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Perfect powers in value sets and orbits
of polynomials

Alina Ostafe, Lukas Pottmeyer
and Igor E. Shparlinski

Abstract. We show the �niteness of perfect powers in orbits of polynomial
dynamical systems over an algebraic number �eld. We also obtain similar
results for perfect powers represented by ratios of consecutive elements in
orbits. Assuming the abc-Conjecture for number �elds, we obtain a �nite-
ness result for powers in ratios of arbitrary elements in orbits.
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1. Introduction and statements of main results
1.1. Motivation. Cahn, Jones and Spear [4] have recently obtained a series
of results about the structure of intersections of orbits of a rational function
 ∈ L(X) over a �eld L of characteristic zero, with the image '(L) of L for
another rational function ' ∈ L(X). In the special case of '(X) = Xm, with a
�xed integerm ≥ 2, this corresponds to the case of powers in orbits of rational
functions, see [4, Corollaries 1.6–1.8]. In particular, Cahn, Jones and Spear [4,
Corollary 1.8] give a very explicit characterisation of polynomials f(X) ∈ L[X]
for which for some � ∈ L the intersection of the orbit of � with the set ofm-th
powers Lm is �nite.

Here we consider this question for polynomials f(X) ∈ K[X] over a number
�eld K and extend it in two directions, namely:

∙ we consider the union of all orbits over all � ∈ K,
∙ we study its intersectionwith the set of all nontrivial powers ofS-integers.
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See Section 1.2 for exact de�nitions.
In particular, we achieve some progress towards Conjecture 1.7 below, which

asserts that under mild assumptions on f there are only �nitely many orbits
overK for which a ratio of two di�erent iterates is a perfect power. We establish
this conjecture assuming a K-rational abc-Conjecture, see Theorem 1.14. Fur-
thermore, for a rather large class of polynomials, we establish Conjecture 1.7
unconditionally in Theorem 1.11.

In fact, we put this question in a more general context of powers in images
of polynomials, that is, in f(K), and reduce it to a much more studied question
about powers in the set f(RS), where RS is a ring of S-integers of K. See Sec-
tion 1.2 for exact de�nitions. An application of Northcott’s Theorem [10] then
allows us to study powers in orbits.

We note that since the proofs of our results rely on applying Siegel’s Theo-
rem [7, Theorem D.8.4], this in turns makes us to always assume that f has at
least three simple roots. We also use results of Bérczes, Evertse and Győry [1,
Theorems 2.1 and 2.2] which require degf ≥ 2 and also that f has no multiple
roots. Thus to combine these two conditions, we always assume that degf ≥ 3
and f has only simple roots.

1.2. Notationandconventions. Weset the followingnotation, which remains
�xed for the remainder of this paper:
• K is a number �eld.
• ℤK is the ring of algebraic integers of K.
• MK is the set of all places of K which we partition into the sets M0

K and
M∞

K of all non-Archimedean and Archimedean places of K, respectively.
• S ⊆ MK is a �nite set of places of K.
• RS is the ring of S-integers of K.
• R∗S is the group of S-units of K.
• K is an algebraic closure of K.
• f(X) ∈ K[X] is a polynomial of degree d ≥ 2.
• For n ≥ 0, we write f(n)(X) for the nth iterate of f, that is,

f(n)(X) = f◦f◦⋯◦f
⏟⎴⎴⏟⎴⎴⏟

n copies

(X).

• For � ∈ ℙ1(K), we write Of(�) for the (forward) orbit of �, that is,

Of(�) =
{
f(n)(�) ∶ n ≥ 0

}
.

• Per(f) is the set of periodic points of f inK, that is, the set of points � ∈ K
such that f(n)(�) = � for some n ≥ 1.

• PrePer(f) is the set of preperiodic points of f inK, that is, the set of points
� ∈ K such that Of(�) is �nite.

• WanderK(f) is the complement of the set PrePer(f) in K, that is, the set
K ∖ PrePer(f) of K-rational wandering points for f.
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• ℤ≥r denotes the set of integers n ≥ r, where r is a real number.
• ℤ≠0,1 denotes the set of integers di�erent from 0 and 1.
It is also convenient to de�ne the function

log+ t = logmax{t, 1}.

