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Torsion groups of elliptic curves over the
Zp-extensions of Q
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and Filip Najman

Abstract. We determine, for an elliptic curve E/Q and for a prime
p, all the possible torsion groups E(Q∞,p)tors, where Q∞,p is the Zp-
extension of Q.
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1. Introduction

For a prime number p, denote by Q∞,p the unique Zp-extension of Q,
and for a positive integer n, denote by Qn,p the nth layer of Q∞,p, i.e. the
unique subfield of Q∞,p such that Gal (Qn,p/Q) ' Z/pnZ. Recall that the
Zp-extension of Q is the unique Galois extension Q∞,p of Q such that

Gal (Q∞,p/Q) ' Zp,

where Zp is the additive group of the p-adic integers and is constructed as
follows. Let ζk denote a primitive k-th root of unity and let Q(ζp∞) be the
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field obtained by adjoining ζpn for all positive integers n to Q. Let

G = Gal (Q(ζp∞)/Q) = lim←−
n

Gal
(
Q(ζpn+1)/Q

) ∼→ lim←−
n

(Z/pn+1Z)× = Z×p .

Here we know that G = ∆×Γ, where Γ ' Zp and ∆ ' Z/(p− 1)Z for p ≥ 3
and ∆ ' Z/2Z (generated by complex conjugation) for p = 2, so we define

Q∞,p := Q(ζp∞)∆.

We also see that every layer is uniquely determined by

Qn,p = Q(ζpn+1)∆,

so for p ≥ 3 it is the unique subfield of Q(ζpn+1) of degree pn over Q. More
details and proofs of these facts about Zp-extensions and Iwasawa theory
can be found in [26, Chapter 13].

Iwasawa theory for elliptic curves (see [9]) studies elliptic curves in Zp-
extensions, in particular the growth of the rank and n-Selmer groups in the
layers of the Zp-extensions.

In this paper we completely solve the problem of determining how the
torsion of an elliptic curve defined over Q grows in the Zp-extensions of
Q. As such, our results can be considered complementary to Greenberg’s
results [9] about the rank growth in Zp-extensions. We feel that they are
interesting in their own right and the results might also find applications
in other problems in Iwasawa theory for elliptic curves and in general. For
example, to show that elliptic curves over Q∞,p are modular for all p, Thorne
[25] needed to show that E(Q∞,p)tors = E(Q)tors for two particular elliptic
curves.

Our results are the following.

Theorem 1.1. Let p ≥ 5 be a prime number, and E/Q an elliptic curve.
Then

E(Q∞,p)tors = E(Q)tors.

Theorem 1.2. Let E/Q be an elliptic curve. E(Q∞,2)tors is one of the
following groups:

Z/NZ, 1 ≤ N ≤ 10, or N = 12,

Z/2Z⊕ Z/2NZ, 1 ≤ N ≤ 4,

and for each group G from the list above there exists an E/Q such that
E(Q∞,2)tors ' G.

Theorem 1.3. Let E/Q be an elliptic curve. E(Q∞,3)tors is one of the
following groups:

Z/NZ, 1 ≤ N ≤ 10, or N = 12, 21 or 27,

Z/2Z⊕ Z/2NZ, 1 ≤ N ≤ 4.

and for each group G from the list above there exists an E/Q such that
E(Q∞,3)tors ' G.
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Remark. By Mazur’s theorem [20] we see that

{E(Q∞,2)tors : E/Q elliptic curve} = {E(Q)tors : E/Q elliptic curve},
and

{E(Q∞,3)tors : E/Q elliptic curve}
= {E(Q)tors : E/Q elliptic curve} ∪ {Z/21Z,Z/27Z}.

However, given a specific E/Q, we do not necessarily have E(Q∞,p)tors =
E(Q)tors. Indeed there are many elliptic curves for which torsion grows from
Q to Q∞,p, and we investigate this question further in Section 6. Specifically,
for each prime p we find for which groups G there exists infinitely many j-
invariants j such that there exists an elliptic curve E/Q with j(E) = j and
such that E(Q)tors ( E(Q∞,p)tors ' G.

2. Notation and auxiliary results

In this paper we deal with elliptic curves defined over Q, so unless noted
otherwise, all elliptic curves will be assumed to be defined over Q.

We will use the following notation throughout the paper:
• For a positive integer n, ρE,n is the mod n Galois representation
attached to elliptic curve E; we will write just ρn when it is obvious
what E is.
• For a number field K, we denote GK := Gal(K/K).
• By GE,K(n) (or just GE(n)) we will denote the image (after a choice
of basis of E[n]) of ρE,n(GK) in GL2(Z/nZ) i.e.

GE,K(n) =
{
ρE,n(σ) : σ ∈ Gal

(
K/K

)}
.

• For a prime number `, ρE,`∞ is the `-adic Galois representation and
T`(E) is `-adic Tate module attached to E.
• We say that an elliptic curve E has or admits an n-isogeny over K
if there exists an isogeny f : E → E′ for some elliptic curve E′ of
degree n with cyclic kernel and such that E, E′ and f are all defined
over K, or equivalently if GK acts on ker f .

