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Comparability in the graph monoid

Roozbeh Hazrat and Lia Vaš

Abstract. Let Γ be the infinite cyclic group on a generator x. To avoid
confusion when working with Z-modules which also have an additional
Z-action, we consider the Z-action to be a Γ-action instead.

Starting from a directed graph E, one can define a cancellative com-
mutative monoid MΓ

E with a Γ-action which agrees with the monoid
structure and a natural order. The order and the action enable one to
label each nonzero element as being exactly one of the following: com-
parable (periodic or aperiodic) or incomparable. We comprehensively
pair up these element features with the graph-theoretic properties of the
generators of the element. We also characterize graphs such that every
element of MΓ

E is comparable, periodic, graphs such that every nonzero
element of MΓ

E is aperiodic, incomparable, graphs such that no nonzero
element of MΓ

E is periodic, and graphs such that no element of MΓ
E is

aperiodic.
The Graded Classification Conjecture can be formulated to state that

MΓ
E is a complete invariant of the Leavitt path algebra LK(E) of E over

a field K. Our characterizations indicate that the Graded Classification
Conjecture may have a positive answer since the properties of E are
well reflected by the structure of MΓ

E . Our work also implies that some
results of [11] hold without requiring the graph to be row-finite.
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0. Introduction

There are several different ways to associate an algebra over a field K to
a directed graph E. For example, one can form the path algebra PK(E)
which is a vector space over K based on paths multiplied using concatena-
tion. If one wants to add a natural involutive structure to this algebra (as,
for example, when completing the path algebra over complex numbers to
obtain the graph C∗-algebra C∗(E)), then every vertex naturally becomes
a self-adjoint idempotent, a projection, and every edge e becomes a partial
isometry making the projections ee∗ and e∗e equivalent. If s and r are the
source and range maps of E respectively, and s(e) = v, then ve = e so that
vee∗ = ee∗ and, hence, v ≥ ee∗ (recall that the projections are ordered by
p ≤ q if pq = p). On the other hand, if w = r(e), then ew = e and so
w ≥ e∗e. The requirement that w = e∗e is called the (CK1) axiom. One also
aims to have that the projections v and w are equivalent if e is the only edge
from v to w and if v does not emit any other edges. This is achieved by an
additional requirement, the (CK2) axiom, stating that v =

∑
e∈s−1(v) ee

∗ if

v emits at least one and only finitely many edges. The axioms (CK1) and
(CK2) imposed on the involutive closure of the path algebra produce the
Leavitt path algebra LK(E). If V(LK(E)) is the monoid of the isomorphism
classes of finitely generated projective modules (or conjugation classes of
idempotent matrices), the (CK1) and (CK2) axioms imply that

[v] =
∑

e∈s−1(v)

[r(e)]

holds in V(LK(E)) for every vertex v which emits at least one and only
finitely many edges. If E is such that every vertex emits only finitely many
edges, in which case we say that E is row-finite, one of the first papers on
Leavitt path algebras [5] shows that elements [v] generate V(LK(E)) and
that the above relations are the only relations which hold on V(LK(E)).
Thus, to capture V(LK(E)) entirely, it is sufficient to consider a free com-
mutative monoid ME , called the graph monoid, generated by [v] where v is
a vertex of E subject to the above relations. In [3], the authors generalized
this construction to arbitrary graphs. To handle vertices which emit infin-
itely many edges (infinite emitters), one adds two natural relations to the
one listed above (the details are reviewed in Section 1.5) to obtain ME .

The monoid ME is not necessarily cancellative which is easy to see: if
v is a vertex emitting two edges to itself, then the relation [v] + [v] = [v]
holds in the monoid but the generator [v] is nonzero. So, when one forms
the Grothendieck group GE of the monoid ME a lot of information can get
lost. In particular, if E is a graph consisting only of the vertex and edges
from the previous example, then GE = 0.

In addition to the above mentioned downside, very different graphs give
rise to isomorphic monoids and, consequently, isomorphic Grothendieck
groups. For example, • and • ee . In addition, consider the graphs E1
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and E2 below, for example.

•v1 // •w1 •v2 // • // •w2

The relation [v1] = [w1] holds in the first and the relation [v2] = [w2] holds
in the second graph monoid regardless of the fact that the length of the only
path from v1 to w1 is 1 in E1 while the length of the only path from v2 to
w2 is 2 in E2. So, this type of information is also lost in the Grothendieck
group.

These downsides can be avoided by taking the natural grading of a Leavitt
path algebra into consideration. Namely, the elements pq∗ where p and q
are paths, generate the entire algebra as a K-vector space and if p and q
are such that the difference of the length of p and the length of q is an
integer n, the generator pq∗ is considered to be in the n-th component of
LK(E). This produces a Z-graded structure of LK(E) where Z is the set
of integers. For a ring R graded by a group Γ, the monoid VΓ(R) of the
graded isomorphism classes of finitely generated graded projective modules
(or conjugation classes of certain homogeneous idempotent matrices) is a
natural analogue of V(R). The monoid VΓ(R) has a canonical Γ-action and
we refer to a monoid with this type of structure as a Γ-monoid.

To avoid confusion when working with structures which are Z-modules
but also have an additional Z-action, we let Γ = {xn | n ∈ Z} and consider
the Z-action to be a Γ-action instead. The Γ-action on VΓ(LK(E)) is such
that the relation [v] =

∑
e∈s−1(v)[r(e)] becomes

[v] =
∑

e∈s−1(v)

x[r(e)]

if s−1(v) is nonempty and finite. The power 1 of x in this relation indicates
the length of the path e from v to r(e). With analogous modifications of
the other defining relations, we let the graph Γ-monoid MΓ

E be the quotient
of a free Γ-monoid FΓ

E with basis elements labeled by the vertices and the
elements related to the infinite emitters subject to the defining relations
(Section 1.6 contains more details). Alternatively, if →1 is a binary relation
of FΓ

E given by these defining relations, → is the reflexive and transitive
closure of→1, and ∼ is the congruence closure of→, then MΓ

E is the quotient
Γ-monoid FΓ

E/ ∼ . The Γ-monoid MΓ
E is naturally isomorphic to VΓ(LK(E)).

The monoid MΓ
E has several important advantages over ME . First, it is

always cancellative by [4, Corollary 5.8] (we give an alternative proof in
Proposition 3.1) and so it is exactly the positive cone of its Grothendieck
group GΓ

E . This group inherits the Γ-action from MΓ
E so we refer to it as the

Grothendieck Γ-group. Second, the information on the lengths of paths from
a vertex to vertex is not lost. For example, if E1 and E2 are the above two
graphs, the relations [v1] = [w1] and [v2] = [w2] of ME1 and ME2 become

[v1] = x[w1] and [v2] = x2[w2]



1378 ROOZBEH HAZRAT AND LIA VAŠ

in MΓ
E1

and MΓ
E2

respectively. Here, the powers of x indicate that the length
of the (only) path from v1 to w1 is 1 in E1 and that the length of the (only)
path from v2 to w2 is 2 in E2. In addition, very different graphs • and • ee
have different Grothendieck Γ-groups: GΓ

E of the first graph is isomorphic to
Z[Γ] with the natural action of Γ while GΓ

E of the second graph is isomorphic
to Z with the trivial action of Γ.

Because of these favorable properties of MΓ
E and GΓ

E , it was conjectured
in [9] that GΓ

E , considered with a natural pre-order and an order-unit, is a
complete invariant of a row-finite graph E. Since the monoid MΓ

E is always
cancellative, this conjecture can also be phrased in terms of MΓ

E instead of
GΓ
E . In addition, the restriction on row-finiteness can be deleted and we refer

to the following statement as the Graded Classification Conjecture.

For any two graphs E and F and any field K, LK(E) and LK(F )
are isomorphic as Γ-graded algebras if and only if MΓ

E and MΓ
F are

isomorphic as pre-ordered Γ-monoids with order-units.

Since MΓ
E is cancellative, the natural pre-order is, in fact, an order. In

[11], the authors show that the relation a < xna is impossible for any a ∈MΓ
E

and any positive integer n if E is row-finite. In Proposition 3.4, we show
that this holds for all graphs E. Hence, there are two remaining cases.

(1) a ≥ xna for some positive integer n. In this case, we say that a is
comparable.

(2) a and xna incomparable for any positive integer n. In this case, we
say that a is incomparable.

If a is comparable, there are two possibilities.

(1i) a = xna for some positive integer n. In this case, we say that a is
periodic.

(1ii) a > xna for some positive integer n. In this case, we say that a is
aperiodic.

In this paper, we provide complete characterizations of all four types of
elements (comparable, incomparable, periodic and aperiodic) in terms of
the graph-theoretic properties of the generators of an element. We obtain
this by three groups of results. First, in Section 2, we obtain a graph-
theoretic characterization of the relation → (Proposition 2.2). Second, in
Sections 3.4 and 3.5, we introduce and study certain well-behaved building
blocks of comparable elements, the stationary elements. Third, in Section
3.6, we produce a graph-theoretic characterization of a stationary element
(Proposition 3.17). This enables us to prove Theorem 3.19, the main result
of Section 3, which characterizes a comparable element in terms of the graph-
theoretic properties of its generators.

In Section 4, we characterize periodic and aperiodic elements in Theo-
rems 4.1 and 4.4. We have already found a use of Theorem 4.1: it was
used in [13, Theorem 3.1] to characterize Leavitt path algebras which are
crossed products in terms of the properties of the underlying graphs. We also



COMPARABILITY IN THE GRAPH MONOID 1379

characterize graphs such that every element of MΓ
E is comparable (Theorem

3.21), periodic (Theorem 4.2), graphs such that every nonzero element of
MΓ
E is aperiodic (Theorem 4.5), incomparable (Corollary 4.7), graphs such

that no nonzero element of MΓ
E is periodic (Corollary 4.3), and graphs such

that no element of MΓ
E is aperiodic (Corollary 4.6). These characterizations

comprehensively pair up the monoid and the graph properties and are sum-
marized in the table below. In the table, c(a), p(a), ap(a), ic(a) shorten the
statements that a ∈MΓ

E is comparable, periodic, aperiodic, and incompara-
ble respectively. The formula “(∃a 6= 0) c(a)”, for example, shortens “There
is a nonzero comparable element in MΓ

E”.

Property of the graph Γ-monoid Property of the graph

(∃a 6= 0) c(a) = (∃a 6= 0) not ic(a) There is a cycle.
(∀a 6= 0) ic(a) = (∀a 6= 0) not c(a) There is no cycle.
(∃a 6= 0) p(a) There is a cycle with no exits.
(∃a) ap(a) There is a cycle with an exit.
(∀a) c(a) = (∀a) not ic(a) Condition from Thm 3.21 holds.
(∀a) p(a) Condition from Thm 4.2 holds.
(∀a 6= 0) ap(a) Condition from Thm 3.21 holds

and every cycle has an exit.
(∀a 6= 0) not p(a) Every cycle has exits.
(∀a) not ap(a) No cycle has exits.
(∃a) ic(a) = (∃a) not c(a) Condition from Thm 3.21 fails.
(∃a) not p(a) Condition from Thm 4.2 fails.
(∃a 6= 0) not ap(a) Condition from Thm 3.21 fails

or there is a cycle with no exits.

In Section 4.1, we relax the assumptions of statements in [11]. In par-
ticular, we show that the main results of [11] hold without the requirement
that the graph is row-finite (Corollaries 4.8, 4.9, 4.10 and the first part of
Corollary 4.11). The second part of Corollary 4.11 lists further properties
of graphs which are preserved if the graph Γ-monoids are isomorphic.

Our work focuses on graphs and their graph Γ-monoids. Leavitt path
algebras, often mentioned in the introduction to illustrate wider context, do
not appear often in the rest of the paper and no prior knowledge of Leavitt
path algebras is needed for understanding our main results.

1. Prerequisites, notation and preliminaries

In this section only, we use Γ to denote an arbitrary group with mul-
tiplicative notation. In the other sections of the paper, Γ stands for the
infinite cyclic group generated by an element x.

1.1. Pre-ordered Γ-monoids and Γ-groups. IfM is an additive monoid
with a left action of Γ which agrees with the monoid operation, we say that
M is a Γ-monoid. If G an abelian group with a left action of Γ which agrees
with the group operation, we say that G is a Γ-group. Such action of Γ
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uniquely determines a left Z[Γ]-module structure on G, so G is also a left
Z[Γ]-module.

Let ≥ be a reflexive and transitive relation (a pre-order) on a Γ-monoid
M (Γ-group G) such that g1 ≥ g2 implies g1 + h ≥ g2 + h and γg1 ≥ γg2

for all g1, g2, h in M (in G) and γ ∈ Γ. We say that such monoid M is a
pre-ordered Γ-monoid and that such a group G is a pre-ordered Γ-group.

If G is a pre-ordered Γ-group, the set G+ = {x ∈ G | x ≥ 0}, called
the positive cone of G, is a Γ-monoid. Any additively closed subset M
of G which contains 0 and is closed under the action of Γ, defines a pre-
order Γ-group structure on G such that G+ = M . Such set G+ is strict
if G+ ∩ (−G+) = {0} and this condition is equivalent with the pre-order
being a partial order. In this case, we say that G is an ordered Γ-group. For
example, Z[Γ] is an ordered Γ-group with the positive cone Z+[Γ] consisting
of elements a =

∑n
i=1 kiγi ∈ Z[Γ] such that ki ≥ 0 for all i = 1, . . . , n.

An element u of a pre-ordered Γ-monoid M is an order-unit if for any
x ∈ M , there is a nonzero a ∈ Z+[Γ] such that x ≤ au. An element u of a
pre-ordered Γ-group G is an order-unit if u ∈ G+ and for any x ∈ G, there
is a nonzero a ∈ Z+[Γ] such that x ≤ au.

If G and H are pre-ordered Γ-groups, a Z[Γ]-module homomorphism
f : G → H is order-preserving or positive if f(G+) ⊆ H+. If G and H
are pre-ordered Γ-groups with order-units u and v respectively, an order-
preserving Z[Γ]-module homomorphism f : G → H is order-unit-preserving
if f(u) = v.

A Γ-order-ideal of a pre-ordered Γ-monoid M is a Γ-submonoid I of M
such that a ≤ b and b ∈ I implies a ∈ I. If G is a pre-ordered Γ-group,
a Γ-subgroup J of G is a Γ-order-ideal of G if J ∩ G+ is a Γ-order-ideal
of G+ and J = {x − y | x, y ∈ J ∩ G+} (equivalently, J is a directed and
convex Γ-subgroup of G using definitions of a directed set and a convex set
from [8]). The lattices of Γ-order-ideals of G+ and Γ-order-ideals of G are
isomorphic by the map I 7→ {x− y | x, y ∈ I} with the inverse J 7→ J ∩G+.

1.2. Graded rings. We briefly review the concept of graded rings for con-
text only. Other than a part of the statement of Corollary 4.10, no result of
this paper refers to graded rings or requires any knowledge of their proper-
ties.

A ring R is Γ-graded if R =
⊕

γ∈ΓRγ where Rγ is an additive subgroup of
R and RγRδ ⊆ Rγδ for all γ, δ ∈ Γ. The standard definitions of graded right
R-modules, graded module homomorphisms and isomorphisms, and graded
projective right modules can be found in [15] and [10]. If M is a graded right
R-module and γ ∈ Γ, the γ-shifted graded right R-module (γ)M is defined
as the module M with the Γ-grading given by (γ)Mδ = Mγδ for all δ ∈ Γ.