For every v ∈ MK we denote by |.|v the corresponding absolute value on K,
normalised so that the absolute logarithmic Weil height ℎ ∶ K → [0,∞) is
de�ned by

ℎ(�) =
∑

v∈MK

log+ (|�|v) . (1.1)

Every v ∈ M0
K is induced by a prime ideal pv ⊂ ℤK. For any � ∈ K and any

v ∈ M0
K, we set v(�) = ordpv (�). Hence, the map v ∶ K ↠ ℤ is the nor-

malised valuation onK corresponding to the non-Archimedean absolute value
|.|v. See [3, 7, 9] for further details on absolute values and height functions.

1.3. Main results. Below we de�ne three sets of “exceptional values”. Our
goal is to characterise when these sets may be in�nite. With K, S and f as
de�ned in Section 1.2, we de�ne the set

U(K, f,S) =
{
� ∈ K ∶ ∃(l, a) ∈ ℤ≠0,1 × RS such that f(�) = al

}
,

and show its �niteness under certain conditions onf; see alsoRemark 1.3 about
their necessity.

Additionally, motivated by obtaining a �niteness result for ratios of elements
in orbits, which are perfect powers, we study the �niteness of the set

Vm(K, f,S) = {
� ∈ K ∶ ∃(n,l, a) ∈ {1,… , m} ×ℤ≠0,1 × RS

such that f(n)(�) = al�
} ,

wherem ≥ 1 is a �xed rational integer.
Our main interest in the set Vm(K, f,S) stems from Conjecture 1.7 below,

which asserts that there are only �nitely many orbits overK such that the ratio
of di�erent iterates is a perfect power. To study this formally, we introduce the
set

V(K, f,S) = {
� ∈ K ∶ ∃(n,l, a) ∈ ℤ≥1 ×ℤ≠0,1 × RS

such that f(n)(�) = al�
} .

Remark 1.1. Our motivation to investigate the set V(K, f,S) stems from the ob-
servation that its �niteness, coupled with Northcott’s Theorem [10], see also [2,
Lemma 2.3], immediately implies the �niteness of the set of � ∈ K, for which the
ratio of two elements inOf(�) is in the set of powers. In other words, it implies the
�niteness of the set

Ṽ(K, f,S) = {
� ∈ K ∶ ∃(n, k,l, a) ∈ ℤ≥1 ×ℤ≥0 ×ℤ≠0,1 × RS

such that f(n+k)(�) = alf(k)(�)
} .
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If a ∈ R∗S in the sets above, then �niteness conditions for these sets have
been given in [2, Theorems 1.2, 1.3 and 1.4]. Our results hold for S-integers a,
rather than only for S-units.

Theorem 1.2. Let f ∈ K[X] be of degree d ≥ 3, having only simple roots. Then
for any �nite set of places S ofK, the setU(K, f,S) is �nite.

Remark 1.3. As noted above, the condition on the polynomial f in Theorem 1.2
to have only simple roots comes from using [1, Theorems 2.1 and 2.2], however it
is likely that this condition can be relaxed to just imposing that f has at least three
distinct simple roots. We note that this latter condition is indeed needed as the
following example shows. Let g ∈ ℤ[X] be arbitrary, and setf(X) = 2g(X)2(X2−
1). Then, for all of the in�nitely many solutions (r, s) of the Pell equation X2 −
2Y2 = 1, we have f(r) = (2g(r)s)2. This contradicts the �niteness of U(K, f,S)
for any number �eldK and any set of primes S. Thus we indeed need f to have at
least three simple roots.

Remark 1.4. It is important to emphasise the di�erence between the results of
Bérczes, Evertse and Győry [1, Theorems 2.1 and 2.2], which apply to polyno-
mial values with arguments � ∈ RS, and Theorem 1.2, which is based on some
additional arguments stemming from [11] and also on Siegel’s Theorem [7, The-
orem D.8.4], and extends this to the �niteness of � ∈ K, and also allows negative
exponents l.

By Northcott’s Theorem [10], for any � ∈ K there are only �nitely many
� ∈ K such that � ∈ Of(�). Hence, from Theorem 1.2, we have the following
direct consequence about powers in orbits.

Corollary 1.5. Let f ∈ K[X] be of degree d ≥ 3, having only simple roots. Then
for any �nite set of places S ofK, there are at most �nitely many � ∈ K such that
f(n)(�) ∈ RlS for some (n,l) ∈ ℤ≥1 ×ℤ≠0,1.

