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Primary decompositions of knot
concordance

Charles Livingston

Abstract. For all n > 0 there exists a homomorphism from the smooth
concordance group of knots in dimension 2n + 1 to an algebraically
defined group GQ. This algebraic concordance group splits as a direct
sum of groups indexed by polynomials. For n > 1 the homomorphism
is injective, and this leads to what is called a primary decomposition
theorem. In the classical dimension, the kernel of this homomorphism
includes the smooth concordance group of topologically slice knots, T ,
which has become an important focus of research about smooth knot
concordance. Here we will show that primary decompositions of T of a
strong type cannot exist.

In more detail, it is shown that there exists a topologically slice
knot K for which there is a factorization of its Alexander polynomial,
∆K(t) = f1(t)f2(t), where f1 and f2 are relatively prime and each
is the Alexander polynomial of a topologically slice knot, but K is
not smoothly concordant to any connected sum K1 # K2 for which
∆Ki(t) = fi(t)

ni for any nonnegative integers ni.
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1. Introduction

A central problem in three-dimensional knot concordance theory in the
smooth category consists of understanding T , the concordance group of
topologically slice knots. Freedman [7, 8] proved that the subgroup T 1 gen-
erated by knots with Alexander polynomial one satisfies T 1 ⊂ T . Early
work proving that T 1 is nontrivial includes that of Akbulut, Casson, and
Cochran-Gompf [4]; in [5] it was shown that T 1 contains an infinitely gen-
erated free subgroup. Using Heegaard Floer theory, in [9, 10] it was shown
that T /T 1 contains an infinitely generated free subgroup and infinite two-
torsion.

Recently, Jae Choon Cha [3] has undertaken an in-depth investigation
of primary decompositions of T . One motivation for studying primary de-
compositions arises from Levine’s work [12] in which it was shown that for
all integers n > 0 there is a homomorphism from the smooth concordance
group of knotted 2n − 1 spheres in S2n+1 to a group called the rational
algebraic concordance group: ψ2n−1 : C2n−1 → GQ. It was also proved that
there is a decomposition GQ ∼= ⊕p∈AGQp , where A is the set of irreducible
Alexander polynomials. Such a decomposition does not exist using integer
rather than rational coefficients, but the failure was completely analyzed
by Stoltzfus [16]. In all odd higher dimensions ψ2n−1 is injective, leading
to decomposition theorems for knot concordance groups. In the classical
dimension, n = 1, the map ψ1 is not injective [2]; the kernel is infinitely
generated and contains the subgroup T .

To briefly summarize the perspective of Cha’s work, we let Q ⊂ Z[t] be
the set of irreducible polynomials q(t) satisfying q(1) = 1. Let

P = {q(t)q(t−1) ∈ Z[t, t−1]
∣∣ q(t) ∈ Q}.

According to Fox and Milnor [6], if a knot K is smoothly slice, then its
Alexander polynomial is a product of elements in P. The same result holds
for topologically locally flat slice knots, as proved using the existence of
normal bundles for locally flat disks (see Freedman-Quinn [7, Section 9.3]).
According to Terasaka [17], every product of elements in P is the Alexander
polynomial of some slice knot.

Given any subset P0 ⊂ P, let T P0 ⊂ T denote the subgroup generated
by topologically slice knots with Alexander polynomial a product of poly-
nomials p for p ∈ P0. In the case that P0 is a singleton {p}, we write T p.
Hence, as above, T 1 denotes the subgroup generated by knots with Alexan-
der polynomial one. Notice that for any pair of elements p, q ∈ P, we have
T 1 ⊂ T p ∩ T q. Thus, in the following question (which is closely related to
a series of problems and conjectures made in [3]) it is necessary to consider
the quotients T p

∆ = T p/T 1 and T∆ = T /T 1.
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Question 1. Do the canonical homomorphisms T p
∆ → T∆ induce an iso-

morphism

Φ:
⊕
p∈P
T p

∆ → T∆?

In [3], Cha identifies and studies a specific infinite set P0 ⊂ P with two
properties: first, for all p ∈ P0, he proves that T p

∆ contains an infinitely
generated free subgroup Sp∆; second, he proves that the restriction of Φ is
injective on ⊕p∈P0Sp∆.

