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On complex surfaces with de�nite
intersection form

Chris Peters

Abstract. A compact complex surface with positive de�nite intersection
lattice is either the projective plane or a fake projective plane. If the inter-
section lattice is trivial or negative de�nite, the surface is either a secondary
Kodaira surface, an elliptic surface with b1 = 1, or a class VII surface. If the
lattice is non-trivial, it is odd and diagonalizable over the integers. There are
no other cases of surfaces where the intersection lattice is de�nite.
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1. Introduction
The intersection form of a compact connected orientable 4n-dimensional

manifold is bilinear, symmetric and, by Poincaré duality, unimodular. As is
well known (cf. [Mil58, MH73]), if such a form is inde�nite, its isometry class
is uniquely determined by the signature and parity of the form. Recall that a
form b has even parity if b(x, x) is even for all elements x of the lattice and it
has odd parity otherwise. Odd inde�nite unimodular forms are diagonalizable
over the integers, but unimodular even forms are evidently not diagonalizable.
The reader may consult [Mil58, MH73] for more precise information.

In the de�nite situation, the situation is dramatically di�erent: the num-
ber of isometry classes goes up drastically with the rank. See e.g. [Ser73, Ch.
V.2.3]. So one might ask whether all de�nite forms occur as intersection forms.
This is indeed the case for topological manifolds in view of the celebrated result
[Fre82] by M. Freedman implying that every form can be realized as the inter-
section form of a simply connected compact oriented 4-manifold. Moreover,
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its oriented homeomorphism type is uniquely determined by the intersection
form.

For di�erentiable 4-manifolds, Donaldson [Don83] proved that in the simply
connected situation a de�nite form is diagonalizable. A little later, in [Don87],
he proved this also for the non-simply connected case. Such di�erentiable 4-
manifolds are easily constructed: take a connected sum of projective planes or
projective planes with opposite orientation. In fact, almost all of these cannot
have a complex structure. Indeed, e.g. [BHPvdV04, V. Thm. 1.1] implies that
the only possible simply connected complex surface with a de�nite intersection
form is the projective plane. Indeed, such a surface has b1 = 0 and hence
is Kähler (cf. Proposition 2.1), so that de�niteness forces b2 = 1 so that the
intersection form is positive de�nite (implying that the hypotheses of loc. cit.
are veri�ed).

The main results of this note deal with complex surfaces having de�nite in-
tersection forms. The convention here is that a zero form (for surfaces with
b2 = 0) is not called "de�nite”. However, since these do occur, explicit atten-
tion is given to this case, especially since their blow-ups have negative de�nite
intersection form (cf. Lemma 3.1).

It turns out that the basic dichotomy is between even and odd b1. For com-
plex geometers, this is the dichotomy between Kähler and non-Kähler surfaces
(see Proposition 2.1). The result in the Kähler case reads as follows:

Theorem 1.1. Let X be a compact Kähler surface with a de�nite intersection
form, then X is either the projective plane or a fake projective plane, that is a sur-
face of general type with the same Betti numbers as ℙ2. In these cases the inter-
section form is isometric to the (trivial) odd positive rank 1 form (x, y) ↦ xy.

This result is probably known to experts, but I am not aware of any proof in
the literature. The proof ultimately rests on S. T. Yau’s groundbreaking work
[Yau77] which, for surfaces, gives a characterization of the fake planes as quo-
tients of the complex 2-ball and so these have large fundamental groups. The
�rst fake plane has been constructed by D. Mumford [Mum79]. A full classi-
�cation has been given by G. Prasad and S.-T. Yeung [PY07]. In view of these
results, one obtains a characterization of fake planes:

Corollary 1.2. The only non-simply connected Kähler surfaces with a de�nite
intersection form are the fake planes.

For non-Kähler surfaces, the intersection form can also be negative de�nite.
In this case, a distinction has to be made between minimal and non-minimal
surfaces.1 Non-minimal surfaces are obtained fromminimal surfaces by repeat-
edly blowing up points. Each blowing up introduces an exceptional curve. The
main theorem is as follows:

1Recall, a surface is minimal if it does not contain exceptional curves, i.e., rational curves of
self-intersection (−1).
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Theorem1.3. LetX be a compact non-Kähler surface with a de�nite intersection
form. Then either X is a non-minimal surface of class VII with minimal model
having b2 = 0, a surface of class VII with b2 > 0, a non-minimal secondary
Kodaira surface, or a blown up properly elliptic surface whose minimal model
has invariants q = b1 = 1 and b2 = c2 = 0. In all cases the intersection form is
negative de�nite and diagonalizable (and hence odd).

For the (standard) terminology concerning surfaces, see [BHPvdV04, Ch.
VI].

