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On some cohomological invariants for
large families of infinite groups

Rudradip Biswas

Abstract. Over the ring of integers, groups of type Φ were first in-
troduced by Olympia Talelli as a possible algebraic characterisation of
groups that admit finite dimensional models for classifying spaces for
proper actions. In this short article, we make the same definition over
arbitrary commutative rings of finite global dimension and prove a num-
ber of properties pertaining to cohomological invariants of these groups
with the extra condition that the groups belong to a large hierarchy of
groups introduced by Peter Kropholler in the nineties. We prove most of
Talelli’s conjecture of equivalent statements for type Φ groups for these
groups, and expand the scope of a few existing results in the literature.
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Cohomological invariants are a useful tool in studying various cohomo-
logical and homological properties of infinite groups. It is often helpful to
cluster these groups into various families and classes and study properties of
certain cohomological invariants for all groups belonging to those classes. In
this short article, we will be dealing with two classes of groups - one called
groups of type Φ over various rings which were introduced over the ring of
integers by Talelli in [23], and our other class is derived from a hierarchy of
groups first introduced by Kropholler in the nineties in [18] - we will also be
forming a class of groups mixing ideas behind the formation of both these
classes. One of our aims is to prove an array of equalities of a bunch of
cohomological invariants extending some results by Cornick and Kropholler.
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As mentioned in the abstract, we also prove a large part of a conjecture
for type Φ groups proposed by Talelli with the extra assumption that the
groups in question are in our large mixed class mentioned earlier.

For clarity, we provide two separate background sections - Section 1 on
the cohomological invariants that we shall be using, and Section 2 on the
classes of groups, because cohomological invariants often need to be accom-
panied with a lot of context and significance. Our original results are mostly
collected in Section 2, Section 3 and Section 4. This work can be studied
in conjunction with another paper of the author[4] where related questions
on some of the cohomological invariants and some of the classes of mod-
ules studied in this article are studied, and some other important papers by
Emmanouil and Talelli [12][13][23].
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1. Background on cohomological invariants and a new result

We begin by defining the following two invariants that were introduced
by Gedrich and Gruenberg in [14].

Definition 1.1. Let R be a ring. Define splipRq and silppRq to be respec-
tively the supremum over the projective lengths (dimensions) of injective
R-modules and the supremum over the injective lengths (dimensions) of pro-
jective R-modules.

For any ring R, the finiteness of either splipRq or silppRq is connected
to the question of whether R-modules admit complete projective resolutions
(usually called just “complete resolutions”) or complete injective resolutions.
We shall not be dealing with complete injective resolutions in this article.
So, we shall be using the term “complete resolutions” to mean “complete
projective resolutions”. Before going forward, we need to define complete
resolutions.

Definition 1.2. Let R be a ring. For any R-module M , a complete res-
olution of M , alternatively called a complete resolution admitted by M , is
defined to be an infinite exact complex of projective R-modules, pFi, diqiPZ,
that satisfies the following properties.

a) There exists n ě 0 such that for some projective resolution pP˚, δ˚q�
M , pPi, δiqiěn “ pFi, diqiěn. The smallest such n is called the coincidence
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index of the complete resolution pF˚, d˚q with respect to the projective reso-
lution pP˚, δ˚q.

b) HomRpF˚, Qq is acyclic for any R-projective module Q.
If pbq is not satisfied, we call pFi, diq a weak complete resolution of M .
An R-module is said to be (weak) Gorenstein projective if it occurs as a

kernel in a (weak) complete resolution.
If R is a group ring AΓ, with Γ some group, it is said that Γ admits

(weak) complete resolutions (over A) if the trivial module A admits (weak)
complete resolutions as an AΓ-module.

A quite handy example of a class of Gorenstein projectives is given in the
following result which we state over the ring of integers.

Lemma 1.3. (Lemma 2.21 of [1]) For any group Γ, all permutation ZΓ-
modules with finite stabilisers, i.e. modules that are direct sums of modules
of the form IndΓ

GZ for any finite G ď Γ, are Gorenstein projective.

The following result was proved in [14].

Theorem 1.4. (Result 4.1 of [14]) Let R be a ring. If splipRq ă 8, then
every R-module admits a weak complete resolution.

Remark 1.5. Whether a group or a module admitting weak complete reso-
lutions over a ring is equivalent to the same admitting complete resolutions
over the same ring is an interesting question (see Theorem 3.4).

Definition 1.2 contained the definition of Gorenstein projectives, which is
a very useful class of modules in this theory. Using it, we make the following
definitions.

Definition 1.6. Let R be a ring. For any R-module M , the Gorenstein
projective dimension of M with respect to R, denoted GpdRpMq, is defined
to be the smallest integer n such that there is an exact sequence 0 Ñ Gn Ñ
Gn´1 Ñ ... Ñ G0 Ñ M Ñ 0, where each Gi is a Gorenstein projective
R-module. If R “ AΓ, where A is a commutative ring and Γ a group, then
the Gorenstein cohomological dimension of Γ with respect to A, denoted
GcdApΓq, is defined to be GpdAΓpAq.

Remark 1.7. It is easy to see that, for any ring R, an R-module M admits
a complete resolution iff it has finite Gorenstein projective dimension: if
M admits a complete resolution F˚ which has coincidence index say n with
respect to a projective resolution P˚ �M , then the n-th kernel in P˚, which
we can denote by ΩnpMq, is a kernel in the complete resolution F˚, which
means ΩnpMq is Gorenstein projective. We now have an exact sequence
0 Ñ ΩnpMq Ñ Pn´1 Ñ .. Ñ P0 Ñ M Ñ 0, where each term other than
M is Gorenstein projective (projectives are Gorenstein projective), and so
GpdRM ď n.

Now, let M satisfy GpdRM ď n. Take P˚ � M be a projective resolu-
tion of M . Then by Theorem 2.20 of [15], ΩnpMq, the n-the kernel in P˚,
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is Gorenstein projective. So, ΩnpMq admits a complete resolution of coin-
cidence index 0, and M admits a complete resolution of coincidence index
ď n.

Like the spli invariant defined earlier, the Gorenstein cohomological di-
mension of a group is a good indicator of whether the group admits complete
resolutions. Here, it helps if the base ring is of finite global dimension:

Theorem 1.8. (Theorem 1.7 of [13]) For any commutative ring A of finite
global dimension and any group Γ, the following are equivalent.

a) GcdApΓq ă 8, i.e. the trivial module A admits complete resolutions
as an AΓ-module.

b) silppAΓq “ splipAΓq ă 8.
c) GpdAΓpMq ă 8, for all AΓ-modules M , i.e. all AΓ-modules admit

complete resolutions.

Also of use is the fact that one can put an upper bound on the spli and
silp invariants using the Gorenstein cohomological dimension if the base ring
is of finite global dimension:

Lemma 1.9. (Corollary 1.6 of [13]) For any commutative ring A of global
dimension t and any group Γ, silppAΓq, splipAΓq ď GcdApΓq ` t.