To make this paper as self-contained as reasonably possible, we now list
the most important known results that we will use.

Proposition 2.1. [24, Ch. III, Cor. 8.1.1] Let E/L be an elliptic curve with
L ⊆ Q. For each integer n ≥ 1, if E[n] ⊆ E(L) then the nth cyclotomic field
Q(ζn) is a subfield of L.

An immediate consequence of this proposition is

Corollary 2.2. Let p and q be prime numbers and let q 6= 2. Then

E(Q∞,p)[q] ' {O} or Z/qZ.

Remark. We have that E[qn] * E(Q∞,p), for each positive integer n.
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Proof. Since −1 and 1 are the only roots of unity contained in Q∞,p, by
Proposition 2.1 E[q] cannot be contained in E(Q∞,p). �

Lemma 2.3. [4, Lemma 4.6] Let E be an elliptic curve over a number field
K, let F be a Galois extension of Q, let p be a prime, and let k be the largest
integer for which E[pk] ⊆ E(F ). If E(F )tors contains a subgroup isomorphic
to Z/pkZ⊕ Z/pjZ with j ≥ k, then E admits a K-rational pj−k-isogeny.

Note that Lemma 2.3 as stated in [4, Lemma 4.6] requires additional
assumptions, such as the ground field being Q and F having finitely many
roots of unity, but these are not necessary in the proof, so Lemma 2.3 is
correct as stated above, without any additional assumptions.

Theorem 2.4. [20, 14, 15, 16, 17] Let E/Q be an elliptic curve with a
rational n-isogeny. Then

n ≤ 19 or n ∈ {21, 25, 27, 37, 43, 67, 163}.

Corollary 2.5. Let p be an odd prime number, E/Q elliptic curve and P ∈
E(Q∞,p)tors a point of order qn for some prime q and positive integer n, then

qn ∈ {2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 25, 27, 32, 37, 43, 67, 163}.

Proof. For q ≥ 3 we have E[q] * E(Q∞,p) by Corollary 2.2, so by Lemma
2.3 we conclude that E admits a rational qn-isogeny.

For q = 2, having in mind that the only roots of unity in E(Q∞,p)tors are
±1, by Lemma 2.3 we conclude that E admits a rational 2n−1-isogeny.

The result now follows from Theorem 2.4. �

Theorem 2.6. [8, Theorem 5.8] Let E/Q be an elliptic curve, p a prime
and P a point of order p on E. Then all of the cases in the table below occur
for p ≤ 13 or p = 37, and they are the only ones possible.

p [Q(P ) : Q]

2 1, 2, 3

3 1, 2, 3, 4, 6, 8

5 1, 2, 4, 5, 8, 10, 16, 20, 24

7 1, 2, 3, 6, 7, 9, 12, 14, 18, 21, 24, 36, 42, 48

11 5, 10, 20, 40, 55, 80, 100, 110, 120

13 3, 4, 6, 12, 24, 39, 48, 52, 72, 78, 96, 144, 156, 168

37 12, 36, 72, 444, 1296, 1332, 1368

For all other p, for [Q(P ) : Q] the following cases do occur:
(1) p2 − 1, for all p,
(2) 8, 16, 32, 136, 256, 272, 288, for p = 17,

(3)
p− 1

2
, p− 1,

p(p− 1)

2
, p(p− 1), if p ∈ {19, 43, 67, 163},
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(4) 2(p− 1), (p− 1)2, if p ≡ 1 (mod 3) or
(
−D
p

)
= 1,

for some D ∈ {1, 2, 7, 11, 19, 43, 67, 163},

(5)
(p− 1)2

3
,

2(p− 1)2

3
, if p ≡ 4, 7 (mod 9),

(6)
p2 − 1

3
,

2(p2 − 1)

3
, if p ≡ 2, 5 (mod 9),

Apart from the cases above that have been proven to appear, the only other
options that might be possible are:

p2 − 1

3
,

2(p2 − 1)

3
, for p ≡ 8 (mod 9).

Theorem 2.7. [8, Theorem 7.2.] Let E/Q be an elliptic curve and p be the
smallest prime divisor of a positive integer d and let K/Q be a number field
of degree d.

• If p ≥ 11, then
E(K)tors = E(Q)tors.

• If p = 7, then
E(K)[q∞] = E(Q)[q∞]

for all primes q 6= 7.
• If p = 5, then

E(K)[q∞] = E(Q)[q∞]

for all primes q 6= 5, 7, 11.
• If p = 3, then

E(K)[q∞] = E(Q)[q∞]

for all primes q 6= 2, 3, 5, 7, 11, 13, 19, 43, 67, 163.

We now prove a lemma that we will find useful.

Lemma 2.8. Let p and q be prime numbers such that q− 1 - p and p - q− 1.
Let K/Q be a cyclic extension of degree p, and P ∈ E a point of order q. If
P ∈ E(K), then P ∈ E(Q).

Proof. If we assume that Q(ζq) ⊆ K, it follows that q−1 = [Q(ζq) : Q] | [K :
Q] = p, and that is impossible by the assumption that q − 1 - p. Therefore,
by Corollary 2.2 we conclude that E(K)[q] ' Z/qZ.