Remark 1.6. We note that Theorem 1.2 shows �niteness of the set of tuples

(n,l, �, a) ∈ ℤ≥1 ×ℤ≠0,1 ×WanderK(f) × RS

such that f(n)(�) = al. Indeed, by Theorem 1.2 there are �nitely many possible
values for f(n−1)(�) such that f(n)(�) = al, and thus, by Northcott’s Theorem,
�nitely many (n, �) ∈ ℤ≥1 ×WanderK(f).

We also make:

Conjecture 1.7. Let f ∈ K[X] be of degree d ≥ 3, having only simple roots and
such that 0 ∉ Per(f). Then for any �nite set of places S of K, the set V(K, f,S) is
�nite.

We now provide several results towards Conjecture 1.7. First we consider
the set Vm(K, f,S), which corresponds to the choices n ≤ m in the de�nition
of V(K, f,S).
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Theorem 1.8. Let m ∈ ℤ≥1 and f ∈ K[X] be of degree d ≥ 3, having only
simple roots and such that f(k)(0) ≠ 0 for all k ∈ {1,… , m}. Then for any �nite
set of places S ofK, the set Vm(K, f,S) is �nite.

As in the above, combining Theorem 1.8 with Northcott’s Theorem [10], we
have the following direct consequence about the ratio of two consecutive ele-
ments in orbits.

Corollary 1.9. Let f ∈ K[X] be of degree d ≥ 3, having only simple roots and
such thatf(0) ≠ 0. Then for any �nite set of placesS ofK, there are atmost �nitely
many � ∈ K such that f(n+1)(�)∕f(n)(�) ∈ RlS for some (n,l) ∈ ℤ≥1 ×ℤ≠0,1.

Remark 1.10. The proof of Theorem 1.8 splits into several cases, depending on
some additional assumptions on � and a. In all but one of these cases (where we
have to assume that n is bounded), we actually give a �niteness result for their
contribution to the set V(K, f,S). This exceptional case is a reason why we have
a complete proof of �niteness only of the setVm(K, f,S), rather than resolve Con-
jecture 1.7 in full.

We now produce an in�nite class of polynomials for which Conjecture 1.7
holds.

Theorem 1.11. Let f ∈ K[X] be of degree d ≥ 3, having only simple roots and
such that 0 ∈ PrePer(f) ∖ Per(f). Then for any �nite set of places S of K, the set
V(K, f,S) is �nite.

For example, the classes of polynomials

f(X) = Xn(Xm − 1) + � and f(X) = Xk(X − b) + b

satisfy the conditions of Theorem 1.11, for all n,m ≥ 1 with n + m ≥ 3 and a
root of unity � of order dividing m, and k ≥ 2, b ∈ K ∖ {0} with bkkk ≠ (k +
1)k+1, respectively. Indeed, it is immediate to check that for these polynomials
we have 0 ∈ PrePer(f) ∖ Per(f). Applying the well-known formula for the
discriminant of a trinomial (cf. [14, Theorem 2]) yields that the discriminant of
these polynomials is not zero. Hence, all these polynomials have only simple
roots.

Next, we prove that Conjecture 1.7 follows from the abc-Conjecture for the
number �eldK, see [3, Chapter 14]. To formulate the abc-Conjecture forK, for
each v ∈ M0

K we �x a uniformizer �v ∈ K, which is just an element in K with
v(�v) = 1.
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Conjecture 1.12 (K-rational abc-Conjecture). For every " > 0, there exists a
constant C(") such that for all � ∈ K ∖ {0, 1} we have

(1 − ")ℎ(�) ≤
∑

v(�)>0
v∈M0

K

log
|||||||
1
�v

|||||||v
+

∑

v(1−�)>0
v∈M0

K

log
|||||||
1
�v

|||||||v

+
∑

v(1∕�)>0
v∈M0

K

log
|||||||
1
�v

|||||||v
+ C(").

(1.2)

Remark 1.13. In the caseK = ℚ, the validity of Conjecture 1.12 for any " > 0 is
equivalent to the classicalabc-Conjecture ofMasser andOesterlé. Namely, for any
" > 0, there exists a constantC("), such that for all pairwise coprime a, b, c ∈ ℤ≥1,
with a + b = c, we have ∏

p∣abc
p prime

p ≥ C(")c1−".

For further information on Conjecture 1.12, we refer to [3, Chapter 14].