Remark 1.10. There are no known examples of group rings where the silp
and spli invariants differ. It was shown in [14] (Result 1.6) that if they are
both finite over a ring then they are equal. Result 2.4 of [14] showed that
if A is a Noetherian commutative ring of global dimension t and Γ is any
group, then silppAΓq ď splipAΓq ` t. It is possible that one might be able
to prove this result without the Noetherian condition. In [12], Emmanouil
showed that, under the same conditions, silppAΓq “ splipAΓq. It follows
from Lemma 2.2 of [21], although they only work over the integers, that
if a group Γ admits weak complete resolutions over A and silppAΓq ă 8,
then Γ also admits complete resolutions. More generally, any weak complete
resolution is a complete resolution, provided that all projective modules have
finite injective dimension.

Very similar in use and purpose to the Gorenstein cohomological dimen-
sion, is the invariant “generalized cohomological dimension” which was in-
troduced by Ikenaga in [16] over the integers.

Definition 1.11. For any commutative ring A and any group Γ, define the
generalized cohomological dimension of Γ with respect to A, denoted cdApΓq,
to be suptn P Zě0 : ExtnAΓpM,F q ‰ 0, for some A-free M and some AΓ-free
F u.

For any group, the Gorenstein cohomological dimension, when finite, coin-
cides with its generalized cohomological dimension over rings of finite global
dimension - this result was proved over the integers in [2] without the finite-
ness condition, and the same proof works for rings of finite global dimension
albeit with the extra finiteness condition. We record this result below.
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Theorem 1.12. (follows from Theorem 2.5 of [2]) Let A be a commutative
ring of finite global dimension. Then, for any group Γ, GcdApΓq “ cdApΓq
if GcdApΓq is finite.

Proof. Let M be an AΓ-module such that GpdAΓpMq ă 8. It there-
fore follows from Theorem 2.20 of [15] that GpdAΓpMq “ supti P Z :
ExtiAΓpM,P q ‰ 0, for some AΓ-projective P u. This gives us the follow-
ing:

a) Noting that GcdApΓq :“ GpdAΓpAq, it follows from Definition 1.11 that
cdApΓq ě GcdApΓq.

b) Note that from Theorem 1.8 and Lemma 3.9.a. (which we prove later),
it follows that GcdApΓq ă 8 implies cdApΓq ă 8. As noted in the second
paragraph of the proof of Theorem 2.5 of [2], it follows from Definition 1.11
and the above characterisation of finite Gorenstein projective dimension that
cdApΓq “ suptGpdAΓpMq : M A-freeu. Proposition 2.4.c of [2] shows that
if a ZΓ-module N is Z-free, then GpdZΓpNq ď GcdZpΓq. The same proof
works when Z is replaced by A, and so we have cdApΓq ď GcdApΓq. �

Remark 1.13. We can use the proof of Theorem 2.5 of [2] to say that
if A is a Noetherian commutative ring of finite global dimension, then
GcdApΓq “ cdApΓq, for any group Γ. The Noetherian assumption becomes
useful in handling the case when GcdApΓq might not be finite. That is
because it follows from Theorem 4.4 of [12] that for any commutative Noe-
therian A of finite global dimension and any group Γ, silppAΓq “ splipAΓq
(the Noetherian assumption is required because, here, one needs to invoke
Result 2.4 of [14] that we mentioned in Remark 1.10), and this result is
crucial to show that GcdApΓq ă 8 iff cdApΓq ă 8, as noted in the first
paragraph of the proof of Theorem 2.5 of [2]. We are able to not have to use
the Noetherian assumption in Theorem 1.12 because we are focusing only
on the case where the Gorenstein cohomological dimension is known to be
finite.

In Section 3, we shall see how in some cases to achieve bounds, it is more
helpful to work with the generalized cohomological dimension instead of the
Gorenstein cohomological dimension.

We now introduce two more interesting cohomological invariants, one of
which, the finitistic dimension, is quite well-studied in representation theory.
As a matter of common notation, throughout this article, for any ring R,
ModpRq will denote the category of all R-modules whose morphisms are all
module homomorphisms between R-modules.

Definition 1.14. Let A be a commutative ring and let Γ be a group.
kpAΓq :“ suptproj. dimAΓM : M PModpAΓq,proj.dimAGM ă 8 for all

finite G ď Γu.
fin.dimpAΓq :“ suptproj.dimAΓM : M P ModpAΓq, proj.dimAΓM ă

8u.
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The two invariants introduced in Definition 1.14 will be playing a major
role in our dealings with type Φ groups in Section 3 and Section 4.

The last invariant we want to introduce in this section is defined as the
projective dimension of a specific module.

Definition 1.15. For any commutative ring A and any group Γ, denote by
BpΓ, Aq the module of those functions Γ Ñ A that are only allowed to take
finitely many values in A. The AΓ-module structure on BpΓ, Aq is given the
following way: for any f P BpΓ, Aq, pγ1 ¨ fqpγq :“ fpγ´1

1 γq, for all γ, γ1 P Γ.
Following [3], we define an AΓ-module M to be a Benson’s cofibrant if

M bA BpΓ, Aq is a projective AΓ-module.

The following is an important set of properties of the module defined
above.

Lemma 1.16. (Lemma 3.4 of [3]) For any group Γ and any commutative
ring A, BpΓ, Aq is A-free and is AG-free, for any finite G ď Γ.

We make the following conjecture and prove it (see Theorem 1.18) under
a finiteness condition.

Conjecture 1.17. For any commutative ring A of finite global dimension
and any group Γ, proj. dimAΓBpΓ, Aq “ GcdApΓq.

Theorem 1.18. Let A be a commutative ring of finite global dimension
and let Γ be a group. Then, Conjecture 1.17 is satisfied for A and Γ if
proj.dimAΓBpΓ, Aq ă 8.

To prove Theorem 1.18, we need the following two lemmas.

Lemma 1.19. If, for some commutative ring A and for some group Γ,
proj.dimAΓBpΓ, Aq is finite, then proj. dimAΓBpΓ, Aq ď cdApΓq.

Proof. We can assume that cdApΓq is finite.
Now, let us assume that proj.dimAΓBpΓ, Aq “ k ą cdApΓq. There ex-

ists an AΓ-module M such that ExtkAΓpBpΓ, Aq,Mq ‰ 0 because other-
wise proj.dimAΓBpΓ, Aq ď k ´ 1. Let F be the AΓ-free module on M .
We have a short exact sequence 0 Ñ ΩpMq Ñ F Ñ M Ñ 0. We now
look at the following long exact Ext-sequence associated to this short ex-
act sequence and get .. Ñ ExtkAΓpBpΓ, Aq,ΩpMqq Ñ ExtkAΓpBpΓ, Aq, F q Ñ

ExtkAΓpBpΓ, Aq,Mq Ñ Extk`1
AΓ pBpΓ, Aq,ΩpMqq Ñ ...Here, ExtkAΓpBpΓ, Aq, F q “

0 because k ą cdApΓq (see Definition 1.11) and BpΓ, Aq is A-free by Lemma

1.16 and F is AΓ-free. Also, we have that Extk`1
AΓ pBpΓ, Aq,ΩpMqq “ 0

since proj.dimAGBpΓ, Aq “ k. So, ExtkAΓpBpΓ, Aq,Mq “ 0 which gives us
a contradiction. �

Before we state our next result regarding comparison of the invariants
that we have introduced, we state the following result which gives a sufficient
condition on a module for it to admit complete resolutions.
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Theorem 1.20. (Theorem 3.5 of [7]) Let A be a commutative ring and Γ a
group. If M bA BpΓ, Aq is projective, then M is Gorenstein projective, i.e.
it admits a complete resolution of coincidence index 0.