Let us assume that there is σ ∈ Gal (K/Q) such that P σ 6= P (i.e. that
P /∈ E(Q)). That means that there is some a ∈ {2, 3, . . . , q − 1} such that
P σ = aP . Furthermore, we know that σp = 1, so

P = P σ
p

= apP,

which means that ap ≡ 1 (mod q), but there exists such an a ∈ {2, 3, . . . , q−
1} if and only if p | q − 1 or q − 1 | p, which is a contradiction. �

The following lemma will tell us how far up the tower we have to go to
find a point of order n, if such a point exists.
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Lemma 2.9. Let E/Q be an elliptic curve and P ∈ E a point of order n such
that Q(P )/Q is Galois and let E(Q(P ))[n] ' Z/nZ. Then Gal(Q(P )/Q) is
isomorphic to a subgroup of (Z/nZ)×.

Proof. We see that GQ acts on P through G := Gal(Q(P )/Q) so that for
any σ ∈ GQ we have P σ = aP , for some a ∈ (Z/nZ)×, since |P σ| = |P |. Since
G acts faithfully on 〈P 〉, this implies that G is isomorphic to a subgroup of
(Z/nZ)×. �

We immediately obtain the following corollary.

Corollary 2.10. Let P ∈ E be a point of odd order n such that Q(P ) ⊆
Q∞,p. Then Q(P ) ⊆ Qm,p, where m = vp(φ(n)).

Proof. Since E(Q(P ))[n] ' Z/nZ by Corollary 2.2, the result follows from
Lemma 2.9. �

Proposition 2.11. Let E/F be an elliptic curve over a number field F , n
a positive integer, p a prime, and P ∈ E a point of order pn+1such that
F (P )/F (pP ) is Galois and E(F (P ))[p] ' Z/pZ. Then F (P ) = F (pP ) or
[F (P ) : F (pP )] = p.

Proof. Let Q := pP , and consider the equation

pX = Q. (1)

The solutions of (1) are of the from P + T for some T ∈ E[p] and P + T
is defined over F (P ) if and only if T is defined over F (P ). We see that the
solutions of (1) defined over F (P ) are in bijection with E(F (P ))[p], so by our
assumptions, there are p of them. Let S := {(1 + apn)P | a = 0, . . . , p− 1}.
All elements of S are solutions to (1) and all are defined over F (P ), as they
are multiples of P . By our assumption, these are the only solutions of (1)
defined over F (P ) and hence S contains all the solutions of (1) defined over
F (P ). It follows that G := Gal(F (P )/F (Q)) acts on S.

The degree [F (P ) : F (Q)] is the same as the length of the orbit of P
under the action of G on S. For any X1, X2 ∈ S, if X1 is defined over a
number field K, then so is X2, as X2 is a multiple of X1. We conclude
that F (X1) = F (X2) and hence [F (X1) : F (Q)] = [F (X2) : F (Q)] for all
X1, X2 ∈ S, so the set S decomposes into orbits of equal length under the
action of G. If all orbits are of length n, and there are x orbits, it follows that
n ·x = p. Hence n will have to be either 1 or p, proving the proposition. �

Remark. Proposition 2.11 is a version of [8, Proposition 4.6.] with stronger
assumptions.

Corollary 2.12. Let p and q be primes such that q 6= 2 and p 6= q. Let E/Q
be an elliptic curve, F some number field contained in Q∞,p such that E(F )
contains a point of order qn but no points of order qn+1. Then E(Q∞,p)
contains no points of order qn+1.
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Proof. Suppose the opposite, and let P ∈ E(Q∞,p) be a point of order qn+1.
By Corollary 2.2 we have that E(F (P ))[qn+1] ' Z/qn+1Z so it follows that
qP ∈ E(F ) (as all of the qn-torsion is defined already over F ). Now from
Proposition 2.11 it follows that [F (P ) : F (qP )] = [F (P ) : F ] = q, which is a
contradiction, as a number field of degree divisible by q cannot be a subfield
of Q∞,p. �

3. Proof of Theorem 1.1

For primes p ≥ 11, by Theorem 2.7 we know that E(Qn,p)tors = E(Q)tors,
for each positive integer n. It follows that E(Q∞,p)tors = E(Q)tors. It re-
mains to prove this fact for the cases p = 7 and p = 5.

Theorem 3.1. E(Q∞,7)tors = E(Q)tors.

Proof. From Theorem 2.7, we immediately conclude that E(Q∞,7)[q∞] =
E(Q)[q∞] for all primes q 6= 7. It remains to prove that E(Q∞,7)[7∞] =
E(Q)[7∞].

By Corollary 2.5 we conclude that there is no 49-torsion in E(Q∞,7), so
it remains to prove that E(Q∞,7)[7] = E(Q)[7].

Let P ∈ E(Q∞,7) be a point of order 7. By Theorem 2.6, P is defined over
some field of degree at most 72 − 1. Therefore, P ∈ E(Q1,7). From Lemma
2.8 it now follows that P ∈ E(Q) and we are done. �

Lemma 3.2. E(Q∞,5)[11∞] = {O}.