Theorem 1.14. Let f ∈ K[X] be of degree d ≥ 3, having only simple roots and
such that 0 ∉ Per(f). Assuming the validity of theK-rationalabc-Conjecture 1.12,
for any �nite set of places S ofK, the set V(K, f,S) is �nite.

In other words, Theorem 1.14 can be informally expressed as
Conjecture 1.12 ⟹ Conjecture 1.7.

The assumption 0 ∉ Per(f) is needed in the proof of Theorem1.14. However,
we do not have a counterexample for Conjecture 1.7 if we only assume f(0) ≠
0. The latter assumption is indeed necessary, since the same argument as in
Remark 1.3 shows that for f(x) = 2x(x2 − 1) the set V(ℚ, f,S) is in�nite.

Remark 1.15. Examining the proof of Theorem 1.14, one can see that for a �xed
polynomial f ∈ K[x] satisfying the assumptions from Theorem 1.14, we do not
need the full power of the K-rational abc-Conjecture to prove the �niteness of
V(K, f,S). We prove that for any suchf, there exists an "(f) > 0 such that if (1.2)
holds for "(f), thenV(K, f,S) is �nite. See also Remark 2.1 after the proof of The-
orem 1.14 for more details.

1.4. Ideasbehind theproofs. To simplify the exposition, we outline themain
ingredients of our arguments in the case ofK = ℚ, and thus instead of the lan-
guage of valuations, we simply talk about prime divisors. One of the most pow-
erful tools we use is a result of Bérczes, Evertse and Győry [1], which gives a
very explicit form of a result of Schinzel and Tijdeman [12] on the �niteness of
perfect powers among the integral values of polynomials overℤmodulo a �nite
set of primes. Say, in Theorem 1.2 this means, using [1], that for l ≥ 2 and any
� ∈ ℚwith a denominator composed out of a �xed set of primes the power l is
uniformly bounded which in turn easily implies the boundedness of the set of
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possible solutions (�,l, a). If l < 0, then we show that the numerator of f(�)
is composed out of a �xed set of primes and the result is a simple consequence
of the celebrated result of Siegel [7, Theorem D.8.4].

For the proof of Theorem 1.11, we note that f(n)(�) = al�means that � “al-
most” divides f(n)(0). Now, if f(n)(0) ≠ 0, but takes just �nitely many di�erent
values, also � can take just �nitely many di�erent values.

In the proof of Theorem 1.14, we �rst handle small values of n. Here we
proceed as we described before and conclude that, since � “almost” divides
f(n)(0), we are able to apply [1]. When n is large we need the power of the
abc-Conjecture to conclude, as in [6], that � must be bounded as polynomial
values can generally not be multiplicatively close to perfect powers.

Since Siegel’s Theorem enters our argument, Theorems 1.2, 1.8, and 1.14 are
not e�ective.

Remark 1.16. It is easy to see that our �niteness results are also true for shifts by
S-units, that is, we can replace the setU(K, f,S) by the set

{
� ∈ K ∶ ∃(u,l, a) ∈ R∗S ×ℤ≠0,1 × RS such that f(�) = ual

}
, (1.3)

and similarly for Vm(K, f,S) and V(K, f,S). Indeed, if � ∈ RS, then by [2,
Lemma 2.8] we may assume that l must be bounded from above. Hence, after
replacing K by a larger number �eld, we may assume that all S-units are l-th
powers for all possible (�nitely many) values of l. Hence, extending if necessary
the ground �eld K to contain all necessary l-roots of all generators of R∗S, we see
that the �niteness of the subset of the set (1.3) with � ∈ RS follows directly from
Theorem 1.2. We also note that in the case � ∉ RS the proof of Theorem 1.2 holds
without any change for the equation f(�) = ual in (1.3) thus concluding the
proof of the �niteness of the set (1.3).

Furthermore, trivial changes in the proofs of Theorems 1.8, 1.11 and 1.14 below
give the �niteness of the similar generalisations of Vm(K, f,S) and V(K, f,S).

2. Proofs of main results
2.1. Preliminary discussion. As usual, we say that a polynomial

f(X) = c0 + c1X +⋯ + cdXd

has bad reduction at v ∈ M0
K if either v(ci) < 0 for some i or if v(cd) > 0;

otherwise we say it has good reduction. We let
Sf = S ∪M∞

K ∪ {v ∈ M0
K ∶ f has bad reduction at v}.