Remark 1.21. Note that in [7] when Theorem 1.20 was proved, it was stated
in different language. What we state in Theorem 1.20 is exactly what was
proved in proving Theorem 3.5 in [7].

Lemma 1.22. For any commutative ring A and any group Γ, GcdApΓq ď
proj.dimAΓBpΓ, Aq.

Proof. We can assume that proj. dimAΓBpΓ, Aq is finite because otherwise
we have nothing to prove.

Let M be an AΓ-module satisfying proj. dimAΓM bABpΓ, Aq “ n. Since
BpΓ, Aq isA-free by Lemma 1.16.a, if we take a projective resolution pP˚, d˚q�
M of AΓ-projective modules Pi with the kernels given by Ω˚pMq, we get a
projective resolution pP˚bABpΓ, Aq, d˚bidq�MbABpΓ, Aq where the ker-
nels are given by Ω˚pMqbABpΓ, Aq. So, ΩnpMqbABpΓ, Aq is projective as
an AΓ-module. And, now we can use Theorem 1.20 to deduce that ΩnpMq is
Gorenstein projective; it therefore follows that GpdAΓpMq ď n. If we replace
M by the trivial module A, the hypothesis proj. dimAΓM bA BpΓ, Aq “ n
becomes proj.dimAΓBpΓ, Aq “ n, and we get that n ě GpdAΓpAq “
GcdApΓq. �

We can finish the proof of Theorem 1.18 now.

Proof of Theorem 1.18. Theorem 1.18 now follows from Lemma 1.19,
Lemma 1.22 and Theorem 1.12. �

2. Background on the classes of groups

We first define groups of type Φ as those groups will play a crucial role
in our treatment.

Definition 2.1. (made over Z in [23]) For any commutative ring A, a group
Γ is said to be of type Φ over A if, for any AΓ-module M , the following two
statements are equivalent.

a) proj. dimAΓM ă 8.
b) proj.dimAGM ă 8, for all finite G ď Γ.
We denote the class of all groups of type Φ over A by Fφ,A.

Examples of groups of type Φ over all commutative rings of finite global
dimension are groups of finite virtual cohomological dimension, groups act-
ing on trees with finite stabilisers, etc. (see [20] or [22]).

Another important class of groups comes from Kropholler’s hierarchy:

Definition 2.2. ([18]) Let X be a class of groups. Define a hierarchy of
groups in the following way: H0X :“ X, and for any successor ordinal (like
an integer) α, a group Γ P HαX iff there exists a finite dimensional con-
tractible CW -complex on which Γ acts by permuting the cells with all the
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cell stabilisers in Hα´1X. If α is a limit ordinal, HαX :“
Ť

βăαHβX. A
group is said to be in HX iff it is in HαX for some ordinal α. Also, for any
ordinal α, HăαX :“

Ť

βăαHβX.
The class LX is defined to be the class of all groups Γ such that every

finitely generated subgroup of Γ is in X.
Throughout this article, F denotes the class of all finite groups.

Regarding groups acting on finite dimensional contractible CW -complexes,
the following is a standard trick which will be of use to us later.

Lemma 2.3. Let Γ be a group acting cellularly on a finite dimensional
contractible CW -complex with stabilisers in the class of groups X, and let
R be a commutative ring. Then, any RΓ-module M admits a finite length
resolution with modules from the class tIndΓ

Γ1ResΓ
Γ1M : Γ1 P Xu‘; here the

superscript “‘” means that we are taking the smallest direct-sum closed class
of modules containing the given class.

Proof. Let the dimension of X be n. From the action of Γ on X, we get
the augmented cellular complex 0 Ñ Cn Ñ ... Ñ C0 Ñ Z Ñ 0, where each
Ci is a permutation module that we get from the action of Γ as a group
of permutations of the i-dimensional cells of X. So, Ci can be written as
a direct sum of the trivial module induced up to Γ from subgroups of Γ
that are of the form Γσ, where Γσ denotes the stabiliser of the cell σ, with
σ running over the set of Γ-representatives of the i-dimensional cells; note
that each Γσ P X.

Tensoring the augmented cellular complex by M , for any RΓ-module M ,
we get an exact sequence 0 Ñ CnbZM Ñ ...Ñ C0bZM ÑM Ñ 0, where
each Ci bZ M is a direct sum of modules of the form IndΓ

Γ1ResΓ
Γ1M with

Γ1 P X, and we are done. �

A very useful property admitted by H1F-groups is the admission of com-
plete resolutions over any commutative ring. This result was proved by
Cornick and Kropholler in [7], but we are now in a position to give a much
shorter direct proof of this result. It is noteworthy that the fact that H1F-
groups admit complete resolutions is useful in constructing stable module
categories of modules over those groups and proving important generation
properties of those stable module categories (see Section 6 of [5]).

Proposition 2.4. (different proof in [7]) Let A be a commutative ring.
Then, all H1F-groups admit complete resolutions over A. If additionally, A
has finite global dimension, then we can prove that for any group Γ P H1F,
all AΓ-modules admit complete resolutions.

Proof. Let Γ P H1F. Then, there is an n-dimensional contractible CW -
complex, for some integer n, on which Γ acts with finite stabilisers. The
augmented cellular complex looks like an exact sequence 0 Ñ Cn Ñ .. Ñ
C0 Ñ Z Ñ 0 where each Ci is a direct sum of permutation modules with
finite stabilisers, which are all Gorenstein projective by Lemma 1.3. Each
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Ci is Gorenstein projective, and therefore GcdZpΓq “ GpdZΓpZq ă 8. By
Proposition 2.1 of [13], we have GcdRpΓq ă 8, for all commutative rings
R. So, for our given commutative ring A, it follows by Remark 1.7 that the
trivial AΓ-module A admits complete resolutions and therefore Γ admits
complete resolutions.

Now, if A has finite global dimension, using Theorem 1.8, we can say that
all AΓ-modules admit complete resolutions. �

We can make the following conjecture mixing a part of Conjecture A of
[23] (where the base ring was the ring of integers) and Conjecture 43.1 of [6]
and adding a few extra conditions.

Conjecture 2.5. For any group Γ and any commutative ring A of finite
global dimension, the following are equivalent.

a) Γ is of type Φ over A.
b) silppAΓq ă 8.
c) splipAΓq ă 8.
d) proj. dimAΓBpΓ, Aq ă 8.
e) GcdApΓq ă 8.
f) fin.dimpAΓq ă 8.
g) kpAΓq ă 8.
When A “ Z, we can add the condition
h) Γ P H1F, where F is the class of all finite groups.

In Section 3, we prove that statements paq to pgq are equivalent if Γ P

LHFφ,A.
Since the statement of Conjecture 1.17 deals with two of the invariants

mentioned in Conjecture 2.5, the following connection between them is worth
noting.

Proposition 2.6. Let X be a class of groups such that, for a fixed commuta-
tive A of finite global dimension, paq ô peq in Conjecture 2.5 for all groups
Γ P X. Then, Conjecture 1.17 holds true over A for all groups Γ P X.

