoods of ∞,

S(C) := lim indH(U \ {∞}).
That is, S(C) is the space of equivalence classes of functions holomorphic in
some punctured neighborhood of∞ with respect to the equivalence relation
(2.8). The space S(C) carries a natural locally convex topology as the
inductive limit of Fréchet spaces.

Recall that the power series space of infinite type Λ∞(n) is defined in the
following way:

Λ∞(n) :=
{
x ∈ CN0 :

∞∑
n=0

|xn|2r2n <∞, for all r > 0
}
.

We refer the reader to [28, Chapter 29] for a presentation of the theory of
power series spaces. We only need here the fact that Λ∞(n) ∼= H(C) as
Fréchet spaces. In fact, an isomorphism is given by

T : Λ∞(n)→ H(C), (T x)(z) :=

∞∑
n=0

xnz
n.

This is explained in [28, p. 360, Example 29.4. (2)] – we slightly changed the
notation and index sequences starting with zero rather than one. Observe
that

T (0, . . . , 0, 1︸︷︷︸
n

, 0, . . . )(z) = zn.

Consider the matrix of a continuous linear operator S : Λ∞(n) → Λ∞(n)
with respect to the standard Schauder basis. We immediately have the
following theorem:
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Theorem 2.3. An infinite Toeplitz matrix (cmn)m,n∈N0 = (am−n), where
(an)n∈Z is a sequence of complex numbers, is a matrix of a continuous linear
operator on the infinite power series space Λ∞(n) with respect to the standard
Schauder basis if and only if there exists a function F holomorphic in some
punctured neighborhood U \{∞} of ∞, U a simply connected open set in the
Riemann sphere C∞, such that

an =
1

2πi

∫
γ
F (z)z−n−1dz, n ∈ Z

where γ is a C∞-smooth Jordan curve in U such that C \ U ⊂ I(γ) and
0 ∈ I(γ).

3. Fredholm and Semi-Fredholm Toeplitz operators.

We shall say that a symbol F ∈ S(C) does not vanish if F is the equiv-

alence class in S(C) of a function F̃ holomorphic in U \ {∞}, U an open
neighborhood of ∞ in C∞, which does not vanish in U \ {∞}. Otherwise
we say that F vanishes.

We intend now to characterize the Toeplitz operators TF , F ∈ S(C),
which are Fredholm operators, as the operators, the symbol of which does
not vanish. That is, we prove Theorem 3.1.

Theorem 3.1. A Toeplitz operator TF : H(C) → H(C), F ∈ S(C) is a
Fredholm operator if and only if the symbol F does not vanish. In this case,

indexTF = −windingF.

For F ∈ S(C) which does not vanish we need to define the number

windingF . Assume that F is the equivalence class of F̃ ∈ H(U \ {∞}),
where U is an open simply connected in C∞ neighborhood of ∞, such that
F̃ does not vanish in U \ {∞}. We put

windingF := IndF̃◦γ(0) =
1

2πi

∫
γ

F̃
′
(ζ)

F̃ (ζ)
dζ,

where γ is (any) C∞ smooth Jordan curve in U \{∞} such that C\U ⊂ I(γ).
We may always assume that γ is |z| = R for an R large enough. It follows
from Cauchy’s Theorem that the definition is correct. It does not depend
on γ and it does not depend on the representative F̃ .

Our goal is to deduce the proof of Theorem 3.1 from the corresponding
result for the Toeplitz operators on the spaces of germs on finite closed
intervals of C, [24, Theorem 5.3]. We need therefore to determine the adjoint

operator T
′
F . Recall that the dual space of H(C) with the strong topology

is isomorphic as a locally convex space with the space H0(∞) of germs of
holomorphic functions at ∞, which vanish at ∞, [26, pp 372–378], see also
[2, Theorem 1.3.5]. We have

H0(∞) = lim indH0(V ), (3.1)



768 MICHA L JASICZAK

where V run through open neighborhoods of ∞ and H0(V ) is the Fréchet
space of all functions holomorphic in V , which vanish at∞. Let g ∈ H0(∞).
Then g is the equivalence class in lim indH0(V ) of a holomorphic function
g̃ : V → C, which vanishes at ∞. The set V may be assumed to be simply
connected in C∞. Let us recall that the duality between H(C) and H0(∞)
is given by

(f, g) 7→ 〈f, g〉 =
1

2πi

∫
γ
f(z)g̃(z)dz, (3.2)

where γ is a C∞ smooth Jordan curve in V \ {∞} such that C \ V ⊂ I(γ).
Incidentally, this and decomposition (2.2) imply that

S(C) ∼= H(C)⊕H0(∞) ∼= H(C)⊕H(C)
′
.

We need to determine the adjoint operator T
′
F : H0(∞) → H0(∞). As-

sume that F is holomorphic in U \{∞}, U an open simply connected in C∞
neighborhood of ∞. Let g be the equivalence class of a function g̃ which is
holomorphic in some simply connected neighborhood V of ∞ and vanishes
at∞. Let δ be a C∞ smooth Jordan curve in V \{∞} such that C\V ⊂ I(δ).
Then for any f ∈ H(C) the function TF f is entire and

〈TF f, g〉 =
1

2πi

∫
δ
(TF f)(z)g̃(z)dz =

1

2πi

∫
δ

( 1

2πi

∫
γ

F (ζ) · f(ζ)

ζ − z
dζ
)
g̃(z)dz.

Here, γ is a C∞ smooth Jordan curve in U \ {∞} such that both δ ⊂ I(γ)
and C \ U ⊂ I(γ). By Fubini’s Theorem and Cauchy’s integral formula

〈TF f, g〉 =
1

2πi

∫
γ

( 1

2πi

∫
δ

g̃(z)

ζ − z
dz
)
f(ζ)·F (ζ)dζ =

1

2πi

∫
γ
g̃(ζ)·f(ζ)·F (ζ)dζ,

(3.3)
since g̃ vanishes at ∞.

We may assume that the intersection U ∩ V is simply connected in C∞,
in particular, it is connected. Let ∆ be a C∞ smooth Jordan curve in
(U ∩ V ) \ {∞} such that C \ (U ∩ V ) ⊂ I(∆). For ζ ∈ E(∆) define

(SF g)(ζ) :=
1

2πi

∫
∆

F (z) · g̃(z)

ζ − z
dz,

The function SF g is holomorphic in some neighborhood of ∞ and vanishes
at ∞. Observe that we may assume by an appropriate choice of the curve
∆ that SF g is holomorphic in U ∩ V .

