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Suprema in spectral spaces and the
constructible closure

Carmelo Antonio Finocchiaro and Dario Spirito

Abstract. Given an arbitrary spectral space X, we endow it with its
specialization order ≤ and we study the interplay between suprema of
subsets of (X,≤) and the constructible topology. More precisely, we
examine when the supremum of a set Y ⊆ X exists and belongs to the
constructible closure of Y . We apply such results to algebraic lattices
of sets and to closure operations on them, proving density properties
of some distinguished spaces of rings and ideals. Furthermore, we pro-
vide topological characterizations of some class of domains in terms of
topological properties of their ideals.
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1. Introduction

A topological space X is said to be a spectral space if it is homeomorphic
to the spectrum of a (commutative, unitary) ring, endowed with the Zariski
topology; as shown by Hochster [17], being a spectral space is a topologi-
cal condition, in the sense that it is possible to define spectral spaces ex-
clusively through topological properties, without mentioning any algebraic
notion. His proof relies heavily on the passage from the starting topology to
a new topology, the patch or constructible topology (see Section 2.1), which
remains spectral but becomes Hausdorff; this topology has recently been
interpreted as the topology of ultrafilter limit points with respect to the
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open and quasi-compact subsets of the original topology (see [6] and [14]).
Spectral spaces are related to several other topics, for example Boolean alge-
bras, distributive lattices and domain theory, all of which provide a different
context and a different point of view on the underlying topological struc-
ture. The monograph [5] provides a recent and in-depth presentation of this
subject and of its connections with other areas of mathematics.

The spectrum of a ring carries a natural partial order, the one induced
by set inclusion: such order can also be recovered topologically, as it coin-
cides with the specialization order of the Zariski topology. In this paper, we
exploit the interplay between this order and the constructible topology to
analyze several different spaces of algebraic interest (arising as sets of mod-
ules or of rings), in particular determining several examples of subspaces
that are dense or closed in the constructible topology. Many of our results
are based on Theorem 3.1, a consequence of [5, Theorem 4.2.6]: if X is a
spectral space and Y ⊆ X is closed by finite suprema, then all subsets of Y
have a supremum, which belongs to the constructible closure of Y . (An anal-
ogous result holds for infima, as can be seen through the use of the inverse
topology.) In Section 3, we study some variants of this result, introducing
a condition on spectral spaces (being locally with maximum, Definition 3.4)
which allows a greater control on the constructible closure, and connecting
it with some order topologies induced the specialization order.

In Section 4, we bridge the gap toward the algebraic setting by connecting
the concept of algebraic lattice of sets inside a set S [5, 7.2.12], which can be
used to model several spaces of substructures, with the notion of finite-type
closure operation, and show that the set of these closures can be made into
a spectral space, generalizing [11, Theorem 2.13].

In the last two sections, we apply these results to spaces of submodules,
of overrings and of semistar operations, which provide several natural ex-
amples of spectral spaces when endowed with the Zariski or the hull-kernel
topology. While known results are usually positive, i.e., they concentrate on
spaces which are spectral and/or closed in the constructible topology (see
for example [24, Example 2.2]), our method allows to find example of sub-
spaces that are dense with respect to the constructible topology and thus,
in particular, are not closed. In Section 5, we concentrate on spaces of ideals
and modules: in particular, we analyze finitely generated modules (Propo-
sition 5.1), primary ideals of Noetherian rings (Propositions 5.3 and 5.5)
and valuation domains (Proposition 5.6) and principal ideals in Noetherian
rings (Proposition 5.7) and Krull domains (Theorem 5.11). In Section 6 we
study overrings: we show that the set of Noetherian valuation overrings of a
Noetherian domain is always dense in the Zariski space (Theorem 6.3) and
that the set of Prüfer overrings of an integral domain D is dense in the set of
integrally closed overrings of D (Proposition 6.1). At the end of the paper,
we analyze the relationship between the space of overrings and the space of
finite-type semistar operations on a domain (Proposition 6.9).
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2. Preliminaries

Let X be a topological space. Then, X is said to be a spectral space if
the following conditions hold:

• X is quasi-compact and T0;
• X has a basis of quasi-compact sets that is closed by finite intersec-

tions;
• every closed irreducible subset of X has a generic point (i.e., X is

sober).

By [17, Theorem 6], X is a spectral space if and only if there is a (commuta-
tive, unitary) ring A such that X ' Spec(A), where Spec(A) (the spectrum
of A) is endowed with the Zariski topology.

2.1. The constructible topology. Let X be a spectral space. The con-
structible (or patch) topology on X is the coarsest topology for which all
open and quasi-compact subspaces of X are clopen sets. In the following we
will denote by Xcons the space X, with the constructible topology, and, for
every Y ⊆ X, by Clcons(Y ) the closure of Y in Xcons. In light of [17, The-
orem 1 and Proposition 4], Xcons is quasi-compact, Hausdorff and totally
disconnected, and thus, a fortiori, a zero-dimensional spectral space.

A mapping f : X → Y of spectral spaces is called a spectral map if, for
every open and quasi-compact subspace V of Y , f−1(V ) is open and quasi-
compact. In particular, any spectral map is continuous; moreover, if X and
Y are endowed with the constructible topology, f becomes continuous and
closed (see [17, pag. 45]).

A proconstructible subset of X is a set which is closed with respect to the
constructible topology. A subset Y of X is said to be retrocompact in X
provided that, for every open and quasi-compact subset Ω of X, Y ∩ Ω is
quasi-compact. The following well-known fact (whose proof can be found
e.g. in [17, Pag. 45] or in [5, Theorem 2.1.3]) provides a relation between
the notions given above and will be freely used in what follows.

Proposition 2.1. Let X be a spectral space and let Y ⊆ X. The following
conditions are equivalent.

(i) Y is proconstructible.
(ii) Y is retrocompact and spectral (with the subspace topology of X).

Furthermore, if Y is proconstructible (and thus, in particular, spectral), then
the subspace topology on Y induced by the constructible topology of X is the
constructible topology of Y .

2.2. The order induced by a spectral topology. Let (P,�) be a par-
tially ordered set. For every subset Q of P , set

Q↑ := {p ∈ P | q � p, for some q ∈ Q}
and

Q↓ := {p ∈ P | p � q, for some q ∈ Q}.
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We say that Q is closed under specializations (resp., closed under generiza-
tions) if Q = Q↑ (resp., Q = Q↓).

Let X be any topological space. A natural preorder can be defined on X
by setting, for every x, y ∈ X, x ≤ y if and only if y ∈ Cl({x}). In particular,
if Ω is an open neighborhood of y and x ≤ y, then x ∈ Ω. Since every
spectral space is, in particular, a T0 space, the canonical preorder induced
by a spectral topology is in fact a partial order, called the specialization
order. Thus, if X is a spectral space and ≤ is its specialization order,
we can consider the partially ordered set (X,≤). It is well-known that, if
Y ⊆ X is quasi-compact, then Y ↓ is proconstructible in X (see, for instance,
[7, Proposition 2.6]).

IfX is a spectral space (more generally, ifX is quasi-compact and T0) then
for every x ∈ X there is a maximal point y such that x ≤ y; in particular,
X = (Max(X))↓, where Max(X) is the set of maximal points of X (see [25,
Remark 2.2(vi)] or [5, Proposition 4.1.2]). Using the inverse topology (see
Section 2.3) we see that, dually, for every x ∈ X there is a minimal point z
such that z ≤ x.

We will also need some topologies defined on partially ordered sets. For a
deeper insight into this circle of ideas see [5, Section 7.1 and Appendix A.8].

Let (X,≤) be a partially ordered set. The coarse lower topology on X
associated to ≤, denoted by τ `(X) or τ `(≤), is the topology for which the
sets of the type {x}↑, for x varying in X, form a subbasis for the closed sets.
The order induced by τ `(X) is again ≤, and τ `(X) is the coarsest topology
inducing ≤. In general, the coarse lower topology is not spectral. The coarse
upper topology of X associated to ≤, denoted by τu(X), is the coarse lower
topology associated to the opposite order.

Suppose that (X,≤) is a direct complete partial order (in brief, dcpo),
that is, suppose that every up-directed subset has a supremum. The Scott
topology on X associated to ≤, denoted by σ(X), is the topology whose open
sets are the subsets U of X satisfying the following conditions:

(1) U is an up-set for ≤;
(2) whenever D is an up-directed subset of X and sup(D) ∈ U , then

U ∩D 6= ∅.
The order induced by the Scott topology is the opposite of ≤. It is possible
to characterize when the Scott topology is spectral [5, Theorem 7.1.21].