Proof. Let Γ P X. We can assume that proj. dimAΓBpΓ, Aq is not finite
because if it is finite we are done due to Theorem 1.18. Now, if GcdApΓq is
finite, then by our hypothesis, Γ is of type Φ over A, and therefore it follows
from Definition 2.1 that proj. dimAΓBpΓ, Aq ă 8 due to Lemma 1.16, and
we have a contradiction. �

We end this section with the following remark on the size of Kropholler’s
hierarchy.

Remark 2.7. It follows from the definition of Kropholler’s hierarchy that
HαX Ď HβX, for any X and for any two ordinals α and β satisfying α ď β.
It is shown in [17] that HαF ‰ Hα`1F for every ordinal α smaller than the
first infinite ordinal, i.e. starting with the class of finite groups, with every
iteration of the operator H, one gets a strictly bigger class than the class
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they started with. All known examples of groups in HnFzHn´1F, for any
integer n ą 1, do not satisfy the conditions paq to pgq of Conjecture 2.5 for
any commutative ring A of finite global dimension (see Remark 4.8).

We have LHF Ď LHFφ,A as all finite groups are of type Φ over A. How-
ever, if paq ùñ phq in Conjecture 2.5 with A “ Z is true, then Fφ,Z “ H1F (it
is known that phq ùñ paq, see Proposition 2.4 of [22]), and LHFφ,Z “ LHF.

3. Main results

Our main result in this section is the following.

Theorem 3.1. Let Γ P LHFφ,A with A being a commutative ring of global
dimension t. Then,

proj. dimAΓBpΓ, Aq “ GcdApΓq

and, denoting the above common value by Θ, we have

Θ ď fin.dimpAΓq “ silppAΓq “ splipAΓq “ kpAΓq ď Θ` t.

To prove the first equality in Theorem 3.1, we need to first state a conjec-
ture involving the class of Benson’s cofibrants and Gorenstein projectives.

Conjecture 3.2. (see [4] or [10]) For any commutative ring A of finite
global dimension and any group Γ, the class of Benson’s cofibrant AΓ-modules
(see Definition 1.15) and the class of Gorenstein projective AΓ-modules co-
incide.

The following connection can be proved between Conjecture 3.2 and Con-
jecture 1.17.

Proposition 3.3. Let Γ be a group and let A be a commutative ring of finite
global dimension. If the class of Benson’s cofibrant AΓ-modules coincides
with the class of Gorenstein projective AΓ-modules, then proj.dimAΓBpΓ, Aq “
GcdApΓq.

Proof. In light of Theorem 1.18, we can assume that proj. dimAΓBpΓ, Aq
is not finite. Now, let us assume that GcdApΓq “ n ă 8. Then, ΩnpAq is
Gorenstein projective, and therefore from our hypothesis, ΩnpAqbABpΓ, Aq
is projective as an AΓ-module, and since BpΓ, Aq is A-free by Lemma 1.16,
we get that ΩnpAbABpΓ, Aqq “ ΩnpBpΓ, Aqq is projective as an AΓ-module.
Therefore, proj. dimAΓBpΓ, Aq is finite, and we have a contradiction. �

The following result is important because its first part will be useful to
deduce that, over any commutative ring A of finite global dimension, Conjec-
ture 1.17 is satisfied for all Γ P LHFφ,A. All the material between Theorem
3.4 and the end of its proof is from [4] which, in turn, is derived from the
treatment in [10].
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Theorem 3.4. Let Γ P LHFφ,A where A is a commutative ring of finite
global dimension. Then,

a) The class of Benson’s cofibrant AΓ-modules and Gorenstein projective
AΓ-modules coincide.

b) M admits a weak complete resolution iff it admits a complete resolution,
for any M PModpAΓq.

To prove Theorem 3.4, we need a few technical results:

Lemma 3.5. (standard knowledge, see Lemma 2.1.c. of [10]) Let R be a
ring and let pFi, diqiPZ be an infinite exact complex of R-projective modules
with a finite bound on the projective dimensions of the kernels as R-modules.
Then, each kernel is R-projective.

Proof. Let m be the bound on the projective dimensions of the kernels, and
let us denote the kernels as Ki “ Kerpdiq, for all i P Z. Let Kt :“ Kerpdtq
be of projective dimension n ą 0. Then, from the short exact sequence
0 Ñ Kt ãÑ Ft � Kt´1 Ñ 0, it follows that proj. dimRKt´1 “ n ` 1.
Going on like this, we get that proj. dimRKt´m “ n`m ą m, which is not
possible. �

Lemma 3.6. Let A be a commutative ring of finite global dimension t and
let Γ be a group, and let WGProjpAΓq denote the class of all weak Goren-
stein projective AΓ-modules. If proj. dimAΓM bA BpΓ, Aq ă 8 for all M P

WGProjpAΓq, then M bABpΓ, Aq is projective for all M PWGProjpAΓq.

Proof. Now, let M PWGProjpAΓq such that proj. dimAΓMbABpΓ, Aq “
n ą 0. There exists a weak complete resolution with AΓ-projectives, which
we shall denote by pFi, diqiPZ, where M is a kernel. Since BpΓ, Aq is A-free,
M bA BpΓ, Aq too occurs as a kernel in a weak complete resolution by AΓ-
projectives, pFibABpΓ, Aq, dibA idqiPZ. Let M “ Kerpdpq. It follows from
the proof of Lemma 3.5 that proj. dimAΓKerpdp´kqbABpΓ, Aq “ n`k, for
all k ą 0. Now, K :“

À

mďpKerpdmq P WGProjpAΓq as WGProjpAΓq is

closed under arbitrary direct sums (this is obvious from Definition 1.2). But,
for any k ą 0, we have proj. dimAΓKbABpΓ, Aq ě proj. dimAΓKerpdp´kqb
BpΓ, Aq “ n` k, and we have a contradiction. �

Proof of Theorem 3.4. a) We start with the observation that if M is a
(weak) Gorenstein projective AΓ-module, then it is A-projective. This is
easy to see for the following reason. We know that M occurs as a kernel
in a doubly infinite acyclic complex of projectives, say pFi, diqiPZ. If M “

Kerpdnq, then M can be written as a t-th syzygy of Kerpdn´tq, where t is
the global dimension of A, and therefore M has to be A-projective.

Now fix a weak Gorenstein projective AΓ-module M . Note that we have
proj. dimAΓ1 BpΓ, Aq ă 8 for all Fφ,A-subgroups Γ1 of Γ by Lemma 1.16 and
Definition 2.1. Therefore, proj. dimAΓ1 N bA BpΓ, Aq ă 8, for any weak
Gorenstein projective N . So, M bA BpΓ, Aq is projective over all Fφ,A-
subgroups of Γ by Lemma 3.6.
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Now, we make the induction hypothesis that for all ordinals β ă α,
M bA BpΓ, Aq is projective over HβFφ,A-subgroups of Γ. The base for
β “ 0 has already been checked above. Let Γ1 be an HαFφ,A-subgroup
of Γ. Then, by Lemma 2.3, M bA BpΓ, Aq, as an AΓ1-module, admits a
finite-length resolution with modules that are direct sums of modules of the
form IndΓ1

Γ2ResΓ1

Γ2MbABpΓ, Aq with Γ2 P HăαFφ,A, and since by our induc-

tion hypothesis, ResΓ1

Γ2MbABpΓ, Aq is AΓ2-projective for any Γ2 P HăαFφ,A
(note that an HăαFφ,A-subgroup of Γ1 is also an HăαFφ,A-subgroup of Γ),
we have proj. dimAΓ1 M bABpΓ, Aq ă 8. Since the above conclusion is true
for any weak Gorenstein projective M , by Lemma 3.5, M bA BpΓ, Aq is
AΓ1-projective. Thus, we have proved that M bABpΓ, Aq is projective over
all HFφ,A-subgroups of Γ.