The equivalence class of this function in lim indH0(V ) defines an element
in H0(∞). We have therefore defined the operator SF : H0(∞) → H0(∞)
– we abuse the notation and denote by SF both the operator between the
spaces H0(U ∩V ) and on the inductive limit H0(∞). One easily checks that
SF is indeed well-defined and continuous, when H0(∞) is equipped with the
topology of the inductive limit (3.1).
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Let Γ be a C∞ smooth Jordan curve in (U ∩V ) \ {∞} such that C \ (U ∩
V ) ⊂ I(Γ). Then

〈f, SF g〉 =
1

2πi

∫
Γ
f(ζ)(SF g)(ζ)dζ =

1

2πi

∫
Γ
f(ζ)

1

2πi

∫
∆

F (z) · g̃(z)

ζ − z
dzdζ,

where ∆ ⊂ (U ∩V )\{∞} satisfies Γ ⊂ E(∆) and C\(U ∩V ) ⊂ I(∆). Again
Fubini’s theorem and Cauchy’s integral formula gives

〈f, SF g〉 =
1

2πi

∫
∆
F (z) · g̃(z) · f(z)dz.

By Cauchy’s theorem,

1

2πi

∫
∆
F (z) · g̃(z) · f(z)dz =

1

2πi

∫
γ
g̃(ζ) · f(ζ) · F (ζ)dζ,

since the curves γ,∆ are homologous in U ∩ V .

Proposition 3.2. The operator SF : H0(∞)→ H0(∞) is the adjoint of the
operator TF in the sense of duality (3.2).

Consider now the space H(0). That is, the space of all germs of holomor-
phic functions on the origin,

H(0) = lim indH(W ).

Here, the open sets W run through open neighborhoods of 0. Consider a
map

C : H0(∞)→ H(0)

defined in the following way: assume that f ∈ H0(∞) is the equivalence

class in H0(∞) of a function f̃ , which is holomorphic in a neighborhood
V of ∞ and vanishes at infinity. Define Cf as the equivalence class in
H(0) of the function 1

z f̃(1
z ). One easily shows that the definition is correct.

Furthermore, the map C factorizes through continuous maps between the
Fréchet spaces H0(V ) and H(W ), where V is an open neighborhood of ∞
and W is an open neighborhood of 0 (formally we use [28, Proposition
24.7]). This implies that C is a continuous map between lim indH0(V ) and
lim indH(W ), where again V run through open neighborhoods of∞ and W
run through open neighborhoods of 0.

Let g ∈ H(0). Then g is the equivalence class in lim indH(W ) of a
function g̃ ∈ H(W ) for some open neighborhood of 0. Let D : H(0) →
H0(∞) be defined for g as the equivalence class in H0(∞) of the function
1
z g̃(1

z ). Then, by the same arguments, D is well-defined and continuous.

One also easily checks that D = C−1.
The space H(0) is a special case of a space H(K), K ⊂ R compact,

which is the space of all germs of holomorphic functions over the set K.
For this space we defined in [24] also Toeplitz operators. We now sketch
this construction, since we want to deduce the proof of Theorem 3.1 from
the corresponding result for the spaces H(K). We specialize to the case
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K = {0}. The symbol space, denoted X (0), is the defined as the inductive
limit of the spaces H(W \ {0}), where W are open neighborhoods of 0,

X (0) := lim indH(W \ {0}).

Let G ∈ X (0). Then G is represented by some function G̃, which is holo-
morphic in W \ {0}, W an open neighborhood of 0. Let g ∈ H(0) be the
equivalence class in H(0) of g̃ holomorphic in H(V ), V an open neighbor-
hood of 0. Then TG,0g is defined as the equivalence class in H(0) of the
holomorphic function

1

2πi

∫
γ

G̃(ζ) · g̃(ζ)

ζ − z
dζ,

where γ is a C∞ smooth Jordan curve such that 0 ∈ I(γ) and z ∈ I(γ).
This defines a continuous linear operator TG,0 : H(0)→ H(0). Essentially

the same arguments as in Section 2 show that it is reasonable to call the
operator TG,0 a Toeplitz operator. We provided the details in [24, Section
5]. Importantly, we proved the following theorem

Theorem 3.3 ([24], Theorem 5.3). Let G ∈ X (0). The operator

TG,0 : H(0)→ H(0)

is a Fredholm operator if and only if there exists an open set U 3 0 and a
function G̃ ∈ H(U \ {0}) such that G̃ does not vanish in U \ {0} and G is

the equivalence class in X (0) of G̃.

This theorem is formulated in [24] for the more general case of the spaces
H(K), K a compact interval contained in R. Furthermore, an inspection of
the proof in [24] shows that

indexTG,0 = −windingG := −Ind G̃◦γ(0) = − 1

2πi

∫
γ

G̃
′
(ζ)

G̃(ζ)
dζ,

where γ is a C∞ smooth Jordan curve in U \{0} with 0 ∈ I(γ). We use this
to prove Theorem 3.1.

Proof of Theorem 3.1. Assume that F ∈ S(C) does not vanish. That is,

F is the equivalence class of a function F̃ holomorphic in U \{0}, where U is

an open neighborhood of ∞, which does not vanish in U . Let G̃(z) := F̃ (1
z )

and define G as the equivalence class in X (0) of the function G̃. Consider
the following composition of operators

H0(∞)
C→ H(0)

TG,0→ H(0)
C−1

→ H0(∞),

i.e. the operator S := C−1 ◦ TG,0 ◦ C. We claim that S = T
′
F . Indeed, one

easily shows that close to ∞,

S(
1

ζn
)(z) = b−(n−1)

1

z
+ b−(n−2)

1

z2
+ · · ·+ b0

1

zn
+ . . . ,
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where bn, n ∈ Z are the moments of G, i.e.

bn =
1

2πi

∫
γ
G̃(z)z−n−1dz,

where γ is a C∞ smooth Jordan curve in V , G̃ ∈ H(V ), with 0 ∈ I(γ).
Similarly,

T
′
F (

1

ζn
)(z) = an−1

1

z
+ an−2

1

z2
+ · · ·+ a0

1

zn
+ . . .

It follows however from the definition of G that bn = a−n, n ∈ Z. That
is, the operators T

′
F and S are equal on a set, which is linearly dense in

H0(∞). Indeed, this follows from Runge’s theorem applied to the spaces
H0(V ), with V an open neighborhood of ∞ and the definition of H0(∞) as
lim indH0(V ).

The operators T
′
F and S are therefore equal. Hence, since TG,0 is a Fred-

holm operator by Theorem 3.3 and C,C−1 are isomorphisms, the operator
T
′
F is a Fredholm operator. Also,

indexT
′
F = indexS = indexTG,0.