Proof. Again by Corollary 2.5 we conclude that there is no 121-torsion in
E(Q∞,5). It remains to prove that E(Q∞,5)[11] = {O}.

Let P ∈ E(Q∞,5) be a point of order 11. From Theorem 2.6 we conclude
that P ∈ E(Q1,5). The modular curve X1(11) is the elliptic curve

y2 + y = x3 − x2.

We can easily compute (using Magma [1]) thatX1(11) has rank 0 and torsion
Z/5Z over Q1,5, and all the torsion points are cusps, so there are no elliptic
curves with 11-torsion over Q1,5. �

Before proving E(Q∞,5)[5∞] = E(Q)[5∞] we will need some technical
results.

Theorem 3.3. [10, Theorem 2] Let E/Q be an elliptic curve with a rational
5-isogeny. The index [AutZ5(T5(E)) : im(ρE,5∞)] isn’t divisible by 25.

Lemma 3.4. Let n be a positive integer and ζ an nth root of unity. Then
for every σ ∈ Gal (Q(E[n])/Q) we have

σ(ζ) = ζdet ρn(σ).

Proof. Let {P,Q} be a basis for E[n] and en(P,Q) = ζn, where ζn is a nth

primitive root of unity. For any nth root of unity ζ, there exists an m ∈ Z
such that ζ = ζmn , So, it suffices to show that σ(ζn) = ζ

det ρn(σ)
n .
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Then there are some a, b, c, d ∈ (Z/nZ)× such that

P σ = aP + bQ and Qσ = cP + dQ.

Using properties of the Weil pairing [24, Ch. III, §8.] we calculate:

σ(ζn) = σ(en(P,Q)) = en(P σ, Qσ) = en(aP + bQ, cP + dQ)

= en(P, P )acen(P,Q)aden(Q,P )bcen(Q,Q)bd

= 1 · ζadn · ζ−bcn · 1bd = ζdet ρn(σ)
n . �

Proposition 3.5. Let n be a positive integer and ζn an nth primitive root
of unity. Let K be a number field and E/K an elliptic curve. Then

det ρE,n(GK) ' Gal (Q(ζn)/K ∩Q(ζn)) .

Proof. Let

f : GK → Gal (Q(ζn)/Q) σ 7→ g ◦ det ◦ρE,n(σ),

where g is the canonical isomorphism mapping (Z/nZ)× → Gal (Q(ζn)/Q)
by sending a to σa, where σa(ζn) = ζan.

As det ρE,n(GK) ≤ (Z/nZ)×, it follows that f(GK) ≤ Gal (Q(ζn)/Q) and
hence, by Galois theory, f(GK) = Gal (Q(ζn)/K ′) for some subfield K ′ of
Q(ζn). From Proposition 3.4 it follows that f is the restriction map sending
σ ∈ GK to σ|Q(ζn) = σdet ρn(σ).

It follows that f(GK) comprises exactly those σa that leave K ∩ Q(ζn)
fixed, proving K ′ = K ∩Q(ζn) and hence the proposition. �

Lemma 3.6. E(Q∞,5)[5∞] = E(Q)[5∞].

Proof. There is no 125-torsion in E(Q∞,5) by Corollary 2.5, so it remains
to prove that E(Q∞,5)[25] = E(Q)[25].

If P ∈ E(Q∞,5) is a point of order 5, then P is defined over Q1,5 by
Theorem 2.6, but then by Lemma 2.8 it follows that P ∈ E(Q). Let us
assume that there is a point P ∈ E(Q∞,5)tors of order 25; obviously P /∈
E(Q). By Corollary 2.10 the order 5 point 5P must be defined over Q.
Since P ∈ E(Q1,5) and the extension Q1,5/Q is cyclic, it follows that for
every σ ∈ GQ there exist some a ∈ (Z/25Z)× such that P σ = aP . Since
5P ∈ E(Q), we have (5P )σ = 5P , so a ≡ 1 (mod 5). Hence, GQ(25) is of
the form {(

a ∗
0 ∗

)
: a ∈ 1 + 5Z/25Z

}
.

Furthermore, detGQ1,5,E(25) is by Proposition 3.5 the unique subgroup of
(Z/25Z)× of order 4: {7,−1,−7, 1}. The group GQ1,5 fixes the point P so
we conclude that GQ1,5,E(25) is of the form{(

1 ∗
0 b

)
: b ∈ {7,−1,−7, 1}

}
.
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Since GQ1,5,E(25) is a subgroup of GQ(25) of index 5, and P /∈ E(Q), so it
follows that

GQ(25) =

{(
a ∗
0 b

)
: a ∈ 1 + 5Z/25Z, b ∈ {7,−1,−7, 1}

}
.

Finally, we calculate that 600 | [GL2(Z/25Z) : GE(25)] | [AutZ5(T5(E)) :
im(ρE,5∞)], a contradiction with Theorem 3.3. �

Theorem 3.7. E(Q∞,5)tors = E(Q)tors.