Since Γ P LHFφ,A, we can assume that it is uncountable because if it is
countable, then Γ P HFφ,A (this follows from Lemma 2.5 of [17]), and we
are done by the previous paragraph. We now make the induction hypothesis
that over all subgroups Γ1 of Γ that have cardinality strictly smaller than
that of Γ, M bA BpΓ, Aq is projective. As Γ is uncountable, it can be
expressed as an ascending union of subgroups

Ť

λăδ Γλ, for some ordinal
δ, where each Γλ has cardinality strictly smaller than that of Γ. By our
induction hypothesis, M bA BpΓ, Aq is projective over each Γλ, and so by
Lemma 5.6 of [3], proj.dimAΓM bA BpΓ, Aq ď 1, and since this is true
for all M P WGProjpAΓq (here again, WGProjpAΓq denotes the class of
all weak Gorenstein projective AΓ-modules), we have by Lemma 3.6 that
M bA BpΓ, Aq is AΓ-projective.

We have thus showed that weak Gorenstein projective AΓ-modules are
Benson’s cofibrants. Theorem 1.20 tells us that Benson’s cofibrants are
Gorenstein projectives. So, we have a coincidence between weak Gorenstein
projectives, Gorenstein projectives and Benson’s cofibrants.

b) Part pbq follows directly from the coincidence between weak Gorenstein
projectives and Benson’s cofibrants, as noted in the proof of Corollary D
in [10] over the integers and exactly the same proof works over A in our
case. �

Remark 3.7. A relevant observation to make for the proof of Theorem 3.4,
that we have provided above, is that we have a coincidence between weak
Gorenstein projectives and Gorenstein projectives with Benson’s cofibrants
playing an auxiliary role.

However, we do mention Benson’s cofibrants in the statement of Conjec-
ture 3.2 because (a) in that exact form, the conjecture has been studied in
the literature in the past [10], and (b) having “Benson’s cofibrants” in the
statement of Conjecture 3.2 helps us show, in Proposition 3.3, how Conjec-
ture 1.17 and Conjecture 3.2 can be related.

Now, we are in a position to prove the following result. Note that a proof
of the same was claimed for HF-groups in the proof of Theorem C of [8]
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but the authors of that paper overlooked a condition on the base ring that
was present in the hypothesis of a key theorem that they were citing. We
expand on this more towards the end of this section in Remark 3.12.

Lemma 3.8. Let Γ P LHFφ,A where A is a commutative ring of finite global
dimension. Then, silppAΓq ď splipAΓq.

Proof. Assume splipAΓq ă 8 because otherwise we have nothing to prove.
splipAΓq ă 8 implies that all AΓ-modules admit weak complete resolutions
by Theorem 1.4. By Theorem 3.4.b., since Γ P LHFφ,A, it now follows that
every AΓ-module admits complete resolutions. It now follows directly from
the pbq-pcq equivalence in Theorem 1.8 that silppAΓq “ splipAΓq ă 8. �

We now prove the following three inequalities involving five different in-
variants that are known in the literature.

Lemma 3.9. ([21], [8]) Let A be a commutative ring and let Γ be a group.
Then,

a) cdApΓq ď silppAΓq.
b) fin.dimpAΓq ď silppAΓq.
If, in addition, A is of finite global dimension, then
c) splipAΓq ď kpAΓq.

Proof. a) This has been noted in [21]. It is obvious from the definitions - it
follows from the definition of silppAΓq that it is suptn P N : ExtnAΓpX,P q ‰ 0
for some AΓ-module X and some AΓ-projective P u, and cdApΓq :“ suptn P
Zě0 : ExtnAΓpM,F q ‰ 0 for some A-free M and some AΓ-free F u. Since,
free modules are projective, the inequality follows.

b) This again follows from definitions and has been noted in the proof of
Theorem C of [8]. We can assume that silppAΓq “ r ă 8 because otherwise
we have nothing to prove. From the definition of injective dimension, it
follows that r “ suptn P Z : ExtnAΓpM,P q ‰ 0 for some AΓ-module M and
some AΓ-projective P u.

Take an AΓ-module T of finite projective dimension, say k. There exists
an AΓ-module X such that ExtkAΓpT,Xq ‰ 0 because otherwise we will have
that proj.dimAΓ T ď k´ 1. Take F to be the AΓ-free module on X and we
get a short exact sequence 0 Ñ ΩpXq Ñ F Ñ X Ñ 0, that gives us a long ex-
act Ext-sequence .. Ñ ExtkAΓpT,ΩpXqq Ñ ExtkAΓpT, F q Ñ ExtkAΓpT,Xq Ñ

Extk`1
AΓ pT,ΩpXqq Ñ ... Here, Extk`1

AΓ pT,ΩpXqq “ 0 as proj. dimAΓ T “ k, so

if ExtkAΓpT, F q “ 0, we get an embedding ExtkAΓpT,Xq ãÑ Extk`1
AΓ pT,ΩpXqq “

0 implying ExtkAΓpT,Xq “ 0, which is not possible. So, ExtkAΓpT, F q ‰ 0,
and since F is AΓ-projective as it is free, we get from the definition of
silppAΓq that k ď r “ silppAΓq. Thus, fin.dimpAΓq ď silppAΓq.

c) This, again, has been covered in the proof of Theorem C of [8]. We can
assume that kpAΓq “ n ă 8. If I is an injective AΓ-module, then for any
finite G ď Γ, I is an injective AG-module with finite projective dimension
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as an AG-module since A has finite global dimension. So, by definition of
kpAΓq, proj.dimAΓ I ď n, and therefore, splipAΓq ď n. �

Before proving our last major inequality involving the invariants, we
record the following result which is now considered standard knowledge.

Lemma 3.10. (done over Z in Lemma 3.3.ii of [23], same proof works here)
For any group Γ and any commutative ring A of finite global dimension,
fin.dimpAΓ1q ď fin.dimpAΓq, for all subgroups Γ1 ď Γ.

Note that in the proof of Theorem C of [8], the following result has been
proved by Cornick and Kropholler for Γ P HF. The first part of our proof of
Lemma 3.11 is very similar to their treatment which again revolves around
the standard trick highlighted in Lemma 2.3.

Lemma 3.11. Let Γ P LHFφ,A where A is a commutative ring of finite
global dimension. Then, kpAΓq ď fin. dimpAΓq.