The main goal of this paper is to provide a counterexample to a splitting
property related to the surjectivity of Φ, considered by Cha under the name
strong existence (see [3, Appendix A]). Although this does not provide a
complete answer to the Question 1, it adds strong evidence that the answer
is “no.” More specifically, it indicates that Φ is probably not surjective.

Theorem 1.1. There exists a set of three polynomials, P0 = {f1, f2, f3} ⊂
P, such that the natural homomorphism

T f1
∆ ⊕ T

f2
∆ ⊕ T

f3
∆ → T P0

∆

is not surjective.

The use of three factors is an artifact of the proof. It will be clear that
without the restriction of irreducibility for elements in Q, we could have
used two factors, as was stated in the abstract. To be more precise, there is
the following statement.

Theorem 1.2. There exist Alexander polynomials f1(t) and f2(t) having no
common factors and a topologically slice knot K with ∆K(t) = f1(t)2f2(t)2

such that K is not concordant to any connected sum of knots K1 #K2 where
∆Ki(t) = fi(t)

ni and n1, n2 ∈ Z.

Notice that it follows that K is a topologically slice knot that is not
smoothly concordant to a knot with Alexander polynomial one. The first
examples of such knots were described in [10]. The example and proof here
are closely related to that earlier work.

Acknowledgments. Thanks are due to Jae Choon Cha for sharing with me
drafts of his ongoing work on primary decompositions and for his repeatedly
offering thoughtful commentary on this note. Discussions with Se-Goo Kim
and Taehee Kim were also very helpful. The referee is to be thanked for
providing important corrections as well as expositional improvements.

2. Rational homology cobordism and an example

The proof of Theorem 1.1 can be reduced to a result concerning rational
homology cobordism, as we now describe. Recall first that the Alexander
polynomial of a knot determines the order of the first homology of M(K),
the 2–fold cyclic branched cover of S3 branched over K:

∣∣H1(M(K))
∣∣ =
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J3

Figure 1. Knot∣∣∆K(−1)
∣∣. Also, 2–fold branched covers of concordant knots are rationally

homology cobordant.
Figure 1 is a schematic diagram of a topologically slice knotKn, illustrated

in the case of n = 3. The value of n will be chosen to satisfy n ≡ 3 mod 4
and the knot Jn will be the connected sum of (3n−1)/4 copies of the positive
clasped untwisted double of the trefoil knot, D(T (2, 3)). As illustrated, Kn

is the boundary of a punctured Klein bottle, built by adding two bands to a
disk. In the figure, the right band has one half-twist; the left band has the
knot Jn tied in it and is untwisted, meaning that a simple closed curve on
the surface that passes over the band once, and does not go over the band
on the right, links its push-off 0 times. There are n half-twist between the
two bands. Formally, Kn is a satellite of Jn, with the satellite operation
depending on the parameter n. Similar knots were used in [10] to prove the
nontriviality of T∆ = T /T 1. A quick calculation in Section 4 will show that
if n = pq for odd primes p and q, then

∆Kn(t) =
(
φ2p(t)φ2q(t)φ2pq(t)

)2
,

where φk(t) denotes the k–cyclotomic polynomial.

Theorem 2.1. If n = pq, then the homology of the 2–fold branched cover
of Kn satisfies

∣∣H1(M(Kn))
∣∣ = n2. If Kn is concordant to a connected sum

L1 # L2 # L3, with ∆L1(t) = φ2p(t)
m1, ∆L2(t) = φ2q(t)

m2, and ∆L3(t) =
φ2pq(t)

m3, then M(Kn) is rationally homology cobordant to a connected sum
M1 #M2 #M3, where

∣∣H1(M1)
∣∣ = pm1,

∣∣H1(M2)
∣∣ = qm2 and

∣∣H1(M3)
∣∣ = 1.

Proof. These all follow immediately from the facts that φ2p(−1) = p,
φ2q(−1) = q, and φ2pq(−1) = 1. See Lemma 4.2 for details. �

The topic of [11] was the general problem of finding a primary splitting of
the rational homology cobordism group. We will show that the techniques
used there can be applied to prove that for n = 15, a rational homology
cobordism from M(Kn) to such a connected sum, M1 #M2 #M3, does not
exist. Notice that if it did exist, we could let N2 = M2 # M3, and reduce
our work to obstructing the existence of a rational homology cobordism to
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a connected sum of two manifolds, M1 #N2. Our goal will be to prove that
M(Kn) is not rational homology cobordant to any connected sum M1 #M2,
where

∣∣H1(M1)
∣∣ = 3m1 and

∣∣H1(M2)
∣∣ = 5m2 for some integers m1 and m2.