In particular, for all v ∉ Sf we have
|cd|v = 1 and |ci|v ≤ 1, i = 0,… , d − 1. (2.1)

It is easy to see that if f has good reduction at v, then so do all of its iterates;
in fact this is also true even for rational functions, see [13, Proposition 2.18(b)].
Hence,

Sf(m) ⊆ Sf, for allm ≥ 1. (2.2)
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We let
RSf =

{
# ∈ K ∶ v(#) ≥ 0 for all v ∉ Sf

}

be the ring of Sf-integers in K, and R∗Sf denotes the group of Sf-units in K.
Clearly RS ⊆ RSf .

2.2. Proof of Theorem 1.2. We replace the set RS with RSf and thus investi-
gate the equation

f(�) = al, (�,l, a) ∈ K ×ℤ≠0,1 × RSf . (2.3)

If � ∉ RSf , then there is some non-Archimedean valuation v ∈ MK ∖ Sf such
that v(�) < 0. Hence, recalling (2.1), we see from the basic properties of non-
Archimedean valuations that v(f(�)) = dv(�) (see also the proof of [11, Theo-
rem 4.11]). Now, if (�,l, a) is a solution to (2.3) with � ∉ RSf then

0 > dv(�) = v(f(�)) = v(al) = lv(a).

Since a ∈ RSf , it follows that l < 0. We now distinguish between two cases.
Case A: l ≥ 2.
By our preliminary discussion, we know that in this case we have � ∈ RSf .
Hence, this case follows directly from [1]. Indeed, by [1, Theorem 2.3] (see
also [2, Lemma 2.8]) the exponent l ≥ 2 is bounded by a constant depending
only on K, f and S. Thus, we can consider l to be �xed, and since degf ≥ 3,
we can apply [1, Theorems 2.1 and 2.2] to conclude that ℎ(�) is bounded by a
constant depending only on K, f and S. Now, since � ∈ K, then Northcott’s
Theorem [13, Theorem 3.7] tells us that there are �nitely many such �.
Case B: l < 0.
Let us de�ne the rational function g(X) = f(X)−1. Then, since f has at least
three simple roots, the function g has at least three distinct poles.

We have a solution f(�) = al with a ≠ 0, if and only if
g(�) = f(�)−1 = a−l.

Since −l > 0, a−l ∈ RSf , and thus we can apply Siegel’s Theorem [7, Theo-
remD.8.4] to conclude that there are �nitely many � ∈ K such that g(�) ∈ RSf .
This concludes also this case.

2.3. Proof of Theorem 1.8. As we have explained in Remark 1.10, we follow
the proof in the general case of proving Conjecture 1.7, except for one case
which breaks down, and thus prove this case only for n ≤ m, for some �xed
m ∈ ℤ≥1, which concludes only the proof of Theorem 1.8. In particular, we
consider the equation

f(n)(�) = al�. (2.4)
Moreover, since by Northcott’s Theorem [10] (see also [13, Theorem 3.12]),

the set PrePer(f) ∩K is �nite, we need only to prove �niteness of the set
V(K, f,S) ∩ WanderK(f).
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We split now the proof into two cases depending on l being positive and
negative, and then some further subcases.
Case A: l ≥ 2.
Assume there is a solution � ∈ WanderK(f) to (2.4). Since l ≥ 0, for all v ∈
MK ∖ Sf, one has

|f(n)(�)|v ≤ |�|v. (2.5)
If there exists v ∈ MK ∖Sf such that |�|v > 1, then (2.1) and a simple valuation
computation show that

|f(n)(�)|v = |�|d
n

v .
This together with (2.5) and the fact that d ≥ 2, leads to a contradiction. Thus,
for any v ∈ MK ∖ Sf we have |�|v ≤ 1, which implies that

� ∈ RSf .

We now consider the following three subcases.
Subcase A.1: a ∈ R∗Sf .
The �niteness in this case follows directly from [2, Theorem 1.3].
Subcase A.2: a ∈ RSf ∖ R

∗
Sf

and � ∈ R∗Sf .
Precisely as in Case A in the proof of Theorem 1.2 (but using [2, Lemma 2.8]
instead of [1, Theorem 2.3]) we may assume that l is �xed. Since R∗Sf is �nitely
generated, we may take a �nite �eld extension L∕K such that L includes the
l-th roots of all the generators of R∗Sf . We also extend the set Sf to S̃f includ-
ing all the places of L staying over the places in Sf. Now, �niteness follows
immediately from Corollary 1.5.
Subcase A.3: a ∈ RSf ∖ R

∗
Sf

and � ∈ RSf ∖ R
∗
Sf
.