If R is a Γ-graded ring, let VΓ(R) denote the monoid of graded isomor-
phism classes [P ] of finitely generated graded projective right R-modules P
with the direct sum as the addition operation and the left Γ-action given
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by (γ, [P ]) 7→ [(γ−1)P ].1 In particular, the definitions and results of [10,
§3.2] carry to the case when Γ is not necessarily abelian as it is explained in
[18, Section 1.3]. The Grothendieck Γ-group KΓ

0 (R) is defined as the group
completion of the Γ-monoid VΓ(R) which naturally inherits the action of Γ
from VΓ(R). The monoid VΓ(R) is a pre-ordered Γ-monoid and the group
KΓ

0 (R) is a pre-ordered Γ-group for any Γ-graded ring R. If Γ is the trivial
group, KΓ

0 (R) is the usual K0-group.

1.3. Graphs. If E is a directed graph, let E0 denote the set of vertices,
E1 the set of edges and s and r the source and the range maps of E. The
graph E is finite if both E0 and E1 are finite and E is row-finite if s−1(v) is
finite for every v ∈ E0. A vertex v ∈ E0 is a sink if s−1(v) = ∅ and a source
if r−1(v) = ∅. A vertex of E is regular if s−1(v) is finite and nonempty.

We use the standard definitions of a path, a closed simple path and a cycle
(see [1, Definitions 1.2.2. and 2.0.2]). A path q is a prefix of a path p if
p = qr for some path r. If q = s(p), then q is a trivial prefix. If r 6= r(p),
then q is a proper prefix. If E has no cycles, E is acyclic. A cycle c has
an exit if a vertex on c emits an edge outside of c. The graph E satisfies
Condition (NE) (and E is a no-exit graph in this case) if v emits just one
edge for every vertex v of every cycle. The graph E satisfies Condition (L)
if every cycle has an exit (equivalently if every closed simple path has an
exit) and E satisfies Condition (K) if for each vertex v which lies on a closed
simple path, there are at least two different closed simple paths based at v.
An infinite path is a sequence of edges e1e2 . . . such that r(ei) = s(ei+1) for
i = 1, 2, . . .. Such infinite path ends in a cycle if there is a positive integer
n and a cycle c such that enen+1 . . . is equal to cc . . . .

If E is a finite and acyclic graph, it is well-established that it has a source.
Since we were not aware of a reference for this fact and we use it in the proof
of Lemma 3.13, we provide a quick proof for it.

Lemma 1.1. If E is a finite and acyclic graph, it has a source.

Proof. If the graph E does not have any edges, then each of its vertices
is both a source and a sink. If E has edges, pick any of them, say e0. If
r−1(s(e0)) is empty, then s(e0) is a source. If r−1(s(e0)) is nonempty, take
e1 ∈ r−1(s(e0)). Then e0 6= e1 since otherwise r(e0) = s(e0) and e0 would
be a cycle. If r−1(s(e1)) is empty, then s(e1) is a source. If r−1(s(e1)) is
nonempty, continue the process. At any step of the process, we obtain a
different edge than any of the edges considered previously otherwise E has
a cycle. Since E is finite, this process eventually ends. If it ends at the n-th
step, then s(en) is a source. �

1If M is a graded left R-module and γ ∈ Γ, the γ-shifted graded left R-module M(γ)
is the module M with the Γ-grading given by M(γ)δ = Mδγ for all δ ∈ Γ. The monoid
VΓ(R) can be represented using the classes of left modules in which case the corresponding
formula is (γ, [P ]) 7→ [P (γ)]. Two representations are equivalent (see [15, Section 2.4] or
[10, Section 1.2.3]).
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1.4. Leavitt path algebras. We review the concept of a Leavitt path al-
gebra for context only. No result of this paper except one part of Theorem
4.2 refers to Leavitt path algebras or requires any knowledge of these alge-
bras. If K is any field, the Leavitt path algebra LK(E) of E over K is a free
K-algebra generated by the set E0 ∪ E1 ∪ {e∗ | e ∈ E1} such that, for all
vertices v, w and edges e, f,

(V) vw = 0 if v 6= w and vv = v,
(E1) s(e)e = er(e) = e,
(E2) r(e)e∗ = e∗s(e) = e∗,
(CK1) e∗f = 0 if e 6= f and e∗e = r(e),
(CK2) v =

∑
e∈s−1(v) ee

∗ for each regular vertex v.

By the first four axioms, LK(E) is a K-linear span of the elements of
the form pq∗ for paths p and q. If LK(E)n is the K-linear span of pq∗ for
paths p and q with |p| − |q| = n where |p| denotes the length of a path p,
then it is the n-component of LK(E) producing a natural grading of LK(E)
by the group of integers Z. One can also grade LK(E) by any group Γ as
follows. Any function w : E1 → Γ, called the weight function, extends by
w(e∗) = w(e)−1 for e ∈ E1 and w(v) = ε for v ∈ E0, and, ultimately, by
w(pq∗) = w(p)w(q)−1 for any generator pq∗ of LK(E) (see [10, Section 1.6]).
Thus, LK(E) becomes Γ-graded with LK(E)γ being the K-linear span of
the elements pq∗ with weight γ.

1.5. The graph monoid and the Grothendieck group of a graph.
If E is a graph, the graph monoid ME was defined for row-finite graphs in
[5] and for arbitrary graphs in [3]. We briefly review this definition.

Any edge e ∈ E1 is a partial isometry of ee∗ and r(e) = e∗e so that [ee∗]
and [r(e)] are the same element in V(LK(E)). Hence, the relation below
holds in V(LK(E)) by the (CK2)-axiom if v is regular.

[v] =
∑

e∈s−1(v)

[r(e)] (1)

For any infinite emitter v and any finite and nonempty Z ⊆ s−1(v), one
considers the element qZ representing v−

∑
e∈Z ee

∗. We refer to the elements
of the form qZ as the improper vertices (and we note that this term was not
used before). When we need to emphasize that qZ is related to the infinite
emitter v (in the sense that Z ⊆ s−1(v)) we write qvZ for qZ . Also, whenever
the notation qZ appears, it is to be understood that there is an infinite
emitter v and that Z is a finite and nonempty subset of s−1(v). For any
finite sets Z and W such that ∅ ( Z ( W ( s−1(v), it is direct to check
that the relations

[v] = [qZ ] +
∑
e∈Z

[r(e)] and [qZ1 ] = [qZ2 ] +
∑

e∈W−Z
[r(e)] (2)
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also hold in V(LK(E)). So, one aims to define ME so that the relations (1)
and (2) are the only relations which hold in ME . This is achieved in the
following way.

Let FE be a free commutative monoid generated by the elements indexed
by the proper and improper vertices of E. To be consistent with [3], [4] and
[11], we abuse the notation and refer to the generator indexed by a proper
vertex v ∈ E0 as v and, similarly, to the generator indexed by qZ by qZ . The
monoid ME , called the graph monoid, is the quotient of FE with respect to
the the congruence closure ∼ of the relation →1 defined on FE − {0} by

a+ v →1 a+
∑

e∈s−1(v)

r(e),

whenever v is a regular vertex and a ∈ FE and by

a+ v →1 a+ qZ +
∑
e∈Z

r(e) and a+ qZ →1 a+ qW +
∑

e∈W−Z
r(e)

whenever v is an infinite emitter and Z and W are finite and such that
∅ ( Z (W ( s−1(v).

One often considers an intermediate step of this construction and lets →
be the transitive and reflexive closure of→1 on FE so that→ is a pre-order.
In this case, ∼ is the congruence on FE generated by the relation → (i.e.
the symmetric closure of the pre-order →).

We use the notation [v] for the congruence class of v as an element of
ME . As a side note, we add that the map [v] 7→ [vLK(E)] extends to a
pre-ordered monoid isomorphism of ME and V(LK(E)) (here V(LK(E)) is
given using the finitely generated projective right modules) by [1, Corollary
3.2.11] (or [3, Theorem 4.3]). So, the Grothendieck group completion GE of
ME is isomorphic to K0(LK(E)).

1.6. The graph Γ-monoid and the graph Grothendieck Γ-group.
Let Γ be a group and w : E1 → Γ be a function which we refer to as a
weight determining a Γ-grading of LK(E). The following relations hold in
the Γ-monoid VΓ(LK(E)). For every regular vertex v,

γ[v] =
∑

e∈s−1(v)

γw(e)[r(e)],

and for every infinite emitter v and finite Z and W such that ∅ ( Z (W (
s−1(v),

γ[v] = γ[qZ ] +
∑
e∈Z

γw(e)[r(e)] and γ[qZ ] = γ[qW ] +
∑

e∈W−Z
γw(e)[r(e)].

To adapt the original construction of ME to this setting, the authors of
[4] replaced generators v and qZ of FE by v(γ) and qZ(γ) for any γ ∈ Γ
and considered a free commutative monoid FΓ

E with the action of Γ given by
δv(γ) = v(δγ) and δqZ(γ) = qZ(δγ) for all γ, δ ∈ Γ. Then MΓ

E is the quotient
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of FΓ
E subject to the congruence closure ∼ of relation →1 defined just as in

the previous section but with the three relations modified accordingly so
that

a+ γv →1 a+
∑

e∈s−1(v)

γw(e)r(e),

whenever v is a regular vertex and a ∈ FE and by

a+ γv →1 a+ γqZ +
∑
e∈Z

γw(e)r(e) and

a+ γqZ →1 a+ γqW +
∑

e∈W−Z
γw(e)r(e)

whenever v is an infinite emitter and Z and W are finite and such that
∅ ( Z (W ( s−1(v).

One downside of this approach is that MΓ
E is still considered to be a

commutative monoid, not a commutative Γ-monoid. For example, if E is a
single vertex, MΓ

E is a direct sum of |Γ|-many copies of Z+ (with a natural
action of Γ) instead of being a single copy of Z+[Γ]. Also, the abundance
of generators can make some proofs less direct. Because of this, we adopt
a simpler and more intuitive approach here: we let MΓ

E be defined by the
same set of generators as when the weight function is trivial, but we let FΓ

E
be a free commutative Γ-monoid, not a free commutative monoid. In this
case, if E is a single vertex, then ME is a single copy of Z+ and MΓ

E is a
single copy of Z+[Γ]. The equivalence of ours and the construction from [4]
can be seen considering the graph covering E of E.

So, we let FΓ
E be a free commutative Γ-monoid generated by proper and

improper vertices. A nonzero element a of FΓ
E has a representation, unique

up to a permutation, as
∑n

j=1 αigi, where gi are different generators of FΓ
E

and αi ∈ Z+[Γ]. The support supp(a) of a is the set {gi | i = 1, . . . , n}.
Let kγ ∈ Z+ be the coefficient of γ ∈ Γ in αi ∈ Z+[Γ] in the above

representation. By writing each kγ > 0 as the sum 1+1+. . .+1, one obtains
the format a =

∑m
j=1 γjgj for some positive integer m and γj ∈ Γ, j =

1, . . . ,m. We allow the generators gj and gk to be possibly equal for j 6= k
in this form, also unique up to a permutation. We refer to it as a normal
representation of a and we say that each summand γjgj of this representation
is a monomial of a. We can still write supp(a) = {gj | j = 1, . . . ,m} because
any possible repetition of an element does not impact supp(a) as a set.

For example, if Γ is the infinite cyclic group generated by x, v is a vertex
of E, and a = xv+3v, then (x+3)v is a representation of a and xv+v+v+v
is a normal representation of a.

To shorten some statements, we say that a vertex v, considered as a
generator of FΓ

E , is regular if v is regular as a vertex of E. We also say that a
generator v ∈ FΓ

E is a sink or an infinite emitter, if v is a sink or an infinite
emitter as a vertex of E. An element a ∈ FΓ

E is regular if every element of
supp(a) is regular.



COMPARABILITY IN THE GRAPH MONOID 1385

We define the graph Γ-monoid MΓ
E as a quotient of FΓ

E subject to the
congruence closure ∼ of the relation →1 on FΓ

E −{0} defined by (A1), (A2)
and (A3) below for any γ ∈ Γ and a ∈ FΓ

E .

(A1) If v is a regular vertex, then

a+ γv →1 a+
∑

e∈s−1(v)

γw(e)r(e).

(A2) If v is an infinite emitter and Z a finite and nonempty subset of
s−1(v), then

a+ γv →1 a+ γqZ +
∑
e∈Z

γw(e)r(e).

(A3) If v is an infinite emitter and Z (W are finite and nonempty subsets
of s−1(v), then

a+ γqZ →1 a+ γqW +
∑

e∈W−Z
γw(e)r(e).

So, if→ is the reflexive and transitive closure of →1 on FΓ
E , then ∼ is the

congruence on FΓ
E generated by the relation→. This means that the relation

a ∼ b holds for some a, b ∈ FΓ
E − {0} if and only if there is a nonnegative

integer n and a = a0, . . . , an = b ∈ FΓ
E − {0} such that ai →1 ai+1 or

ai+1 →1 ai for all i = 0, . . . , n − 1. We refer to such n as the length of
the sequence a0, . . . , an and we write a ∼n b to emphasize the length. In
particular, if a → b, the sequence can be chosen so that ai →1 ai+1 for all
i = 0, . . . , n− 1. In this case, we write

a→n b.

Note that a→1 b is just a→1 b and that a→0 b is just a = b.
To shorten the notation in multiple proofs, if g is a generator of FΓ

E , and
one of the three axioms is applied to g, we use r(g) to denote the resulting
term on the right side of relation→1:

∑
e∈s−1(v)w(e)r(e) if g = v is a regular

vertex, qZ +
∑

e∈Z w(e)r(e) for some finite and nonempty subset Z of s−1(v)
if g = v is an infinite emitter, or qW +

∑
e∈W−Z w(e)r(e) for some finite Z

and W such that ∅ ( Z ( W ( s−1(v) if g = qvZ for an infinite emitter v.
The element r(g) is uniquely determined just for (A1). However, for a fixed
use of (A2) or (A3) which is not changed within a proof, the notation r(g)
is a well-defined shortening. Such uniform treatment enables us to condense
some proofs by avoiding considerations of three separate cases depending on
which axiom is used.

Another benefit of our approach is that the proofs of many known state-
ments in the case when Γ is trivial directly transfer to the case when Γ is
not trivial. For example, if [g] denotes the congruence class of a generator
g of FΓ

E , the map [g] 7→ [gLK(E)] extends to a pre-ordered Γ-monoid iso-
morphism of MΓ

E and VΓ(LK(E)) and the proof of the case when Γ is trivial
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(see, for example, [3, Theorem 4.3]) directly adapts to the case when Γ is
arbitrary. In [4, Proposition 5.7], this monoid isomorphism is shown to exist
by considering the graph covering.

Lemma 1.2 greatly simplifies many proofs which involve handling relation
∼ . Parts of this lemma can be shown by directly generalizing the proofs of
[3, Lemmas 5.6 and 5.8]. We add some new elements in part (1) of Lemma
1.2 to control the length of sequences for certain relations. We also note that
part (2), the Confluence Lemma, is shown for general Γ in [4, Lemma 5.9]
but using the graph covering. The Confluence Lemma is key for showing
that the monoid MΓ

E has the refinement property (see [3, Proposition 5.9]).

Lemma 1.2. Let E be a graph, Γ a group, w : E1 → Γ a weight function
and a, b ∈ FΓ

E − {0}.
(1) (The Refinement Lemma) If a = a′ + a′′ for some a′, a′′ ∈ FΓ

E and if
a→n b, then b has summands b′, b′′ ∈ FΓ

E and n has summands i, j such
that b = b′ + b′′, i+ j = n, a′ →i b′, and a′′ →j b′′.

(2) (The Confluence Lemma) The relation a ∼ b holds if and only if a→ c
and b→ c for some c ∈ FE − {0}.