3. Obstructions from d–invariants

We use the following notation: for any abelian group G and prime integer
p, let G(p) denote the subgroup consisting of all elements of order pn for
some n.

All the three-manifoldsM we will be working with are Z2–homology three-
spheres. Since H1(M) is of odd order, there are natural identifications:
H1(M) ∼= H2(M) ∼= Spinc(M). For g ∈ H1(M) or g ∈ H2(M) we denote
by d(K, g) the Heegaard Floer correction term associated to g viewed as a
Spinc–structure. Basic results concerning Spinc(M), the d–invariant, and
its basic properties are in [13]. Further details and examples are provided
in [11].

If M bounds a rational homology four-ball, then there is a subgroup

M ⊂ H2(M) such that:
∣∣M∣∣2 =

∣∣H2(M)
∣∣; the nonsingular linking form

vanishes onM; and d(M, g) = 0 for all g ∈M. (The linking form is usually
defined on the first homology; it can be viewed as a form on the second
cohomology via the natural isomorphism H1(M) ∼= H2(M). In general, M
can be viewed as a subgroup of either H1(M) or H2(M).)

Theorem 3.1. Let p and q be distinct odd primes and let M be a three-
manifold satisfying H1(M) ∼= Zp2 ⊕ Zq2, generated by elements a and b of

order p2 and q2, respectively. If M is rationally homology cobordant to a
connected sum M1 #M2 where H1(M1)(q) = 0 and H1(M2)(p) = 0, then the
value of

d(M, ipa+ jqb)− d(M, ipa)− d(M, jqb)

is independent of i and j.

Proof. Since M and M1 # M2 are rationally homology concordant, M #
−M1 # −M2 bounds a rational homology 4–ball W . The image of H2(W )

in H2(M # −M1 # −M2) is the desired subgroup M satisfying
∣∣M∣∣2 =∣∣H2(M #−M1 #−M2)

∣∣. Furthermore, M is self-annihilating with respect
to the nonsingular linking form. The order of a self-annihilating subgroup
of a group G is of order at most

√
|G|; it follows that the subgroupM(p) ⊂

H2(M)(p)⊕H2(−M1)(p) cannot be contained in H2(−M1)(p). In particular,

some element of the form (xp, yp) ∈ H2(M)(p) ⊕ H2(−M1)(p) with xp 6=
0 ∈ Zp2 is contained in M. By taking a multiple, we can assume xp = pa.

Similarly, there is an element (qb, yq) ∈ H2(M)⊕H2(−M2) in M(q).

Notice that we are viewing H2(−M1) ⊂ H2(−M1) ⊕ H2(−M2), so in
this sense yp can be interpreted as an ordered pair (yp, 0) ∈ H2(−M1) ⊕
H2(−M2); similarly, yq represents an ordered pair (0, yq) ∈ H2(−M1) ⊕
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H2(−M2). The correction term is additive under connected sum and van-
ishes for elements in M. Thus for any i and j:

d(M, ipa)− d(M1, iyp)− d(M2, 0) = 0,

d(M, jqb)− d(M1, 0)− d(M2, jyq) = 0,

and

d(M, ipa+ jqb)− d(M1, iyp)− d(M2, jyq) = 0.

Subtracting the first two equations from the third shows that for all i and
j,

d(M, ipa+ jqb)− d(M, ipa)− d(M, jqb) = −d(M1, 0)− d(M2, 0).

The right hand side is independent of i and j. �

4. The knots Kn and their Alexander polynomials

As described in Section 2, we are considering the knots Kn illustrated
schematically in Figure 1.

Theorem 4.1. For n odd, the Alexander polynomial of Kn is given by

∆Kn(t) =

(
tn + 1

t+ 1

)2

.

Proof. This knot is a winding number two satellite of Jn. Since Jn has
Alexander polynomial one, a standard formula for the Alexander polynomial
of a satellite knot [15] implies that the Alexander polynomial of Kn is the
same as what it would be if the knot Jn were replaced with the unknot
in constructing Kn. In this case, a simple manipulation shows that Kn =
P (n,−n, n−1), a three-stranded pretzel knot, illustrated in the case of n = 3
in Figure 2. To compute its Alexander polynomial, we consider instead the
Conway polynomial ∇Kn(z). (Recall that for an arbitrary oriented knot K,

∆K(t) = ∇K(t1/2 − t−1/2).)