Remark 1.4. 1. The elliptic surfaces in the above theorem have been classi-
�ed: each of these are deformations of some surface obtained from the prod-
uct ℙ1 × E, E an elliptic curve, by doing logarithmic transformations in (lifts
of) three torsion points of E with non-zero sum. (Combine the argument in
[FM94] given at the beginning of section 2.7.7, and Thm. 7.7 in section. 2.7.2).
2. Donaldson’s results are not used in the proof in the Kähler case, but instead
the Bogomolov–Miyaoka–Yau inequality (cf. [BHPvdV04, §VII.4]) is invoked.
For the non-Kähler situation, the Donaldson results can likewise be dispensed
of, provided the Kato conjecture holds, i.e. class VII surfaces with b2 > 0 have
global spherical shells.

2. Basic facts from surface theory
It is well known that the Chern numbers c21(X) and c2(X) are topological

invariants. This is obvious for c2 since it is the Euler number. For c21 this is a
consequence of a special case of the index theorem [Hir66, Thm. 8.2.2] which
for surfaces takes the shape

�(X) = index of X = 1
3(c

2
1(X) − 2c2(X)). (1)

Here the index is the index of the intersection form of X. Also, Noether’s for-
mula (cf. [BHPvdV04, p. 26]) is used below. It is a special case of the Riemann–
Roch formula and reads:

1 − q(X) + pg(X) =
1
12(c

2
1(X) + c2(X)), (2)

where q(X) = dimH1(X,OX) and pg = dimH2(X,OX). Furthermore, an ex-
pression for the signature of the intersection form in terms of these invariants
is made use of (cf. [BHPvdV04, Ch. IV.2–3]):

Proposition 2.1. Let X be a compact complex surface. Then
(1) b1(X) is even and equal to 2q(X) if and only if X is Kähler. Otherwise

b1(X) = 2q(X) − 1.
(2) In the Kähler case the signature of the intersection form equals (2pg(X)+

1, b2(X) − 2pg(X) − 1) and (2pg(X), b2(X) − 2pg(X) otherwise.

As a consequence, �rstly, q(X) and pg(X) are topological invariants. Sec-
ondly, for a Kähler surface the intersection form SX can only be inde�nite or
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positive de�nitewhile for a non-Kähler surface it can a priori be inde�nite, posi-
tive de�nite or negative de�nite. It is positive de�nite if and only if b2 = 2pg ≠ 0
and negative de�nite if and only if pg = 0 and b2 ≠ 0.

The proof of themain results uses the Enriques–Kodaira classi�cationwhich
for the present purposes can be rephrased as follows (cf. [BHPvdV04, Ch. VI]):

Theorem 2.2 (Enriques–Kodaira classi�cation). Every compact complex sur-
face belongs to exactly one of the following classes according to their Kodaira di-
mension �. The invariants (c21, c2) are given for their minimal models:

� Class b1 c21 c2
−∞ rational surfaces Kähler 0 8 or 9 4 or 3

ruled surfaces of genus > 0 Kähler 2g 8(1 − g) 4(1 − g)
class VII surfaces non-Kähler 1 −b2 b2

0 Two-dimensional tori Kähler 4 0 0
K3 surfaces Kähler 0 0 24
primary Kodaira surfaces non-Kähler 3 0 0
secondary Kodaira surfaces non-Kähler 1 0 0
Enriques surfaces Kähler 0 0 12
bielliptic surfaces Kähler 2 0 0

1 properly elliptic surfaces Kähler even 0 ≥ 0
non-Kähler odd 0 ≥ 0

2 surfaces of general type Kähler even > 0 > 0

3. Proofs of Theorems 1.1 and 1.3
Let X be a compact complex surface, SX the intersection form on the free

ℤ-module HX = H2(X,ℤ)∕torsion. So (HX , SX) is the intersection lattice of X.
Recall the (standard) notation concerning lattices:

∙ The rank 1 unimodular positive, respectively negative de�nite lattices
are denoted ⟨1⟩ and ⟨−1⟩ respectively.

∙ The hyperbolic plane U is the rank 2 lattice with basis {e, f} and form
(denoted by a dot) given by e ⋅ e = f ⋅ f = 0, e ⋅ f = 1

For rational and ruled surfaces, the intersection forms arewell known: forℙ2
it is ⟨1⟩, for the other minimal rational or ruled surfaces it is either ⟨1⟩⊕ ⟨−1⟩
or U. See, for example, [Bea96, Prop. II.18, Prop. V.1.]. So, only ℙ2 gives a
de�nite intersection form and the other surfaces can be discarded for the proof
of Theorem 1.1.

As to minimality, observe the following result:

Lemma 3.1. If X is not minimal, then HX is odd. If X0 is a minimal model of X,
then HX is the orthogonal direct sum of HX0 with as many copies of ⟨−1⟩ as blow-
ups from X0 are needed to obtain X. If, moreover X is Kähler, HX is inde�nite.