Proof. We show (1) by induction on n. If n = 0 then a = b and we can
take b′ = a′ = a = b, b′′ = a′′ = 0, and i = j = 0. Assuming the induction
hypothesis, let a = a0 →1 a1 →1 . . .→1 an = b and let γg be a monomial of
a so that a1 is obtained by replacing γg by γr(g). Since a = a′ + a′′, γg is a
summand of either a′ or a′′. Say it is a′ (the case when it is a′′ is analogous)
and let a′ = c + γg for some c ∈ FΓ

E . For a′1 = c + γr(g) and a′′1 = a′′,
a′ →1 a′1 and a′′ →0 a′′1. The induction hypothesis implies the existence of
b′, b′′ ∈ FΓ

E and i, j such that such that b = b′ + b′′, i + j = n − 1, a′1 →i b′

and a′′1 →j b′′. Thus, i+ 1 + j = n, a′ →1 a′1 →i b′, and a′′ →0 a′′1 →j b′′ and
so a′ →i+1 b′ and a′′ →j b′′.

The direction ⇐ of (2) is direct since if a → c and b → c, then a ∼ c
and b ∼ c so that a ∼ b. First, we show the direction ⇒ of (2) for finite
graphs using induction on n for a ∼n b. If n = 0, a = b and we can take
c = a = b. Assuming the induction hypothesis, let a ∼n b, a0 = a, an = b
and let ai →1 ai+1 or ai+1 →1 ai for some ai ∈ FΓ

E for i = 0, . . . , n−1. Since
a1 ∼n−1 b, there is d such that a1 → d and b → d. Then either a →1 a1 or
a1 →1 a. In the first case, we can take c = d. In the second case, there is a
monomial γg of a1 so that a1 = a′+γg for some a′ and a = a′+γr(g). By part
(1), d = d′+ d′′ for some d′ and d′′ such that a′ → d′ and γg →l d′′ for some
l ≥ 0. If l = 0, then d′′ = γg so d = d′+γg. Let c = d′+γr(g). Then we have
that a = a′+γr(g)→ d′+γr(g) = c and b→ d = d′+γg →1 d

′+γr(g) = c.
If l is positive, we use the assumption that E is finite to conclude that

there are no infinite emitters so that g is necessarily a regular vertex and
a1 →1 a is an application of (A1.) Hence, the relation γg → d′′ necessarily
decomposes as γg →1 γr(g) → d′′ and we have that a1 = a′ + γg →1 a =
a′ + γr(g)→ d′ + d′′ = d. So, in this case we can also take c = d.
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To complete the proof in the case when E is an arbitrary graph, we use
the argument of the proof of [4, Lemma 5.9] relying on [3, Construction
5.3]. If R(E) denotes the set of regular vertices of E, the pair (E,R(E)),
considered as an element of an appropriate category from [3, Section 3], can
be represented as a direct limit of pairs (E′, S) where E′ is a finite subgraph
of E and S is a subset of R(E′) (see [3, Proposition 3.3] for details). The
pair (E′, S) gives rise to the relative graph E′S of E′ with respect to S such
that the bijection on the generators of the corresponding free Γ-monoids
produces a natural Γ-monoid isomorphism (see [14, Theorem 3.7] and the
graded version in [17, Lemma 2.2]). Hence, if a, b ∈ FΓ

E correspond to
elements a′ and b′ of FΓ

E′S
for some finite subgraph E′ and some subset S of

R(E′), then the relation a ∼ b holds in FΓ
E if and only if a′ ∼ b′ holds in

FΓ
E′S
. Assuming that a ∼ b holds, we have that a′ ∼ b′ holds. By the proven

claim for finite graphs, there is c′ ∈ FΓ
E′S

such that the relations a′ → c′ and

b′ → c′ hold in FΓ
E′S
. If c ∈ FΓ

E corresponds to c′, these relations imply that

a→ c and b→ c hold in FΓ
E . �

One can also show the Confluence Lemma directly, by considering an
arbitrary graph E and discussing possibilities that the relation a1 →1 a in
the above proof is obtained by (A2) or (A3).

We conclude this section by a remark: the Graded Classification Con-
jecture is false if the pre-ordered Γ-monoids (equivalently Γ-groups) of the
graphs are replaced by the free Γ-monoids. Indeed, let E and F be the
graphs below and Γ be the group of integers.

•99
��
•`` ee •99 ee

The graph E is an out-split of the graph F , so the Leavitt path algebras
of E and F are graded isomorphic (see [2, Theorem 2.8]). Hence, MΓ

E and
MΓ
F are isomorphic and so are GΓ

E and GΓ
F . Alternatively, one can show

the existence of these isomorphisms by noting that MΓ
E and MΓ

F are both

isomorphic to Z+[1
2 ] and, consequently, GΓ

E and GΓ
F are both isomorphic to

Z[1
2 ]. However, FΓ

E and FΓ
F are not isomorphic as Γ-monoids since one has

two while the other has one generator. This example illustrates that the
Γ-monoid FΓ

E of a graph E is informative only when considered together
with the relation ∼ .

2. Connectivity

In this section and the rest of the paper, Γ = {xn | n ∈ Z} is the infinite
cyclic group with generator x and E is an arbitrary graph. To simplify the
terminology in some of the proofs, we say that n is the degree of the monomial
xng where g is a generator of FΓ

E . First, we characterize the relation → in
terms of the graph-theoretic properties (Proposition 2.2).
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If v and w are vertices of E and p a path from v to w, one can apply (A1)

or (A2) to the vertices on p to obtain that v → x|p|w + a for some a ∈ FΓ
E .

Indeed, if p is trivial, then v = w and one can take a = 0. If p = e1e2 . . . en,
one can apply (A1) if v is regular and (A2) if it is not, and then apply (A1)
to r(e1) if it is regular and (A2) if it is not. Continuing this process, one
obtains a sequence for

v → x|p|w + a

for some a ∈ FΓ
E , where the “change” a reflects the existence of bifurcations

from p. For example, in the graph below with p = f, we have that v →
xw + xu so a = xu.

•u •v
f //eoo •w

We generalize this process to improper vertices also. The terminology in-
troduced below allows uniform treatment of generators of FΓ

E of both types
and enables us to express the comparability properties in terms of the prop-
erties of the graph E.

Definition 2.1. Let g and h be generators of FΓ
E . We say that g connects

to h by a path p (written g  p h) if one of the following conditions hold.

(i) g = v and h = w are proper vertices and p is a path from v to w.

In this case, v → x|p|w + a holds for some a ∈ FΓ
E as we pointed out

above.
(ii) g = v is a proper vertex, h = qwZ for an infinite emitter w and some Z,

and p is a path from v to w. In this case, v → x|p|w + a′ → x|p|qZ + a
for some a′ ∈ FΓ

E and a = a′+
∑

e∈Z x
|p|+1r(e). Note that if v = w and

p is trivial then → can be chosen to be a single application of (A2). If
v = w and p has positive length, then v is necessarily on a cycle.

(iii) g = qvZ for an infinite emitter v and some Z, h = w is a proper vertex,
and p = eq is a path from v to w such that e /∈ Z. In this case,

qZ → qZ∪{e} + xr(e)→ qZ∪{e} + x|p|w + a′ = x|p|w + a

for some a′ ∈ FΓ
E and for a = a′+qZ∪{e}. If v = w, then v is on a cycle.

(iv) g = qvZ for some v and Z, h = qwW for some w and W, p is a path from
v to w, and one of the following two scenarios hold.
• If p is trivial, then v = w and Z ⊆W. If Z = W, then qZ → x0qZ

and if Z (W and a =
∑

e∈W−Z xr(e), then

qZ → x0qW +
∑

e∈W−Z
xr(e) = x0qW + a.

• If p has positive length, then p = eq for some e /∈ Z. In this case,

qZ → qZ∪{e} + xr(e)→ qZ∪{e} + x|p|w + a′ →

qZ∪{e} + x|p|qW +
∑
f∈W

x|p|+1r(f) + a′ = x|p|qW + a
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for some a′ ∈ FΓ
E and a = a′+qZ∪{e}+

∑
f∈W x|p|+1r(f). If v = w,

then v is on a cycle.

Definition 2.1 enables us to deal with every generator of FΓ
E in a uniform

way. In particular, in any of the above four cases, we have that

g → x|p|h+ a

for some element a ∈ FΓ
E and a path p. In this case, we say that h is

obtained from g following the path p. The element a reflects the existence of
bifurcations from p. In Corollary 2.4, we show the converse: g → xnh + a
implies that g  p h for a path p of length n.

We say that g connects to h, written g  h, if there is a path p such that
g  p h. If v and w are vertices, v  w is usually written v ≥ w (see [1,
Definition 2.0.4]). However, we reserve the relation ≥ for the order on the
monoid MΓ

E . It is direct to check that  is reflexive and transitive.
Note that a proper vertex v is on a cycle if and only if v connects to v by

a path of positive length. Definition 2.1 enables us to talk about improper
vertices being on cycles: we say that any generator g of FΓ

E is on a cycle if
g connects to g by a path of positive length. We say that g is on an exit
from a cycle c if g is not on c and there is a generator h of FΓ

E which is on
c such that h connects to g. By Definition 2.1, qvZ is on a cycle if and only
if there is e ∈ s−1(v)− Z and a path p with r(p) = v, s(p) = r(e) such that
ep is a cycle.

If a→ b and a =
∑k

i=1 x
migi and b =

∑l
j=1 x

tjhj are normal representa-

tions of a and b respectively, repeated use of the Refinement Lemma 1.2(1)
ensures the existence of a partition {I1, . . . , Ik} of {1, . . . , l} and summands

bi of b such that b =
∑k

i=1 bi, bi =
∑

j∈Ii x
tjhj , and xmigi → bi. This implies

that tj ≥ mi for all j ∈ Ii. Proposition 2.2 implies the existence of paths
pij with |pij | = tj −mi and gi  pij hj in this case. We introduce this idea
of partitioning b according to a if a→ b in Proposition 2.2 and use it again
in Section 3.6. Proposition 2.2 describes the relation a → b in terms of the
properties of the generators in the supports of a and b and the length of the
paths connecting them.

Proposition 2.2. Let a, b ∈ FΓ
E − {0} and a =

∑k
i=1 x

migi and b =∑l
j=1 x

tjhj be normal representations of a and b respectively. The following
conditions are equivalent.

(1) The relation a→ b holds.
(2) There is a partition {I1, . . . , Ik} of {1, . . . , l} and finitely many paths

pij , j ∈ Ii, i = 1, . . . , k, such that gi  pij hj , |pij | = tj − mi for all
j ∈ Ii, i = 1, . . . , k, and

b =

l∑
j=1

xtjhj =

k∑
i=1

∑
j∈Ii

xmi+|pij |hj .
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If p is a prefix of pij and v = r(p), let

Pp = {e ∈ s−1(v) | e is on pij′ for some j′ ∈ Ii}.

Then the following hold.
(i) If v is regular and Pp nonempty, then Pp = s−1(v).
(ii) If v is an infinite emitter and Pp nonempty, then there is j′ ∈ Ii

such that hj′ = qvZ for some Z such that Pp ⊆ Z.
(iii) The relation tj = |p|+mi holds if and only if p = pij and hj = qvZ

for some Z implies Pp ⊆ Z.

Before presenting the proof, let us motivate it by some examples.

Example 2.3. (1) In the graph below, u → xv and w → xv so u +
w → xv + xv. For this last relation, k = 2, l = 2 and one can take
I1 = {1}, I2 = {2}, p11 = e, and p22 = f so condition (2) holds.

•u e // •v •w
foo

By condition (2) also, u → x2v + a fails for any a since there is no
path of length 2 from u to v.

(2) In the graph below, v → xu + xw. For this relation, k = 1, l = 2
and one can take I1 = {1, 2}, p11 = e, and p12 = f so condition (2)
holds.

•u •v
f //eoo •w

Although v connects to w by a path of length one, v → αw fails for
any α ∈ Z+[Γ] since the path from v to w has a bifurcation towards
u so u must appear in any “result” obtained following a path from
v to w by condition (2)(i).

(3) The relation v0 → a fails for any a with supp(a) consisting of sinks
only in the graph below.

• • •

•v0
//

OO

•v1
//

OO

•v2
//

OO

•v3
//

OO

Indeed, all paths from v0 to finitely many sinks have a bifurcation
on a path which does not end in any sink. Hence, if v0 → a then a
necessarily has vi in its support for some i ≥ 0.

(4) If v →n a for n > 0 in the graph below,

•v 44//
** $$ •w

condition (2) implies the existence of an improper vertex in supp(a).
Hence, v → αw fails for any α ∈ Z+[Γ].
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Proof. Let us show direction ⇒ by induction on n for a →n b. If n = 0,
then a = b so k = l and one can permute the monomials in the normal
representation of b if necessary to get that ti = mi for all i = 1, . . . , k. In
this case, one can take Ii = {i} and pii to be the trivial path which connects
gi to gi for all i = 1, . . . , k. In this case any prefix p of pij is trivial and
relation ti = |pij |+mi = |p|+mi holds. Since Pp = ∅, conditions (i) to (iii)
hold.

Considering the case n = 1 shortens the arguments in the inductive
step. If n = 1, reorder the terms of the normal representation of a if
necessary to assume that b is obtained by applying an axiom to xmkgk
and let xmkr(gk) denote the result of this application. Thus, gk is not a
sink. Reorder the terms of the normal representation of b to have that

b =
∑k−1

i=1 x
migi + xmkr(gk) and let xmkr(gk) =

∑
j∈J x

tjhj for some finite

subset J of {1, . . . , l}. Let Ii = {i} for i = 1, . . . , k − 1 and pii be the trivial
path which connects gi and gi if k > 1. Let Ik = J and pkj be the path (of
length zero or one) which connects gk and hj . Since gk is not a sink, there
are just three possible cases, listed below, for gk.

1. gk is a regular vertex v. In this case, |J | = |s−1(v)| and we can label
the elements of s−1(v) such that hj = r(ej) for j ∈ J. Then xtjhj =
xmk+1r(ej) and so tj = mk + 1. Let pkj = ej . If p is a prefix of ej , then
either p = v in which case tj > |p| + mi and Pp = s−1(v), or p = ej in
which case tj = |p| + mi. In this case, if r(ej) is regular and r(ej) 6= v,
then Pp = ∅ and if r(ej) = v, then Pp = s−1(v).

2. gk is an infinite emitter v. In this case, r(gk) = qZ +
∑

e∈Z xr(e) for
some Z and |J | = |Z| + 1. We can label the elements of Z such that
hj = r(ej) for j ∈ J − j0 and hj0 = qZ . Thus, tj0 = mk and tj = mk + 1
for j ∈ J − {j0}. Let pkj0 = v and pkj = ej so that |pkj | = tj −mk for
all j ∈ J. If p is a prefix of pkj0 = v, then p = v, tj = |p| + mi, hj0 = qvZ
and Pp = Z. If p is a prefix of ej , then either p = v or p = ej . In the first
case, tj > |p| + mi, and condition (ii) holds with j = j0. In the second
case, tj = |p|+mi, if r(ej) is regular, then r(ej) 6= v and so Pp = ∅. For
j 6= j0, hj is a proper vertex and hj0 = qZ with Pp = Z. Thus, condition
(iii) holds.

3. gk is an improper vertex qvZ . In this case, r(gk) = qW +
∑

e∈W−Z xr(e)
for some W ) Z and |J | = |W − Z| + 1. We can label the elements of
W −Z such that hj = r(ej) for j ∈ J − j0 and hj0 = qW . Thus, tj0 = mk

and tj = mk + 1 for j ∈ J − {j0}. Let pkj0 = v and pkj = ej so that
|pkj | = tj − mk for all j ∈ J. If p is a prefix of pkj0 = v, then p = v,
tj = |p|+mi, hj0 = qW , and Pp = W −Z ⊆W. If p is a prefix of ej , then
either p = v or p = ej . In the first case, tj > |p|+mi, and condition (ii)
holds with j = j0. In the second case, tj = |p| + mi, if r(ej) is regular,
then r(ej) 6= v and so Pp = ∅. For j 6= j0, hj is a proper vertex and
hj0 = qW with Pp = W − Z ⊆W. Thus, condition (iii) holds.