2.3. The inverse topology. Let X be a spectral space. Following [17,
Proposition 8] and [5, Section 1.4], the inverse topology on X is the topo-
logical space X inv on the same base set of X, whose closed sets are the
intersections of the open and quasi-compact subspaces of X. The inverse
topology is spectral, and the order it induces is exactly the opposite of the
order induced by the original spectral topology. If Y ⊆ X, we denote by
Clinv(Y ) the closure of Y in X inv. By definition, for every x ∈ X, we have

Clinv({x}) = {y ∈ X | y ≤ x}.
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The constructible topology of X inv coincides with the constructible topology
of the starting topology.

Let now

X (X) := {H ⊆ X | H 6= ∅, H is closed in X inv}.
As in [10], we endow X (X) with the so-called upper Vietoris topology, i.e.,
the topology for which a basis of open sets is given by the sets

U(Ω) := {H ∈ X (X) | H ⊆ Ω},
where Ω runs among the open and quasi-compact subspaces of X. In [10,
Theorem 3.4] it is proven that X (X) is a spectral space and that the canon-
ical map X → X (X), x 7→ Clinv({x}) = {x}↓ is a spectral map and a
topological embedding.

3. Suprema of subsets and the constructible closure

If X is a spectral space and Y is a nonempty subset of X, we shall denote
by sup(Y ) the supremum of Y (if it exists) in X, with respect to the order
induced by the spectral topology. Furthermore, we define

Yf := {x ∈ X | x = sup(F ), for some ∅ 6= F ⊆ Y, F finite},
Y∞ := {x ∈ X | x = sup(Z), for some ∅ 6= Z ⊆ Y }.

We say that Yf exists if sup(F ) exists for every nonempty finite subset
F ⊆ Y , while we say that Y∞ exists if sup(Z) exists for every nonempty
subset Z ⊆ Y .

In the same way, we define Y(f) as the set of (existing) infima of the finite
subsets of Y , and Y(∞) as the set of (existing) infima of arbitrary subsets of
Y . Likewise, we use Y(f) exists and Y(∞) exists, respectively, if inf(Z) exists
for every finite Z ⊆ Y (resp., for every Z ⊆ Y ). Note that the infimum of a
Z ⊆ X is exactly the supremum of Z with respect to the inverse topology,
and thus results about Y(f) and Y(∞) are often “dual” to the ones about Yf
and Y∞.

In this paper, we are mainly interested in studying the relationship be-
tween existence of suprema and infima and the constructible topology. The
following criterion will be extensively used through the paper.

Theorem 3.1. Let X be a spectral space and let Y ⊆ X.

(1) If Yf exists, then Y∞ exists and Y∞ ⊆ Clcons(Yf ).
(2) If Y(f) exists, then Y(∞) exists and Y(∞) ⊆ Clcons(Y(f)).

Proof. (1) Consider a nonempty subset Z of Y . By assumption, Zf exists
and clearly Zf ⊆ Yf . Furthermore, Zf is up-directed, with respect to the
order induced by the spectral topology of X. Now apply [5, Theorem 4.2.6]
to Zf to infer that sup(Zf ) exists and sup(Zf ) ∈ Clcons(Zf ) ⊆ Clcons(Yf ).
The conclusion follows by noting that sup(Z) = sup(Zf ).

(2) is the same result, but for the inverse topology (recall that (X inv)cons =
Xcons). �
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Corollary 3.2. Let X be a spectral space and let Y ⊆ X. If Yf exists, then
Yf and Y∞ have the same closure, with respect to the constructible topology.

Proof. By Theorem 3.1, Y∞ exists and Y∞ ⊆ Clcons(Yf ). Since Yf ⊆ Y∞,
we must have Clcons(Yf ) ⊆ Clcons(Y∞) ⊆ Clcons(Yf ). �

In general, we cannot recover the constructible topology exclusively from
suprema and infima, because of two separate problems. The first one is that
Yf need not to exist: for example, if the topology of X is already Hausdorff
(i.e., it coincides with the constructible topology), then no set with two or
more elements has maximum. The second issue is that, even if Yf and Y(f)

exist, the constructible closure of Y may not be limited to Y∞ ∪ Y(∞), since
it is possible for limit points to be incomparable with elements of Y (see
Example 3.11).

Nevertheless, there are some cases where suprema and infima do deter-
mine the constructible closure.

Proposition 3.3. Let X be a spectral space whose specialization order is
total, and let Y ⊆ X. Then, the following hold.

(1) Clcons(Y ) = Y∞ ∪ Y(∞).
(2) Y is closed in the constructible topology if and only if the supremum

and the infimum of every nonempty subset of Y belong to Y .

Proof. (1) Since the specialization order of X is total, we have Z = Zf for
every Z ⊆ Y ; hence, sup(Z), inf(Z) exist and are in Y by Theorem 3.1, i.e.,
Y ′ := Y∞ ∪ Y(∞) ⊆ Clcons(Y ).

Now take any element z /∈ Y ′. Let H := {y ∈ Y | y < z}, and let

Ĥ :=

{
{x ∈ X | x > sup(H)} if H 6= ∅
X otherwise.

In the same way, set K := {y ∈ Y | y > z} and

K̂ :=

{
{x ∈ X | x < inf(K)} if K 6= ∅
X otherwise.

By [5, Theorem 1.6.4(ii)(b)], the constructible topology on X is the interval
topology with respect to the specialization order, i.e., it is the topology
having the family of sets {x}↑ and {y}↓ as a subbasis of closed sets (see e.g.

[5, A.8(iv)]). Hence, Ĥ and K̂ are both open in the constructible topology,

and thus Z := Ĥ ∩ K̂ is open. Since sup(H) and inf(K) (when they exist)
are in Y , we have z ∈ Z; on the other hand, Z ∩ Y = ∅ by construction. It
follows that z /∈ Clcons(Y ), and thus Y = Y ′, as claimed.

(2) follows from (1). �

We now introduce another class of spectral spaces; while the property
defining them is restrictive, it actually holds for several spectral spaces of
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algebraic interest, like the set of submodules of a module or the set of over-
rings of an integral domain (see Sections 5 and 6).

Definition 3.4. Let X be a spectral space. We say that X is locally with
maximum if every point of X admits a basis of open neighborhoods each of
which has largest element, with respect to the order induced by the topology.

Remark 3.5. Let X be a spectral space. If U is a subset of X with
maximum u0, then U is quasi-compact (since, if A is an open cover of
U and A ∈ A contains u0, then A ⊇ U). If furthermore U is open, since
Clinv({u0}) = {x ∈ X | x ≤ u0}, we immediately infer U = Clinv({u0}).

We now relate the class of spectral spaces that are locally with maximum
with other classes of topologies naturally arising starting from partially or-
dered sets.

Proposition 3.6. Let (X, T ) be a spectral space with specialization order
≤. Then, each of the following property implies the next one.

(i) X is locally with maximum;
(ii) T = σ(X inv);
(iii) every open and quasi-compact subset of X has only finitely many

maximal elements;
(iv) T inv = τu(X) = τ `(X inv) (where T inv is the inverse topology of T ).

Furthermore, if (X,≤) is a complete lattice then (ii), (iii) and (iv) are equiv-
alent.

Proof. (i) =⇒ (ii) Let Ω be an open subset of X and let D ⊆ X be lower-
directed and such that inf(D) ∈ Ω. Then, by [17, Proposition 6], inf(D) ∈
D ∩ Ω. Since Ω is an open neighborhood of inf(D), it follows Ω ∩ D 6= ∅.
Since Ω is closed by generizations, it follows that Ω is Scott-open, and thus
T is coarser than the Scott topology on the opposite order of X, i.e., than
σ(X inv).

Conversely, suppose that Ω is open in σ(X inv), and let x ∈ Ω. Since X is
locally with maximum, there is a subset D of X such that B := {{d}↓ | d ∈
D} is a local open basis at x (with respect to the given spectral topology
T ). If d, e ∈ D, then V := {d}↓ ∩ {e}↓ is an open neighborhood of x and,
since B is local basis at x, there is a point f ∈ D such that {f}↓ ⊆ V . This
proves that D is lower-directed. Moreover, it is easily seen that x = inf(D).
Since Ω ∈ σ(X inv), we can pick a point d ∈ D ∩ Ω and, since Ω is closed
under generizations, it follows that x ∈ {d}↓ ⊆ Ω. This proves that Ω ∈ T ,
i.e., T = σ(X inv).

(ii) =⇒ (iii) Let Ω be an open and quasi-compact subset of X. By hy-
pothesis, Ω is closed in the Scott topology of X inv, and thus by [5, 7.1.8(viii)]
it is the downset of a finite set. The claim follows.

(iii) =⇒ (iv) The family K̊(X) of open and quasi-compact subsets of X is
a subbasis of closed sets of the inverse topology. Since X is a spectral space,
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if Ω ∈ K̊(X) then Ω = (Ωmax)↓; by hypothesis, Ωmax is finite. Hence, the
sets {p}↓, as p ranges in X, form a subbasis of closed sets of X inv. Therefore,
X inv coincide with the coarse upper topology, as claimed.