We have

indexTG,0 = − 1

2πi

∫
γ

G̃
′
(ζ)

G̃(ζ)
dζ,

where γ(t) = reit, t ∈ [0, 2π] and r > 0 is sufficiently small. On the other
hand,

1

2πi

∫
γ

G̃
′
(ζ)

G̃(ζ)
dζ =

1

2πi

∫
γ

[F̃ (1
ζ )]
′

F̃ (1
ζ )

dζ =
1

2πi

∫
1
γ

F̃
′
(ζ)

F̃ (ζ)
dζ

= −Ind F̃◦δ(0) = −windingF,

where δ(t) = 1
re
it. It follows from [31, Satz 7.1] that, just as in the Banach

space case, indexTF = −indexT
′
F . We infer that

indexTF = −windingF,

which completes the proof.
The last argument requires however some comment. We used the fact

that the operator T
′
F is a %-transformation [31, Definition 1.1]. An operator

is a %-transformation [31, Satz 1.1] if it is continuous and open onto its
image (i.e. the image of an open set is open in the relative topology of the
range) and both the kernel and the range of the operator are (continuously)
complemented.

We justify the claim now that T
′
F is a %-transformation. Roughly speak-

ing, we need an appropriate open mapping theorem.

Theorem 3.4 (Open mapping theorem, [28], Theorem 24.30). Let E and
F be locally convex spaces. If E has a web and F is ultrabornological, then
every continuous, linear, surjective map S : E → F is open.
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We refer to [28] for the proof of this profound result. Also, on p. 287
therein one can find the (rather technical) definition of a web, on p. 283 one
finds discussion of ultrabornological spaces – these are just the spaces, the
topology of which is induced by some inductive system of Banach spaces.

The space H0(∞) carries the topology of an inductive system of Fréchet
spaces and, as a result, it is bornological [28, Definition p. 281], since every
Fréchet space is ultrabornological [28, Proposition 24.13, Remark 24.15 (b)].
Furthermore, the space H0(∞) is complete [28, Proposition 25.7]. Hence,
it is ultrabornological [28, Remark 24.15 (b)], another argument follows
from the fact that the dual space of the complete Schwartz space H(C) is
ultrabornological [28, Proposition 24.23]. Also, the space H0(∞) has a web
[28, Lemma 24.28]. Thus, we can apply the Open mapping theorem for
operators on H0(∞). The arguments of [9, Proposition 5.1] show that a
continuous linear operator, the range of which is a finite codimension has
closed range.

The codimension of the range of T
′
F in H0(∞) is finite – we justified

this above when we proved that T
′
F = C−1 ◦ TG,0 ◦ C. It follows from [22,

Theorem 13.5.2] that the range of T
′
F is bornological. As we argued above,

the range of T
′
F is closed in a complete space H0(∞). Hence, the range

is ultrabornological [28, Remark 24.15 (b)]. We can again apply the Open

mapping theorem and conclude that T
′
F is an open map onto its range.

The kernel of T
′
F is of finite dimension, the range of T

′
F is of finite codi-

mension in H0(∞). The fact that all linear topologies on finite dimensional
linear spaces coincide [33, Theorem 1.21] and a standard application of the

Hahn-Banach theorem show that the kernel and the range of T
′
F are com-

plemented in H0(∞). This shows that T
′
F is a %-transformation.

Also, the space H(C) is a Montel space and, as a result, it is reflexive [28,

Remark 24.24 (a)], see also [35, Corollary p. 376]. We infer that T
′′
F = TF

and apply [31, Satz 7.1] in order to eventually conclude that indexT
′
F =

−indexTF . �

Our next goal is a characterization of semi-Fredholm Toeplitz operators.
We start with the following theorem.

Theorem 3.5. Assume that F ∈ S(C) vanishes. Then the range of

TF : H(C)→ H(C)

is closed.

Proof. Assume that F is the equivalence class in S(C) of a function F̃ ∈
H(U\{∞}), U simply connected in C∞. Since F vanishes there is a sequence

|z1| ≤ |z2| ≤ . . . ,

zn →∞ such that F̃ (zn) = 0. We emphasize that these may be not all the

zeros of F̃ , some zeros may for example accumulate at bU . This is however
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of no importance. All we need is a sequence (zn) with the above described
properties.

Choose numbers Rn, n ∈ N such that at least n of the zeros zn is contained
in the disk |z| < Rn, no zero lies on the circle |z| = Rm and Rn < Rn+1. For
n large enough we have that the circle |z| = Rn is contained in the set U .
For simplicity we assume that this holds for every n ∈ N. Let γ be any C∞

smooth Jordan curve in U such that C \ U ⊂ I(γ) and zn ∈ E(γ), n ∈ N.
By the Argument principle,

n ≤ 1

2πi

∫
|ζ|=Rn

F̃
′
(ζ)

F̃ (ζ)
dζ − 1

2πi

∫
γ

F̃
′
(ζ)

F̃ (ζ)
dζ.

It follows that
1

2πi

∫
|ζ|=Rn

F̃
′
(ζ)

F̃ (ζ)
dζ →∞, (3.4)

as n→∞.
Consider now the Hardy space H2(RnT) on the circles |z| = Rn and the

Toeplitz operators on these spaces defined by the symbol F̃ restricted to
RnT. Denote these operators by TF̃ ,RnT. Since F̃ does not vanish on RnT,

the operator TF̃ ,RnT is a Fredholm operator. It is a classical fact (see[7,

Theorem 2.42 (b)]) that

index
(
H2(RnT)→ H2(RnT)

)
= − 1

2πi

∫
RnT

F̃
′
(ζ)

F̃ (ζ)
dζ.

By (3.4) we infer that there is N ∈ N such that indexTF̃ ,RnT < 0 for

n ≥ N . By the Coburn-Simonenko theorem [7, Theorem 2.38], the operators
TF̃ ,RnT : H2(RnT)→ H2(RnT) are injective for n ≥ N .

Assume now that TF fm tends to g in H(C) as m→∞ (the space H(C)
is a Fréchet space, hence it suffices to consider sequences). We shall show
that g = TF f for some entire function f . That is, the range of TF is closed
in H(C). Since TF fm is entire it belongs to H2(RnT) for any n ∈ N. Also,
since TF fm tends to g in H(C), it tends uniformly to g on compact subsets
of C. This implies that TF fm → g in H2(RnT). Naturally for |z| < Rn we
have

(TF fm)(z) =
1

2πi

∫
RnT

F̃ (ζ)fm(ζ)

ζ − z
dζ = (TF̃ ,RnTfm)(z). (3.5)

We remark that that it is a standard fact that the functions in the Hardy
space H2(RnT) can be thought as either a function on RnT or as a function
in |z| < Rn satisfying a certain growth condition. In integral (3.5) the
function fm is defined on RnT, while |z| < Rn.