1392 ROOZBEH HAZRAT AND LIA VAŠ

By construction,

b =
k−1∑
i=1

xmi+|pii|gi +
∑
j∈Ik

xmk+|pkj |hj =
k∑
i=1

∑
j∈Ii

xmi+|pij |hj .

Assuming the induction hypothesis, let us consider a sequence a0 = a→1

a1 →1 . . . →1 an = b. Let an−1 =
∑l′

j′=1 x
t′
j′h′j′ . By induction hypothesis,

there is a partition {I ′1, . . . , I ′k} of {1, . . . , l′} and finitely many paths pij′ , j
′ ∈

I ′i, i = 1, . . . , k, such that gi  
pij′ h′j′ , |pij′ | = t′j′ − mi, and the required

conditions hold for any prefix of pij′ for all j′ ∈ I ′i and i = 1, . . . , k. The
element b is obtained from an−1 by application of one of the axioms to

exactly one monomial x
t′
j′h′j′ . Reordering the terms of an−1 if necessary, we

can assume that it is the last one xt
′
l′h′l′ . Reorder the terms of b if necessary

to have that b =
∑l′

j′=1 x
t′
j′h′j′ +xt

′
l′r(h′l′) and let xt

′
l′r(h′l′) =

∑
j∈J x

tjhj for

some finite subset J of {1, . . . , l}. By construction, we have that l = l′ + |J |
and that l′ is in I ′i0 for exactly one i0. So we let

Ii = I ′i, if i 6= i0, and Ii0 = J.

If i 6= i0, for each j ∈ Ii, xtjhj = x
t′
j′h′j′ for exactly one j′ ∈ I ′i. So, for such

j and j′, we let pij = pij′ so that |pij | = |pij′ | = t′j′ −mi = tj −mi.
For i0, we let pi0j be the concatenation of pi0l′ and the path pl′j con-

structed as in the case n = 1 for h′l′ and hj for j ∈ J = Ii0 . Since gi0  
pi0l′ h′l′

and h′l′  
pl′j hj for all j ∈ J = Ii0 , we have that gi0  

pi0j hj for all j ∈ Ii0 .
We have that |pi0l′ | = t′l′ −mi0 and |pl′j | = tj − t′l′ and so

|pi0j | = |pi0l′ |+ |pl′j | = t′l′ −mi0 + tj − t′l′ = tj −mi0 and

b =

l∑
j=1

xtjhj =

l′∑
j′=1

x
t′
j′h′j′ +

∑
j∈J

xtjhj =

k∑
i=1,i 6=i0

∑
j∈Ii

xmi+|pij |hj +
∑
j∈Ii0

xmi0+|pi0j |gi0 =
k∑
i=1

∑
j∈Ii

xmi+|pij |hj .

If p is a prefix of pi0j , then it is either a prefix of pi0l′ or p = pi0l′q for
some prefix q of pl′j and one of the following three cases holds: first, p is a
proper prefix of pi0l′ , second, q is a proper prefix of pl′j or, third, q = pl′j
thus p = pi0j . In the first case, t′l′ > |p| + mi0 and so tj ≥ t′l′ > |p| + mi0 .
In the second case, tj > |q| + t′l′ = |q| + |pi0l′ | + mi0 = |p| + mi0 . In the
last case, tj = |p| + mi0 and if hj = qvZ for some Z then Pp ⊆ Z since this
condition holds for an−1 →1 b by the first induction step. In all three cases,
if r(p) is regular and Pp 6= ∅, we can use induction hypothesis to conclude
that Pp = s−1(r(p)) and, if r(p) is an infinite emitter v and Pp 6= ∅, we can
use induction hypothesis to conclude that there is j′ such that hj′ = qvZ for
some Z such that Pp ⊆ Z. Thus, in any case, conditions (i) to (iii) hold.
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Let us use induction on k to show direction⇐ . If k = 1 and a = xmg, let
pj , j = 1, . . . , l denote the paths which exist by condition (2). We show the

claim using induction on n =
∑l

j=1 |pj |. If this length is zero, then we claim

that b = a. Indeed, since |pj | = 0, the relation g  pj hj implies that either
g = hj , or g = v for some infinite emitter v and hj = qvZ , or that gi = qvW
and hj = qvZ for some v and W ( Z. However, in the second and third case
we would have that Pv ⊆ Z by condition (2) so there would have to be some
paths pj′ of length at least one which cannot happen since n = 0. Hence,
a = b and, thus, a→ b.

Assuming the induction hypothesis, let n =
∑l

j=1 |pj | > 0. Since n > 0,

a 6= b and there is j = 1, . . . , l such that |pj | > 0. If pj = e0p for an edge e0

and a path p, let v = s(e0). Since e0 ∈ Pv, Pv 6= ∅. We have exactly three
possibilities for g, listed below.

1. g = v is regular. Since Pv is nonempty, Pv = s−1(v) by (i). Let a1 =
r(v) =

∑
e∈Pv x

m+1r(e). Note that a →1 a1 by (A1). We claim that
condition (2) holds for a1 and b.

For e ∈ Pv = s−1(v), there is some j = 1, . . . , l such that pj = eqj for
some path qj and so the set

Ie = {j ∈ {1, . . . , l} | e is the first edge of pj}

is nonempty. Since the first edge of pj is in Pv = s−1(v) for any j, we
have that

⋃
e∈Pv Ie = {1, . . . , l}. If j ∈ Ie ∩ Ie′ , then e = e′ since the first

edge of a path is unique. As tj = |pj |+m, we have that tj = |qj |+ 1 +m
and

b =
l∑

j=1

xtjhj =
l∑

j=1

x|pj |+mhj =
l∑

j=1

x|qj |+1+mhj .

If q is a prefix of qj , then eq is a prefix of pj and conditions (i) to (iii) hold
for q because they hold for eq. Thus, we have that a1 → b by induction
hypothesis. Since a→1 a1, we have that a→ b.

2. g = v is an infinite emitter. In this case, let a1 = xmqPv+
∑

e∈Pv x
m+1r(e).

So that a →1 a1 by (A2). Since Pv 6= ∅, there is j such that hj = qvZ
for some Z with Pv ⊆ Z by (ii). By (iii), such j can be found so that
tj = |pj |+m. Reorder the terms of b if necessary so that we can assume
that j = 1. We check that condition (2) holds for a1 and b.

For e ∈ Pv, there is j = 2, . . . , l such that pj = eqj for some path qj
and so the sets Ie, e ∈ Pv, defined as in the previous case, are nonempty
and mutually disjoint. Let I1 = {1} and q1 = p1. Since the first edge of
pj is in Pv for every j = 2, . . . , l,

⋃
e∈Pv Ie = {2, . . . , l}, so I1 ∪

⋃
e∈Pv Ie =

{1, 2, . . . , l}. Hence, {I1} ∪ {Ie|e ∈ Pv} is a partition of {1, . . . , l}. For
j = 2, . . . , l, tj = |pj |+m = |qj |+ 1 +m, t1 = |p1|+m = |q1|+m, and

b =

l∑
j=1

x|pj |+mhj = x|q1|+mh1 +

l∑
j=2

x|qj |+1+mhj .
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If q is a prefix of qj for j > 1, then eiq is a prefix of pj and conditions
(i) to (iii) hold for q because they hold for eiq. If q is a prefix of q1 = p1,
then the requirements also hold. Thus, a1 → b by induction hypothesis.
Since a→1 a1, we have that a→ b.

3. g = qvZ for some Z. In this case, Pv is a proper superset of Z. Let a1 =
xmqPv +

∑
e∈Pv−Z x

m+1r(e) so that a →1 a1 by (A3). By (ii), there is j
such that hj = qvW for some W such that Pv ⊆ W and, by (iii), such j
can be found so that tj = |pj |+m. Reorder the terms of b if necessary so
that we can assume that j = 1. We check that condition (2) holds for a1

and b.
For e ∈ Pv − Z, there is some j = 2, . . . , l such that pj = eqj for

some path qj and so the sets Ie, e ∈ Pv − Z, defined as in the previous
cases, are nonempty and mutually disjoint. If I1 = {1} and q1 = p1, one
shows that {I1} ∪ {Ie | e ∈ Pv − Z} is a partition of {1, . . . , l} as in the
previous case. Since tj = |pj |+m = |qj |+ 1 +m for j = 2, . . . , l and t1 =

|p1|+m = |q1|+m, b =
∑l

j=1 x
|pj |+mhj = x|q1|+mh1 +

∑l
j=2 x

|qj |+1+mhj .
The requirements on prefixes of qj can be checked just as in the previous
case. Thus, we have that a1 → b by induction hypothesis. Since a→1 a1,
we have that a→ b.

This concludes the proof of the case k = 1. Assuming the induction
hypothesis, let us show the claim for a with k terms in its normal decompo-

sition. Note that if condition (2) holds, then it holds for a′ =
∑k−1

i=1 x
migi

and b′ =
∑k−1

i=1

∑
j∈Ii x

mi+|pij |hj and for xmkgk and
∑

j∈Ik x
mk+|pkj |hj . By

the induction hypothesis, a′ → b′ and xmkgk →
∑

j∈Ik x
mk+|pkj |hh. Hence,

a = a′ + xmkgk → b = b′ +
∑

j∈Ik x
mk+|pkj |hj . �

We show two corollaries of Proposition 2.2 which we use in Section 3.4.
Recall that Definition 2.1 implies that g  p h implies g → x|p|h+a for some
a. By the first corollary, the converse also holds.

Corollary 2.4. Let g, h be generators of FΓ
E , a ∈ FΓ

E , and m a nonnegative
integer. Then g → xmh + a holds if and only if there is a path p of length
m such that g  p h.

Proof. If g → xmh+a, condition (2) of Proposition 2.2 holds by Proposition
2.2, so there is a path p of length m from g to h. The converse holds by
Definition 2.1 (see the sentence following Definition 2.1). �

By the next corollary, if a→ b, then each monomial of b is obtained by a
monomial of a. This complements the Confluence Lemma.

Corollary 2.5. If g is a generator of FΓ
E , a, b ∈ FΓ

E , and m an integer, then

a → xmg + b implies that there is h ∈ supp(a) and k ≤ m such that xkh is
a monomial of a and that xkh→ xmg + c for some c ∈ FΓ

E .

Proof. If a → xmg + b holds, Proposition 2.2 guarantees the existence of
a monomial xkh of a and a path p such that k + |p| = m and such that
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h p g. Hence, m− k = |p| ≥ 0 and xkh→ xk+|p|g + c = xmg + c for some
c ∈ FΓ

E by Corollary 2.4. �

2.1. Connectivity of the supports. Next, we associate the relation a→
b to the properties of the supports of a and b. The next definition is condition
(2) of Proposition 2.2 stripped down from any mention of degrees.

Definition 2.6. Let G and H be finite and nonempty sets of generators of
FΓ
E . We write G→ H if there are k ≥ |G| and l ≥ |H| such that the elements

of G and H can be indexed as g1, . . . , gk and h1, . . . , hl (with repetitions
allowed) respectively and there is a partition {I1, . . . , Ik} of {1, . . . , l} and
finitely many paths pij , j ∈ Ii, i = 1, . . . , k, such that gi  pij hj for all
j ∈ Ii, i = 1, . . . , k and such that if p is a prefix of pij and Pp is as in
condition (2) of Proposition 2.2 then (2)(i) and (2)(ii) of Proposition 2.2
and condition (iii) below hold.

(iii) If v is an infinite emitter and hj = qvZ for some Z, then Ppij ⊆ Z.

Corollary 2.7. (1) If a, b ∈ FΓ
E − {0}, then a → b implies supp(a) →

supp(b).
(2) Let a, b ∈ FΓ

E − {0} be such that supp(a) → supp(b). Then, there is
c ∈ FΓ

E − {0} such that supp(c) ⊆ supp(b) and that a→ c.

Proof. Part (1) directly follows from Proposition 2.2. To show part (2),

assume that a =
∑k

i=1 x
migi and b =

∑l
j=1 x

tjhj be such that supp(a) →
supp(b). Let m,n be the cardinalities of supp(a) and supp(b) respectively
and k′ ≥ m, l′ ≥ n, {I1, . . . , Ik′} and pi′j′ , j

′ ∈ Ii′ , i
′ = 1, . . . , k′ be as in

Definition 2.6 for supp(a) and supp(b). Then, we let

a′ =

k′∑
i′=1

gi′ , b′i′ =
∑
j′∈Ii′

x|pi′j′ |hj′ for i′ = 1, . . . , k′, and b′ =

k′∑
i′=1

b′i′ .

By construction, supp(a′) = supp(a), supp(b′) = supp(b) and gi′ → bi′
so that a′ → b′ holds by Proposition 2.2. For any i = 1, . . . , k, there is
i′ = 1, . . . , k′ such that gi = gi′ . For such i, let

ci =
∑
j′∈Ii′

xmi+|pi′j′ |hj′ and let c =

k∑
i=1

ci.

We have that supp(c) ⊆ supp(b′) = supp(b) and xmigi → ci so that a =∑k
i=1 x

migi → c =
∑k

i=1 ci. The relation xmigi → ci also implies that ci 6= 0
so c 6= 0. �

We note that the converse of part (1) of Corollary 2.7 does not have to
hold. Also, for an element c as in part (2) of Corollary 2.7, the relation
b ∼ c does not have to hold even if supp(c) = supp(b). Indeed, in the graph
below, v → xw so {v} → {w}.

•v // •w
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However, for a = v and b = w, we have that supp(a) → supp(b) but a → b
fails since there are no paths of length zero from v to w. If c = xw, then
supp(c) = supp(b), but we do not have that b = w ∼ c = xw since w is
a sink and the relation w ∼ d for some d implies d = w or d = x−1v by
the Confluence Lemma. Also, using Theorem 4.1, it is direct that w ∼ xw
cannot hold since w is not a periodic element.

2.2. Connecting using (A1) only. To emphasize that a→ b is such that
only (A1) is used, we write a→A1 b. If E is a row-finite graph, then →A1 is just
the relation → . If V is a finite and nonempty set of regular vertices and
W a finite and nonempty set of proper vertices such that V →W , we write
V →A1 W. Corollary 2.7 implies the corollary below.

Corollary 2.8. (1) Let a, b ∈ FΓ
E − {0} such that a →A1 b and that supp(a)

consists of regular vertices. Then supp(a)→A1 supp(b).
(2) Let a, b ∈ FΓ

E − {0} be such that supp(a) →A1 supp(b). Then, there is
c ∈ FΓ

E − {0} such that supp(c) ⊆ supp(b) and that a→A1 c.

Proof. To show (1), assume that a→A1 b and that supp(a) consists of regular
vertices. By Corollary 2.7, supp(a) → supp(b). Since only (A1) is used in
a→A1 b, supp(b) does not contain any improper vertices, so supp(a)→A1 supp(b)
by definition of →A1 for sets of vertices.

To show (2), let supp(a)→A1 supp(b). By Corollary 2.7, there is c ∈ FΓ
E−{0}

such that supp(c) ⊆ supp(b) and a → c. Since the support of a consists of
regular vertices and the support of b, thus of c as well, of proper vertices,
only (A1) can be applied in a sequence for a→ c. Hence, a→A1 c. �

3. Characterization of comparable elements

3.1. Cancellative property. First, we show that the monoid MΓ
E is can-

cellative by a direct proof. This was shown in [4, Corollary 5.8] using the
graph covering. Note that M∆

E may not be cancellative for a group ∆ 6= Γ.
In particular, if E is a graph with a cycle with an exit and ∆ is trivial, then
M∆
E is not cancellative by [4, Lemma 5.5].