Proof. From Theorem 2.7, we immediately conclude that E(Q∞,5)[q∞] =
E(Q)[q∞] for all primes q 6= 5, 7, 11.

There is no 49-torsion in E(Q∞,5) by Corollary 2.5, so it remains to prove
that E(Q∞,5)[7] = E(Q)[7]. Let P ∈ E(Q∞,5) be a point of degree 7 such
that P /∈ E(Q). By Theorem 2.6 we conclude that gcd(5, [Q(P ) : Q]) = 1,
which is a contradiction.

The cases q = 11 and q = 5 follow from Lemmas 3.2 and 3.6. �

4. Proof of Theorem 1.2

By Theorem 2.6 and the following easy observations:
• p2 − 1 = (p − 1)(p + 1) isn’t a power of 2 for primes p > 3. This
follows from the fact that gcd(p− 1, p+ 1) = 2,
• p− 1 isn’t a power of 2 for p ∈ {19, 43, 67, 163},
• for a prime p, p − 1 is a power of 2 if and only if p is of the form

22k + 1,

• 3 | (p− 1)2

3
for p ≡ 4, 7 (mod 9),

• p2 − 1

3
isn’t a power of 2 for p ≡ 2, 5 (mod 9) and p > 5. This follows

from the fact that p is of the form 3k−1 for some integer k ≥ 4, and

that means that
p2 − 1

3
= (3k − 2) · k, but gcd(3k − 2, k) ≤ 2, and

3k − 2 and k cannot both be powers of 2 simultaneously for k ≥ 4,

• 3 | p
2 − 1

3
for p ≡ 8 (mod 9),

we can conclude thatE(Q∞,2)[q] = E(Q)[q] for all primes q 6= 2, 3, 5, 7, 13, 17.

Lemma 4.1. E(Q∞,2) does not contain a point of order 13.

Proof. Suppose that there exists such a curve; then the point P of order 13

is defined over the quartic field Q2,2 = Q
(√

2 +
√

2
)
by Theorem 2.6. Let

δ = 2 +
√

2. Then Eδ becomes isomorphic to E over Q2,2 and

E(Q2,2)[13] ' E(Q1,2)[13]× Eδ(Q1,2)[13],

so either E or Eδ would have 13-torsion over Q1,2 = Q
(√

2
)
, which is not

possible by [13, Theorem 3]. �
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Lemma 4.2. E(Q∞,2) does not contain a point of order 17.

Proof. By Corollary 2.10 and Theorem 2.6, a point P of order 17 can be
defined over a number field of degree 8 or 16. An elliptic curve E/Q with such
a point has a 17-isogeny over Q (see [8, Table 2]), so j(E) = −(172 · 1013)/2
or j(E) = −(17 · 3733)/217. We factor the 17th division polynomials of an
elliptic curve with each of these invariants (the choice of the exact quadratic
twist we choose with each j-invariant will be irrelevant) over Q3,2, and obtain
that in one case the smallest degree of an irreducible factor is 4, while in the
other case the smallest degree of an irreducible factor is 8. �

So we have E(Q∞,2)[q∞] = E(Q)[q∞] for all primes q 6= 2, 3, 5, 7.

Lemma 4.3. If E(Q∞,2)tors has a point of order 7, then E(Q∞,2)tors ' Z/7Z

Proof. If E(Q∞,2)tors has a point of order 7, then by Corollary 2.10, then
P is defined over Q1,2. Let E2 be the quadratic twist of E by 2, which
becomes isomorphic to E over Q1,2. Since E(Q1,2)[7] ' E(Q)[7]×E2(Q)[7],
we conclude that either E(Q) or E2(Q) has a point of order 7.

If E(Q∞,2)tors contained a point of order 2, then both E(Q) and E(2)(Q)
would also have to contain a point of order 2, which would mean that one of
these groups has a point of order 14, which is by Mazur’s theorem impossible.

If E(Q∞,2)tors contained a point of order 3, then by Corollary 2.10 it would
have to be defined over Q1,2, which would mean that E(Q1,2) has a point of
order 21, which is impossible by [12, 18].

From the first paragraph of this proof we conclude that since either E
or E2 has a point of order 7 over Q, we conclude that E certainly has a
7-isogeny over Q. So, if E(Q∞,2)tors contained a point of order 5, it would
have a 5-isogeny over Q by Lemma 2.3, and hence also a 35-isogeny over Q,
contradicting Theorem 2.4. �

Lemma 4.4. If E(Q∞,2)tors has a point of order 5, then E(Q∞,2)tors ' Z/5Z
or Z/10Z

Proof. Suppose E(Q∞,2)tors has a point of order 5. By Corollary 2.10, the
point of order P on E has to be defined over Q2,2.

If E(Q∞,2)tors had a point of order 15, then both a point of order 3 and
of order 5 have to be defined over Q2,2, so the 15-torsion point must already
be defined over Q2,2. But X1(15)(Q) = X1(15)(Q2,2), so there are no elliptic
curves with a point of order 15 over Q2,2.