Since TF̃ ,RnT is a Fredholm operator, it has closed range in H2(RnT).

There exists therefore a function hn ∈ H2(RnT) such that TF̃ ,RnTfm →
TF̃ ,RnThn as m → ∞. That is for any n ∈ N there is a function hn ∈
H2(RnT) such that g(z) = (TF̃ ,RnThn)(z) for |z| < Rn. Consider now the
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functions hm. We will glue them together. Observe that by a standard limit
argument and Cauchy’s theorem

1

2πi

∫
Rn−1T

F̃ (ζ) · hn+1(ζ)

ζ − z
dζ =

1

2πi

∫
Rn−1T

F̃ (ζ) · hn(ζ)

ζ − z
dζ

for |z| < Rn−1. However, as we shown for n−1 ≥ N the operators TF̃ ,Rn−1T
are injective. This follows that hn and hn+1 are equal in |z| < Rn−1. They
define therefore an entire function f . From Cauchy’s theorem it follows that
TF f = g. �

Corollary 3.6. Let F ∈ S(C). Then the operator TF : H(C) → H(C) is
always a Φ+-operator. In particular, the range of TF is closed.

Proof. Either F vanishes or not. If F vanishes then the range of TF is closed
by Theorem 3.5. If F does not vanish then TF is a Fredholm operator. One
easily shows mimicking [9, Proposition 5.1] that the range of TF is closed.

Assume that F vanishes. Consider the operator S := C−1 ◦ TG,0 ◦ C
defined as in the proof of Theorem 3.1 with TG,0 acting on H(0). It follows
from [24, Theorem 5.6] that the range of TG,0 is dense in H(0). This implies
that the range of S is dense in H0(∞). That is, the range of the adjoint

operator T
′
F is dense in H0(∞). Since H(C) is reflexive (see the proof of

Theorem 3.1) we infer that TF is injective.
To sum this up, either TF is a Fredholm operator, in which case kerTF

is finite dimensional or it is injective. This implies that TF is always a Φ+

operator. �

We now show that if F vanishes then the operator TF is not a Φ−-operator.

Theorem 3.7. Assume that F ∈ S(C) vanishes. Then the range of TF is
of infinite codimension in H(C).

Proof. Consider the symbol F ∈ S(C) and assume that it is represented

by F̃ ∈ H(U \ {∞}), where U is an open simply connected neighborhood of

∞ in C∞. Also, let zn ∈ U , |z1| ≤ |z2| ≤ . . . , zn →∞ be some zeros of F̃ in
U . Without loss of generality we may assume that there are no other zeros
of F̃ in U .

Let 0 < r < R be chosen in such a way that the circles |z| = r,R are
contained in U \ {∞}and C \ U ⊂ {|z| < r}. By Cauchy’s integral formula
for any f ∈ H(C),

F̃ (z) · f(z) =
1

2πi

∫
|z|=R

F̃ (ζ) · f(ζ)

ζ − z
dζ − 1

2πi

∫
|z|=r

F̃ (ζ) · f(ζ)

ζ − z
dζ

for r < |z| < R. For R large enough and r < |z| < R we therefore have that

(TF f)(z) = F̃ (z) · f(z) +
1

2πi

∫
|z|=r

F̃ (ζ) · f(ζ)

ζ − z
dζ.
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This implies that

lim
n→∞

(TF f)(zn) = lim
n→∞

1

2πi

∫
|z|=r

F̃ (ζ) · f(ζ)

ζ − zn
dζ = 0,

since F̃ (zn) = 0. Thus, under the assumption that F vanishes, the range of
TF does not contain any polynomial. �

Corollary 3.8. Let F ∈ S(C). Then the operator TF : H(C)→ H(C) is a
Φ−-operator if and only if F does not vanish, in which case TF is a Fredholm
operator.

Proof of Main Theorem 1. Corollary 3.6 implies (i). Corollary 3.8 im-
plies (ii), (iii) is just Theorem 3.1. �

4. Invertible Toeplitz operators

Theorem 4.1. Assume that F ∈ S(C) and consider the Toeplitz operator

TF : H(C)→ H(C).

Then either kerTF = {0} or kerT
′
F = {0}.

Proof. Assume that TF f = 0, where f is entire, and T
′
F g = 0 for some

g ∈ H0(∞). The germ g ∈ H0(∞) is represented by a function g̃, which is
holomorphic in an open simply connected neighborhood of ∞ denoted by
W . The function g̃ vanishes at ∞.

Let F be the equivalence class in S(C) of a function F̃ ∈ H(U \ {∞}),
where U is an open simply connected neighborhood of ∞ in C∞. Let γ and
Γ by C∞ smooth Jordan curves in U \ {∞} such that C \ U ⊂ I(γ) and
γ ⊂ I(Γ). By Cauchy’s integral formula

(F̃ · f)(z) =
1

2πi

∫
Γ

F̃ (ζ) · f(ζ)

ζ − z
dζ − 1

2πi

∫
γ

F̃ (ζ) · f(ζ)

ζ − z
dζ

for z ∈ E(γ) ∩ I(Γ). Since TF f = 0 we have for z ∈ E(γ)

(F̃ · f)(z) = − 1

2πi

∫
γ

F̃ (ζ) · f(ζ)

ζ − z
dζ.

The right-hand side of the above equality defines a function, which is holo-
morphic not only in C \ U but in C∞ \ U and vanishes at ∞. That is, the

product F̃ · f extends by zero to C∞ \ U .
On the other hand, again by Cauchy’s integral formula,

(F̃ · g̃)(z) =
1

2πi

∫
∆

F̃ (ζ) · g̃(ζ)

ζ − z
dζ − 1

2πi

∫
δ

F̃ (ζ) · g̃(ζ)

ζ − z
dζ,

where δ,∆ are C∞ smooth Jordan curves in (U ∩ W ) \ {∞} such that
C \ (U ∩W ) ⊂ I(δ), δ ⊂ I(∆) and z ∈ E(δ) ∩ I(∆) (we can assume that
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U ∩W is simply connected in C∞). Since T
′
F g = 0, we have

(F̃ · g̃)(z) =
1

2πi

∫
∆

F̃ (ζ) · g̃(ζ)

ζ − z
dζ (4.1)

for z ∈ I(∆). The right-hand side of (4.1) defines an entire function. This
is a consequence of Cauchy’s theorem, since for any z ∈ C we can find an
appropriate curve such that z ∈ I(∆) and the function F̃ · g̃ is holomorphic

in a simply connected in C∞ neighborhood of ∞. Thus the product F̃ · g̃
extends to an entire function.