Figure 2. The pretzel knot P (3,−3, 2)

The standard crossing change formula for the Conway polynomial is

∇+(z)−∇−(z) = −z∇s(z),
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where∇± denotes the Conway polynomial of an oriented link with a specified
crossing made positive or negative and ∇s is the Conway polynomial of
the link formed by smoothing that same crossing. This can be applied to
a crossing on the right-most band of the pretzel knot, indicated by the
dot in Figure 2. Smoothing the crossing yields an unlink, which has 0
Conway polynomial. Changing the crossing removes two half-twists. Thus,
∇P (n,−n,n−1)(z) = ∇P (n,−n,n−3)(z). Since n is odd, continuing in this way
removes the right-most crossings, ultimately yielding the connected sum
−T (2, n)#T (2, n). The Alexander polynomials of torus knots is well-known;
in this case it is

∆T (2,n)(t) =
(t2n − 1)(t− 1)

(t2 − 1)(tn − 1)
=
tn + 1

t+ 1
.

�

Lemma 4.2. For distinct odd primes p and q, there is the following identity,
where the φi are cyclotomic polynomials.

tpq + 1

t+ 1
= φ2p(t)φ2q(t)φ2pq(t).

Furthermore, φ2p(−1) = p, φ2q(−1) = q, and φ2pq(−1) = 1.

Proof. The polynomial tn− 1 has factors φd(t) for all divisors d of n. Thus

t2pq − 1 = φ2pq(t)φ2p(t)φ2q(t)φp(t)φq(t)φ2(t)φ1(t) (1)

and
tpq − 1 = φpq(t)φp(t)φq(t)φ1(t).

Dividing the first equation by the second, and then dividing by φ2(t) = t+1
yields

tpq + 1

t+ 1
= φ2pq(t)φ2p(t)φ2q(t).

L’Hopital’s rule can be used to determine that the left hand side evaluated
at −1 is pq. Thus, if we show φ2p(−1) = p, and, similarly, φq(−1) = q, we
are done. Proceeding as before,

t2p − 1 = φ2p(t)φp(t)φ2(t)φ1(t)

and
tp − 1 = φp(t)φ1(t).

Dividing yields
tp + 1

t+ 1
= φ2p(t).

In this case, L’Hopital’s rule shows that φ2p(−1) = p. �

Corollary 4.3. If n = pq, where p and q are distinct odd primes, then

∆Kn(t) =
(
φ2p(t)φ2q(t)φ2pq(t)

)2
, where the φk(t) are cyclotomic polynomi-

als. For r an odd prime, φ2r(−1) = r and for a product of two distinct odd
primes, φ2pq(−1) = 1.
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5. Computing d(M(K), i); the completion of the proof of
Theorem 1.1

We will now restrict to the case of n = 15. The methods of [1] apply
to show that the 2–fold branched cover of S3 branched over Kn is given by
152–surgery on T14,15#22D(T2,3). We denote its 2–fold cover of S3 branched
over K15 simply by M . Note that H2(M) ∼= H1(M) ∼= Z152 .

Suppose now that K15 were concordant to a connected sum of three knots,
one with Alexander polynomial φ6(t)m1 , one with Alexander polynomial
φ10(t)m2 , and one with Alexander polynomial φ30(t)m3 . Then, as described
in the introduction, M would by rationally homology cobordant to M1#M2,
where H1(M1)(5) = 0 and H1(M2)(3) = 0. Thus, Theorem 3.1 would apply.

In [10, Section 6], an algorithm is presented for computing the values of
the d–invariants of M(Kn). Here is the results of the computation; readers
are referred to [10] for general background. In Appendix A we provide a
summary of the details of this specific computation. Since H2(M) ∼= Z225,
the order 9 subgroup is generated by a = 25 and the order 25 subgroup
is generated by b = 9. The values that result from the computation of
d(M, ipa+ jqb) are as shown in Table 1.

i = 0 i = 1 i = 2
j = 0 16 6 6
j = 1 10 2 12
j = 2 4 8 14
j = 3 4 14 8
j = 4 10 12 2

Table 1. Values of d(M, ipa+ jqb)