Proposition 3.1. The Γ-monoid MΓ
E is cancellative.

Proof. Assume that a + c ∼ b + d holds in FΓ
E for some d ∈ FΓ

E such that
c ∼ d. So, we have that a + c ∼ b + d ∼ b + c. We show that a ∼ b using
induction on n for a + c ∼n b + c. If n = 1, then either a + c →1 b + c or
b + c →1 a + c. In the first case, there is a generator g in the support of a
or c such that b + c is obtained by replacing a summand xmg of a + c by
xmr(g) and keeping the rest of the monomials intact. By the nature of the
three axioms, the number of monomials of the form xmg in a + c is larger
than in b+ c and each of the monomials in xmr(g) appears one time less in
a+c than in b+c. Since these terms appear equal number of times in c, this
means that a contains a monomial xmg and that xmr(g) is a summand of b.



COMPARABILITY IN THE GRAPH MONOID 1397

Hence, a = a′ + xmg and b = a′ + xmr(g) for some a′ ∈ FΓ
E so that a→1 b.

The case b+ c→1 a+ c is similar and the induction step is analogous. �

Remark 3.2. Proposition 3.1 highlights an important difference between
ME and MΓ

E : while ME can be much larger than the positive cone of GE , the
monoid MΓ

E is equal to the positive cone of GΓ
E . Thus, the monoid ME can

carry some information which is lost under formation of its Grothendieck
group but MΓ

E carries no additional information than GΓ
E . In other words,

using the language of [11], the group GΓ
E is equally “talented” as the monoid

MΓ
E .

3.2. The order. The relation ∼ on the monoid FΓ
E enables one to define

a relation - as follows.

a - b if there is c ∈ FΓ
E such that a+ c ∼ b

for all a, b ∈ FΓ
E . If a - b and a � b, we write a ≺ b. Using Proposition 3.1,

it is direct to show that a ≺ b is equivalent with a+ c ∼ b for some nonzero
c in FΓ

E .
The relation - defines an order on MΓ

E given by

[a] ≤ [b] if and only if a - b.

It is direct to show that ≤ is reflexive and transitive. The antisymme-
try holds by Proposition 3.1. The relation ≤ induces an order on the
Grothendieck group GΓ

E .
In [11, Lemma 4.1], it is shown that a ≺ xna is not possible for any a and

any positive n if E is row-finite. After the lemma below, we show that this
statement holds for an arbitrary graph in Proposition 3.4.

Lemma 3.3. If a ∈ FΓ
E −{0} is such that a - xna for some positive integer

n, then the following hold.

(1) No vertex in the support of a is a sink.
(2) No vertex in the support of a is an improper vertex.
(3) All vertices in the support of a are regular (so a is regular).

Proof. Since a - xna, a + b ∼ xna for some b ∈ FΓ
E . Then a + b + xnb ∼

xna+ xnb ∼ x2na so, by induction, a+
∑k

i=0 x
kb ∼ x(k+1)na. Hence, we can

find n large enough so that n is larger than the degrees of all monomials in
a normal representation of a. Assume that n is such and that a + b ∼ xna
for some b ∈ FΓ

E . By the Confluence Lemma 1.2(2), there is c ∈ FΓ
E such

that a+ b→ c and xna→ c.
(1) Assume that a sink v is in supp(a) and let

∑l
i=1 x

miv be the sum of all
monomials in a normal representation of a which contain v. By construction,
mi < n for every i = 1, . . . , l. Since the relation →1 cannot be applied to
v, the relation a + b → c implies that xmiv is a summand of c for every
i = 1, . . . , l. On the other hand, the relation xna → c implies that every
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monomial of c has degree larger than or equal to n so xm1v cannot be a
summand of c. This is a contradiction.

(2) Assume that an improper vertex qvZ is in supp(a) for some v and some

Z. Let
∑l

i=1 x
miqZi be the sum of all monomials in a normal representation

of a which contain qvZi for some nonempty and finite Zi ⊇ Z. Since an
application of →1 does not change the power of a monomial with qvW for
some W ⊇ Z, the relation a + b → c implies that c contains a summand of

the form
∑l

i=1 x
miqWi for some Wi ⊇ Zi, i = 1, . . . , l. On the other hand, the

relation xna→ c implies that every monomial of c has degree larger than or
equal to n so xm1qW1 cannot be a summand of c. This is a contradiction.

(3) By part (1), to show that a vertex v in the support of a is regular,
it is sufficient to show that v is not an infinite emitter. Assume that an
infinite emitter v is in the support of a and let

∑l
i=1 x

miv be the sum of all
monomials in a normal representation of a which contain v. Since axioms
(A1) and (A3) are not applicable to any monomials with v in them, the

relation a + b → c implies that
∑l

i=1 x
migi, where each gi is either v or qvZ

for some Z, is a summand in a normal representation of c. On the other
hand, the relation xna → c implies that every monomial of c has degree
larger than or equal to n so xm1g1 cannot be a summand of c which is a
contradiction. �

Proposition 3.4. The relation a ≺ xna is not possible for any nonnegative
n and any a ∈ FΓ

E .

Proof. Since 0 ≺ 0 is false, it is sufficient to consider a 6= 0. Also, since
a ≺ a is false, it is sufficient to consider positive n. Assume that a ≺ xna
for some positive n and some nonzero a ∈ FΓ

E . By Lemma 3.3, all elements
in the support of a are regular and proper vertices. Let m be the maximum
of degrees of the monomials in a normal representation of a. If a monomial
xlv in a normal representation of a is such that l < m, apply (A1) to xlv to
replace this monomial by

∑
e∈s−1(v) x

l+1r(e). We obtain an element a1 such

that a1 ∼ a so the relation a1 ≺ xna1 also holds and, as a consequence, all
vertices in the support of a1 are regular also. Keep repeating this process
until all monomials of some ak have the same degree m so that we can write
ak = xmb where b is a sum of regular vertices. Since xmb ≺ xn+mb we
have that b ≺ xnb and so b + c ∼ xnb for some nonzero c ∈ FΓ

E . By the
Confluence Lemma 1.2(2), there is d such that b + c → d and xnb → d.
The relation xnb → d implies that x−nd ≺ d so d ≺ xnd and all vertices in
the support of d are regular by Lemma 3.3. Using the same argument as
when obtaining xmb from a, we can show that there is an element f such
that d → f and such that f is a sum of monomials of the same degree m′.
Hence, b + c → d → f and xnb → d → f. Since → either increases the
degree of a monomial or leaves it the same, the relation xnb → f implies
that m′ ≥ n > 0.
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Let h = x−nf so that h is a sum of monomials of the same nonnegative
degree m′ − n and that b + c → xnh and b → h. We use induction on the
length of a sequence for b→ h to show that h+ c→ xnh.

If b = h, the claim holds. Assume that it holds for length smaller than
k and let b = b0 →1 b1 →1 . . . →1 bk = h. Since b is regular, b →1 b1 is an
application of (A1). Hence, b = b′+v and b1 = b′+

∑
e∈s−1(v) xr(e) for some

regular vertex v. Since the degree of every monomial in xnh = f is strictly
larger than zero, v has to be changed in the process of obtaining xnh from
b+ c = b′+ v+ c. Reorder the terms of the sequence for b+ c→ xnh so that
an application of (A1) to v is the first step. Hence,

b+ c = b′ + v + c→ b′ +
∑

e∈s−1(v)

xr(e) + c = b1 + c→ xnh.

We can now apply the induction hypothesis to b1 to obtain that h+c→ xnh.
Lastly, we show that the relation h + c → xnh leads to a contradiction.

Indeed, since h is a sum of monomials of the same nonnegative degree and
n is strictly larger than zero, we have that h + c 6= xnh so at least one
of the three axioms is used. If normal representations of h and c have nh
and nc monomials respectively, then the number of terms in the resulting
xnh is larger than or equal to nh + nc. But since xnh has the same number
of monomials as h, we necessarily have that nc = 0 which implies that
c = 0. This is a contradiction since c is chosen to be nonzero such that
b+ c ∼ xnb. �

3.3. Comparable, periodic, aperiodic and incomparable elements.
Proposition 3.4 implies that there are just two possibilities for a ∈ FΓ

E :
either a % xna for some positive n or a and xna are not comparable for any
positive n. In the case when a % xna for some positive n we have that either
a ∼ xna or a � xna. We introduce the following terminology.

Definition 3.5. Let a ∈ FΓ
E .

(1) If a % xna for some positive integer n, the element a is comparable.
(1i) If a ∼ xna for some positive integer n, the element a is periodic.
(1ii) If a � xna for some positive integer n, the element a is aperiodic.

(2) If a and xna are not comparable for any positive integer n, the
element a is incomparable.

For [a] ∈ MΓ
E , we say that [a] is comparable, periodic, aperiodic or in-

comparable if any b such that a ∼ b is such.

Note that 0 is periodic by this definition. An element of FΓ
E clearly cannot

be both comparable and incomparable. We also note that a comparable
element of FΓ

E cannot be both periodic and aperiodic. Indeed, if xma ∼
a � xna for some positive integers m and n, let n be the least positive
integer such that a � xna. Since xma � xna implies xm−na � a, m − n
is negative by Proposition 3.4 so n > m. On the other hand, the relation
xma ∼ a � xna also implies that a ∼ x−ma � xn−ma so n −m ≥ n by the
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assumption that n is the smallest possible such that a � xna. The relation
n−m ≥ n implies that m ≤ 0 which is in contradiction with the assumption
that m is positive.

3.4. Stationary elements. Next, we prove a series of claims which bring
us to Theorem 3.19. Lemma 3.6 leads us to the notion of a stationary
element introduced in Definition 3.7.

Lemma 3.6. Let a ∈ FΓ
E − {0} be such that a ∼ xna+ b for some positive

integer n and some b ∈ FΓ
E . There are c ∈ FΓ

E − {0} and d ∈ FΓ
E such that

c→ xnc+ d, a→ c and b→ d.

Note that the assumption of the lemma is exactly that a is comparable,
the case b = 0 corresponds exactly to the case that a is periodic, and the
case b 6= 0 to the case that a is aperiodic.

Proof. Since a ∼ xna+ b ∼ x2na+ xnb+ b ∼ . . . , we can choose n as large
as needed. Let us choose n larger than the degree of every monomial in a
normal representation of a.

By the Confluence Lemma 1.2(2), a → f and xna + b → f and by the
Refinement Lemma 1.2(1), f = f1 + f2 such that xna→ f1 and b→ f2. Let
c = x−nf1 so that a→ x−nf1 = c and that a→ f = xnc+ f2.

We use induction on k for a →k c. If k = 0, then a = c. Let d = f2 so
that b→ d. Assuming the induction hypothesis, let us consider a→k c with
a = a0 →1 a1 →1 . . . →1 ak = c. Let a = a′ + xmg for some generator g
such that a1 = a′+xmr(g). Consider the following two cases for the relation
a→ xnc+ f2.

1. There is an application of the same axiom used for a →1 a1 to xmg at
some point such that xmg is not changed prior to this point. Changing
the order of applications of axioms in the sequence for a→ xnc+ f2, we
can assume that this application of the axiom happened first. In this case
a → a1 → xnc + f2. Thus, we can apply the induction hypothesis to a1

instead of a and obtain the relation c → xnc + d for some d such that
f2 → d. Hence, b→ f2 → d.

2. There is no application of the axiom used for a →1 a1 to xmg at any
point. Since n is larger than m, then xmg has to be a summand of f2.
Say f2 = d′ + xmg. Then a = a′ + xmg → xnc+ d′ + xmg. Replacing the
terms xmg by xmr(g) on both sides of the relation →, we obtain that
a1 = a′ + xmr(g)→ xnc+ d′ + xmr(g). Since we have a1 →k−1 c, we can
apply the induction hypothesis to a1 and obtain that c→ xnc+d for some
d such that d′+xmr(g)→ d. Hence, b→ f2 = d′+xmg → d′+xmr(g)→ d.

�

The properties of an element such as element c of Lemma 3.6 are signif-
icant in the characterization of a comparable element so we assign a name
to such an element.
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Definition 3.7. An element a ∈ FΓ
E − {0} is a stationary element if a →

xna+ b for some positive integer n and some b ∈ FΓ
E .

Example 3.8. (1) If E is the graph •v // •w gg , then w is station-
ary since w → xw. One can directly check that if v → a for some
a ∈ FΓ

E , then either a = v or a is of the form xnw for some positive
integer n. Hence, v is not stationary.

(2) Let E be the Toeplitz graph •v77 // •w and a = v + w ∈ FΓ
E .

Since a = v + w → xv + xw + w = x(v + w) + w = xa + w,
a is stationary. Note that b = v + xw has the same support as
a but b is not stationary. Indeed, if b → c, then c = b or c =
xnv + xnw + xn−1w + . . . + xw + w + xw for some positive n. So,
assuming that b → xnb + d for some d and positive n leads to a
contradiction.

We note also that adding xv to b, we obtain a stationary element
again since it is a sum of stationary elements x(v + w) and v.

The next lemma describes the support of a stationary element. Recall
that a generator g is on a cycle if g  p g for some p with |p| > 0.

Lemma 3.9. Let a ∈ FΓ
E be stationary such that a → xna + b for some

positive integer n and some b ∈ FΓ
E .

(1) For any positive integer k,

a→ xkna+
k−1∑
i=0

xinb.

(2) The support of a contains an element which is on a cycle.
(3) Each element of the support of a which is not on a cycle is on a path

exiting a cycle which contains another element of supp(a). 2

(4) Each element of the support of a is either on a cycle or on a path exiting
a cycle which contains another element of supp(a).

Proof. To show (1), note that if a→ xna+ b, then

a→ xna+b→ x2na+xnb+b→ x3na+x2nb+xnb+b→ . . .→ xkna+

k−1∑
i=0

xinb.

To show (2), we use part (1) to choose n larger than k − m for any
degrees k and m of any monomials in a normal representation of a. Let l be
the number of monomials in a normal representation of a.

If all generators in supp(a) are on cycles, there is nothing to prove. So,
suppose that there is g1 ∈ supp(a) such that xm1g1 is a monomial of a and
that g1 is not on a cycle. Let a = a1 + xm1g1. By the Refinement Lemma
1.2(1), there are c11, c12 such that

2This condition can be described also in terms of the tree T (g) = {h | g  h} of a
generator g as follows: supp(a) ⊆

⋃
{T (g) | g ∈ supp(a) and g on a cycle}.
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a1 + xm1g1 → xna1 + xn+m1g1 + b = c11 + c12, a1 → c11 and xm1g1 → c12.

The monomial xn+m1g1 is a summand of either c11 or c12. In the second
case, xm1g1 → xn+m1g1 + c for some c and Corollary 2.4 implies that there
is a path of length n > 0 from g1 to g1 which means that g1 is on a cycle.
This is a contradiction with the choice of g1. Hence, xn+m1g1 is a summand
of c11. This implies that c11 6= 0 and so a1 6= 0 also which means that l > 1
and a1 has l − 1 terms.

By Corollary 2.5, there is a monomial xm2g2 of a1 such that a1 = a2 +
xm2g2 (so a2 has l − 2 ≥ 0 terms) and that xm2g2 → xn+m1g1 + c for some
c. The choice of n guarantees that n+m1 −m2 > 0 so that there is a path
of positive length from g2 to g1 by Corollary 2.4. If g2 is on a cycle, we are
done. If not, consider whether the term xn+m2g2 is a summand of c11 or
c12. If it is a summand of c12, then xm1g1 → xn+m2g2 + d for some d and so
there is a path of positive length from g1 to g2. As there is a path of positive
length from g2 to g1, g1 is on a cycle. Since this is not the case, xn+m2g2 is
a summand of c11.