Consider now the product F̃ ·f · g̃. As we shown, F̃ ·f belongs to H0(C∞\
U). Since g̃ ∈ H0(C∞ \W ), we infer that F̃ · f · g̃ is holomorphic in some

neighborhood of ∞ and vanishes at ∞. On the other hand, since F̃ · g̃
extends to an entire function and f is an entire function we obtain that
F̃ · f · g̃ extends to an entire function. To sum this up, the product F̃ · f · g̃
extends to a function which is holomorphic in the sphere C∞ and vanishes at
∞. By Liouville’s theorem this function vanishes identically, which implies
that either f = 0 or g = 0. �

Theorem 4.2. Assume that F ∈ S(C) and consider the Toeplitz operator

TF : H(C)→ H(C).

The operator TF is invertible if and only if it is a Fredholm operator of index
zero.

Proof. Naturally an invertible operator is a Fredholm operator of index
zero. Assume therefore that TF : H(C)→ H(C) is a Fredholm operator and
indexTF = 0. By the Open mapping theorem [28, Theorem 24.30] in order
to show that TF is invertible, it suffices to show that TF is a bijection.

Assume that TF is not an injection, then it follows from Theorem 4.1 that
kerT

′
F = {0}. This means that the range of TF is dense. Since the range of

TF is closed (see [9, Proposition 5.1]) the operator TF is a surjection. We
infer that indexTF > 0, which is a contradiction.

Assume that TF is not onto. By the Hahn-Banach theorem there exists a
non-zero functional ξ ∈ H(C)

′
which vanishes on the range of TF . This im-

plies that T
′
F ξ = 0, which in view of Theorem 4.1 implies that kerTF = {0}.

We again reach a conclusion that indexTF 6= 0, which is a contradiction.
Thus, if indexTF = 0, then TF is a bijection. �

5. One-sided invertibility

If F ∈ S(C) vanishes then the operator TF : H(C) → H(C) is injective
and of closed range. We shall prove the following theorem, which completes
the description of the operator TF :

Theorem 5.1. If F ∈ S(C) vanishes then the range of the operator TF is
not complemented in H(C).
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In order to prove Theorem 5.1 we obtain a rather precise description of
the range of the operator TF .

Theorem 5.2. Assume that F ∈ S(C) vanishes. There exists a sequence

of functionals ξn ∈ H(C)
′

such that

R(TF ) =

∞⋂
n=1

ker ξn.

Proof. Assume that F ∈ S(C) is represented by a function F̃ ∈ H(U \
{∞}), where as usual U is an open simply connected in C∞ neighborhood
of ∞. Since F vanishes there is a sequence of points |z1| ≤ |z2| ≤ . . . such

that F̃ (zn) = 0, n ∈ N. Using Weierstrass theory the function F̃ can be
factored in the following way

F̃ (z) =

∞∏
n=1

Emnpn

( z
zn

)
· F̃0(z),

for some natural numbers pn, where mn is the multiplicity of zn and F̃0 does
not vanish in U \ {∞}. Here, the symbol Ep, p ∈ N stands for the Weier-

strass elementary factor. Furthermore, we may assume that winding F̃0 = 1.
Indeed, assume that winding F̃0 = k > 1. Choose l ∈ N and 0 ≤ µl ≤ ml

m1 + · · ·+ml−1 + µl = k − 1.

Set

G̃0(z) :=
F̃0(z)∏l−1

n=1E
mn
pn

(
z
zn

)
· Eµlpl

(
z
zl

) .
The function G̃0 is holomorphic in a smaller simply connected neighborhood
of ∞ and

F̃ (z) =
∞∏
n=1

Emnpn

( z
zn

)
·
l−1∏
n=1

Emnpn

( z
zn

)
· Eµlpl

( z
zl

)
· G̃0(z).

Furthermore, G̃0 does not vanish in some neighborhood of ∞ and by the
Argument principle

winding G̃0 =
1

2πi

∫
γ

G̃
′
0(ζ)

G̃0(ζ)
dζ = winding F̃0 − (m1 + · · ·+ml−1 + µl) = 1.

Here, γ is a C∞ smooth Jordan curve in U \ {∞} such that C \ U ⊂ I(γ)
and z1, . . . , zl ∈ I(γ).

If winding F̃0 = k < 1 then we redefine F̃0 as

G̃0(z) :=
l−1∏
n=1

Emnpn

( z
zn

)
· Eµlpl

( z
zn

)
· F̃0(z),

where m1 + · · ·+ml−1 +µl = k+ 1 with 0 ≤ µl ≤ ml. Observe that G̃0 does

not vanish in some neighborhood of ∞. That is, the function G̃0 defines a
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symbol in S(C), which does not vanish. By the Argument principle we have

winding G̃0 = 1.
In view of Theorem 3.1 we have that TF̃0

is a Fredholm operator and

IndTF̃0
= −1. We abused the notation here and used the symbol F̃0 not

only to denote the function F̃0 but also its equivalence class in S(C). Since

IndTF̃0
< 0 it follows that kerT

′

F̃0
is non-trivial. This implies in view of

Theorem 4.1 that TF̃0
is injective. Hence, the range of TF̃0

is a closed

subspace of codimension 1 in H(C). There exists therefore a functional

ξ ∈ H(C)
′

such that R(TF̃0
) = ker ξ. The functional ξ is represented by a

function ϕ ∈ H0(V ), where V is an open simply connected neighborhood of
∞ in C∞. That is, for any f ∈ H(C),

ξ(f) =
1

2πi

∫
γ
f(z)ϕ(z)dz,

where γ is a C∞ smooth Jordan curve in V \ {∞} such that C \ V ⊂ I(γ).
We have ξ(TF̃0

(f)) = 0 for any f ∈ H(C). Thus, it follows from formula

(3.3), it follows that for any f ∈ H(C) it holds that∫
γ
F̃0(z) · f(z) · ϕ(z)dz = 0, (5.1)

where γ is a C∞ smooth Jordan curve in (U∩V )\{∞} with C\(U∩V ) ⊂ I(γ)
– as usual we may assume that U ∩V is simply connected in C∞. We claim
that this implies that F̃0 · ϕ is an entire function. Indeed, by Cauchy’s
integral formula for z ∈ (U ∩ V ) \ {∞}

F̃0(z) · ϕ(z) :=
1

2πi

∫
∆

F̃0(ζ) · ϕ(ζ)

ζ − z
dζ +

1

2πi

∫
δ

F̃0(ζ) · ϕ(ζ)

ζ − z
= G+(z) +G−(z),

where δ,∆ are C∞ smooth Jordan curves in (U∩V )\{∞} with C\(U∩V ) ⊂
I(δ), δ ⊂ I(∆) and z ∈ E(δ)∩ I(∆). By Cauchy’s theorem the function G+

is entire and G− is holomorphic in |z| > R for R large enough and vanishes
at ∞. Thus it develops into a Laurent series

G−(z) =
∞∑
n=1

a−n
zn

.