Proof. Assume that fin. dimpAΓq “ r ă 8.
Fix an AΓ-module M that has finite projective dimension over all finite

subgroups of Γ.
We first want to prove that M has finite projective dimension over all

HFφ,A-subgroups of Γ. Let Γ1 be an HFφ,A-subgroup of Γ, and say, α is the
smallest ordinal such that Γ1 P HαFφ,A.

We make the following induction hypothesis - for all ordinals β ă α, M
has finite projective dimension over all HβFφ,A-subgroups of Γ. For the base
case β “ 0, note that as M has finite projective dimension over all finite sub-
groups of Γ, it also has finite projective dimension over all finite subgroups
of any Fφ,A-subgroup of Γ, and thus it follows directly from Definition 2.1
that M has finite projective dimension over all Fφ,A-subgroups. Now, since
there is a finite dimensional contractible CW -complex on which Γ1 acts cel-
lularly with stabilisers in HăαFφ,A, using Lemma 2.3, we get that, M , as an
AΓ1-module, admits a finite length resolution with modules that are direct
sums of modules of the form IndΓ1

Γ2ResΓ1

Γ2M with Γ2 P HăαFφ,A. For any

Γ2 P HăαFφ,A, ResΓ1

Γ2M has finite projective dimension by our induction hy-
pothesis (note that an HăαFφ,A-subgroup of Γ1 is also an HăαFφ,A-subgroup
of Γ) and this projective dimension is at most r by Lemma 3.10. Thus, it
follows that M has finite projective dimension over Γ1, and again this pro-
jective dimension can be at most r by Lemma 3.10.

Like in the proof of Theorem 3.4, we can assume now that Γ is uncount-
able, because if it is countable, it will be in HFφ,A (as noted in the proof
of Theorem 3.4.a., this follows from Lemma 2.5 of [17]), and we are done.
Again, as in the proof of Theorem 3.4.a., we make the induction hypothesis
that over all subgroups Γ1 ă Γ of cardinality strictly smaller than that of Γ,
M has finite projective dimension. As Γ is uncountable, it can be expressed
as an ascending union of subgroups

Ť

λăδ Γλ, for some ordinal δ, where each
Γλ has cardinality strictly smaller than that of Γ. Take an r-th syzygy
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of M over AΓ, ΩrpMq. By our induction hypothesis and Lemma 3.10, M
has projective dimension at most r over each Γλ, and therefore ΩrpMq is
projective over each Γλ. Now, again by Lemma 5.6 of [3], it follows that
proj.dimAΓ ΩrpMq ď 1. It now follows from the definition of fin. dimpAΓq
that proj. dimAΓM ď r. �

We can finish the proof of Theorem 3.1 now.

Proof of Theorem 3.1. The first equality in the statement of Theorem
3.1 follows from Theorem 3.4.a and Proposition 3.3. Putting together the
results of Lemma 3.8, Lemma 3.9.b., Lemma 3.9.c. and Lemma 3.11, we get
that fin.dimpAΓq “ silppAΓq “ splipAΓq “ kpAΓq.

To prove the inequality in the statement of Theorem 3.1, we look at two
possibilities that can arise based on the finiteness of silppAΓq. If silppAΓq is
not finite, then GcdApΓq is not finite by Lemma 1.9, and therefore we can
say that proj.dimAΓBpΓ, Aq is not finite by Lemma 1.22, and we are done.
If silppAΓq is finite, then since we already have splipAΓq “ silppAΓq ă 8,
Theorem 1.8 gives us GcdApΓq ă 8, and the first equality of Theorem 3.1
gives us proj.dimAΓBpΓ, Aq “ GcdApΓq ă 8. Now, by Theorem 1.12,
we get cdApΓq “ proj. dimAΓBpΓ, Aq “ GcdApΓq ă 8, and the inequality
follows using Lemma 1.9 and Lemma 3.9.a. �

Remark 3.12. In [8], Theorem C states that for Γ P HF and for any commu-
tative ring A of finite global dimension, fin.dimpAΓq “ silppAΓq “ splipΓq “
kpAΓq. The authors proved, without using the assumption G P HF, that
fin.dimpAΓq ď silppAΓq, silppAΓq ď splipAΓq and splipAΓq ď kpAΓq. The
proofs of these results except silppAΓq ď splipAΓq that we provided while
proving Lemma 3.9 were achieved using their tactics, as we have noted be-
fore. However, their proof of silppAΓq ď splipAΓq had a logical fallacy - they
used Result 2.4 of [14] to say that silppAΓq must be finite if splipAΓq is finite,
but that result of [14] requires A to be Noetherian, as noted in Remark 1.10.
We resolved this problem with Lemma 3.8 and we broadened the class of
groups for which those invariants would concur, going from groups in the
hierarchy to groups locally in the hierarchy and changing the base class of
groups from the class of finite groups to groups of type Φ over A.

4. Results on Conjecture 2.5 and other applications

We first note the following complete characterisation of groups of type Φ
in terms of the finiteness of one cohomological invariant.

Lemma 4.1. Let A be a commutative ring of finite global dimension. Then,
Γ is of type Φ over A iff kpAΓq ă 8.

Proof. It is obvious from the definition of kpAΓq and type Φ groups that
if kpAΓq “ n ă 8, then for any AΓ-module M that has finite projective
dimension over finite subgroups, proj.dimAΓM ď n, so Γ is of type Φ over
A.
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Now, assume that Γ is of type Φ over A. Then, by definition of type
Φ groups, kpAΓq “ fin.dimpAΓq as the class of AΓ-modules with finite
projective dimension is precisely the class of AΓ-modules with finite pro-
jective dimension over finite subgroups. If we assume that fin. dimpAΓq is
not finite, then for any integer n, we have an AΓ-module Mn such that
n ď proj.dimAΓMn ă 8. Over finite subgroups, Mn has finite projective
dimension bounded by the global dimension of A. Therefore,

À

nPNMn does
not have finite projective dimension as an AΓ-module but has finite projec-
tive dimension over finite subgroups which cannot be possible as Γ is of type
Φ over A. �

Proposition 4.2. Let Γ P LHFφ,A where A is a commutative ring of finite
global dimension. Then, statements paq to pgq are equivalent in Conjecture
2.5.

Proof. Using Lemma 4.1, we see that in Conjecture 2.5, paq and pgq are
always equivalent. Now, it follows from Theorem 3.1 that as Γ P LHFφ,A,
statements pbq to pgq are equivalent. �

Corollary 4.3. For any commutative ring A of finite global dimension,
LHFXFφ,A is closed under extensions and taking Weyl groups with respect
to finite subgroups.

Proof. Let 1 Ñ Γ1 Ñ Γ Ñ Γ2 Ñ 1 be a short exact sequence of groups
where each Γi is of type Φ over A and in LHF. Noting that LHF Ď

LHFφ,A, using Proposition 4.2 we get that GcdApΓiq ă 8, which implies
that GcdApΓq ă 8 by Proposition 2.9 of [13]. LHF is extension-closed
(Result 2.4 of [18]), so Γ P LHF and since GcdApΓq ă 8, we can use
Proposition 4.2 to say that Γ is of type Φ over A.