In this case, since � ∈ RSf ∖ R
∗
Sf
, there exists v ∉ Sf such that v(�) > 0. Since

a ∈ RSf , we also have v(a) ≥ 0, and thus v(f(n)(�)) > 0 (since l > 0).
Now, let us write

f(n)(X) =
dn∑

i=0
ci,nXi,

with v(ci,n) ≥ 0, which follows from (2.1) and (2.2). Thus v(ci,n�i) > 0 for all
i ∈ {1,… , dn} and

v(f(n)(0)) = v(c0,n) = v
⎛
⎜
⎝
f(n)(�) −

dn∑

i=1
ci,n�i

⎞
⎟
⎠

≥ min{v(f(n)(�)), min
i=1,…,dn

v(ci,n�i)} > 0.

(2.6)

Thus, for any v ∉ Sf such that v(�) > 0, one has v(f(n)(0)) > 0.
This iswherewedonot knowhow to conclude the proof in full generality and

thus for the rest of Subcase A.3 only we assume n ≤ m. By (2.6), for any v ∉ Sf
such that v(�) > 0, one has v(f(n)(0)) > 0. However, since f(n)(0) ≠ 0 for



912 ALINA OSTAFE, LUKAS POTTMEYER AND IGOR E. SHPARLINSKI

all n ≤ m, there are at most �nitely many v ∈ M0
K such that v(f(n)(0)) > 0 for

some n ∈ {1,… , m}. Thus, extending Sf to include all these places and denoting
this new set byTf,m, we can conclude that � ∈ R∗Tf,m . The �niteness conclusion
follows now as in Subcase A.2 applied with Tf,m instead of Sf (and noting that
RSf ⊆ RTf,m). This concludes thus the �niteness of the set Vm(K, f,S).
Case B: l < 0.
We continue now the proof for arbitrary n ≥ 1.

Since f is a polynomial of degree d ≥ 3 with only simple roots, f is not of
the form cXd and moreover 0 is not an exceptional point for f (if 0would be an
exceptional point, then the cardinality of the backward orbit of 0would be 1 or
2, see for example [13, Theorem 1.6], which is impossible).

We study the �niteness of the set of elements � ∈ WanderK(f) such that

|f(n)(�)|v = |a|lv |�|v, ∀ v ∈ MK ∖ Sf, (2.7)

for some (n,l, a) ∈ ℤ≥1 ×ℤ<0 × (RSf ∖ {0}).
Wenowproceed as in the proof of [2, Theorem1.3] andwe indicate onlywhat

is new. For an arbitrary choice of ", to be speci�ed later, we let C3(K,Sf, f, ")
be the constant from [2, Lemma 2.5], and we split the proof into two cases,
depending whether n is large or small.
Subcase B.1: n ≥ C3(K,Sf, f, 1∕3).
In this case, by [2, Lemma 2.5] applied with " = 1∕3, we see that (n, �) satis�es

∑

v∈Sf

log+
(
|f(n)(�)|−1v

)
≤ 1
3 ℎ̂f

(
f(n)(�)

)
, (2.8)

where ℎ̂f is the canonical height associated to f, see [13, Section 3.4] for a def-
inition and standard properties.

Since ℎ() = ℎ(−1) and using (1.1), we compute

ℎ
(
f(n)(�)

)
= ℎ

(
f(n)(�)−1

)
=

∑

v∈MK

log+
(
|f(n)(�)|−1v

)

=
∑

v∈Sf

log+
(
|f(n)(�)|−1v

)
+

∑

v∈MK∖Sf

log+
(
|f(n)(�)|−1v

)
.

Now, using (2.7) and (2.8) and the fact that l < 0 (and thus |a−l|v ≤ 1 for all
v ∈ MK ∖ Sf), we have

ℎ
(
f(n)(�)

)
≤ 1
3 ℎ̂f

(
f(n)(�)

)
+

∑

v∈MK∖Sf

log+
(
|al�|−1v

)

≤ 1
3 ℎ̂f

(
f(n)(�)

)
+ ℎ

(
�−1

)
= 1
3 ℎ̂f

(
f(n)(�)

)
+ ℎ (�) .