It follows from (5.1) and Cauchy’s theorem that a−n = 0 for n ∈ N. Indeed,
(5.1) implies that ∫

γ
G−(z)zndz = 0, n = 0, 1, . . . .

Thus, the product F̃0 ·ϕ extends to an entire function, which we shall denote
by G. That is,

ϕ(z) =
G(z)

F̃0(z)
(5.2)
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for z ∈ (U ∩ V ) \ {∞} with G entire.
Consider now the functionals corresponding to the functions ϕ

(z−zn)k
with

1 ≤ k ≤ mn. For any f ∈ H(C),

〈
TF f,

ϕ

(z − zm)k

〉
=

1

2πi

∫
γ

∏∞
n=1E

mn
pn

(
z
zn

)
(z − zm)k

· F̃0(z) · f(z) · ϕ(z)dz

= 〈TF̃0
g, ϕ〉,

for an entire function g – we again applied formula (3.3). This implies that
for any f ∈ H(C), 〈

TF f,
ϕ

(z − zm)k

〉
= 0, (5.3)

since the functional represented by ϕ vanishes on R(TF̃0
). We have shown

that

R(TF ) ⊂
∞⋂
n=1

ker ξn, (5.4)

where the functionals ξn correspond to the functions ϕ, ϕ
(z−zn)k

, 1 ≤ k ≤ mn.

We now prove that the equality holds.
Assume that η ∈ H(C)

′
vanishes on the range R(TF ). The functional η is

represented by a function g ∈ H0(V ), where V is an open simply connected
in C∞ neighborhood of ∞. We have∫

γ
F̃ (z) · f(z) · g(z)dz = 0

for any f ∈ H(C). By the same arguments which lead to representation

(5.2) we obtain that F̃ · g extends to an entire function, say H. That is,

∞∏
n=1

Emnpn

( z
zn

)
· F̃0(z) · g(z) = H(z)

for z ∈ (U ∩ V ) \ {∞} with H entire. Only a finite number of zeros zn.
say z1, . . . , zm, does not belong to U ∩ V . We conclude that H(zn) = 0 for
n > m and, as a result, these zeros can be divided out. Thus for a different
entire function H we have

g(z) =
H(z)∏m

n=1E
mn
pn

(
z
zn

)
· F̃0(z)

for z ∈ U ∩ V . Consider now the Toeplitz operator TS , where S is the
equivalence class in S(C) of the function

m∏
n=1

Emnpn

( z
zn

)
· F̃0(z). (5.5)
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Naturally, for any f ∈ H(C),

〈TSf, g〉 =
1

2πi

∫
γ

∏m
n=1E

mn
pn

(
z
zn

)
· F̃0(z)∏m

n=1E
mn
pn

(
z
zn

)
· F̃0(z)

· f(z) ·H(z)dz = 0,

since f and H are entire. That is, R(TS) ⊂ ker η, where the functional

η ∈ H(C)
′

is represented by the function g.
The symbol S does not vanish, since the function (5.5) has only a finite

number of zeros. In view of Theorem 3.1 the operator TS is a Fredholm
operator and IndTS = −1−

∑m
n=1mn. The same arguments which lead to

(5.3) show that 〈
TS ,

ϕ

(z − zj)k
〉

= 0, (5.6)

for j = 1, . . . ,m and 1 ≤ k ≤ mj . We claim that

R(TS) =
N⋂
n=1

ker ξn,

where the functionals ξn correspond to ϕ and ϕ
(z−z1) , . . . ,

ϕ
(z−zm)mν , i.e. N =

1 +
∑ν

n=1mn. Indeed, these functions are linearly independent. Hence, the
codimension in H(C) of

N⋂
n=1

ker ξn

is 1+
∑ν

n=1mn. It follows from Theorem 4.1 that the codimension of R(TS)
is also equal to 1 +

∑ν
n=1mn. Since by (5.6)

R(TS) ⊂
N⋂
n=1

ker ξn,

the equality must hold.
We showed that if the functional η represented by the function g vanishes

on R(TF ), then

g ∈ span
{
ϕ,

ϕ

(z − z1)
, . . . ,

ϕ

(z − zν)mν

}
(5.7)

for some ν ∈ N. The proof is completed by an application of the Hahn-
Banach theorem. Assume that

f ∈
( ∞⋂
n=1

ker ξn

)
\R(TF ).

SinceR(TF ) is closed, there exists a functional η ∈ H(C)
′
such that η|R(TF ) =

0 and η(f) 6= 0. This however, in view of (5.7), is impossible. �
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Assume that F ∈ S(C) is represented by a function F ∈ H(U \ {∞}) –
we abuse the notation and use the same symbol to denote both the function
and its equivalence class. The function F factorizes as

F (z) =
∞∏
n=1

Emnpn

( z
zn

)
· F0(z)

and F0 does not vanish in U \ {∞}. The points zn satisfy

0 < |z1| ≤ |z2| ≤ . . . .
According to Theorem 5.2 there exist functionals ξn ∈ H(C)

′
such that

R(TF ) =

∞⋂
n=1

ker ξn.

Each functional ξn is defined in the sense of duality (3.2) by a function
ϕ ∈ H0(∞) or some function ϕ

(z−zk)j
, where k ∈ N and 1 ≤ j ≤ mk.

Furthermore, as we have shown in (5.2) the function ϕ can be written as
G
F0

, where G is entire.

Define a map Ξ: H(C)→ ω, where ω is the Fréchet space of all sequences
by the formula

Ξ(f) := (ξn(f))n∈N.

The topology of ω is the pointwise convergence topology.
We shall prove the following theorem.

Theorem 5.3. The map Ξ is surjective.

The proof of this result is based on Eidelheit’s theorem, which we recall
for convenience of the reader.