Suppose now E(Q∞,2)tors has a point of order 10. Then E(Q) has a
point of order 2. Suppose E(Q∞,2)tors ⊇ Z/2Z ⊕ Z/10Z; then it would
follow that E[2] is defined over Q1,2 (as it has to be defined over some
quadratic field if there is a point of order 2 over Q). Since E(Q2,2)[5] ' Z/5Z
and E(Q2,2)[5] ' E(Q1,2)[5] ⊕ Eδ(Q1,2)[5], for some quadratic twist (over
Q1,2) Eδ of E. So, since quadratic twisting does not change the 2-torsion,
either Eδ(Q1,2) ⊇ Z/2Z ⊕ Z/10Z or E(Q1,2) ⊇ Z/2Z ⊕ Z/10Z. But we
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compute X1(2, 10)(Q(
√

2)) = X1(2, 10)(Q), so there are no elliptic curves
over Q1,2 = Q(

√
2) with Z/2Z⊕ Z/10Z torsion.

Finally E(Q∞,2)[5n] cannot be isomorphic to Z/5nZ for n = 4, 5, 7 as
then E would have a rational 5n-isogeny which is impossible by Lemma 2.3
and Theorem 2.4. �

Lemma 4.5. If E(Q∞,2)tors has a point of order 9, then E(Q∞,2)tors '
Z/9Z.

Proof. Suppose E(Q∞,2)tors contained a point P of order 27. The point
3P of order 9 would have to be defined over Q1,2 by Corollary 2.10. There
cannot be any 27-torsion over Q1,2 [12, 18]. But on the other hand, the
point of order 9 cannot become divisible by 3 in a Galois extension of Q1,2

of degree 2n by Corollary 2.12.
Suppose E(Q∞,2)tors contained a point of order 18. Then E(Q∞,2)tors

would have to contain a 2-torsion point, and a point P of order 9 would have
to be defined over Q1,2 by Corollary 2.10. So E(Q1,2) would contain a point
of order 18. But there are no elliptic curves defined over Q with a point of
order 18 over a quadratic field by [22, Theorem 2]. �

Lemma 4.6. If E(Q∞,2)tors has a point of order 12, then E(Q∞,2)tors '
Z/12Z.

Proof. By the previous lemmas, E(Q∞,2)tors cannot contain a points of
order 5, 7 or 9, so it remains to show that E(Q∞,2)tors does not have full
2-torsion and that it doesn’t have a point of order 24. The fact that there
are no points of order 24 follows from the fact that there are no points of
order 24 over Qab of which Q∞,2 is a subfield by [2, Theorem 1.2].

Suppose now that E(Q∞,2)tors ' Z/2Z ⊕ Z/12Z, and let E(Q∞,2)tors =
〈P,Q〉, where P is of order 12 and Q is of order 2. We have 2E(Q∞,2)tors =
〈2P 〉 ' Z/6Z is a GQ-invariant subgroup, and hence (6P )σ = 6P for all
σ ∈ GQ, i.e. 6P is defined over Q. By [8, Proposition 4.8], 3P has to be
defined over an extension of Q which has Galois group Z/2Z,Z/2Z⊕ Z/2Z
or D4. So we conclude that it has to be Z/2Z (since by assumption Q(3P )
is defined over Q∞,2). So the point 3P of order 4 is defined over Q1,2.

The point 4P is also defined over Q1,2 by Corollary 2.10. Since 6P is
defined over Q, then Q has to be defined over Q1,2.

So since 4P, 3P and Q are all defined over Q1,2, we conclude that

E(Q1,2)tors ' Z/2Z⊕ Z/12Z,
but this is impossible by [13, Theorem 10.]. �

Finally, we have the following result that controls the 2-power torsion.

Theorem 4.7. [7, Theorem 1] For an elliptic curve E/Q, E(Q∞,2)[2∞] ⊆
Z/2Z⊕ Z/8Z.

Proof of Theorem 1.2. The results above combined prove that all the pos-
sible torsion groups E(Q∞,2)tors are contained in the list given in Theorem
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1.2. Theorem 6.1 proves that all the groups listed, apart from maybe {O}
and Z/2Z, do appear as E(Q∞,2)tors, so it remains to show that these two
groups appear to complete the proof of Theorem 1.2.

To prove the existence of E/Q such that E(Q∞,2)tors ' {O}, take E to
be an elliptic curve whose mod q representation is surjective for all primes q
(almost all elliptic curves satisfy this [6]). Then if E has a point of order q
over a number field K, then [K : Q] is divisible by q2− 1 [19, Theorem 5.1.].
But q2 − 1 cannot be a power of 2, so it follows that E(Q∞,2)tors ' {O}.