Suppose now that (X,≤) is a complete lattice and that (iv) holds. Then,
in particular, τ `(X inv) is a spectral space, and thus by [5, Theorem 7.2.8]
σ(X inv) = (τ `(X inv))inv is spectral. However, using the hypothesis,

T = (X inv)inv = (τ `(X inv))inv = σ(X inv)

and thus (ii) holds, as claimed. �

Remark 3.7. (iii) does not imply (i). Let X be the topological space
constructed in the following way:

• X = {0, x, y1, . . . , yn, . . .};
• the nonempty closed sets are X, {x}, {y1, . . . , yn} and {x, y1, . . . , yn}

for every n ∈ N.

Then, the order on X is the following: 0 is the minimal point, x, y1 are
maximal, there is no element between 0 and x and y1 > y2 > · · · is a
descending chain without minimal elements. It is clear that X is spectral:
indeed, any open set of X is quasi-compact, and the irreducible closed sets
are precisely X = {0}, {x} and Cn := {y1, . . . , yn} = {yn}, for all n ≥ 1.

Every open set (indeed, every set) has at most two maximal elements,
and thus X satisfy (iii). On the other hand, if Ω is an open set containing x,
then Ω = {x, yk, yk+1, . . .} for some k ∈ N, and thus no open set containing
x has a maximum. It follows that X is not locally with maximum.

The example actually shows that (ii) does not imply (i), since every set
closed by generizations is open with respect to σ(X inv), and thus σ(X inv) is
equal to the given spectral topology.

To use the property of being locally with maximum, we need the fol-
lowing connection between closures and suprema of the spectral and the
constructible topology.

Lemma 3.8. Let X be a spectral space, and let T be a topology on X such
that any open and quasi-compact subset of X is closed, with respect to T . For
a nonempty subset W ⊆ X, denote by ClT (W ) its closure with respect to T ,
and with sup(W ) its supremum with respect to the starting spectral topology
(if it exists). If Y ⊆ Z are nonempty subsets of X, then sup(ClT (Y ) ∩ Z)
exists, and sup(Y ) = sup(ClT (Y ) ∩ Z).

Proof. Since Y ⊆ ClT (Y )∩Z, it is sufficient to prove that any upper bound
x ∈ X for Y is an upper bound for ClT (Y )∩Z too. Assume that there exists
an element z ∈ ClT (Y ) ∩ Z such that z � x (i.e., x /∈ Cl({z})). Since X
is a spectral space, there exists an open and quasi-compact subset Ω of X
such that x ∈ Ω and z /∈ Ω. Since Ω is closed with respect to T , it follows
that Y cannot be contained in Ω (otherwise ClT (Y ) ⊆ Ω); hence, there is an
y ∈ Y ∩ (X \Ω). Since Ω is open in the starting topology, Cl({y}) ⊆ X \Ω,
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and so x /∈ Cl({y}), that is, y � x, against the fact that x is an upper bound
of Y in X. �

Proposition 3.9. Let X be a spectral space that is locally with maximum
and let Y be a proconstructible subset of X such that Yf exists. Then:

(1) Y∞ exists and Clcons(Yf ) = Y∞;
(2) for every integer n ≥ 1, the set Yn := {sup(F ) | F ⊆ Y, |F | = n} is

proconstructible in X;
(3) if Z ⊆ Y is dense in Y , then Zf is dense in Y∞.

Proof. (1) Since Y is proconstructible in X, it is spectral, and thus it makes
sense to consider the hyperspace X (Y ), endowed with the upper Vietoris
topology. By Theorem 3.1, the map Σ : X (Y ) −→ X defined by setting
Σ(H) := sup(H), for each H ∈ X (Y ), is well-defined. Since the space
is locally with maximum, by [10, Lemma 4.6] Σ is a spectral map; hence,
it is continuous when X (Y ) and X are equipped with their constructible
topologies, and thus Σ is a closed map (again in the constructible topology).
It follows, in particular, that Σ(X (Y )) is proconstructible. On the other
hand, by Lemma 3.8 (applied by taking as T the inverse topology on X) we
infer that Σ(X (Y )) = Y∞. Now the conclusion follows Corollary 3.2.

(2) Consider the map

Σn : Y n −→ X (X)

(y1, . . . , yn) 7−→ {y1, . . . , yn}↓,

where Y n is endowed with the product topology of the topology induced by
X. Since Y is a spectral space (being proconstructible) by [17, Theorem 7]
so is Y n.

If Ω is open and quasi-compact in X, then

Σ−1
n (Ω) ={(y1, . . . , yn) | {y1, . . . , yn}↓ ⊆ Ω} =

={(y1, . . . , yn) | y1, . . . , yn ∈ Ω} = Ωn,

which is quasi-compact as it is a product of quasi-compact spaces. Hence,
Σn is a spectral map, and in particular Σn(Y n) is closed in the constructible
topology. By the previous part of the proof, it follows that Σ(Σn(Y n)) = Yn
is closed, as well.

(3) Note first that Zf exists since Z ⊆ Y and Yf exists by hypothesis. If
Z is dense in Y , then Zn is dense in Y n; setting Ψn := Σn ◦Σ : Y n −→ Y∞
(with Σ and Σn as in the previous point), we see that Ψn(Zn) = Zn is dense
in Ψn(Y n) = Yn. Therefore, Zf =

⋃
n Zn is dense in Yf =

⋃
n Yn; by part

(1), it follows that Clcons(Zf ) = Clcons(Yf ) = Y∞, that is, Zf is dense in Y∞.
The claim is proved. �

Remark 3.10. The fact that the starting set Y is proconstructible is critical
in the hypothesis of Proposition 3.9. For example, if X is a spectral space
whose specialization order is total, then Y = Yf for all subspaces Y , but
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Clcons(Y ) may contain elements beyond Y∞ (for example, the infimum of its
subsets).

We end this section by giving an example where the constructible closure
is larger than Y∞∪Y(∞). Recall that an almost Dedekind domain is an inte-
gral domain D such that Dm is a discrete valuation ring for every maximal
ideal m of D.

Example 3.11. Let D be a non-Noetherian almost Dedekind domain and
let n be a non-finitely generated maximal ideal of D (for explicit examples
of almost Dedekind domains which are not Dedekind see, for instance, [23,
p. 426] and [21]). Let X0 := Spec(D), and define a topological space X in
the following way: as a set, X is the disjoint union of X0 and an element
∞ /∈ X0, while the open sets of X are X itself and the open sets of X0. On
X0, the order induced by this topology is the the same order of X0, while
∞ is bigger than every element of X and so is the unique maximal element
of X. In particular, X is T0 and quasi-compact.

The open and quasi-compact subsets of X are the open and quasi-compact
subsets of X0, plus X itself, and thus they form a basis closed by finite
intersection. Furthermore, the nonempty irreducible closed subsets of X are
{∞} and the sets C ∪{∞}, where C is a nonempty irreducible closed subset
of X0, and thus in particular they have a generic point. Thus, X is spectral.

Consider now Y := X\{n}. Then, every subset H of Y has supremum and
infimum in X, and they belong to Y : as a matter of fact, if |H∩Max(D)| ≤ 1
then H is linearly ordered (and finite) while if |H ∩Max(D)| ≥ 2 then (0) is
the infimum ofH and∞ is its supremum. We claim that n ∈ Clcons(Y ); since
X0 is open and quasi-compact in X (and so proconstructible) by Proposition
2.1 its constructible topology is the subspace topology of the constructible
topology of X, and thus we need only to show that n is in the constructible
closure of Y ∩X0 in X0. If not, then Y ∩X0 would be proconstructible, and
thus in particular quasi-compact; hence, Y ∩X0 is the open set induced by
a finitely generated ideal I, and so n is the radical of a finitely generated
ideal. Since D is almost Dedekind, by [15, Theorem 36.4] it would follow
that I = nk for some positive integer k; since an almost Dedekind domain is
Prüfer, I is invertible, and so n would be invertible, a contradiction. Hence,
n ∈ Clcons(Y ∩X0) ⊆ Clcons(Y ), as claimed.

4. Algebraic lattices of sets

The main examples of spectral spaces to which we want to apply the
results in the previous sections are spaces of submodules and of overrings.
Those settings, and analogous spaces constructed from algebraic substruc-
tures, are best understood in the framework of algebraic lattices of sets (see
[5, 7.1.12]).
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Let S be a nonempty set, and let P(S) be its power set, ordered by
inclusion. A family L ⊆ P(S) is an algebraic lattice of sets if it satisfies the
following properties:

(a1) L is closed under arbitrary intersections (in particular, S ∈ L).
(a2) L is closed under nonempty up-directed unions.

Examples of such families include the set of submodules of a module, the
set of subrings of a fixed ring, or more generally the set of substructures of
an algebraic structure. Topologically, such families behave very well, since
every such L is a spectral space under the coarse lower topology associated
to ⊆ [5, Part (iii) of 7.2.12]; more precisely, L is a proconstructible subset
of P(S) (when P(S) is endowed with the coarse lower topology), since the
inclusion L −→ P(S) is a spectral map [5, end of 7.2.12].