The values of d(M, ipa+ jqb)− d(M, ipa)− d(M, jqb) are as shown (with
sign reversed for readability) in Table 2; they are not all equal.

i = 0 i = 1 i = 2
j = 0 16 16 16
j = 1 16 14 4
j = 2 16 2 -4
j = 3 16 -4 2
j = 4 16 4 14

Table 2. Values of −
(
d(M, ipa+ jqb)− d(M, ipa)− d(M, jqb)

)



784 CHARLES LIVINGSTON

5.1. Infinite families. Let {pi} be an infinite increasing sequence of primes
for which pi ≡ 3 mod 4 if and only if i is odd. Let

P0 = ∪∞i=1{φ2pi−1(t), φ2pi(t), φ2p2i−1p2i(t)}.
Most of the previous argument is easily generalized. The only step that
we have not been able to complete in general is the computation of the
d–invariants. Our expectation is that this would lead to the conclusion that⊕

p∈P0

T p
∆ → T

P0
∆

is not surjective.

Appendix A. Computation of d–invariants

Here we will describe the computation of the d–invariants for the 2–fold
branched cover of S3 branched over K15. A related example was presented
in [10, Section 6] with further background material but lacking a few of the
details that we provide here.

For this knot, recall that J15 is the connected sum of 11 copies of the
untwisted Whitehead double of the trefoil knot, Wh(T (2, 3)). The 2–fold
branched cover, which we denote by M15, can be described as 152 surgery
on the knot L = T (14, 15) #22 Wh(T (2, 3)). That is, M15 = S3

152(L).
Our goal is to compute the d–invariants d(M15,m), which in [10] were

denoted d(M15, sm). The first step is to determine the Heegaard Floer knot
complex CFK(L). This is a chain complex with coefficients in F, the field
with two elements. It is Z–graded, supports two increasing filtrations, and is
a free F[U,U−1]–module. The action of U lowers gradings by 2 and filtration
levels by 1.

According to [14], complexes of connected sums of knots are the tensor
products of the corresponding complexes for the individual knots, so we
first need to describe CFK(T (14, 15)) and CFK(#22Wh(T (2, 3))). In [10] it
is shown that these complexes are of the form

(
C1 ⊗ F[U,U−1]

)
⊕ A1 and(

C2 ⊗ F[U,U−1]
)
⊕A2, where A1 and A2 are acyclic. The acyclic summands

do not affect the value of the d–invariant of surgery on the knots, so can
be ignored. Both C1 and C2 are stairway complexes; in particular, they are
freely generated by elements of grading 0 and of grading 1. Each has one
dimensional homology, and that homology is at grading 0. All the grading
0 generators are homologous cycles.

For the complex C1, the grading 0 generators have bifiltration levels given
by the following set, along with the symmetric values; for example, since
(0, 91) is listed, there is also a generator at bifiltration level (91, 0). There
are 14 generators; the following seven and their reflections:

{(0, 91), (1, 78), (3, 66), (6, 55), (10, 45), (15, 36), (21, 28)}.
The corresponding list of the 23 generators of C2 are given in the following

list, where we present one element from each symmetric pair:
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{(0, 22), (1, 21), (2, 20), (3, 19), (4, 18), (5, 17), (6, 16), (7, 15),

(8, 14), (9, 13), (10, 12), (11, 11)}.

The tensor product of the two complexes has 14 × 23 = 322 generators
of grading 0, all of which are cycles representing the generator of homology.
The set of all bifiltration levels of these generators is formed by taking all
possible sums of the bifiltration levels from each set. Call the set of these
bifiltration levels S.

In [10, Theorem 5.3, Section 6], it is described how the value of d–invariant
d(M,m) is computed using these generators. Here is a concise summary. For
any m satisfying |m| ≤ 112, for each generator at filtration level (α, β), one
computes the value of the function Ψ(α, β) defined by

Ψ(α, β) =

{
β −m, if β − α ≥ m,
α, if β − α < m.

Next, one lets

δm(S) = min{Ψ(s)
∣∣ s ∈ S}.

The next result presents the final result that is needed to complete the
computation.

Theorem A.1. For m satisfying |m| ≤ 112,

d(M,m) = −2δm(S)− −(2m− 225)2 + 225

(4)(225)
.

With these results, the computer computations of the values in Table 1
and Table 2 are straightforward.
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