Finally, to obtain E/Q such that E(Q∞,2)tors ' Z/2Z, take an elliptic
curve with E(Q) ' Z/2Z such that E has no 4-isogenies over Q, that its
discriminant ∆(E) is not twice a rational square and such that its mod q
representations are surjective for all primes q 6= 2. One would expect that
almost all elliptic curves with Z/2Z torsion over Q satisfy this, but as an
explicit example one can take the curve with Cremona reference 69a2. The
fact that the discriminant is not twice a rational square implies thatQ(E[2])∩
Q∞,2 = Q and hence E(Q∞,2)[2] ' Z/2Z and the non-existence of a rational
4-isogeny then proves, by Lemma 2.3, that there are no points of order 4 in
E(Q∞,2). Finally, as before, the fact that the mod q representations of E are
surjective for all primes q 6= 2 proves that E(Q∞,2)[q] = {O} for all primes
q 6= 2. �

5. Proof of Theorem 1.3

Combining Theorem 2.6, Corollary 2.5 and the following facts:
• p2 − 1 isn’t a power of 3 for any odd prime p (it’s divisible by 2),
• p− 1 isn’t a power of 3 for any odd prime p (it’s divisible by 2),

we conclude that E(Q∞,3)[q] = E(Q)[q] for all primes q 6= 2, 3, 7, 13, 19, 163.

Lemma 5.1. E(Q∞,3)[19] = {O}.

Proof. From Corollary 2.10 we deduce that a point of order 19 on E/Qmust
be defined over Q2,3. By Lemma 2.3 it follows that E must have a rational
19-isogeny. There is only one family of quadratic twists (with j-invariant
−215 · 33), with complex multiplication by Z[(1 +

√
−19)/2]. We check that

the 19th division polynomials of these elliptic curves with 19-isogeny don’t
have a root over the field Q2,3. It is enough to check this for one curve with
j-invariant −215 · 33, as if the 19th division polynomial of this one curve
with this j-invariant doesn’t have a root over Q2,3, then neither does any
quadratic twist of E. So E(Q∞,3)[19] = {O}. �

Lemma 5.2. E(Q∞,3)[13] = {O}

Proof. From Corollary 2.10, a point of order 13 can be defined only over
Q1,3 = Q(ζ9)+ (the maximal real subfield of Q(ζ9)). The modular curve
X1(13) is a curve of genus 2 with the following model (as we can see in [13]):

y2 = x6 − 2x5 + x4 − 2x3 + 6x2 − 4x+ 1.

https://www.lmfdb.org/EllipticCurve/Q/69/a/1
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The rank of the Jacobian of this curve over Q(ζ9)+ is 0, and the torsion is
Z/19Z, and we easily check that X1(13)(Q1,3) = X1(13)(Q), so there are no
elliptic curves with 13-torsion over Q1,3. So E(Q∞,3)[13] = {O}. �

Lemma 5.3. E(Q∞,3)[5∞] = E(Q)[5∞].

Proof. From Theorem 2.6, we see that if E(Q)[5] = {O}, then E(Q∞,3)[5] =
{O}. If E(Q)[5] 6= {O}, then by Corollary 2.12, we see that E(Q)[5∞] =
E(Q∞,3)[5∞]. �

Lemma 5.4. If E(Q∞,3)tors has a point of order 7, then E(Q∞,3)tors ' Z/7Z
or Z/21Z

Proof. By Corollary 2.12, the 7-power torsion can grow only if E(Q)[7] =
{O}. We now determine, for an E/Q such that

E(Q)[7] = {O}, E(Q∞,3)[7] 6= {O},
what are the possible torsion groups of E(Q∞,3). By Corollary 2.10 we
conclude that a point of order 7 appears over Q1,3.

We first note that E(Q∞,3)[7∞] ' Z/7Z, as there cannot be any 49-torsion
by Proposition 2.5. Also E(Q∞,3) obviously cannot contain a subgroup iso-
morphic to Z/35Z due to Theorem 2.4.

Suppose E(Q∞,3) contains Z/14Z. Then E(Q) has a point of order 2, and
so E(Q1,3) contains a subgroup isomorphic to Z/14Z. But we compute that
X1(14)(Q1,3) = X1(14)(Q), which shows that this is impossible.

Suppose E(Q∞,3) contains Z/21Z. First note that then E(Q∞,3)tors '
Z/21Z, as a larger torsion group would contradict Theorem 2.4. By Corollary
2.10, we see that the 21-torsion point has to be defined over Q1,3. By [22,
Theorem 1], there is a unique such curve E = 162b1 satisfying this property.

�

Lemma 5.5. If E(Q)[2∞] 6= E(Q∞,3)[2∞], then E(Q∞,3)[2∞] ' Z/2Z ⊕
Z/2Z.

Proof. By [21, Lemma 1], ifE(Q)[2] 6= {O}, thenE(Q)[2∞] = E(Q∞,3)[2∞].
The 2-power torsion can grow only if E(Q)[2] = {O} and all the growth
occurs over the field obtained by adjoining a 2-torsion point. By [22, Propo-
sition 9], if E(Q1,3)[2] 6= {O} then E(Q1,3)[2∞] ' Z/2Z ⊕ Z/2Z and so
E(Q∞,3)[2∞] ' Z/2Z⊕ Z/2Z. �

Lemma 5.6. There are no points of order 18 in E(Q∞,3).

Proof. Suppose that E/Q has a point P of order 18 over Q∞,3. By Corollary
2.10, we see that the point 2P of order 9 is defined over Q1,3 = Q(ζ9)+.
By Lemma 5.5 and the arguments in its proof, we have E(Q∞,3)[2∞] =
E(Q1,3)[2∞]. So it follows that 9P and hence also 9P + 5 · (2P ) = P is
defined over Q1,3 = Q(ζ9)+.