For any finite subgroup G ď Γ, the Weyl group with respect to G
is defined as WΓpGq :“ NΓpGq{G. Proposition 2.5 of [13] gives us that
GcdApWΓpGqq ď GcdApΓq. And LHF is Weyl group closed (this follows
from the fact that HF is Weyl group closed- see Proposition 7.1 of [19]). So,
if an LHF-group is of type Φ over A, from Proposition 4.2, GcdApΓq ă 8,
and WΓpGq, for any finite G ď Γ, which is also in LHF has finite Gorenstein
cohomological dimension over A and, by Proposition 4.2 again, is of type Φ
over A. �

Remark 4.4. We are not in a position to replace LHF by LHFφ,A in the
statement of Corollary 4.3 because we do not know whether LHFφ,A is
closed under extensions or under taking Weyl subgroups, which we do know
for LHF.

Over the ring of integers, Talelli proved in [23], that paq ñ pcq ñ pbq ñ
pfq in Conjecture 2.5. Now, when Γ P H1F, which is Statement phq in
Conjecture 2.5, it is easy to show that Γ is of type Φ over A for any A of
finite global dimension - see Proposition 2.4 of [22], and therefore phq implies
paq to pgq in Conjecture 2.5 since H1F Ď HF Ď HFφ,A Ď LHFφ,A. Whether
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any of the statements paq to pgq in Conjecture 2.5 implies Γ P H1F when
A “ Z is an open question.

Note that, in [17], it was shown that for any integer n, there are groups
in Hn`1F that are not in HnF. Can we make a similar claim with Fφ,A
replacing F? The answer is yes and the following result from [17] is the
reason why.

Theorem 4.5. (Theorem 4.1 of [17]) Let X be a subgroup-closed class of
groups containing the class of all finite groups such that there is a countable
group in H1XzX. Then, HαX ‰ HβX, for any two distinct countable ordinals
α and β.

With the aid of the following lemma, we can use Theorem 4.5 to obtain
that HαFφ,A ‰ HβFφ,A, for any two distinct countable ordinals, where A is
a commutative ring of finite global dimension.

Lemma 4.6. For any commutative ring A of finite global dimension, a free
abelian group is of type Φ over A iff it is of finite rank.

Proof. Let Γ be a free abelian group that is of type Φ over A. Then, since
BpΓ, Aq restricts to a free module over finite subgroups of Γ by Lemma
1.16, proj. dimAΓBpΓ, Aq ă 8, and so by Theorem 1.18, GcdApΓq ă 8,
i.e. Γ admits complete resolutions (see Theorem 1.8). It has been shown in
Corollary 2.10 of [21] that free abelian groups of infinite rank cannot admit
complete resolutions over Z, and the exact same proof works for rings of
finite global dimension.

Now, let Γ be the free abelian group of rank n, then it has finite co-
homological dimension over A, and the group algebra AΓ has finite global
dimension. It is therefore obvious that Γ is of type Φ over A. �

Using the above two results, we can prove the following distinction of
classes in Kropholler’s hierarchy with the class of type Φ groups being the
base class.

Proposition 4.7. Let A be a commutative ring of finite global dimension.
Then, HαFφ,A ‰ HβFφ,A, for any two distinct countable ordinals α and β.

Proof. Theorem 7.10 of [11] tells us that Aℵ0 , the free abelian group of rank
ℵ0, is in H2F and as H1F-groups are of type Φ over A (as noted before, this
follows from Proposition 2.4 of [22]), we have that Aℵ0 is in H1Fφ,A but
it is not in Fφ,A by Lemma 4.6. Note that Fφ,A is subgroup-closed (this
was proved over A “ Z in Proposition 2.3.i of [23], same proof works here).
Thus, Fφ,A satisfies the hypothesis of Theorem 4.5, and we are done. �

Taking the base class to be H1F instead of F is helpful while considering
the question as to whether the groups in Hn`1FzHnF as constructed in [17]
can admit complete resolutions, as we explain in the following remark.
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Remark 4.8. A crucial result from [17] that we need here is Proposition
3.7 of [17] which shows that, for any class of groups X containing all finite
groups, if we take any countable H P HX, then for any integer n, one can
choose a group Qn P HX such that Qn contains a subgroup isomorphic to
H and any contractible CW -complex of dimension ď n on which Qn acts
cellularly has a global fixed point. Following the treatment in the proof of
Theorem 4.1 of [17](we have quoted this result before - see Theorem 4.5 of
this article), we get that if H is a countable group in H1XzX, where X in
addition to containing all finite groups is also subgroup closed, then ˚nQn,
the free product of the Qn’s over all n P N, with each Qn as guaranteed
by Proposition 3.7 of [17] (note that we can choose each Qn to be in HX),
is in H2XzH1X. Taking X “ H1F, which contains all finite groups and is
subgroup closed as F is subgroup closed, and H to be the free abelian group
of rank ℵ0 (this group is in H2FzH1F, by Theorem 7.10 of [11]), we get, in
the notations introduced above, that ˚nQn P H3FzH2F.

Now let A be a commutative ring of finite global dimension. If ˚nQn
admits complete resolutions over A, then so does Qn, which is not possible
as Qn has a subgroup isomorphic to the free abelian group of rank ℵ0 which
does not admit complete resolutions over A. From the same treatment, it
follows that if we assume, as an induction hypothesis, that for all n ď k,
there is a countable group in Hk`1FzHkF that does not admit complete
resolutions over A, and if we then are to construct a group in Hk`2FzHk`1F

using the method mentioned above (which is the method used in [17]), then
that group cannot have complete resolutions over A either, and consequently
cannot satisfy any of the paq ´ pgq conditions in Conjecture 2.5 in light of
Theorem 1.8 and Proposition 4.2. It is noteworthy that there are no known
examples of groups in H2FzH1F that admit complete resolutions over Z.

Remark 4.9. Continuing with the theme of replacing F with Fφ,A, with
A a fixed commutative ring of finite global dimension, it is worth noting
that Proposition 2.4 need not be true with H1Fφ,A-groups because the free
abelian group of rank ℵ0 is in H1Fφ,A as noted in the proof of Proposition
4.7 above and by Lemma 4.6, it cannot admit complete resolutions over A.
Note that this also tells us that the statement of Lemma 1.3 need not be
true if we replaced “finite stabilisers” by “type Φ stabilisers”.

One can actually show that H1Fφ,A ‰ H2Fφ,A without making any use
of Theorem 4.5. We get from Theorem 7.10 of [11] that the free abelian
group of rank ℵω0 , where ω0 is the first infinite ordinal, is in H3F but not in
H2F - this straightaway implies that it is in H2Fφ,A as H1F Ď Fφ,A and it
is also easy to see that it cannot be in H1Fφ,A because if it were in H1Fφ,A,
then, since all of its Fφ,A-subgroups are free abelian groups of finite rank by
Lemma 4.6 and since all such subgroups are in H1F (by Theorem 7.10 of
[11] again), it would be in H2F.

We now make a small detour in this section and show in Proposition 4.13
that without using Lemma 3.11 and by making a few changes to a result
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of Benson, we can prove that paq ô pbq ô pcq ô pdq ô peq ô pgq in
Conjecture 2.5 with the same extra assumption as before that Γ P LHFφ,A
and an extra mild condition on the base ring.

We first state the following result by Benson.