A different point of view on algebraic lattices of sets can be given through
the concept of closure operation. A closure operation on S (or, simply, a
closure) is a map c : P(S) −→ P(S), I 7→ Ic, such that the following
properties are satisfied for all I, J ∈ P(S):

• I ⊆ Ic;
• if I ⊆ J , then Ic ⊆ Jc;
• (Ic)c = Ic.

We denote by P(S)c the set of c-closed subsets of S, i.e., the set of the I
such that I = Ic. For any closure operation c on S, one has

Ic =
⋂
{Jc | J ⊇ I},

for all I ∈ P(S).
Given two closure operations c, d, we also say that c ≤ d if Ic ⊆ Id for

every I ⊆ S; equivalently, c ≤ d if and only if P(S)c ⊇ P(S)d. In particular,
c = d if and only if P(S)c = P(S)d.

For every closure operation c, the map cf : P(S) −→ P(S),

cf : J 7→
⋃
{Ic | I ⊆ J, I is finite}

is again a closure operation, and (cf )f = cf . We say that c is of finite type
(or finitary) if c = cf . In particular, cf ≤ c.

Proposition 4.1. Let S be a nonempty set and let c be a closure operation
on S.

(1) P(S)c is closed by arbitrary intersections.
(2) P(S)c is closed by up-directed unions if and only if c is of finite type.

Proof. The first claim is obvious. If c is not of finite type, let I be such that
Icf ( Ic; then, the family F := {F c | F ⊆ I, F is finite} is up-directed, but
its union Icf is not in P(S)c.

Suppose now that c is of finite type, let F be an up-directed subset of
P(S)c, and let I be the union of the elements of F . Take x ∈ Ic. Since c
is of finite type, there is some finite J = {j1, . . . , jn} ⊆ I such that x ∈ Jc.
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For every i ∈ {1, . . . , n}, there is a set Ii ∈ F such that ji ∈ Ici ; hence,
x ∈ Jc ⊆ (I1 ∪ · · · ∪ In)c ⊆ I, since F is up-directed. This proves that
I = Ic, that is, I ∈ P(S)c. The claim is proved. �

Corollary 4.2. Let S be a set, and let L ⊆ P(S). The following conditions
are equivalent.

(i) L is an algebraic lattice of sets.
(ii) There is a (unique) closure operation c on S of finite type such that
L = P(S)c.

Proof. (ii)=⇒(i) is Proposition 4.1. Conversely, let L be satisfying (i).
Define a map cL by

JcL :=
⋂
{I ∈ L | J ⊆ I},

for every J ∈ P(S). Then, cL is a closure operation on S, and since L is
closed by arbitrary intersection we have L = P(S)cL . Since L is closed by
up-directed unions, applying Proposition 4.1 again we see that cL is of finite
type. The uniqueness of cL follows from the discussion before Proposition
4.1. �

Therefore, talking about algebraic lattices of sets is equivalent to talking
about finite-type closure operations.

Let now L be the algebraic lattice associated to the finite-type closure
operation c, i.e., L = P(S)c. We say that A ∈ L is finitely generated
if A = F c for some finite set F . (This is equivalent to the definition in
[5, 7.2.12], by the proof of Corollary 4.2.) We denote the set of finitely
generated elements of L as Lfin.

We call the inverse topology of the coarse lower topology on L the Zariski
topology, and we denote it by Lzar. Using [5, 7.2.8(ii,d) and 7.2.12(i)], we
see that a basis of open and quasi-compact subspaces for the Zariski topol-
ogy is formed by the sets {F1, . . . , Fn}↑, where F1, . . . , Fn ∈ L are finitely
generated. For spaces of overrings this topology coincides with the Zariski
topology generalizing the Zariski-Riemann spaces of valuation rings (hence
the name).

Proposition 4.3. Let L be an algebraic lattice of sets.

(1) Lzar is locally with maximum.
(2) Lfin is dense in Lcons.
(3) Lfin is spectral in the Zariski topology if and only if Lfin = L.

Proof. Let c : P(S)→ P(S) be the closure operation of finite type inducing
L (Corollary 4.2).

(1) follows from the fact that the set {F}↑ has minimum F , for any F ∈ L.
(2) Lfin is closed under finite suprema: indeed, if if I = F c and J = Gc are

finitely generated subsets of S (with F,G finite), then (I ∪ J)c = (F ∪ G)c

is again finitely generated. Since L is closed by up-directed unions, every
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element of L is the union of the finitely generated sets which it contains,
and thus L = (Lfin)∞. The conclusion follows from Theorem 3.1.

(3) We claim that Lfin is retrocompact in L, with respect to the Zariski
topology. Indeed, take a subbasic open and quasi-compact subset U :=
{F1, . . . , Fn}↑ of Lzar, and let A be an open cover of U ∩ Lfin. We can
assume that F1, . . . , Fn ∈ Lfin, and thus there are open sets Ωi ∈ A (1 ≤
i ≤ n)) such that Fi ∈ Ωi. Then clearly {Ω1, . . . ,Ωn} is a finite subcover for
U ∩ Lfin. By Proposition 2.1, it follows that Lfin is spectral if and only if it
is proconstructible; the claim now follows by part (2). �

Remark 4.4. Since L is itself a partially ordered set, it is possible to define
closure operations on L, and the concept of finitely generated elements allows
to define the map c 7→ cf (and thus closure operations of finite type) by
substituting finite sets with finitely generated elements. While this is useful
in some contexts (see the case of semistar operations in Section 6.1, which are
classically defined only on submodules), it is not needed from the theoretical
point of view.

Indeed, let c be the closure operation of finite type associated to L. If
d : L −→ L is a closure operation, then d ◦ c is a closure operation on S
whose restriction to L coincides with d; conversely, if e is a closure operation
on S that restricts to a closure operation on L, then c ≤ e and e = e|L ◦ c.
Moreover, it is not hard to see that d ◦ c is of finite type if and only if d
is; therefore, talking about closure operations on L is equivalent to talking
about closure operations that are bigger than c.

There are several natural closure operations that are not of finite type:
for example, if S is endowed with a topology T , then the closure operator c
with respect to T is a closure operation but, if all points are closed, then c
is of finite type if and only if the topology is discrete.

The following proposition shows how to “control” the set of c-closed sets
where c is not of finite type.

Proposition 4.5. Let L be an algebraic lattice of sets and let c be a closure
operation on L. Then,

Clcons({F c | F ∈ Lfin}) = Clcons(Lc) = Lcf .

Proof. Since cf is of finite type, Lcf is an algebraic lattice of sets and its
set (Lcf )fin of finitely generated elements is {F c | F ∈ Lfin}. By Proposition
4.3(2), (Lcf )fin is dense in Lcf . Moreover, Lcf is proconstructible in L (since
both of them are proconstructible in P(S), as remarked at the beginning of
this section). Thus Clcons((Lcf )fin) = Lcf .

The equality Clcons(Lc) = Lcf now follows from this and the fact that
(Lcf )fin ⊆ Lc ⊆ Lcf . �

The following result will be useful in the applications.
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Proposition 4.6. Let S be a set and let L ⊆ P(S) be an algebraic lattice
of sets. Let M ∈ L be maximal in L \ {S}. Then M is isolated in Lcons if
and only if M is finitely generated.

Proof. If M is finitely generated, then {M}↑ = {M,S} is open in Lzar and,
a fortiori, in Lcons. Moreover, {S} is proconstructible (the constructible
topology is Hausdorff). Thus {M} = {M}↑ ∩ (L \ {S}) is open.

Conversely, if M is not finitely generated it cannot be isolated in Lcons,
in view of Proposition 4.3(2). �

Let Closf (S) := Closf (P(S)) be the set of closure operations of finite
type on P(S). For every I ⊆ S and every x ∈ S, let

V (I, x) := {c ∈ Closf (S) | x ∈ Ic}.

We call the topology generated by the V (I, x) on Closf (S), where I ranges
among the subsets of S and x ranges in S, the Zariski topology of Closf (S).
The next proof essentially follows the proof of [11, Theorem 2.13].

Proposition 4.7. The space Closf (S), endowed with the Zariski topology,
is a spectral space.

Proof. Let S be the set of the V (I, x), as I ranges among the finite subsets
of S. Then, S is a subbasis of the Zariski topology on Closf (S). Every such
V (I, x) has a minimum, namely the map c(I, x) defined by

Jc(I,x) :=

{
I ∪ {x} if J = I,

J otherwise.

(The fact that c(I, x) is of finite type follows from the fact that I is finite.)
Moreover, if Λ ⊆ Closf (S), then Λ has a supremum, namely the closure
defined by

J 7→
⋃
{Jc1◦···◦cn | c1, . . . , cn ∈ Λ};

the fact that this map is a closure follows exactly as in [1, p.1628].
Let now U be an ultrafilter on X := Closf (S). Let

c := sup{c(I, x) | V (I, x) ∈ U }.