From now on the proof goes word by word as in the proof of [2, Theorem 1.3]
with � = 1 and k = 0 (where also a somewhat arbitrary value " = 1∕3 has been
used). This implies also the �niteness of the set V(K, f,S) in this case.
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Subcase B.2: n < C3(K,Sf, f, 1∕3).
Let g(X) = f(n)(X)∕X, and we note that g has at least three nonzero distinct
roots, which follows immediately from the fact that f has this property. Since n
is bounded, proving �niteness of the set V(K, f,S) in this case reduces to prov-
ing �niteness of � ∈ K such that g(�) = al for some (l, a) ∈ ℤ≠0,1 × RS. This
follows exactly as in the proof of Theorem 1.2, Case B, applying Siegel’s Theo-
rem [7, Theorem D.8.4]. Indeed, we follow the proof of Case B of Theorem 1.2
above with f(X) replaced by the rational function g(X), and apply Siegel’s The-
orem to the function G(X) = g(X)−1 (taking also into account that f(n)(0) ≠ 0)
to conclude that G(K) ∩ RSf is �nite.

2.4. Proof of Theorem 1.11. We recall that in the proof of Theorem 1.8 only
Subcase A.3 requires the assumption that n is bounded. Hence we consider
only this case. Recall that this assumption appears after it has been shown
that for any v ∉ Sf such that v(�) > 0, one has v(f(n)(0)) > 0. Since 0 ∈
PrePer(f) ∖ Per(f) we see that there are only �nitely many v ∈ M0

K with this
property. Hence � ∈ R∗Tf for some �nite set Tf depending only on S and f.
We now proceed as in Subcase A.2 in the proof of Theorem 1.8 and obtain the
desired result.

2.5. Proof of Theorem 1.14. All constants in this proof may depend on the
�xed number �eld K, even when we do not explicitly state this dependence.

After enlarging the set S to Sf, we may assume that f ∈ RSf [x].
Again, we only have to consider Subcase A.3 from the proof of Theorem 1.8.

Hence, we have to prove the �niteness of

{
� ∈ RSf ∶ ∃(n,l, a) ∈ ℤ≥m ×ℤ≥2 × RSf

such that f(n)(�) = al�
} , (2.9)

for some �xed positive integerm.
It follows from [13, Theorem 3.11] that there exists a constant C1(f) such

that for all k ≥ 1 and all � ∈ K we have

dkℎ(�) − dkC1(f) ≤ ℎ(f(k)(�)) ≤ dkℎ(�) + dkC1(f). (2.10)

In particular, the set of � ∈ K such that f(k)(�) = 0 for some k is a set of
bounded height, and hence it is �nite. Therefore, we may assume without loss
of generality that f(k)(�) ≠ 0 for all k ≥ 1.

Let us �x some further notations in order to apply theK-rational abc-Conjec-
ture 1.12. If D is a divisor on ℙ1K, then ℎD denotes the height associated to D.
This is, if (�D,v)v∈MK

is a collection of local heights associated to D, then

ℎD(P) =
∑

v∈MK

�D,v(P)

for all P ∈ ℙ1(K) ∖ Supp(D), where Supp(D) is the support of D.
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A height associated to the canonical divisor of ℙ1K can be chosen to be −2ℎ,
where

ℎ([x0 ∶ x1]) =
∑

v∈MK

max{|||x0|||v , |x1|v}

is the standard height on ℙ1(K) (for example, see [3, Example 14.4.4]). There-
fore, we have the following link between Conjecture 1.12 and Vojta’s conjec-
tured height inequality (see [3, Theorem 14.4.16 and Remark 14.4.17]):

Let D be a reduced divisor on ℙ1K. If the K-rational abc-Conjecture 1.12 is
true, then for all " > 0 there exists a constant C(", D) only depending on " and
D such that for all P ∈ ℙ1(K) ∖ Supp(D) one has

ℎD(P) − (2 + ")ℎ(P) ≤
∑

�D,v(P)>0
v∈M0

K

log
|||||||
1
�v

|||||||v
+ C(", D). (2.11)

Note, that the contribution of the places from the �nite set Sf to the sum on the
right hand side is bonded by a constant. Hence, applying (2.11) to D = Div(F),
where F(X,Y) = Yd+1f(X∕Y) ∈ RSf [X,Y], yields