Theorem 4.10. (Theorem 5.7 of [3]) Let Γ P LHF and let R be a com-
mutative ring. Take M to be an RG-module such that over finite subgroups
M has projective dimension at most r and proj. dimRΓM bR BpΓ, Rq ď r.
Then, proj. dimRGM ď r.

Theorem 4.11 below is our variation on Theorem 4.10. It is noteworthy
that Theorem 4.11 follows immediately from Theorem 3.1 since the assump-
tion that proj.dimAΓBpΓ, Aq ă 8 implies that GcdApΓq ă 8, which in turn
implies that kpAΓq ă 8, for Γ P LHFφ,A. Still, we record Theorem 4.11
separately because the way we align our assumptions with the assumptions
of Theorem 4.10 gives us a way of arriving at Lemma 1.9 in a way entirely
independent from the approach in [13] (see Remark 4.12).

Theorem 4.11. Let Γ P LHFφ,A where A is a commutative ring of finite
global dimension. Then, Γ is of type Φ over A if proj.dimAΓBpΓ, Aq ă 8.

Proof. Let proj.dimAΓBpΓ, Aq “ m ă 8, let t be the global dimension of
A and let M be an AΓ-module with finite projective dimension over finite
subgroups of Γ.

First note that if Γ P LHF, Theorem 4.11 follows directly from Theorem
4.10. We explain why. Then, proj. dimAGM ď t, for all finite G ď Γ. Since,
ΩtpMq is A-projective, we have proj.dimAΓ ΩtpMq bA BpΓ, Aq ď m, and
since BpΓ, Aq is A-free by Lemma 1.16, this gives us proj. dimAΓ ΩtpM bA
BpΓ, Aqq ď m, and therefore proj. dimAΓM bA BpΓ, Aq ď m ` t. So, if we
take r “ m` t in the hypothesis of Theorem 4.10, we are done.

In [3], Theorem 4.10 is proved by first proving it for HF-groups (in our
language, this means showing that proj.dimAΓM ă 8 if Γ P HF), and
then proving it for LHF-groups that are not necessarily in HF, this second
part can be replicated with Fφ,A replacing F. Proving Theorem 4.10 for
HF-groups is done by induction on α where Γ P HαF. Here again, the
inductive step can be replicated with Fφ,A replacing F (both the steps -
the inductive step and the going into LHFφ,A from HFφ,A is similar to the
technique shown in the proof of Lemma 3.11; it is the standard technique
for such situations). For the base case α “ 0, note that since M has finite
projective dimension over finite subgroups, it has finite projective dimension
over Fφ,A-subgroups as well. �

Remark 4.12. The first paragraph in the proof of Theorem 4.11 gives us
that if Γ P LHFφ,A with A of finite global dimension t, then kpAΓq ď
proj. dimAΓBpΓ, Aq ` t. Using Lemma 3.8, Lemma 3.9.c., and Proposition
3.3 along with Theorem 3.4 (we are referring to these results separately
instead of just referring to Theorem 3.1 because we want to show that
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we are not using Lemma 1.9 here), this gives us that for Γ P LHFφ,A,
silppAΓq, splipAΓq ď GcdApΓq ` t. We say this “almost” completely gives a
new proof of Lemma 1.9 because we believe GcdApΓq ă 8 iff Γ P Fφ,A (see
paq and peq in Conjecture 2.5).

We can now prove the following promised result on Conjecture 2.5. Before
that, we note that a commutative ring is called ℵ0-Noetherian (see Section
3 of [12] for this terminology) iff all of its ideals are countably generated (as
opposed to finitely generated). A polynomial ring in infinite but countably
many variables over a countable field is an example of an ℵ0-Noetherian ring
that is not Noetherian.

Proposition 4.13. Let Γ P LHFφ,A where A is a commutative ℵ0-Noetherian
ring with finite global dimension. Then, without using Lemma 3.11, one can
show that paq ô pbq ô pcq ô pdq ô peq ô pgq in Conjecture 2.5.

Proof. We have pgq ñ pcq by Lemma 3.9.c., pcq ñ pbq by Lemma 3.8, pbq ñ
peq by Proposition 4.3 of [12] which gives us that splipAΓq ď silppAΓq with
A commutative ℵ0-Noetherian (this is the only instance where we are using
the fact that A is ℵ0-Noetherian) and Theorem 1.8, peq ñ pdq by Theorem
3.4.a. and Proposition 3.3, pdq ñ paq by Theorem 4.11, and paq ô pgq by
Lemma 4.1. �

Remark 4.14. In the proof of Proposition 4.13 above, to show that splipAΓq ď
silppAΓq, we are making no use of the fact that Γ P LHFφ,A, instead we are
putting an extra condition on A. It is an open question as to whether we
can get rid of the ℵ0-Noetherian condition on A and just use a property of
Γ to get the same result.

Also, it is noteworthy that although it should follow from Theorem 4.4
of [12] that silppAΓq “ splipAΓq for any group Γ and any commutative ℵ0-
Noetherian ring A of finite global dimension, the logic leading up to this
result in [12] is not quite correct. That is because, in [12], it is first noted
correctly in Proposition 4.3 of [12], that splipAΓq ď silppAΓq for any group Γ
and any commutative ℵ0-Noetherian ring A, and then [12] says that Result
2.4 of [14] (= Remark 1.10 in this article) implies that the converse inequality
holds with the extra condition that A has finite self-injective dimension. This
is not correct as, in Result 2.4 of [14], A needs to be Noetherian.

We end this section and the article with the remark on a conjecture by
Dembegioti and Talelli.

Remark 4.15. It has been conjectured in [9] that for any group Γ, splipZΓq “
cdZpΓq ` 1. First, note that by Remark 1.13 (or just directly by Theorem
2.5 of [2]), cdZpΓq “ GcdZpΓq. Now let Γ P LHFφ,Z. Taking A “ Z
in Theorem 3.1, it follows that splipZΓq and cdZpΓq are finite only when
proj.dimZΓBpΓ,Zq is finite, and when that is the case, Theorem 3.1 tells us
that the conjecture looks like fin. dimpZΓq “ proj.dimZΓBpΓ,Zq`1. Again,
courtesy of Theorem 3.1, noting the fact the global dimension of Z is 1, we
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see that the Dembegioti-Talelli conjecture will be settled for Γ if we can prove
that fin.dimpZΓq ‰ proj. dimZΓBpΓ,Zq, i.e. we need to find a ZΓ-module
whose projective dimension is strictly bigger than that of BpΓ,Zq but finite.
First, note that we can assume that proj. dimZΓBpΓ,Zq ą 1 - this is because
in Corollary 4.7 of [12], Emmanouil settled the conjecture for the cases where
the generalized cohomological dimension is bounded by 1, and as we have
seen, proj.dimZΓBpΓ,Zq ă 8 implies proj.dimZΓBpΓ,Zq “ GcdZpΓq “
cdZpΓq by Theorem 1.12 and Theorem 1.18. A candidate for a ZΓ-module
with finite but bigger projective dimension than that of BpΓ,Zq can be
BpΓ,Z{pZq for any prime p because we have a short exact sequence 0 Ñ

BpΓ,Zq p
Ñ BpΓ,Zq Ñ BpΓ,Z{pZq Ñ 0 where the first map is multiplication

by p.
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