The reason is that ifX is not minimal, the class of an exceptional curve splits
o� orthogonallywhereas aKähler class has positive self-intersection. Thismakes
the latter somewhat easier to handle.
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The Kähler case. One only has to consider positive de�nite forms. Then, by
Proposition (2.1), one has � = 2pg + 1 . The index theorem (1) combined with
the Noether formula (2) then yields the following expressions for c21 and c2:

c21 = 10pg − 8q + 9
c2 = 2pg − 4q + 3

so that c21 − 3c2 = 4(pg + q). The class of surfaces with Kodaira dimension −∞
has already been dealt with. From the table of the classi�cation theorem 2.2,
one sees that for surfaces with Kodaira dimension 0, 1 one has c21 − 3c2 ≤ 0.
For surfaces of general type, this is the Bogomolov–Miyaoka–Yau inequality
named after [Bog78, Miy77, Yau77] (cf. [BHPvdV04, §VII.4]). Consequently,
pq = q = 0 and then necessarily SX ≃ ⟨1⟩. Then, one also sees that c21 = 3c2.
So, if X ≄ ℙ2, it is of general type and, by [Yau77], X must have the complex
unit ball as its universal covering, i.e. X is a fake plane.

Non-Kähler surfaces. The intersection form can either be positive de�nite or
negative de�nite. In the former case, the index equals � = 2pg and in the latter
� = −b2 and pg = 0. From the list of Theorem 2.2, the surfaces concerned are
the class VII surfaces, the Kodaira surfaces and the properly elliptic surfaces.

∙ Minimal class VII surfaces with b2 = 0. These include the Hopf sur-
faces [Hop48] and the Inoue surfaces [Ino74]. Hopf surfaces by de�ni-
tion haveℂ2−{0} as their universal covering. PrimaryHopf surfaces are
di�eomorphic to S3×S1. Quotients of primary Hopf surfaces by a freely
acting �nite group are called secondary Hopf surfaces. Clearly, all such
surfaces have trivial intersection lattice and non-minimal surfaces have
negative de�nite intersection lattices.

∙ Minimal class VII surfaces with b2 ≠ 0. The list shows that � = 1
3
(c21 −

2c2) = −c2 = −b2 < 0. Since pg = 0, the intersection form is nega-
tive de�nite. This remains so for non-minimal surfaces (Lemma 3.1).
Minimal such surfaces have been constructed by Inoue in [Ino77]. M.
Kato has shown in [Kat77] that these admit a holomorphically embed-
ded copy of {z ∈ ℂ2 ∣ 1− � < |z| < 1+ �} for some � > 0, and for which,
moreover, the complement in the surface is connected. Conversely, any
such Kato surface, by de�nition a compact complex surface containing
such a so-called “global spherical shell” must be of class VII and is a de-
formation of a blown up primary Hopf surface (recall, this is a complex
surface di�eomorphic to S3 × S1). Hence, the intersection form is diag-
onalizable and negative de�nite. By Donaldson’s result [Don87], this is
true for any class VII surface with b2 > 0.

It is conjectured that all class VII surfaces with b2 > 0 are Kato sur-
faces, whichwould prove this directly. For recentwork in this direction,
consult [Tel17, DT20]
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∙ By [BHPvdV04, Ch V.5] minimal Kodaira surfaces either have b2 = 4
and pg = 1 (primary Kodaira surfaces) or else b2 = 0, pg = 0 (sec-
ondary Kodaira surfaces). The former have signature (2, 2) and since
the form is even, it is isometric to U ⊕U. In particular, these need not
be considered. Minimal secondary Kodaira surfaces have zero intersec-
tion form and so only non-minimal such surfaces have negative de�nite
intersection form.

∙ Minimal non-Kähler elliptic surfaces. Since c21 = 0 and c2 ≥ 0, the
index theorem (1) shows that � ≤ 0 and so only the negative de�nite
case needs to be considered. Then pg = 0, and thus pg − q + 1 =
−q + 1 = 1

12
c2 ≥ 0 implying q = 1, b1 = 1, c2 = b2 = 0. Again

only non-minimal such surfaces have negative de�nite diagonalizable
intersection form.

Remark 3.2. As a consequence of this result, in the case of compact complex sur-
faces the intersection form is completely determinable from the Stiefel–Whitney
class class w2 ≡ c1 mod 2 (this determines whether the form is odd or even),
the signature of the surface, and the Euler number (or, equivalently, c21 and c2).
So, the intersection form does not give supplementary topological information
unlike for topological manifolds. It then follows from [Fre82] that the oriented
homeomorphism type of a simply connected surface is uniquely determined by
the invariants w2, c21 together with c2. It is an open question whether this re-
mains true for any compact complex surface by adding the fundamental group
to the list of invariants. One can at least say that the latter determines whether
the surface is Kähler or not so that the two classes (Kähler or not) can be dealt
with separately.
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