We claim that c ∈ V (I, x) if and only if V (I, x) ∈ U . Indeed, if V (I, x) ∈ U
then c(I, x) ≤ c, so that x ∈ Ic(I,x) ⊆ Ic and c ∈ V (I, x).

Conversely, suppose c ∈ V (I, x). Then, by definition and by the first para-
graph of the proof, there are finite subsets J1, . . . , Jk of S and x1, . . . , xk ∈ S
such that V (Ji, xi) ∈ U for every i and x ∈ Ic(J1,x1)◦···◦c(Jk,xk). Let U :=⋂
i V (Ji, xi), and take d ∈ U : then, d ≥ c(Ji, xi) for every i, and thus

x ∈ Ic(J1,x1)◦···◦c(Jk,xk) ⊆ Id◦···◦d = Id,

that is, d ∈ V (I, x); hence, U ⊆ V (I, x). Since U is an ultrafilter, U ∈ U
and thus V (I, x) ∈ U , as claimed.
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Hence, c is the ultrafilter limit point of U with respect to S. Since the
Zariski topology is clearly T0, by [6, Corollary 3.3] it follows that Closf (S)
is a spectral space. �

Let L ⊆ P(S) be an algebraic lattice of sets and Closf (L) be the set of
finite-type closure operations on L. The Zariski topology can be defined
on Closf (L) by declaring as subbasic open sets the sets VL(L, x) := {r ∈
Closf (L) | x ∈ Lr}, where L ∈ L, x ∈ S.

Corollary 4.8. Let L be an algebraic lattice of sets, and let c ∈ Closf (S) be
the finite-type closure operation associated to L. Then, Closf (L) (endowed
with the Zariski topology) is a spectral space, and the map

λL : Closf (L) −→Closf (S)

r 7−→r ◦ c

is a spectral map and a topological embedding. In particular, Closf (L) is
proconstructible in Closf (S).

Proof. By Remark 4.4, the mapping λL is injective, with image {c}↑. It is
straightforward to see that λL is a topological embedding; the claims now
follow by noting that {c}↑ is closed in the inverse topology of Closf (S) (and
thus, in particular, it is proconstructible). �

Remark 4.9. Let S be a set. Let C be the family of all subsets L ⊆ P(S)
that are algebraic lattices of sets: by Proposition 4.2, the elements of C
correspond to the finite-type closure operations on S, and thus there is
a natural bijective correspondence between C and Closf (S). A natural
question is whether C itself is an algebraic lattice of sets; in this case,
Proposition 4.7 would be a simple consequence of the general theory.

It is not hard to see that C is closed by arbitrary intersections; therefore,
C defines a closure operation on P(S), i.e., a map P(P(S)) −→ P(P(S))
sending L to the smallest algebraic lattice of sets containing L. In terms
of closure operations, this is equivalent to saying that the supremum of a
family of finite-type operations is still of finite type.

However, C is usually not closed by up-directed unions, and thus it is not
an algebraic lattice. Indeed, let F be an up-directed subset of C . Then, the
set A := {cL | L ∈ F} is a subset of Closf (S), which is down-directed in
the natural order of Closf (S). The union of F corresponds to the infimum
of A in the set of all closures, and this closure does not need to be of finite
type. For example, let ∆ be a non-quasi-compact subset of Spec(D) (for
some integral domain D) and let A be the set of all closures of the type I 7→⋂
{IDP | P ∈ Λ}, where Λ ranges among the finite subsets of ∆. Then, A is

a down-directed set of finite-type closure operations (and thus correspond to
an up-directed family F ⊆ C ) but the infimum s∆ : I 7→

⋂
{IDP | P ∈ ∆}

is not of finite type (by [11, Corollary 4.4]; see also Section 6.1 below).
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5. Spaces of modules and ideals

Let R be any commutative ring, and let M be an R-module. The set
FR(M) := F(M) of the R-submodules of M is an algebraic lattice of sets;
its associated closure operation is the one sending F ⊆M to the submodule
generated by F . In particular, the finitely generated elements of F(M) are
exactly the finitely generated submodules.

The Zariski topology on F(M), as defined after Corollary 4.2, is the topol-
ogy generated by the sets

B(x1, . . . , xn) := {N ∈ F(M) | x1, . . . , xn ∈ N},
as x1, . . . , xn range in M . If M = R is the base ring, F(R) contains as a
subset the spectrum Spec(R) of R; however, the subspace topology induced
by F(R) on Spec(R) is not the Zariski topology of the spectrum, but rather
its inverse topology. Since we will not be using directly the Zariski topology
on Spec(R) (and since the constructible topology is the same anyway) we
continue to use the term “Zariski topology” for the one induced by the open
sets B(x1, . . . , xn), in order to be aligned with what we did in the previous
section and to what we will do in the next one with the spaces of overrings
and of valuation rings.

All the results of Section 4 apply to F(M): thus, F(M) is a spectral space,
it is locally with maximum, and the order induced by the Zariski topology
is the reverse inclusion.

Proposition 5.1. Let M be an R-module.

(1) The set f(M) of finitely generated submodules of M is dense in
F(M), with respect to the constructible topology.

(2) f(M) is spectral if and only if M is a Noetherian R-module.

Proof. The two claims are the translation of points (2) and (3) of Proposi-
tion 4.3 to this setting. �

Given a ring R, we denote by I(R) := FR(R) the set of ideals of a ring
R, and by I•(R) the set of proper ideals of R. Endowed with the Zariski
topology, both are spectral spaces, and I•(R) is also proconstructible in
I(R), since it is the complement of the basic (quasi-compact) open set B(1).

If D is a domain, we denote by F(D) the set of D-submodules of its
quotient field; if c is a closure operation on F(D), we denote the set of
c-closed modules by F(D)c.

An immediate consequence of Proposition 4.6 is the following.

Proposition 5.2. Let M be a maximal ideal of R. Then, M is isolated in
I(R)cons if and only if M is finitely generated.

5.1. Primary ideals. We want to study the set of primary ideals of a ring,
in particular in the Noetherian case. Given a ring R, we denote by PR the
set of all primary ideals of R; if P is a prime ideal of R, we denote by
P(P ) = PR(P ) the set of P -primary ideals of R.
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If f : R −→ R′ is a ring homomorphism, we denote by f ] : I(R′) −→ I(R)
the map given by f ](I) := f−1(I). When the two spaces are endowed with
the Zariski topology, f ] is a spectral map, and thus it is continuous and
closed when I(R) and I(R′) are endowed with the constructible topology.

Proposition 5.3. Let R be a Noetherian ring, and let P ∈ Spec(R). Con-
sider P(P ) as a subspace of I•(R)cons. Then

P(P )∞ = Clcons(P(P )) = f ](I•(RP )),

where f : R → RP is the localization map. In particular, if R is local
with maximal ideal m, then P(m) is dense in I•(R), with respect to the
constructible topology.

Proof. Suppose first that (R,m) is local and that P = m, and let I be
a proper ideal of R. Then, R/I is local with maximal ideal m/I and, by
the Krull Intersection Theorem (see e.g. [2, Theorem 10.17 and Corollary
10.19]),

⋂
n≥1(m/I)n = (0); hence,

⋂
n≥1(mn + I) = I and thus I ∈ P(m)∞.

The set P(P ) is closed by finite intersections; hence, P(P )∞ ⊆ Clcons(P(m))
by Theorem 3.1. Therefore, P(m) is dense in I•(R), i.e., Clcons(P(m)) =
P(m)∞ = I•(R) = f ](I•(R)) (the latter equality coming from the fact that
in this case f is the identity).

Now let R be any Noetherian ring, let P be any prime ideal of R and
let f : R → RP be the localization map. By the first part of the proof,
Clcons(P(PRP )) = I•(RP ). Since f ] is continuous and closed, with respect
to the constructible topology, we have

f ](I•(RP )) = Clcons(f ](P(PRP ))) = Clcons(P(P )),

as claimed. �

In the non-local case, we need something more than primary ideals. The
following is an extension of Proposition 5.2 to ideals of dimension 0.

Proposition 5.4. Let R be a Noetherian ring, and let I be an ideal such
that R/I is zero-dimensional. If the residue field of every maximal ideal
containing I is finite, then I is isolated in I(R)cons.

Proof. Let I := 〈x1, . . . , xn〉. Then, B(x1, . . . , xn) is clopen in the con-
structible topology, and thus it is enough to show that I is isolated in
B(x1, . . . , xn), or equivalently that the zero ideal is isolated in I(R/I)cons.