Apply the Refinement Lemma 1.2(1) again to decompose c11 as c21 + c22

such that a2 → c21 and xm2g2 → c22. Since g2 is not on a cycle, xn+m2g2

is a summand of c21 which implies that c21 6= 0 and so a2 6= 0 which
means that l − 2 > 0. By Corollary 2.5, there is a summand xm3g3 of a2

such that a2 = a3 + xm3g3 (so that a3 has l − 3 ≥ 0 terms) and that
xm3g3 → xn+m2g2+d for some d. The choice of n guarantees that n+m2−m3

is positive so we can conclude that there is a path of positive length from g3

to g2 by Corollary 2.4.
If g3 is on a cycle, we are done. If not, the term xn+m3g3 must be a

summand of c21 as otherwise g3 is on a cycle which is not the case. So,
xn+m3g3 is a summand of c21, a3 + xm3g3 → c21, and we can continue the
decomposition process c21 = c31 + c32 as in the previous step.

Since l is finite, this process eventually stops. If it stops at the k-th step,
gk is on a cycle and (2) holds.

Note that the proof of part (2) implies that if g1 is not on a cycle, then
g1 is on a path leaving a cycle which contains gk. This is because the proof
shows that there is a path from gi+1 to gi for all i = 1, . . . , k−1. Hence, this
automatically shows part (3). Part (4) is a direct corollary of part (3). �

The last part of Lemma 3.9 describes the support of a stationary element.
The properties of such set are relevant and we introduce some terminology
for it. First, we say that a finite and nonempty set of generators of FΓ

E is
stationary if every g ∈ V is either on a cycle or on a path exiting a cycle
which contains some generator h ∈ V. By Lemma 3.9, the support of every
stationary element is a stationary set.

For a stationary set V, let Vc denote the set of those g ∈ V which are on
cycles (thus Vc 6= ∅). We say that Vc is the core of V and that g ∈ Vc is
a core generator. We say that the cycles which contain core generators are
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the core cycles of V . Let Ve denote V − Vc (so Ve is possibly empty). We
call this set the exit set of V and we say that g ∈ Ve is an exit generator.

For a core generator g ∈ Vc, let ng be the minimum of the set of lengths of
cycles on which g is. Let n be the least common multiple of ng for g ∈ Vc. We
show that n has a special significance for a stationary set V which consists
of core generators only so we call it the core period of such V.

If a is stationary, let a = ac + ae such that the support of ac is supp(a)c
and the support of ae is supp(a)e (thus ac 6= 0 and ae is possibly zero). We
call ac and ae the core part and the exit part of a respectively.

The next example illustrates these newly introduced concepts.

Example 3.10. (1) If E is the graph •v // •w gg , then the station-
ary element w has the core part w and the exit part 0. The set {w}
is a stationary set with the core equal to the entire set {w}. The core
period of the core {w} is 1.

(2) If E is the Toeplitz graph •v77 // •w , then the stationary
element a = v + w has the core part v and the exit part w. The
stationary set {v, w} has the core {v} and the exit set {w}. The core
period of the core {v} is 1.

If a ∈ FΓ
E is such that each g ∈ supp(a) is on a cycle, then supp(a) is a

stationary set by definition and a = ac. In the next lemma, we show that
such element a is necessarily stationary.

Lemma 3.11. Let a ∈ FΓ
E−{0} be such that each g ∈ supp(a) is on a cycle,

and let n be the core period of supp(a). The following hold.

(1) The element a is stationary and a→ xna+ b for some b ∈ FΓ
E .

(2) The element a is periodic if and only if the core cycles have no exits.

Proof. If g ∈ supp(a), then g  cg g where cg is a cycle of length ng, where
ng is the minimum of the set of lengths of cycles which contain g. Hence,
g → xngg + b′g for some b′g ∈ FΓ

E such that b′g = 0 if and only if cg has no
exits. Since n is a multiple of ng, g → xng+ bg for some bg such that bg = 0
if and only if b′g = 0.

If a =
∑l

j=1 x
kjgj is a normal representation of a, then we have that

xkjgj → xn+kjgj + xkjbgj . Adding these relations together produces

a→
l∑

j=1

xn+kjgj +

l∑
j=1

xkjbgj = xn
l∑

j=1

xkjgj +

l∑
j=1

xkjbgj = xna+ b

for b =
∑l

j=1 x
kjbgj so (1) holds. To show (2), note that a is periodic if and

only if b = 0 and b = 0 if and only if any core cycle has no exits. �

We note the following corollary of Lemmas 3.6, 3.9, and 3.11.

Corollary 3.12. The following conditions are equivalent.

(1) There is a comparable generator of FΓ
E .
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(2) There is a nonzero comparable element of FΓ
E .

(3) The graph E has a cycle.

Proof. The implication (1)⇒ (2) is direct. If (2) holds, there is a stationary
element a by Lemma 3.6. Since ac 6= 0 by Lemma 3.9, there is at least one
core cycle so (3) holds. If (3) holds, any vertex of a cycle is a comparable
generator of FΓ

E by Lemma 3.11 so (1) holds. �

3.5. The Core Lemma. The following lemma highlights an important
property of a stationary element and justifies our terminology “core” – if a
is stationary and xna can be produced from a with some possible “change”
b, then xkna, for some positive k, can be produced by using the core part ac
only with possibly some other “change” c such that c = 0 and ae = 0 if and
only if b = 0.

Lemma 3.13. (The Core Lemma) Let a ∈ FΓ
E be a stationary element with

the core part ac and the exit part ae. If a→ xna+b for some positive integer
n and some b ∈ FΓ

E , then ac → xkna + c for some positive integer k and

some c ∈ FΓ
E such that c+ ae ∼

∑k−1
i=0 x

inb.

Proof. If ae = 0, the claim trivially holds with k = 1 and c = b. If ae 6= 0,
let V = supp(a) so that Ve is nonempty. Let also Vc = V ′c ∪ V ′′c where V ′c
consists of the core generators in V such that no exit generator connects
to them and V ′′c consists of the core generators in V such that some exit
generators connect to them. By these definitions, no g ∈ V ′′c connects to
any h ∈ V ′c (otherwise h would be in V ′′c ). Also, note that V ′c is nonempty
since otherwise some exit generator would be on a cycle which would make
it a core, not an exit generator. Let also ac = a′c + a′′c so that supp(a′c) = V ′c
and supp(a′′c ) = V ′′c . Choose n to be larger than the difference of degrees of
any two monomials in a normal representation of a by using Lemma 3.9(1)
if n is not already such.

We construct a sequence of finite acyclic graphs F0 ) F1 ) . . . ) Fl ) ∅
such that the sequence terminates exactly when the claim is shown.

Graph F0. Let us define a graph F0 such that Ve is the set of vertices
of F0 and that there is an edge from g to h for some g, h ∈ Ve if g connects
to h in E. Since no g ∈ Ve is on a cycle, the graph F0 is acyclic. Since
F0 is a finite and acyclic graph, it has a source by Lemma 1.1. Let Ve0 be
the set of sources of F0 and ae = ae0 + a′e0 such that supp(ae0) = Ve0 and
supp(a′e0) = Ve − Ve0.

By the Refinement Lemma 1.2(1), there are a1, a2, a3 ∈ FΓ
E such that

a = a′c + (a′′c + a′e0) + ae0 → xna+ b = a1 + a2 + a3

and a′c → a1, a
′′
c + a′e0 → a2, ae0 → a3. If xmg is any monomial of xnae0 for

g ∈ Ve0, then xmg is a summand of either a1, a2 or a3. By Corollary 2.5 and
by the choice of n, if xmg is a summand of a3 then either g is on a cycle
or there is a path from another source of F0 to g and each of these options



COMPARABILITY IN THE GRAPH MONOID 1405

leads to a contradiction. If xmg is a summand of a2, then there is either
a nontrivial path from some g′ ∈ Ve to g or a nontrivial path from some
h ∈ V ′′c to g also by Corollary 2.5 and by the choice of n. In the second
case, there is g′ ∈ Ve and a path from g′ to h and, hence, a nontrivial path
from g′ to g as well. Thus, both cases lead to a contradiction since g is a
source of F0. Hence, xmg has to be a summand of a1. Since the monomial
xmg was arbitrary, xnae0 is a summand of a1. In addition, if xmh is any
monomial of xna′c, x

mh is a summand of a1 also. Indeed, assuming that
xmh is a summand of either a3 or a2 implies that h is in V ′′c not V ′c . Hence,
for some b0 ∈ FΓ

E ,

a′c → a1 = xna′c + xnae0 + b0.

If a′e0 = 0, we claim that the process is complete. In this case, ae = ae0.
The support of a′′c consists of core generators so a′′c is stationary by Lemma
3.11. Let m be the least common multiple of n and the core period of a′′c
and let m = kn. Let b′′0 be such that a′′c → xkna′′c + b′′0. After repeated use of
the relation a′c → xna′c + xnae + b0 for k times, we have that

a′c → xkna′c + xknae +
k−1∑
i=1

xinae +
k−1∑
i=0

xinb0.

Thus,

ac = a′c + a′′c → xkna′c + xknae +
k−1∑
i=1

xinae +
k−1∑
i=0

xinb0 + xkna′′c + b′′0 =

xkna+

k−1∑
i=1

xinae +

k−1∑
i=0

xinb0 + b′′0 = xkna+ c

for c =
∑k−1

i=1 x
inae +

∑k−1
i=0 x

inb0 + b′′0. Thus, a = ac + ae → xkna + c + ae.

On the other hand, a→ xkna+
∑k−1

i=0 x
inb holds by part (1) of Lemma 3.9.

Thus,

xkna+ c+ ae ∼ xkna+

k−1∑
i=0

xinb which implies c+ ae ∼
k−1∑
i=0

xinb.

If a′e0 6= 0, we construct F1.
Graph F1. Let F1 be the graph obtained by eliminating the sources and

all edges they emit from F0. Then F1 is a finite acyclic graph which is a
proper subgraph of F0. Let Ve1 be the set of the sources of F1 and ae =
ae0 +ae1 +a′e1 be such that supp(ae1) = Ve1 and supp(a′e1) = Ve−Ve0−Ve1.
Let also a′′c = a′′c0 + a′′c1 such that a′′c0 consists of those monomials xmh of a′′c
such that g  h for some g ∈ Ve0 and a′′c1 consists of all other monomials
of a′′c . Using the Refinement Lemma 1.2(1) again, there are a′1, a

′
2, a
′
3 ∈ FΓ

E
such that

a = (a′c + a′′c0 + ae0) + (a′′c1 + a′e1) + ae1 → xna+ b = a′1 + a′2 + a′3
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and that a′c + a′′c0 + ae0 → a′1, a′′c1 + a′e1 → a′2, ae1 → a′3. If xmg is any
summand of xna′c + xna′′c0 + xnae0 + xnae1, we can repeat the arguments
from before to show that the assumption that xmg is a summand of a′2 or
a′3 leads to a contradiction. Hence, xmg is a summand of a′1 and so

a′c + a′′c0 + ae0 → a′1 = xna′c + xna′′c0 + xnae0 + xnae1 + b′1

for some b′1 ∈ FΓ
E . If k1n is the least common denominator of n and the core

period of a′′c0, there is b′′1 ∈ FΓ
E such that a′′c0 → xk1na′′c0 + b′′1. Using the last

two relations and the relation a′c → xna′c + xnae0 + b0 from the first step for
k1 times, we have that

a′c + a′′c0 → xk1n(a′c + ae0) +

k1−1∑
i=1

xinae0 +

k1−1∑
i=0

xnib0 + xk1na′′c0 + b′′1 →

x(k1+1)n(a′c + a′′c0 + ae0 + ae1) + xk1nb′1 +

k1−1∑
i=1

xinae0 +

k1−1∑
i=0

xnib0 + b′′1 =

x(k1+1)n(a′c + a′′c0 + ae0 + ae1) + b1

for b1 = xk1nb′1 +
∑k1−1

i=1 xinae0 +
∑k1−1

i=0 xnib0 + b′′1.
If a′e1 = 0, then ae = ae0 + ae1. Let kn be the least common multiple of

(k1 +1)n and the core period of a′′c1. Arguing as in the case a′e0 = 0, we have

that ac → xkna+ c for some c ∈ FΓ
E such that

∑k−1
i=0 x

inb ∼ c+ ae and this
finishes the proof. If a′e1 6= 0, we construct F2 and continue the process.

This process eventually terminates since Ve is a finite set. Hence, there is
a positive integer l such that a′el = 0 so that ac → xkna+ c for some k and

some c. The relations a → xkna +
∑k−1

i=0 x
inb and a → xkna + c + ae imply

that
∑k−1

i=0 x
inb ∼ c+ ae which proves the lemma. �

The Core Lemma has the following corollary, characterizing a stationary
and periodic element, which we use in the proof of Theorem 4.1.

Corollary 3.14. A stationary element a is periodic if and only if the support
of a consists of regular vertices on cycles without exits.

Proof. Let a be such that a → xna + b for some b and positive n. If a is
periodic, then b = 0. By the Core Lemma 3.13, ac → xkna + c for some k

and some c such that
∑k−1

i=0 x
inb ∼ ae + c. So b = 0 implies that ae = 0 (and

c = 0). Hence, a = ac. This enables us to use Lemma 3.11 which implies
that the support of a consists of generators on cycles without exits so that
these generators are regular vertices.

For the converse, assume that the support of a consists of core vertices
on cycles without exits. If n is the core period, then a → xna so a is both
stationary and periodic. �
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3.6. The stationary-partition. By Lemma 3.9, the support of a station-
ary element is a stationary set. By Lemma 3.11, the converse is true if a
stationary set contains no exit generators. It would be convenient to have
the converse of this fact in general. However, the exit generators can com-
plicate the situation as the next example shows.

Part (2) of Example 3.8 shows that we need additional requirements for
any element with a stationary support to be stationary. In particular, these
requirements impose restrictions on powers of x which appear in the normal
form of such element.

Let a be stationary such that a→ xna+ b holds for some positive n and

some b. If a =
∑k

i=1 x
migi is a normal representation of a, by repeated use of

the Refinement Lemma 1.2(1), there are mutually disjoint subsets I1, . . . , Ik
of {1, 2, . . . , k} whose union is {1, 2, . . . , k} and there are b1, . . . , bk such that

a =

k∑
i=1

∑
j∈Ii

xmjgj and b =

k∑
i=1

bi

and that for every i = 1, . . . , k

xmigi →
∑
j∈Ii

xmj+ngj + bi. (3)

The set Ii can be empty if i is in Ii′ for some i′ 6= i (see also Example 3.16
below). If Ii 6= ∅, Corollary 2.4 applied to relation (3) ensures the existence
of a path pij connecting gi and gj such that

mi + |pij | = mj + n. (4)

By Lemma 3.9(1), we can choose n such that n > mi −mj so that |pij | =
n+mj −mi > 0 for all i, j = 1, . . . , k. The requirement that pij has positive
length justifies the following definition and implies direction ⇒ of Proposi-
tion 3.17.

Definition 3.15. Let a ∈ FΓ
E have a stationary support V and a normal rep-

resentation a =
∑k

i=1 x
migi. We say that a has a stationary-partition if there

is a positive integer n, mutually disjoint subsets I1, . . . , Ik of {1, 2, . . . , k}
with

⋃k
i=1 Ii = {1, 2, . . . , k} and paths pij of positive length for i = 1, . . . , k

and j ∈ Ii with s(pij) = gi and r(pij) = gj and such that relation (4) holds
for each i = 1, . . . , k and j ∈ Ii.

The following example shows that a stationary-partition does not have to
be unique.

Example 3.16. Let E be the following graph •v1
77

// •v2
gg . Then v1+v2

is stationary since v1 → xv1 + xv2 and so v1 + v2 → x(v1 + v2) + v2 and
k = 2 in this case. We can take I1 = {1, 2} and I2 = ∅ since v1 “produces”
both terms of x(v1 + v2). In this case, relations (3) are

v1 → xv1 + xv2 and v2 → v2.