Theorem 5.4 ([28], Theorem 26.27). Let E be a Fréchet space, (Uk)k∈N be
a fundamental system of zero neighborhoods in E and let (Aj)j∈N be linearly
independent, continuous linear forms on E. Then the infinite system of
equations

Ajx = yj for all j ∈ N
is solvable for each sequence y ∈ ω if, and only if, the following holds:

dim((E
′
)U◦k ∩ span {Aj : j ∈ N}) <∞ for all k ∈ N.

We explain now the notation used in Eidelheit’s theorem. If M ⊂ E is a
non-empty subset of a locally convex space E, then the polar of M ⊂ E is

M◦ := {ξ ∈ E′ : |ξ(x)| ≤ 1for allx ∈M} ⊂ E′ .
If B is an absolutely convex subset of E, then

EB = spanB =
⋃
t>0

tB

and ‖ · ‖B is the Minkowski functional of B

‖x‖B := inf{t > 0: x ∈ tB}.
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The Minkowski functional is a norm in EB (in particular, it is finite). Thus

in Theorem 5.4 the symbol (E
′
)U◦k stands for the span in E

′
of the set

U◦k ⊂ E
′
, which is the polar of the zero neighborhood Uk ⊂ E. We remark

here that Eidelhet’s Theorem is used to prove E. Borel’s Theorem, which
says that for every sequence (yj) ⊂ ω there is an f ∈ C∞[−1, 1] such that

f (j)(0) = yj , j ∈ N (see [28, p. 324]).

Proof of Theorem 5.3. By assumption, F, F0 ∈ H(U \ {∞}), where U is
an open simply connected neighborhood of ∞.

Choose a compact exhaustion (Kn)n∈N of C such that z1, . . . , zn ∈ Kn,
Kn ⊂ {|z| ≤ |zn|} and zn+1, . . . /∈ Kn. Without loss of generality we may
assume that |zn+1| > |zn|. A fundamental system of seminorms in H(C) is
given by

‖f‖k := sup
Kn

|f |

and a fundamental system of zero neighborhoods in H(U) is

Uk := {f ∈ H(C) : ‖f‖k ≤ 1}.

For any f ∈ H(C) it holds that f
‖f‖k ∈ Uk. Hence if ξ ∈ U◦k , then for any

f ∈ H(U),

|ξ(f)| ≤ ‖f‖k.
For a fixed k ∈ N we have

(H(C)
′
)U◦k ∩ span {ξM : M ∈ N}

= {ξ =
∑

αMξM : ∃C∀f∈H(C)|ξ(f)| ≤ C‖f‖k}.

We need to show that this space is finite dimensional. The functionals ξM
are linearly independent. Fix k ∈ N and consider functions of the form

g(z) :=
∏

n6=k+1

Emnpn

( z
zn

)
· f(z),

where f ∈ H(C). Then g ∈ H(C) and for any such a function〈
TF0g,

ϕ

(z − zi)j
〉

=

∫
γ
F0(z) ·

∏
n6=k+1

Emnpn

( z
zn

)
· f(z) · G(z)

F0(z)
· dz

(z − zi)j
= 0,

when i 6= k + 1 and 1 ≤ j ≤ mi. Consider the function

fm,l(z) := (z − zk+1)l
Em

(
z

zk+1

)
(z − zk+1)

,

where m ∈ N and 0 ≤ l ≤ mk+1 − 1. Naturally,

〈TF0

( ∏
n6=k+1

Emnpn

( z
zn

)
· fm,l(z)),

ϕ

(z − zi)j
〉 = 0,
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if i 6= k + 1 and 1 ≤ j ≤ mi. Also,

〈TF0

( ∏
n6=k+1

Emnpn

( z
zn

)
· fm,mk+1−1(z)),

ϕ

(z − zk+1)mk+1
〉

=

∫
γ

∏
n6=k+1

Emnpn

( z
zn

)
·G(z) ·

Em

(
z

zk+1

)
z − zk+1

dz

(z − zk+1)

= 2πi
∏

n6=k+1

Emnpn

(zk+1

zn

)
·G(zk+1) · lim

z→zk+1

Em

(
z

zk+1

)
z − zk+1

.

Obviously,

lim
z→zk+1

Em

(
z

zk+1

)
z − zk+1

=
1

zk+1
E
′
m(1) = − 1

zk+1
exp(1 + · · ·+ 1

m
).

Observe that for 1 ≤ j < mk+1〈
TF0

( ∏
n6=k+1

Emnpn

( z
zn

)
· fm,mk+1−1(z)),

ϕ

(z − zk+1)j

〉

= 2πi

∫
γ

∏
n6=k+1

Emnpn

( z
zn

)
·G(z) ·

Em

(
z

zk+1

)
z − zk+1

(z − zk+1)mk+1−1−jdz = 0

by Cauchy’s theorem, since the integrand is entire. Thus∑
M

αMξM

(
TF0

( ∏
n6=k+1

Emnpn

( z
zn

)
· fm,mk+1−1(z))

)
= −2πiαN

∏
n6=k+1

Emnpn

(zk+1

zn

)
·G(zk+1) ·

exp(1 + · · ·+ 1
m)

zk+1
,

if ξN is defined by ϕ
(z−zk+1)mk+1 . Unless G(zk+1) = 0 or αN = 0 this ex-

pression tends to ∞ as m → ∞. Choose now a C∞ smooth Jordan curve
such that γ ⊂ U , dist(γ,Kk) ≥ δ, γ ⊂ {|z| < |zk+1|} (thus zk+1, . . . /∈ I(γ)).
Then,∥∥∥TF0

( ∏
n6=k+1

Emnpn

( z
zn

)
· fm,mk+1−1(z))

)∥∥∥
k

≤ 1

δ
sup
z∈γ

∣∣∣F0(z) · (z − zk+1)mk+1−1 ·
∏

n6=k+1

Emnpn

( z
zn

)∣∣∣ · sup
z∈γ

∣∣∣Em
(

z
zk+1

)
z − zk+1

∣∣∣.
Observe that we have

sup
z∈γ

∣∣∣Em( z

zk+1

)∣∣∣ ≤ 1 + sup
z∈γ

∣∣∣Em( z

zk+1

)
− 1
∣∣∣ ≤ 1 + sup

z∈γ

∣∣∣ z

zk+1

∣∣∣m+1
≤ C
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for a uniform constant C. Assume now that∑
αMξM ∈ (H(U)

′
)U◦k ,

then we infer that, if G(zk+1) 6= 0, then for any m ∈ N

|αN exp(1 + · · ·+ 1

m
)| ≤ C,

where N corresponds to ϕ
(z−zk+1)mk+1 . This is possible only if αN = 0. In

the same way we prove that αN−1 = 0 simply by taking functions fm,mk+1−2

and eventually that all αN which correspond to zk+1 vanish. We repeat the
argument also for zk+2, . . . . Observe there is at most a finite number of
zn such that G(zn) = 0. Indeed, if G(zn) = 0, then ϕ(zn) = 0 by (5.2)
and if the function G vanish on infinite number of points zn, then ∞ is an
accumulation point of zeros of ϕ. Since ϕ is holomorphic at ∞, this would
imply that ϕ ≡ 0. The theorem is proved. �

Theorem 5.5. If F ∈ S(C) vanishes, then the operator TF : H(C)→ H(C)
is not left invertible.