Let S := R/I. Then, S is an Artin ring with all residue fields finite; hence,
it is finite, and thus also I(S) is finite. Since the constructible topology is
Hausdorff, I(S)cons is discrete, and in particular the zero ideal is isolated.
The claim is proved. �

Proposition 5.5. Let R be a Noetherian ring, and let

P0 := {I ∈ I•(R) | dim(R/I) = 0}.
Then the following properties hold.
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(1) P0 is dense in I•(R)cons.
(2) If all residue fields of R are finite, then P0 is the smallest dense

subset of I•(R)cons.

Note that, if (R,m) is local, then P0 = P(m).

Proof. (1) Clearly, P0 is closed by finite intersections, and thus by Theorem
3.1 it is enough to show that every ideal of R is an intersection of elements
of P0. For every maximal ideal m, let λm : R −→ Rm be the canonical

localization map and λ]m : I•(Rm) −→ I•(R) be the corresponding map of
ideal spaces. For every ideal J of R, we have

J =
⋂
{λ]m(JRm) | m ∈ Max(R)}

(where JRm denotes the ideal of Rm generated by λm(J)). By Proposition

5.3, for every m ∈ Max(R) we have λ]m(JRm) ∈ P(m)∞. Since P(m) ⊆ P0,
we have J ∈ (P0)∞. The first statement thus follows from Theorem 3.1.

(2) By Proposition 5.4, every element of P0 is isolated in I•(R)cons. The
claim follows. �

The non-Noetherian case is more complicated, since we do not have the
Krull Intersection Theorem at our disposal. Indeed, even in the local case
primary ideals need not to be dense. Recall that a prime ideal p of a ring R
is branched if there exists a p-primary ideal of R distinct from p. A prime
ideal that is not branched is called unbranched.

Proposition 5.6. Let V be a valuation domain. Then, the following hold.

(1) If P is a branched prime ideal of V , and Q is the prime ideal directly
below P , then the closure of P(P ) in the constructible topology is
equal to P(P ) ∪ {Q}.

(2) PV is a proconstructible subset of I(V ).

Proof. (1) By [15, Theorem 17.3(3)], there is a prime ideal Q ( P of V such
that there are no prime ideals properly between P and Q. Then, Q is the
intersection of all the P -primary ideals, and thus by Theorem 3.1 it is con-
tained in the closure of P(P ) with respect to the constructible topology. Let
f : V −→ VP /QVP be the natural map, and let f ] : I(VP /QVP ) −→ I(V )
be the induced map. Then, f ](I•(VP /QVP )) = P(P ) ∪ {Q}; since I•(R) is
proconstructible in I(R) for every ring R and f ] is closed with respect to
the constructible topology, it follows that P(P ) ∪ {Q} is proconstructible.
Considering the previous paragraph, P(P ) ∪ {Q} must be the closure of
P(P ), as claimed.

(2) By Proposition 3.3(1), we need to show that the infimum and the
supremum of every nonempty subset ∆ ⊆ PV are in PV .

Let thus ∆ = {Qα}α∈A and, for every α, let Pα be the radical of Qα;

let ∆′ := {Pα}α∈A. If ∆′ has a maximum, say P , then the supremum of ∆
is equal to the supremum of ∆ := {Q ∈ ∆ | rad(Q) = P} ⊆ P(P ). This
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set is proconstructible (if P is branched by the previous part of the proof,
if P is not branched because in that case P(P ) = {P}), and thus it has a
supremum in P(P ) ⊆ PV ; hence, ∆ has a supremum.

If ∆′ has not a maximum, then for every α there is an α′ such that
Pα = rad(Qα) ( rad(Qα′) = Pα′ , and thus Pα ⊆ Qα′ ; hence, the supremum
Q :=

⋃
αQα of ∆ is also equal to the supremum

⋃
α Pα of ∆′. However, ∆′ is

contained in Spec(V ), and the latter is closed in the constructible topology;
hence, Q ∈ Spec(V ) ⊆ PV . Therefore, the supremum of ∆ belongs to PV .

The claim for the infimum follows similarly: if ∆′ has a minimum P ,
then ∆ has an infima which is either in P(P ) or is the prime ideal directly
below P , while otherwise the infimum of ∆′ is the intersection of all the
elements of ∆′ (which is in Spec(V ) and thus in PV ). In both cases, the
infimum is in PV . Therefore, PV is closed by suprema and infima and so it
is proconstructible. �

Note that, if dimV > 1, then PV 6= I•(V ): for example, if m is the
maximal ideal of V and x belongs to a prime ideal P strictly contained in
m, then xm is not primary: indeed, if y ∈ m\P , then xy ∈ xm, while x /∈ xm
and yn /∈ P and thus yn /∈ xm for every n ≥ 1.

5.2. Principal ideals. Proposition 4.3(2) shows that finitely generated
substructures form a dense subset (with respect to the constructible topol-
ogy) of the set of all substructures. In this section, we show that the same
does not hold if we replace “finitely generated” with “cyclic” (or “princi-
pal”).

Given a ring R, let Princ(R) denote the set of principal ideals of R. We
first study the Noetherian case.

Proposition 5.7. Let R be a Noetherian ring. Then, Princ(R) is dense in
I(R)cons if and only if R is a principal ideal ring.

Proof. If R is a principal ideal ring, then every ideal is principal and thus
Princ(R) is the whole I(R).

Conversely, suppose that Princ(R) is dense in I(R)cons. Since R is Noe-
therian, by Proposition 5.2 every maximal ideal is an isolated point of
I(R)cons; therefore, Princ(R) must contain every maximal ideal. By [19,
Theorem 12.3], R is a principal ideal ring, as claimed. �

Proposition 5.7 does not work in the non-Noetherian setting; for example,
if D is a Bézout domain then Princ(D) = If (D) is dense in the constructible
topology, but D may not be Noetherian. However, we can say something;
recall that the v-operation is the divisorial closure v : I 7→ (D :K (D :K I))
(where K is the quotient field of D) while the t-operation is the finite-type
closure associated to v, i.e., t = vf . An ideal is divisorial if it is v-closed.

Proposition 5.8. Let D be an integral domain. If Princ(D) is dense in
I(D)cons, then the t-operation of D is equal to the identity.
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Proof. Since every principal ideal is divisorial, we have Princ(R) ⊆ F(D)v ⊆
F(D)t. By Proposition 4.5 (or [13, Proposition 2.9 and Corollary 2.10]),
F(D)t is proconstructible in F(D); it follows that F(D)t ∩ I(D) is procon-
structible in I(D). Hence, since Princ(D) is dense in I(D)cons, it must be
I(D) ⊆ F(D)t. It follows that the t-operation is equal to the identity (since
two semistar operations of finite type are equal if and only if they agree on
integral ideals). �

Corollary 5.9. Let D be an integrally closed integral domain. If Princ(D)
is dense in I(D)cons, then D is a Prüfer domain.

Proof. By Proposition 5.8, if Princ(D) is dense then the t-operation is the
identity. Since D is integrally closed, it follows that D is a Prüfer domain,
in view of [15, Proposition 34.12]. �

Note that this corollary cannot be inverted – for example, a Dedekind do-
main that is not a PID gives an example of a Prüfer domain whose principal
ideals are not dense, by Proposition 5.7. We advance the following

Conjecture: if D is integrally closed and Princ(D) is dense in I(D)cons,
then D is a Bézout domain.

We can also ask the opposite question: when is Princ(D) proconstructible
in I(D)?

Proposition 5.10. Let R be a ring. If Princ(R) proconstructible in I(R),
then R satisfies the ascending chain condition on principal ideals.

Proof. Suppose that there is an ascending chain ∆ := {(rα) | α ∈ A} of
principal ideals that does not stabilize. As a set, ∆ is closed by finite suprema
(since it is a chain), and thus since Princ(R) is closed in the constructible
topology then ∆∞ ⊆ Princ(R), by Theorem 3.1. In particular the union⋃
α(rα) must be a principal ideal, say generated by r. However, this implies

r ∈ (rα) for some α ∈ A, which in turn implies that ∆ stabilizes at (rα).
This is a contradiction, and thus the conclusion follows. �

In particular, the previous proposition rules out every Prüfer domain that
is not Noetherian. On the positive side, by [29, Theorem 7.9.5], a domain D
is a UFD if and only if Princ(D) = F(D)t ∩ I(D), and thus if D is a UFD
then Princ(D) is proconstructible. We give two extensions of this result; the
first one uses a method similar to the proof of Proposition 5.4.

Theorem 5.11. Let D be a Krull domain. Then, Princ(D) is procon-
structible in I(D).

Proof. Both F(D)t and I(D) are proconstructible in F(D); therefore, the
constructible topology of X := F(D)t ∩ I(D) is the restriction of the con-
structible topology of F(D) (or of I(D)). Since Princ(D) ⊆ X, it is enough
to show that Princ(D) is proconstructible in the spectral space X; to this
end, we prove the following claim: each nonzero element of X is isolated in
Xcons.
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Indeed, let N ∈ X be nonzero. Then, there is a finite subset F ⊂ N such
that N = (F )t [15, Corollary 44.3]; therefore, {N}↑ = B(F ) ∩X is a clopen
set of the constructible topology, and thus it is enough to show that N is
isolated in {N}↑, with respect to the constructible topology. Let Y be the
set of height-one prime ideals of D.