1408 ROOZBEH HAZRAT AND LIA VAŠ

However, v2 → xv2 also, so the summand xv2 can be “produced” by v2

also. Hence, v1 + v2 is stationary also because v1 + v2 → xv1 + xv2 + v2 →
xv1 + xv2 + xv2 = x(v1 + v2) + xv2. So, we can also take I1 = {1}, I2 = {2}.
In this case, relations (3) are

v1 → xv1 + xv2 and v2 → xv2.

We characterize a stationary element in terms of the properties of the
generators in its support which is the final and key step towards Theorem
3.19.

Proposition 3.17. Let a ∈ FΓ
E be an element such that supp(a) = V is

stationary. Then a is stationary if and only if a has a stationary-partition.

Proof. We showed that direction ⇒ holds before Definition 3.15. To sum-
marize, if a =

∑k
i=1 x

migi → xna + b holds for some n and some b, use
Lemma 3.9(1) to choose n > mi −mj for all i, j = 1, . . . , k. Repeated use
of the Refinement Lemma 1.2(1) produces required sets I1, . . . , Ik such that
relations (3) hold for i = 1, . . . , k. Using Corollary 2.4 produces paths pij
and our choice of n ensures that the paths pij have positive length so that
relations (4) hold. Thus, a has a stationary-partition.

Conversely, let a have a stationary-partition and let n, I1, . . . , Ik and
pij be as in Definition 3.15. Starting with xmigi and applying the axioms
following the paths pij for all i = 1, . . . , k and all j ∈ Ii, we obtain xmigi →∑

j∈Ii x
mi+|pij |gj + bi for some bi ∈ FΓ

E for i = 1, . . . , k. By relations (4),

xmigi →
∑
j∈Ii

xmi+|pij |gj + bi =
∑
j∈Ii

xmj+ngj + bi

which shows that relations (3) hold for all i. Adding these relations together
produces

a =
k∑
i=1

xmigi →
k∑
i=1

∑
j∈Ii

xmj+ngj + bi

 =

xn
k∑
i=1

∑
j∈Ii

xmjgj +

k∑
i=1

bi = xna+

k∑
i=1

bi

where the last equality holds since I1, . . . , Ik are disjoint and their union

is {1, . . . , k}. Letting b =
∑k

i=1 bi, we have that a → xna + b. Hence, a is
stationary. �

Remark 3.18. Since the relation a→ xna+b holds for some n and b if and
only if ac → xma + c holds for some m and c by the Core Lemma 3.13, we
can also consider a partition of xma+ c based on a normal representation of
ac instead of a. If Definition 3.15 is modified accordingly, Proposition 3.17
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can be formulated to state that a is stationary if and only if a has a partition
based on its core part ac.

Proposition 3.17 also reaffirms Lemma 3.11 since if an element a has
the stationary support consisting of core generators only, then a has a
stationary-partition. Indeed, if a = ac, one can take n to be the core pe-
riod and Ii = {i}. If ngi is the minimum of the set of lengths of cycles on
which gi is and if n = lingi , one can take pii to be the path obtaining by
traversing a cycle of length ngi li times starting at gi so that |pii| = n. Thus,
relation (4) holds trivially for each i since mi + n = mi + n and so a has a
stationary-partition.

3.7. Characterization of comparability. We prove Theorem 3.19 char-
acterizing a comparable element using Propositions 2.2 and 3.17.

Theorem 3.19. The following conditions are equivalent for an element a ∈
FΓ
E .

(1) The element a is nonzero and comparable.
(2) There is a stationary element b such that a→ b.
(3) There is an element b with a stationary support and with a stationary-

partition such that condition (2) from Proposition 2.2 holds for a and
b.

Proof. The implication (1) ⇒ (2) holds by Lemma 3.6. Conversely, if (2)
holds, then b is nonzero and comparable. The relation a → b implies a ∼ b
so a is nonzero and comparable as well.

The equivalence (2) ⇔ (3) follows directly from Propositions 2.2 and
3.17. �

In Theorem 3.21, we characterize when every element of FΓ
E is comparable.

First, we show the following corollary of Proposition 2.2 and Lemmas 3.6
and 3.9 which we use in the proof of Theorem 3.21.

Corollary 3.20. Let v be an infinite emitter.

(1) If v connects to qvZ by a path of positive length, then v is on a cycle.
(2) If qvZ connects to qvW by a path of positive length, then qvZ is on a cycle.
(3) If qvW is on a cycle, then v is on a cycle and qvZ is on a cycle for every
∅ 6= Z ⊆W.

(4) If v is comparable, then v is on a cycle.
(5) If qvZ is comparable, then qvZ is on a cycle.

Proof. To show (1), assume that v  p qZ = qvZ for some path p of positive
length n. Then v → xnqZ + a for some a ∈ FΓ

E . By the nature of axioms
(A2) and (A3), there has to be a term xnv produced at some point. Hence,
v → xnv + b for some b which implies that v is on a cycle.

To show (2), assume that qZ = qvZ  
p qW = qvW for some path p of positive

length n. Then qZ → xnqW +a for some a. By the nature of axioms (A2) and



1410 ROOZBEH HAZRAT AND LIA VAŠ

(A3), there has to be a term xnv produced at some point using a cycle c based
at v such that the first edge of c is not in Z. Hence, qZ → xnv+b→ xnqZ+c
for some b and c by (A2) and so qZ is on a cycle.

By Definition 2.1, if qvW is on a cycle, then there is a cycle based at v such
that the first edge e of that cycle is not in W. So, v is on a cycle. If Z ⊆W,
then e /∈ Z and so qZ is also on a cycle by Definition 2.1. This shows (3).

To show (4), let v be comparable. By Lemma 3.6, there is a stationary
element a such that v → a. If a = v, then v is stationary and it is necessarily
on a cycle by part (2) of Lemma 3.9. So, assume that a 6= v. By Proposition

2.2, if a =
∑l

j=1 x
tjhj is a normal representation of a, there are paths

pj , j = 1, . . . , l such that v  pj hj , tj = |pj |, and at least one of hj is qvZ for
some Z. Reordering the terms we can assume that j = 1. If p1 has positive
length, then v is on a cycle by part (1). If qZ is on a cycle, then v is on a
cycle by part (3). So, let us consider the remaining case when p1 is trivial
and qZ is not on a cycle. In this case, qZ has to be on an exit from a core
cycle by part (4) of Lemma 3.9. So, there is j > 1 such that hj is on a cycle
and hj  p qZ for some path p. Hence, v  pj hj  p qZ . If |p| > 0, then v
connects to qZ by a path pjp of positive length and so v is on a cycle by part
(1). If |p| = 0, then either hj = v, in which case v is on a cycle, or hj = qZ′
for some Z ′ ( Z in which case v is also on a cycle by part (3).

To show (5), let qZ be comparable. By Lemma 3.6, there is a stationary
element a such that qZ → a. If a = qZ , then qZ is stationary and it is
necessarily on a cycle by part (2) of Lemma 3.9. So, assume that a 6= qZ .

By Proposition 2.2, if a =
∑l

j=1 x
tjhj is a normal representation of a, there

are paths pj , j = 1, . . . , l such that qZ  pj hj , tj = |pj |, and at least one of
hj is qvW for some W ) Z. Reordering the terms we can assume that j = 1.
If p1 has positive length, then qZ is on a cycle by part (2). If qW is on a
cycle, then qZ is on a cycle by part (3). So, let us consider the remaining
case when p1 is trivial and qW is not on a cycle. By part (4) of Lemma 3.9,
there is j > 1 such that hj is on a cycle and hj  p qW for some path p. So,
qZ  pj hj  p qW . If |p| > 0, qZ connects to qW by a path pjp of positive
length and so qZ is on a cycle by part (2). If |p| = 0, then either hj = v or
hj = qZ′ for some Z ′ ( W. In the first case, qZ  pj v so there is a cycle
based at v such that its first edge e is not in Z and so qZ is on that cycle
by Definition 2.1. In the second case, qZ  pj qZ′ . If |pj | > 0, then qZ is on
a cycle by part (2). If |pj | = 0, then Z ⊆ Z ′. Since qZ′ is on a cycle, there
is a cycle based at v such that the first edge e of it is in s−1(v)−Z ′. Hence,
e /∈ Z and so qZ is on a cycle by Definition 2.1. �

Theorem 3.21. The following conditions are equivalent.

(1) Every element a ∈ FΓ
E is comparable.

(2) Every generator of FΓ
E is comparable.

(3) For every generator g of FΓ
E , g → a for some stationary element a.

(4) The following hold for every generator g of FΓ
E .
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(a) The generator g is not a sink and it connects to a cycle.
(b) If g is an infinite emitter or an improper vertex, then g is on a cycle.
(c) If g is regular, there is stationary a ∈ FΓ

E with the exit part zero
such that g → a.

(5) The following hold for every vertex v of E.
(a) The vertex v is not a sink and it connects to a cycle.
(b) If v is an infinite emitter, then it is on a cycle.
(c) If v is regular, there are finitely many proper or improper vertices

h1, . . . , hl on cycles and paths pj , j = 1, . . . , l such that v  pj hj and
such that for every prefix p of pj the conditions (i), (ii) and (iii) of
Proposition 2.2 hold with tj = |pj |.

Proof. The implication (1) ⇒ (2) is direct and the implication (2) ⇒ (1)
holds since a finite sum of comparable elements is comparable. The equiva-
lence (2) ⇔ (3) follows directly from Theorem 3.19. To complete the proof,
we show (3) ⇒ (4) ⇒ (5) ⇒ (3).

Assume that (3) holds and let g be any generator. Let a be stationary
such that g → a. Since g connects to all generators in the support of ac 6= 0,
g connects to a generator on a cycle so g is not a sink and (a) holds. Part
(b) holds by parts (4) and (5) of Corollary 3.20. To show part (c), let
g = v ∈ E0 be regular. We claim that there is an element b ∈ FΓ

E −{0} with
support containing only vertices on cycles such that v → b. We prove this
claim using induction on the minimum n of lengths of paths from v to cycles
which exist by part (a). If this length n is zero, v is on a cycle and one can
take b = v. Assuming the induction hypothesis, consider v with n > 0. For
every e ∈ s−1(v), either r(e) is on a cycle, in which case we let be = r(e) or
r(e) is not on a cycle in which case r(e) is necessarily regular by parts (a)
and (b). In this case, the minimum of lengths of paths from r(e) to cycles is
less than n and we can use induction hypothesis to obtain be with vertices
in the support on cycles and r(e)→ be. Then b =

∑
e∈s−1(v) xbe has vertices

in the support on cycles and

v →1

∑
e∈s−1(v)

xr(e)→
∑

e∈s−1(v)

xbe = b.

Since supp(b) consists of generators on cycles, b is stationary by Lemma 3.11
and its exit part is zero.

Assume that (4) holds and let v be any vertex of E. Parts (5a) and (5b)
directly hold by (4a) and (4b). If v is regular, let a be stationary with exit

part zero such that v → a which exists by (4c). If a =
∑l

j=1 x
tjhj , then hj

are on cycles since the exit part of a is zero. Part (5c) then follows from the
relation v → a by Proposition 2.2.

Assume that (5) holds and let g be any generator. By (5a), g is not a sink.
If g is an infinite emitter, then g is on a cycle by (5b) and so it is stationary.
If g is an improper vertex and g = qvZ , then v is on a cycle by (5b) so g is on
a cycle by Definition 2.1 and, again g is stationary. In both of these cases,
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(3) holds since g → g. If g is a regular vertex, (5c) and Proposition 2.2 imply

that g → a for a =
∑l

j=1 x
|pj |hj . Since the elements hj are on cycles, a is

stationary by Lemma 3.11. Hence, (3) holds. �

Part (5) with any of the conditions (a), (b), or (c) deleted is not equivalent
with the other conditions of Theorem 3.21 as the next set of examples shows.

Example 3.22. (1) If E is the Toeplitz graph (see part (2) of Example
3.8), then (b) and (c) hold. There is a sink so (a) fails and the sink
is not comparable.

(2) If E is the graph below, then (a) and (c) hold. The infinite emitter
v is not on a cycle, so (b) fails and v is not comparable by Corollary
3.20(4).

•v 44//
** $$ •w gg

(3) Let E be the graph below.

•
��

•
��

•
��

•v //

OO

• //

OO

• //

OO

• //

OO

If a is any element whose support consists only of vertices on cycles,
then v → a fails since there is a path originating at v which does
not connect to supp(a) (analogous argument is used in part (3) of
Example 2.3). The conditions (a) and (b) hold for E, but (c) fails
and v is not comparable.

4. Characterizations of periodic, aperiodic and incomparable
elements

Next, we show characterizations of periodic, aperiodic and incomparable
elements as well as other properties discussed in the introduction. We start
by Theorem 4.1 which characterizes a nonzero periodic element of FΓ

E . The-
orem 4.1 has already been used in [13, Theorem 3.1] to characterize Leavitt
path algebras which are crossed products in terms of the properties of the
underlying graphs.

Theorem 4.1. The following conditions are equivalent for an element a ∈
FΓ
E − {0}.

(1) The element a is periodic.
(2) There is an element b whose support consists of vertices on cycles without

exits such that a→A1 b.
(3) Any path originating at a generator in the support of a is a prefix of a

path p ending in one of finitely many cycles with no exits and such that
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all vertices of p are regular. Every infinite path originating at a vertex
in the support of a ends in a cycle with no exits.

Proof. If (1) holds, then a is comparable so a → b for some stationary
element b by Lemma 3.6. The relation a → b implies a ∼ b so b is periodic
as well. Hence, the supports of both a and b consists of regular vertices only
by Lemma 3.3. Thus, a→A1 b. By Corollary 3.14, the support of b consists of
regular vertices on cycles without exits which shows (2).

If (2) holds, the element b as in (2) is stationary and periodic by Lemma
3.11. Since the core cycles of b do not have exits, each generator in supp(b)
is proper, emits exactly one edge and, hence, it is regular. As a →A1 b,

any element of supp(a) is proper and regular also. Let a =
∑k

i=1 x
mivi,

b =
∑l

j=1 x
tjwj , and Ii and pij be as in Proposition 2.2 for a → b. Since

only (A1) is used, each vertex of any path pij is regular.
If p is a path with s(p) = vi, we use induction on |p| to show that there is

a path q such that p is a prefix of q, q ends in one of the core cycles and all
vertices of q are on some pij for j ∈ Ii (thus regular) or on cycles without
exits (thus also regular). If p = vi, q can be taken to be pij for any j ∈ Ii.
Assuming that the claim holds for p, let us consider pe for some edge e. By
the induction hypothesis, all vertices of p are regular, on pij for some j ∈ Ii
or on a core cycle. If r(e) is on a core cycle, then it emits exactly one edge
so it is regular and we can take q to be pe. So, let us consider the case that
r(e) is not on a core cycle in which case r(p) is not on a core cycle also and
so r(p) is on pij for some j ∈ Ii. Since r(p) is not on a cycle, there is a proper
prefix r of pij which ends in r(p). Thus Pr 6= ∅ and so Pr = s−1(r(p)) by
part (2)(i) of Proposition 2.2. In particular, e ∈ Pr. Hence, there is j′ ∈ Ii
such that e is in pij′ . Let q be pe up to r(e) and the suffix of pij′ after pe.
Thus, pe is a prefix of q, q ends in a core cycle and each vertex of q is on pij
for some j ∈ Ii.

It remains to show the condition on the infinite path. Let e1e2 . . . be an
infinite path originating at vi. For any n, each vertex of the path e1e2 . . . en
is on pij for some j ∈ Ii or in a core cycle. Let n be strictly larger than
the length of pij for all j ∈ Ii. Then r(en) must be in a core cycle and so
enen+1 . . . is on that same cycle since the cycle has no exits. This shows
that (3) holds.