(d − 1 − ")ℎ(�) ≤
∑

v(f(�))>0
v∈M0

K∖Sf

log
|||||||
1
�v

|||||||v
+ C2(", f,Sf), ∀ � ∈ RSf , (2.12)

where C2(", f,Sf) is a constant only depending on ", f and Sf. That the abc-
conjecture implies (2.12) is well known. In particular, in the case K = ℚ this
statement has been used by Granville [6] to count squarefree values of inte-
ger polynomials. The implication for number �elds is due to Elkies [5, Equa-
tion (26)]. In the Elkies inequality [5, Equation (26)], the term (d − 1 − ")
in (2.12) is replaced by (d − 2 − "). This bound comes from using the usual
homogenisation Ydf(X∕Y) of f instead of F(X,Y) = Yd+1f(X∕Y). The same
homogenisation has also been used by Granville [6].

Now, we calculate an upper bound for
∑

v(f(n)(�))>0
v∈M0

K∖Sf

log
|||||||
1
�v

|||||||v
=

∑

||||f
(n)(�)||||v<1
v∈M0

K∖Sf

log
|||||||
1
�v

|||||||v
,

if � ∈ RSf satis�es f
(n)(�) = al� ≠ 0 for some n,l ≥ 2 and a ∈ RSf . In this

case it is
∑

||||f
(n)(�)||||v<1
v∈M0

K∖Sf

log
|||||||
1
�v

|||||||v
=

∑

|al�|v<1
v∈M0

K∖Sf

log
|||||||
1
�v

|||||||v
=

∑

|a�|v<1
v∈M0

K∖Sf

log
|||||||
1
�v

|||||||v

≤
∑

v∈M0
K∖Sf

log+ ||||(a�)
−1||||v =

1
l

∑

v∈M0
K∖Sf

log+ ||||(a�)
−l||||v .
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Hence we now arrive to the inequality
∑

||||f
(n)(�)||||v<1
v∈M0

K∖Sf

log
|||||||
1
�v

|||||||v
≤ 1
l
ℎ((a�)−l) = 1

l
ℎ((a�)l)

= 1
l
ℎ(al� ⋅ �l−1) ≤ 1

l
ℎ(f(n)(�)) + 1

l
ℎ(�l−1)

≤ 1
2ℎ(f

(n)(�)) + ℎ(�).

(2.13)

Now, applying (2.10) to the inequality (2.13), we obtain
∑

||||f
(n)(�)||||v<1
v∈M0

K∖Sf

log
|||||||
1
�v

|||||||v
≤ (12d

n + 1)ℎ(�) + 1
2d

nC1(f). (2.14)

Combining (2.14) with (2.12) yields

(d − 1 − ")ℎ(f(n−1)(�)) ≤ (12d
n + 1)ℎ(�) + 1

2d
nC1(f) + C2(", f,Sf).

A further application of (2.10) implies that

(12d
n − (1 + ")dn−1 − 1)ℎ(�) − (32d

n − (1 + ")dn−1)C1(f)

≤ C2(", f,Sf).

It follows that

(12d
n − (1 + ")dn−1 − 1) ⋅ (ℎ(�) −

3d∕2 − (1 + ")
d∕2 − (1 + ")

C1(f))

is bounded from above independently on � and n. Since we assume that " <
d∕2 − 1, the factor (dn∕2 − (1 + ")dn−1 − 1) tends to in�nity as n does. Hence,
either n is bounded independently on �, or ℎ(�) is bounded independently on
n. In the �rst case, �niteness of the set in (2.9) follows immediately from The-
orem 1.8. In the second case, the claimed �niteness follows as there are only
�nitely many points of bounded height and bounded degree.

Remark 2.1. We conclude with a remark on the precise dependence of Theo-
rem 1.14 on the abc-conjecture. The K-rational abc-conjecture implies (2.11) in
the following way: if inequality (1.2) holds for some �xed " > 0, then (2.11) holds
for "̃ = n", where n only depends on the degree of a Belyi map de�ned over K
associated to Supp(D). Such a Belyi map can always be chosen as a polynomial
de�ned over ℚ, and an explicit bound on its degree has been calculated in [8].
Then, n is twice the degree of this map. For a proof of this statement, the interested
reader may follow the proof of [3, Theorem 14.4.16: (a)⇒ (b)]. We conclude that
there exists an (e�ectively computable) "(f), depending solely on f, such that (1.2)
for "(f) implies (2.12) for "̃ = d∕2 − 1.0001. As we have just seen, this again im-
plies the �niteness of V(K, f,Sf).
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