If N = D then {N}↑ = {N} and we are done. Otherwise, by [15, Corol-
laries 43.9 and 44.8], N is contained in finitely many height-one primes, say
P1, . . . , Pk. The set X is a semigroup under the t-product I ×t J := (IJ)t

(see [16]); by [3, Chapter VII, §1, Theorem 2], X is isomorphic to the free
semigroup generated by Y , and I divides J in X if and only if J ⊆ I.
Therefore, {N}↑ \ {N} has only finitely many minimal elements, namely
(N(D : P1))t, . . . , (N(D : Pk))

t. Like for the case of N , for each i there
is a finite set Gi ⊆ D such that (Gi)

t = (N(D : Pi))
t; thus, each set

{(N(D : Pi))
t}↑ (1 ≤ i ≤ k) is clopen in Xcons. Thus, their finite union

{N}↑ \ {N} is also clopen; it follows that N is isolated in {N}↑, with re-
spect to the constructible topology. The claim is proved.

In particular, each nonprincipal ideal of X is isolated in X, and thus
X \ Princ(D) is open in Xcons; it follows that Princ(D) is proconstructible
in X. The conclusion is now clear. �

Proposition 5.12. Let D be a GCD domain, and let Fp(D) be the set of
cyclic submodules of the quotient field of D. Then:

(1) Clcons(Fp(D)) = F(D)t;
(2) Clcons(Princ(D)) = F(D)t ∩ I(D);
(3) The following conditions are equivalent.

(i) Princ(D) is proconstructible in I(D).
(ii) D is a unique factorization domain.

Proof. Since D is a GCD domain, the intersection of two principal ideals
(and thus of two principal fractional ideals) is again principal [15, Theo-
rem 16.2]; by Theorem 3.1, Fp(D)∞ ⊆ Clcons(Fp(D)). By [29, Proposition
5.2.2(10)], Fp(D)∞ is the set F(D)v \ {K} of proper D-submodules of K
that are v-closed (where v is the divisorial closure).

By Proposition 4.5, Clcons(F(D)v) = F(D)vf =: F(D)t, and thus it easily
follows that Clcons(Fp(D)) = F(D)t. Thus (1) is proved.

The equality (2) follows in exactly the same way, because a divisorial
integral ideal is also the intersection of principal integral ideals of D (since
αD ∩D is a principal integral ideal for every α ∈ K).

(3). By Theorem 5.11 (or the discussion before it), it suffices to show
(i)=⇒(ii). This follows from Proposition 5.10 and [29, Theorem 5.1.20]. �

6. Overrings of an integral domain

Let A ⊆ B be a ring extension and let R(B|A) denote the set of all
subrings of B containing A. Then, R(B|A) is another example of algebraic
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lattice of sets: the associated closure operation sends F ⊆ B to the ring
A[F ] generated by A and F . In particular, the family of sets

B(x1, . . . , xn) := {T ∈ R(B|A) | x1, . . . , xn ∈ T}
is a subbasic of open and compact sets of a topology (called the Zariski topol-
ogy), under which R(B|A) is a spectral space, it is locally with maximum,
and the set of finitely generated elements of R(B|A) is the set of finitely
generated A-algebras contained in B. In particular, the set of finitely gener-
ated A-algebras is dense in R(B|A)cons (this had been observed, in the case
of domains, in [26, Proposition 7.6]).

Let now D be an integral domain and K the quotient field of D. We
denote by:

• Over(D) := R(K|D) the set of all overrings of D;
• Zar(D) the set of all valuation overrings of D;
• I(D) the set of integrally closed overrings of D;
• Pruf(D) the set of Prüfer overrings of D;
• Prufsloc(D) the set of semilocal Prüfer overrings of D.

By [6, Example 2.1(3), Propositions 2.12, 3.2 and 3.6], we see that that
Zar(D) and I(D) are proconstructible in Over(D); note that the latter is
again an algebraic lattice of sets, while the former is not (since the intersec-
tion of two noncomparable valuation domains is not a valuation domain).
Our next results show that Prüfer overrings usually do not give rise to spec-
tral spaces.

Proposition 6.1. Let D be an integral domain. Then, the closure of
Prufsloc(D) in the constructible topology of Over(D) is I(D).

Proof. Consider the proconstructible subset Y := Zar(D) of the spectral
space X := Over(D). By [15, Theorem 22.8], Yf = Prufsloc(D); on the
other hand, by [2, Corollary 5.22], Y∞ = I(D). Since Over(D) is locally
with maximum, the conclusion follows from Proposition 3.9. �

Corollary 6.2. For an integral domain D, the following conditions are
equivalent.

(i) The integral closure D of D is a Prüfer domain.
(ii) Pruf(D) is quasi-compact as a subspace of Over(D).

Proof. (i)=⇒(ii) is trivial since, if D is a Prüfer domain, then Pruf(D) =
I(D) by [4, Corollary 4.5].

(ii)=⇒(i). Since the order of the Zariski topology on Over(D) is the
reverse inclusion, Pruf(D) is closed under generizations, again by [4, Corol-
lary 4.5]. Since by assumption Pruf(D) is quasi-compact, then it is closed
in the inverse topology and thus proconstructible, by [7, Proposition 2.6].
The inclusions Prufsloc(D) ⊆ Pruf(D) ⊆ I(D) and Proposition 6.1 imply
Pruf(D) = I(D), and in particular D ∈ Pruf(D), i.e., D is a Prüfer do-
main. �



1086 C. A. FINOCCHIARO AND D. SPIRITO

In [20], F. Kuhlmann shows several density results for the space Zar(K|F )cons,
where K and F are fields; in particular, an immediate consequence of
his Corollary 4 is that the subset of discrete valuation rings is dense in
Zar(K|F )cons. We obtain a similar result in the context of the Zariski space
of a Noetherian domain. For the notation ∧∆ and the b-operation see the
following Section 6.1.

Theorem 6.3. Let D be a Noetherian domain and let ∆(D) be the set of
all discrete valuation overrings of D. Then ∆(D) is dense in Zar(D)cons.

Proof. By [18, Proposition 6.8], for every finitely generated ideal I of R we
have I∧∆(D) = Ib, where ∧∆(D) is the semistar operation induced by ∆(D)
and b is the b-operation (or integral closure) on D. By [9, Lemma 5.8(3)], it
follows that Zar(D) = Clinv(∆(D)), i.e., that ∆(D) is dense in Zar(D) with
respect to the inverse topology.

For every finite subset F of the quotient field K of D, let B(F ) :=
Zar(D[F ]) denote (with a small abuse of notation) the generic basic open set
of the Zariski topology (induced by the one of FD(K)). Since B(F )∩B(G) =
B(F ∪G), the open and quasi-compact subspaces of Zar(D) are precisely all
finite unions of basic open sets of the type B(F ), where F is a finite subset
of K. Since the constructible topology is, by definition, the coarsest topol-
ogy on Zar(D) for which open and quasi-compact subspaces of the Zariski
topology are clopen, it is easily seen that a basis of Zar(R)cons consists of
sets of the type

B(F ) ∩

Zar(D) \
m⋃
j=1

B(Gj)

 = Zar(D[F ]) ∩

Zar(D[F ]) \
m⋃
j=1

B(Gj)

 ,

for some finite subsets F,G1, . . . , Gm of K. Let Ω be the previous set. Then,
Ω is an open set of the inverse topology of Zar(D[F ]); by the first paragraph
of the proof, ∅ 6= ∆(D[F ]) ∩ Ω ⊆ ∆(D) ∩ Ω. Therefore, ∆(D) intersects
all basic open sets of Zar(D)cons, and thus it is dense in it. The claim is
proved. �

The following is a “Noetherian” analogue of Proposition 6.1.

Corollary 6.4. Let D be a Noetherian domain. Then the set of the over-
rings of D that are Dedekind and semilocal is dense in I(D), with respect to
the constructible topology.

Proof. Let ∆ := ∆(D) as in Theorem 6.3 and let Λ be the set of the over-
rings of D that are Dedekind and semilocal. By [22, Theorem 12.2], ∆f = Λ
and, by Proposition 3.9(3) and Theorem 6.3, Λ is dense in Zar(D)∞ = I(D),
as claimed. �

As a consequence of Corollary 6.4, we can complete [26, Proposition 7.3]
by considering the case of principal ideal domains.
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Proposition 6.5. Let D be a Noetherian domain, and let

∆ := {T ∈ Over(D) | T is a principal ideal domain}.
Then the following conditions are equivalent:

(i) the integral closure of D is a principal ideal domain;
(ii) ∆ is proconstructible in Over(D);
(iii) ∆ is quasi-compact.