If condition (3) holds, then the support of a consists of regular vertices
such that every path they emit connects to finitely many cycles without exits
by paths which contain regular vertices only. Let supp(a) = {v1, . . . , vk}
and let ni be the number of paths p from vi to the finitely many cycles from
condition (3) such that no vertex of any of the paths from (3) is on the
cycle except the range of p. Index the paths originating at vi as pi1, . . . , pini
for some positive ni and let wij = r(pij). Let J be the set of (i, j) with
i = 1, . . . , k and j = 1, . . . , ni and let Ii be the set of those (i′, j) ∈ J
such that i′ = i. By construction, {I1, . . . , Ik} is a partition of J and, by
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considering a bijection between J and the set {1, . . . , l} for l = |J |, this
partition corresponds to a partition of {1, . . . , l}.

If p is a prefix of pij , let us use the notation Pp in the same sense as in
Proposition 2.2 and Definition 2.6. If p is a proper prefix of pij , then r(p)
is regular and Pp is nonempty as it contains the first edge of pij not on p.
If e ∈ s−1(r(p)), then pe is a prefix of some pij′ by condition (3) and so
e ∈ Pp. Hence, Pp = s−1(r(p)). If p = pij , then Pp is empty by construction.
Thus condition (i) of Definition 2.6 holds and conditions (ii) and (iii) are
trivially satisfied. So, for W = {wij | (i, j) ∈ J}, supp(a) → W. Moreover,
supp(a) →A1 W since supp(a) and W contain regular vertices only. Hence,
there is c 6= 0 such that a →A1 c and supp(c) ⊆ W by Corollary 2.8. The set
W is stationary and, by part (1) of Lemma 3.11, every element with support
contained in W is stationary and, part (2) of Lemma 3.11, periodic. Thus,
c is periodic. Since a ∼ c, a is also periodic. Hence, (1) holds. �

We note that the sources of graphs in parts (1) and (3) of Example 3.22
are such that condition (2) fails, so that these vertices are not periodic by
Theorem 4.1 (and incomparable by Theorem 3.19).

In Theorem 4.2, we characterize when every element of FΓ
E is periodic

in terms of the properties of E, in terms of the form of the Leavitt path
algebra, as well as in terms of the form of the Grothendieck Γ-group.

Theorem 4.2. The following conditions are equivalent.

(1) Every element a ∈ FΓ
E is periodic.

(2) Every vertex is periodic.
(3) For every vertex v, {v} →A1 V for some stationary set V which contains

core vertices only and every core cycle has no exits.
(4) Each path is a prefix of a path p ending in a cycle with no exits and such

that the vertices on p are regular. Every infinite path ends in a cycle
with no exits.

(5) E is a row-finite, no-exit graph without sinks such that every infinite
path ends in a cycle.

(6) For any field K, the Leavitt path algebra LK(E) is graded isomorphic to
an algebra of the form⊕

i∈I
Mµi(K[xni , x−ni ])(γi)

where I is a set, µi are cardinals, ni positive integers, and γi maps
µi → Z for i ∈ I.

(7) The graph Γ-monoid is isomorphic to⊕
i∈I
Z+[x]/〈xni = 1〉

where I is a set and ni are positive integers for i ∈ I.
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(8) The Grothendieck Γ-group GΓ
E is isomorphic to⊕

i∈I
Z[x]/〈xni = 1〉

where I is a set and ni are positive integers for i ∈ I.

Proof. The implication (1) ⇒ (2) is direct. If (2) holds, then every vertex
of E is regular by Lemma 3.3. If a vertex v is periodic, v → a for some
stationary element a by Lemma 3.6. Since v is periodic, a is periodic also
and the support of a consists of regular vertices on cycles without exits by
Corollary 3.14. Thus, v → a implies that v →A1 a. If V = supp(a), condition
(3) follows by Corollary 2.8.

If (3) holds, then all vertices of E are regular. If p is any finite or infinite
path, {s(p)} →A1 V for some V as in condition (3). By Corollary 2.8, there
is a ∈ FΓ

E − {0} such that s(p) →A1 a and supp(a) ⊆ V. Since V consists of
vertices on cycles without exits, a is stationary and periodic and so s(p) is
periodic also. Then (4) holds by Theorem 4.1.

If (4) holds, then all vertices of E are regular so E is a row-finite graph.
Every vertex connects to cycles so there are no sinks. Every infinite path
ends in a cycle and no cycle has an exit. So, (5) holds.

Conditions (5) and (6) are equivalent by [17, Corollary 3.6].
The implications (6) ⇒ (7) and (7) ⇒ (8) are rather direct. Condition

(8) directly implies that every element of GΓ
E has a finite orbit. Hence, every

element of FΓ
E is periodic and (1) holds. �

Using Theorem 4.1, we characterize when no nonzero element of FΓ
E is

periodic.

Corollary 4.3. The following conditions are equivalent.

(1) No nonzero element of FΓ
E is periodic.

(2) The graph E satisfies Condition (L).

Proof. If E has a cycle with no exits, any vertex on this cycle is periodic.
Conversely, if Condition (L) holds, the core cycles of any stationary element
have exits. By Theorem 4.1, no nonzero element is periodic. �

We characterize aperiodic elements next.

Theorem 4.4. The following conditions are equivalent for an element a ∈
FΓ
E .

(1) The element a is aperiodic.
(2) The element a is comparable and not periodic.
(3) There is a stationary element b such that a→ b and at least one of the

core cycles of b has an exit.

Proof. It is direct that (1) ⇔ (2). The equivalence (2) ⇔ (3) holds by
Theorems 3.19 and 4.1. �
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We also characterize when every element of FΓ
E is aperiodic.

Theorem 4.5. The following conditions are equivalent.

(1) Every nonzero element a ∈ FΓ
E is aperiodic.

(2) Every generator of FΓ
E is aperiodic.

(3) Every generator of FΓ
E is comparable and every cycle has an exit.

(4) For every generator g of FΓ
E , g → a for some stationary element a such

that all core cycles have exits.

Proof. The implication (1)⇒ (2) is direct. The converse holds since a sum
of aperiodic elements is comparable and, if at least one of them is aperiodic,
aperiodic.

If (2) holds and g is a generator on an arbitrary cycle (which exists by
Corollary 3.12), then g is aperiodic if and only if the cycle has an exit by
Lemma 3.11. Hence, (3) holds.

If (3) holds and g is an arbitrary generator, then g → a for a stationary
element a. By assumption (3) all core cycle of a have exits so (4) holds.

Finally, let us assume that (4) holds and show (2). If g is an arbitrary
generator and a a stationary element such that g → a and all core cycles
have exit, then a→ xna+ b for some nonzero b. Hence, a is aperiodic and,
since g → a, g is aperiodic also. �

We also characterize when no element of FΓ
E is aperiodic.

Corollary 4.6. The following conditions are equivalent.

(1) No element of FΓ
E is aperiodic.

(2) The graph E is no-exit (i.e. satisfies Condition (NE)).

Proof. If E is not a no-exit graph, there is a cycle with an exit and any
vertex on that cycle is an aperiodic element of FΓ

E . Conversely, if a is an
aperiodic element of FΓ

E , then a → b for some stationary element b such
that at least one of the core cycles of b must have an exit by Theorem 4.4.
Hence, E is not no-exit. �

Since every element which is not comparable is incomparable, Theorem
3.19 implies a characterization of an incomparable element in FΓ

E also. The
following characterization of graphs such that all elements of FΓ

E are incom-
parable follows directly from Corollary 3.12.

Corollary 4.7. The following conditions are equivalent.

(1) Every nonzero element a ∈ FΓ
E is incomparable.

(2) Every generator of FΓ
E is incomparable.

(3) The graph E is acyclic.
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4.1. Strengthening results of [11]. By Proposition 3.4, a result of [11]
holds without the assumption that the graph under consideration is row-
finite. In this section, we show that the same assumption can be deleted
from some of the main results of [11]. The second part of Corollary 4.11
shows that our results provide some further progress towards a positive
answer to the Graded Classification Conjecture.

First, we show that Theorems 4.1 and 4.4 and Corollary 4.7 imply [11,
Proposition 4.2] without assuming that the graph is row-finite. We formulate
this in the following corollary.

Corollary 4.8. (1) The graph E has a cycle with no exit if and only if some
nonzero element of FΓ

E is periodic.
(2) The graph E has a cycle with an exit if and only if some element of FΓ

E
is aperiodic.

(3) The graph E is acyclic if and only if every nonzero element of FΓ
E is

incomparable.

Proof. One direction of parts (1) and (2) follows by Theorems 4.1 and 4.4.
The other follows by Lemma 3.11 which implies that a vertex on a cycle is
periodic if the cycle has no exits and it is aperiodic if the cycle has an exit.
Part (3) directly follows from Corollary 4.7. �

By [16, Theorem 5.7], a Γ-order-ideal of MΓ
E uniquely determines certain

subset of vertices. We briefly review this construction. A subset H of E0 is
said to be hereditary if for any v ∈ H and a path p with s(p) = v, r(p) is
in H and it is saturated if r(s−1(v)) ⊆ H for a regular vertex v implies that
v ∈ H.

For a hereditary and saturated set H, let G(H) be the set of v ∈ E0 −H
such that v is not regular and s−1(v)∩ r−1(E0−H) is nonempty and finite.
For G ⊆ G(H), the pair (H,G) is said to be an admissible pair. The set of
all such pairs is a lattice by

(H1, G1) ≤ (H2, G2) iff H1 ⊆ H2, G1 ⊆ G2 ∪H2

(see [16] or [3]). By [16, Theorem 5.7], this lattice is isomorphic to the lattice
of graded ideals of LK(E) and by [3, Theorem 6.9], this lattice is isomorphic
to the set of order-ideals of ME . If (H,G) 7→ I(H,G) denotes this isomor-
phism, then ME/I(H,G) ∼= ME/(H,G) and both [16] and [3] contain details.
By [4, Lemma 5.10], the lattices of order-ideals of ME and of Γ-order-ideals
of MΓ

E are isomorphic. Moreover, if the assumption that E is row-finite is
deleted and hereditary and saturated set replaced by an admissible pair, the
proof of [11, Lemma 2.2] establishes that

MΓ
E/I(H,G) ∼= MΓ

E/(H,G)

for an admissible pair (H,G).
Next, we show that the assumption that E is row-finite can be removed

from [11, Corollary 4.3].
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Corollary 4.9. (1) The following conditions are equivalent.
(i) The graph E satisfies Condition (L).
(ii) No nonzero element of FΓ

E is periodic.
(iii) Γ acts freely on MΓ

E .
(2) The following conditions are equivalent.

(i) The graph E satisfies Condition (K).
(ii) No nonzero element of MΓ

E/I is periodic for any Γ-order-ideal I of
MΓ
E .

(iii) The group Γ acts freely on MΓ
E/I for any Γ-order-ideal I of MΓ

E .

Proof. Part (1) directly follows from Corollary 4.3.
By [16, Proposition 6.12], E satisfies Condition (K) if and only if E/(H,G)

satisfies Condition (L) for any admissible pair (H,G). Since every such pair
uniquely determines a Γ-order-ideal of MΓ

E , part (1) and Corollary 4.3 imply
the equivalences of conditions in part (2). �

[11, Corollary 5.1] focuses on the monoid properties of MΓ
E which are

equivalent with various forms of simplicity of LK(E). We show these prop-
erties without requiring that E is row-finite.

Corollary 4.10. Let K be any field.

(1) The following conditions are equivalent.
(i) The algebra LK(E) is graded simple.
(ii) The Γ-monoid MΓ

E is simple.
(iii) The Γ-group GΓ

E is simple as an ordered Γ-group.
(2) The following conditions are equivalent.

(i) The algebra LK(E) is simple.
(ii) The Γ-monoid MΓ

E is simple and no nonzero element of MΓ
E is

periodic.
(iii) The Γ-monoid MΓ

E is simple and every nonzero comparable element
of MΓ

E is aperiodic.
(3) The following conditions are equivalent.

(i) The algebra LK(E) is purely infinite simple.
(ii) The Γ-monoid MΓ

E is simple, no nonzero element of MΓ
E is periodic

and some element of MΓ
E is aperiodic.

Proof. Part (1) directly follows from the fact that the lattices of graded
ideals of LK(E), Γ-order-ideals of MΓ

E and Γ-order-ideals of GΓ
E are isomor-

phic.
By [1, Theorem 2.9.1], LK(E) is simple if and only if it is graded sim-

ple and E satisfies Condition (L). By part (1) and Corollary 4.3, this is
equivalent with MΓ

E being simple and without a nonzero periodic element.
This last condition is equivalent with the requirement that every nonzero
comparable element is aperiodic.
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By [1, Theorem 3.1.10], LK(E) is purely infinite simple if and only if it is
simple and E has a cycle with an exit. By Corollary 4.8, E has a cycle with
an exit if and only if MΓ

E has an aperiodic element. �

Lastly, we show Corollary 4.11. Parts (1) and (3) show that the first part
of [11, Theorem 5.7] holds without the condition that E is row-finite. Parts
(4) to (8) are further corollaries of our results.

Corollary 4.11. Let E and F be arbitrary graphs. If there is a Γ-monoid
isomorphism MΓ

E →MΓ
F , then the following hold.

(1) The graph E satisfies Condition (L) if and only if F satisfies Condition
(L).

(2) The graph E satisfies Condition (K) if and only if F satisfies Condition
(K).

(3) The lattices of graded ideals of LK(E) and LK(F ) are isomorphic.
(4) E is acyclic if and only if F is acyclic.
(5) There is a cycle without an exit in E if and only if there is a cycle

without an exit in F.
(6) There is a cycle with an exit in E if and only if there is a cycle with an

exit in F.
(7) None of the cycles of E have exits if and only if none of the cycles of F

have an exit.
(8) E satisfies the condition below if and only if F satisfies the condition

below.
The graph is row-finite, no-exit, has no sinks and it is such that
every infinite path ends in a cycle.

Proof. Parts (1) and (2) directly follow from Corollary 4.9. To show part
(3), note that a Γ-monoid isomorphism MΓ

E →MΓ
F induces a lattice isomor-

phism on the lattices of Γ-order-ideals. Since these lattices are isomorphic
to lattices of graded ideals of LK(E) and LK(F ), part (3) holds.

Part (4) holds since E has a cycle if and only if there is a nonzero compa-
rable element in MΓ

E by Corollary 3.12. Part (5) holds since E has a cycle
with no exit if and only if there is a nonzero periodic element in MΓ

E by
Corollary 4.8(1). Part (6) holds since E has a cycle with an exit if and only
if there is an aperiodic element in MΓ

E by Corollary 4.8(2).
Part (7) holds by Corollary 4.6 and part (8) by Theorem 4.2. �

Corollary 4.11 asserts that many relevant properties of two graphs match
if the graphs have isomorphic graph Γ-monoids. Together with our previous
results, Corollary 4.11 indicates that the Graded Classification Conjecture
may have a positive answer since the properties of the graph are well reflected
by the structure of its graph Γ-monoid.

The Graded Classification Conjecture was shown for finite polycephaly
graphs in [9] and for a certain class of countable, row-finite, no-exit graphs
in [12]. In [7], it was shown for countable graphs such that for any two
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vertices the set of edges from one to the other is either empty or infinite.
We also note that a weaker version of the conjecture was shown for finite
graphs with neither sources nor sinks in [6].
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[18] Vaš, Lia. Simplicial and dimension groups with group action and their realization.
arXiv:1805.07636. 1381

(Roozbeh Hazrat) Centre for Research in Mathematics and Data Science, West-
ern Sydney University, Australia
r.hazrat@westernsydney.edu.au
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