Proof. If ker Ξ is complemented in H(C), then Ξ: H(C)→ ω is right invert-
ible. Indeed, let P : H(C) → H(C) be a continuous projection onto ker Ξ.
Consider the closed space Y := (I − P )H(C). It follows from Theorem 5.3
that the operator Ξ when restricted to Y is a bijection onto ω. There exists
therefore a linear inverse map Ω: ω → Y . We claim that Ω is continuous.
This follows from an application of the Closed graph theorem [28, Theorem
24.31]. Note that ω is ultrabornological as a Fréchet space [28, Proposition
24.13 and Remark 24.15 (b)], it also has a web as a closed subspace of a
webbed space [28, Lemma 24.28]. Now Ω is a right inverse of Ξ.

In order to prove the theorem it suffices to show that Ξ is not right
invertible. Since Ξ is surjective by Theorem 5.3 this implies that ker Ξ is
not complemented but, as we have shown in Theorem 5.2, R(TF ) = ker Ξ.
If TF is left invertible and S is a left inverse, then TF ◦ S is a continuous
projection onto R(TF ).

Assume that there exists a continuous linear map E : ω → H(C) such that
Ξ ◦ E = id. Consider the sequences δM ∈ ω,M ∈ N, δM (n) = δnM . Define
gM := EδM . Since Ξ(gM ) = Ξ ◦ E(δM ) = δM 6= 0, none of the functions
gM vanishes identically. There exists therefore z̃ ∈ C such that gM (z̃) 6= 0
for all M ∈ N. Consider now the sequences ∆M := δM/gM (z̃), M ∈ N.
The space ω is equipped with the topology of pointwise convergence. Hence
∆M → 0 in ω as M → ∞. If E is continuous then E∆M tends to 0 in
H(C), in particular pointwise for any z ∈ C. Since E is linear we have
(E∆M )(z̃) = 1. This is a contradiction. This in particular implies that Ξ is
not right invertible and, as a result, R(TF ) is not complemented in H(C).
Hence TF is not left invertible. �

There is another argument which shows that ker Ξ is not complemented.
In fact, the kernel of every surjection A : E → ω from a Fréchet space with a
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continuous norm onto ω is not complemented. Otherwise E would contain
a closed subspace without a continuous norm, which is impossible.

The proof of Theorem 3 is now standard.

Proof of Theorem 3. Assume that TF with F ∈ S(C) is left invertible,
then the range of TF is complemented. It follows from Theorem 5.5 that F
does not vanish. It follows from Theorem 1 that TF is a Fredholm operator.
Also, if TF is left invertible then TF is injective. Hence, indexTF ≤ 0.

Assume now that TF is a Fredholm operator such that

indexTF = −windingF ≤ 0.

Then it follows from Theorem 2 that TF is injective. Hence, TF is an injec-
tive Fredholm operator. We shall prove that TF is left invertible. If TF is
additionally surjective, then TF is invertible by the Open mapping theorem
[28, Theorem 24.30]. Assume therefore that the classes of some functions
g1, . . . , gn ∈ H(C) span H(C)/R(TF ). For every f ∈ H(C) there are unique
numbers α1, . . . , αn ∈ C and a unique function g ∈ H(C) such that

f = α1g1 + · · ·+ αngn + TF g. (5.8)

We now define an operator S : H(C)→ H(C), which is a left inverse of TF .
Simply put Sf = g. The definition is correct, since representation (5.8) is
unique. This also implies that S is linear. The fact that S is continuous
follows easily from the Closed graph theorem [28, Theorem 24.31].

Observe that if F vanishes, then TF is not surjective. Hence, it cannot be
right invertible. The arguments for the right invertibility of surjective Fred-
holm operators are essentially the same as for the left invertibility. Therefore
we omit it. The reader may consult [25, Theorem 2] for the details. �

We conclude the paper by providing an elementary and important exam-
ple of Toeplitz operators on H(C). Namely, let R be a rational function

R(z) =

∏m
i=1(z − ai)αi∏n
i=1(z − bi)βi

,

where ai and bi are pairwise different and ai 6= bj for i = 1, . . . ,m and
j = 1, . . . , n. The function R defines a symbol in S(C). Indeed, R is
holomorphic in some punctured neighborhood of infinity. Furthermore, it
does not vanish, since a1, . . . , am are the only zeros of R. We apply our
results to TR and obtain the following theorem.

Theorem 5.6. The following holds true for the Toeplitz operator

TR : H(C)→ H(C).

(i) The operator TR is a Fredholm operator and

indexTR =
n∑
i=1

βi −
m∑
i=1

αi.
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(ii) The operator TR is invertible if and only if

n∑
i=1

βi −
m∑
i=1

αi = 0.

(iii) The operator TR is left invertible if and only if

n∑
i=1

βi −
m∑
i=1

αi ≤ 0.

(iv) The operator TR is right invertible if and only if

n∑
i=1

βi −
m∑
i=1

αi ≥ 0.
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[11] Domański, Pawe l; Langenbruch, Michael. Algebra of multipliers on the space
of real analytic functions of one variable. Studia Math. 212 (2012), no. 2, 155–171.
MR3008439, Zbl 1268.46021, doi: 10.4064/sm212-2-4. 762
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ner, Stuttgart, 1981. 548 pp. ISBN: 3-519-02224-9. MR0632257, Zbl 0466.46001,
doi: 10.1007/978-3-322-90559-8. 772

[23] Jasiczak, Micha l. Coburn–Simonenko theorem and invertibility of Toeplitz oper-
ators on the space of real analytic functions. J. Operator Theory 79 (2018), no. 2,
327–344. MR3803560, Zbl 1399.47092. 756, 759, 760, 761, 762

[24] Jasiczak, Micha l. Semi-Fredholm Toeplitz operators on the space of real ana-
lytic functions. Studia Math. 252 (2020), no. 3, 213–250. MR4069992, Zbl 07178844,
doi: 10.4064/sm170810-23-5. 756, 758, 759, 760, 761, 762, 767, 769, 770, 774
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