Proof. Note first that (ii) and (iii) are equivalent since, in view of [4, Corol-
lary 5.3], ∆ is closed under generization (i.e., if T ⊆ T ′ and T ∈ ∆, then
also T ′ ∈ ∆).

If (i) holds, then ∆ is equal to I(D), which is proconstructible by Propo-
sition 6.1, and so (ii) holds. Suppose (ii) holds: by Corollary 6.4, the set Λ
of overrings of D that are Dedekind and semilocal is dense in I(D); since
Λ ⊆ ∆ (see, for instance, [15, Corollary 34.7]), also ∆ is dense in I(D).
Since ∆ is proconstructible, we must have ∆ = I(D), and in particular the
integral closure D of D is in ∆, as claimed. �

An integral domain D is called rad-colon coherent if the radical of the
conductor (D :D x) is the radical of a finitely generated ideal for every
x ∈ K (where K is the quotient field of D); likewise, it is called rad-colon
principal if the radical of each (D :D x) is the radical of a principal ideal for
every x ∈ K [28].

Proposition 6.6. Let D be a rad-colon coherent domain. If {Pα}α∈A is a
chain of prime ideals of D and P :=

⋃
α Pα, then

⋂
αDPα = DP .

Proof. Since D is rad-colon coherent, the set X of localizations of D at
prime ideals is proconstructible in Over(D) [28, Theorem 3.2(b)]; in partic-
ular, the constructible closure of ∆ := {DPα}α∈A is contained in X. In the
Zariski topology, sup ∆ is exactly the intersection of the elements of ∆; by
Theorem 3.1, it follows that sup ∆ ∈ X. It follows that

⋂
αDPα = DP , as

claimed. �

Proposition 6.7. Let D be a rad-colon principal domain. If {Sα}α∈A is a
descending chain of multiplicatively closed subsets of D, and S :=

⋂
α Sα,

then
⋂
α S
−1
α D = S−1D.

Proof. The proof is the same as the previous proposition, using [28, Theo-
rem 4.4] to prove that the set of quotient rings of D is proconstructible. �

We show that the hypothesis in the previous two propositions cannot be
dropped in general.
Example 6.8.

(1) Let V be a valuation domain with an unbranched maximal ideal M
and such that the residue field is equal to K(X) for some field K
and some indeterminate X over K. Let D be the pullback of K in
V : that is, D := {r ∈ V | π(r) ∈ K}, where π : V −→ V/M is
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the residue map. By [12, Theorem 1.4], the prime spectrum of D is
(set-theoretically) equal to the spectrum of V ; in particular, M is
the maximal ideal of D.

Let {Pα} be the chain of non-maximal prime ideals of D: then,
for every α, we have DPα = VPα , and thus

⋂
αDPα = V . On the

other hand, M =
⋃
αDPα , and DM = D; thus,

⋂
αDPα 6= DM . In

particular, D is not rad-colon coherent.
(2) Let D be a Dedekind domain with countably many maximal ideals,

say M0,M1, . . . ,Mn, . . . and M∞, and suppose that M∞ ⊆
⋃
nMn:

that is, suppose that M∞ is not the radical of any principal ideal,
or equivalently that the class of M∞ in the Picard group of D is not
torsion. In particular, D is not rad-colon principal.

Let Sn := D \ (M1 ∪ · · · ∪Mn): then, {Sn}n∈N is a descending
chain of multiplicatively closed subset whose intersection S = D \⋃
nMn is just the set of units of D. Hence, S−1

n D = DM1 ∩ · · · ∩
DMn , and thus T :=

⋂
n S
−1
n D =

⋂
nDMn . Since D is a Dedekind

domain, the maximal ideals of T are in the form MnT , for n ∈ N; in
particular, M∞T = T . On the other hand, S−1D = D; in particular,⋂
n S
−1
n D 6= S−1D.

6.1. Spaces of semistar operations. Let D be an integral domain with
quotient field K. As before, let F(D) := FD(K) denote the set of all D-
submodules of K. A semistar operation on D is a closure operation ? on
F(D) such that (kF )? = kF ? for all k ∈ K and all F ∈ F(D). As F(D) is
an algebraic lattice of sets, keeping in mind Remark 4.4 all definitions and
results of Section 4 apply to semistar operations.

We denote by SStar(D) and SStarf (D), respectively, the set of all semistar
operations and the set of all semistar operations of finite type. For any
? ∈ SStar(D), let F(D)? := {I ∈ F(D) | I = I?}. By Corollary 4.8,
SStarf (D) is proconstructible in Closf (K), and thus it is a spectral space
when endowed with the restriction of the Zariski topology of Closf (K). Since
x ∈ I? if and only if 1 ∈ (x−1I)?, it follows that it is enough to consider
the sets V (I, x) with x = 1, i.e., a subbasis for the Zariski topology on
SStarf (D) is formed by the sets

VF := V (F, 1) = {? ∈ SStarf (D) | 1 ∈ F ?},

as F ranges among the D-submodules of K. (The spectrality of this set was
also proved through ultrafilter techniques in [11, Theorem 2.13].) We can
also consider this topology on the whole SStar(D), but it this case we may
not obtain a spectral space [27, Section 4].

For every overring R of D, the map ?R defined by setting F ?R := FR,
for every F ∈ F(D), is a semistar operation of finite type. if ∆ ⊆ Over(D),
then we set ∧∆ :=

∧
({?R | R ∈ ∆}), and in particular we set b := ∧Zar(D).

There is a natural topological embedding ι : Over(D) −→ SStarf (D),
defined by ι(R) := ?R. (This is the reason why the topology is called the
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Zariski topology.) We will use our results to show that this map is, in
general, not spectral.

Proposition 6.9. Let D be an integral domain, and let ι : Over(D) −→
SStarf (D) the canonical embedding. If ι is a spectral map (equivalently, if
ι(Over(D)) is closed in the constructible topology of SStarf (D)) then the

integral closure D of D is a Prüfer domain.

Proof. Let ∆ be the set of semilocal Prüfer overrings of D. We first prove
that if T ∈ ∆, then ι(T ) := ?T is the infimum of a finite family of elements of
ι(Zar(D)): indeed, if I is any D-submodule of the quotient field K of D and
V1, . . . , Vn are the localizations at the maximal ideals of T , then, keeping in
mind [15, Theorem 4.10], we have

I?T = IT = IT

(
n⋂
i=1

Vi

)
=

n⋂
i=1

ITVi =
n⋂
i=1

I?Vi ,

i.e., ?T = inf1≤i≤n ?Vi . On the other hand, if V1, . . . , Vn ∈ Zar(D), then
T := V1 ∩ · · · ∩ Vn is a Prüfer domain whose localizations at the maximal
ideals are a subset of {V1, . . . , Vn}, and so inf1≤i≤n ?Vi = ?T . Therefore, the
set ι(∆) is closed by finite infima (that is, it is closed by finite suprema, with
respect to the Zariski topology).

Suppose ι(Over(D)) is proconstructible in SStarf (D). By Theorem 3.1,
it follows that

ι(∆)∞ ⊆ ι(Over(D)),

and thus, in particular, b = ∧Zar(D) ∈ ι(Over(D)). Let R ∈ Over(D) be

such that b = ι(R) = ?R. Then, Db = D?R = DR = R; however, Db is equal
to the integral closure D of D [2, Corollary 5.22], and thus R = D. Hence,
for every D-submodule J of K, we have Jb = J?D = JD = J . This proves
that b is the identity on F(D), and this happens if and only if D is a Prüfer
domain, by [15, Theorem 24.7]. The conclusion follows. �

By [11, Proposition 2.7], if S is a quasi-compact set of semistar operations
of finite type then

∧
(S) is a semistar operation of finite type; the converse

holds if S is a set of closures in the form ?R such that the rings R are
either all localizations of D [11, Corollary 4.4] or all valuation overrings of
D [11, Proposition 4.5]. In [11], it was also conjectured that the converse is
valid for every family of semistar operations induced by overrings; while this
conjecture has already been disproved in [8, Example 3.6] using numerical
semigroup rings, we now show that it can fail on every non-Prüfer domain.

Example 6.10. Let D be an integrally closed domain that is not a Prüfer
domain and, as before, let b be the semistar operation b : I 7→

⋂
{IV | V ∈

Zar(D)}, for every I ∈ F(D). Note that b is a semistar operation of finite
type (for example, since Zar(D) is quasi-compact). However, if T is a Prüfer
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overring of D and I is any D-submodule of the quotient field of D, then,
again by [15, Theorem 4.10], we have

IT =
⋂

P∈Spec(T )

ITM =
⋂

V ∈Zar(T )

IV,

and thus b =
∧

(S), where S := {?R | R ∈ Pruf(D)}. In particular,
∧

(S)
is of finite type, while S is not quasi-compact since it is homeomorphic to
Pruf(D) [11, Proposition 2.5] and Pruf(D) is not quasi-compact by Corollary
6.2.
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