We will prove that X1(18)(Q(ζ9)+) consists of only cusps. We compute
that the rank of J1(18) over Q(ζ9)+ is 0. By considering reduction modulo
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small primes of good reduction, we obtain that the torsion of J1(18)(Q(ζ9)+)
is a subgroup of Z/21Z2. We find 12 points in X1(18)(Q(ζ9)+), all of which
are cusps, and the differences of pairs of these cusps generate a group iso-
morphic to Z/7Z⊕Z/21Z. To prove that J1(18)(Q(ζ9)+) ' Z/7Z⊕Z/21Z,
we use the following argument. One finds that

J1(18)(Q)tors ' Z/21Z,

J1(18)(Q(ζ3))tors ' Z/3Z⊕ Z/21Z,
and by considering reduction modulo small primes, that

J1(18)(Q(ζ3)) ≤ Z/21Z⊕ Z/21Z.

Since Q(ζ9) = Q(ζ3)Q(ζ9)+ and Q(ζ3) ∩ Q(ζ9)+ = Q, we see that the
field of definition of the non-rational elements of J1(18)(Q(ζ9))[3] is Q(ζ3).
Hence J1(18)(Q(ζ9)+)[3] ' Z/3Z and after checking that none of the points
in J1(18)(Q(ζ9)+) come from points in X1(18)(Q(ζ9)+) apart from the 12
known ones, we are done. �

Lemma 5.7. There are no points of order 163 in E(Q∞,3).

Proof. Suppose E(Q∞,3) has a point P of order 163. Then by Lemma 2.3
we conclude that E has a 163-isogeny over Q and hence E has j-invariant
j0 = −2183353233293. By Corollary 2.10 it follows that Q(P ) ⊆ Q3,3. We
factor the 163-division polynomial ψ163 of E (we can choose any elliptic
curve with j-invariant j) over F19 and obtain that the smallest factor is of
degree 81. Since the rational prime 19 splits completely in Q1,3, this implies
that the smallest factor of ψ163 over Q1,3 is at least 81. But this means that
[Q(P ) : Q1,3] ≥ 81, so [Q(P ) : Q] ≥ 243, which is a contradiction with Q(P )
being a subfield of Q3,3. �

Proof of Theorem 1.3. It remains to determine when the 3-power torsion
grows.

By Lemma 2.8, if E(Q∞,3)[3] 6= {O}, then E(Q)[3] 6= {O}.
Suppose E(Q∞,3) has a point P of order 27; then E has a rational 27-

isogeny over Q, so j(E) = −215 · 3 · 53. By Corollary 2.10, P ∈ E(Q2,3). Let
E = 27a2; we have j(E) = −215 · 3 · 53 We factor ψ := ψ27/ψ9, where ψn
denotes the n-division polynomial E - the polynomial which is the product
of all the x-coordinates of the points of order 27 of E and obtain that this
polynomial has roots over Q2,3. This implies that there exists a single qua-
dratic twist (over Q2,3) Eδ of E, for some δ ∈ L∗/(L∗)2 such that Eδ(Q2,3)

has a point of order 27. It remains to check whether Eδ is defined over Q,
or equivalently, whether δ · u2 = d for some u ∈ L∗ and some d ∈ Q∗/(Q∗)2.
We compute a δ and obtain that NQ2,3/Q(δ) = 349, so the only twists that
we can consider are d = 3 and −3. We obtain that E−3, which is 27a4 has
a point of order 27 over Q2,3. Note that from our argumentation it follows
that 27a4 is the only elliptic curve with a point of order 27 over Q∞,3. For
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E = 27a4, we have that E(Q∞,3)tors ' Z/27Z, as any larger torsion would
violate Theorem 2.4.

If E(Q)[3∞] ' Z/9Z, then we claim that E(Q∞,3)tors ' Z/9Z. Indeed
there cannot be any q-torsion for any q 6= 2, 3 as this would force the existence
of a 9q-isogeny over Q. It is impossible that E(Q∞,3) gains any 2-torsion, as
this would imply that there is Z/2Z⊕Z/18Z torsion over Q1,3, which cannot
occur by Lemma 5.6.

Finally from what we have already proved, when E(Q∞,3)[3∞] ' Z/3Z
then E(Q∞,3)tors has to be either Z/3Z, Z/6Z, Z/12Z, Z/21Z or Z/2Z ⊕
Z/6Z.

These results combined prove that all the possible groups E(Q∞,3)tors are
contained in the list given in Theorem 1.3. The results of Section 6 show that
each group on the list appears, apart from maybe {O} and Z/3Z. Hence, to
complete the proof of Theorem 1.3, we need to show that there exist elliptic
curves E/Q such that E(Q∞,3)tors ' {O} and E(Q∞,3)tors ' Z/3Z.

For the trivial group {O} one can, as in the proof of Theorem 1.2, take
an elliptic curve with surjective mod q Galois representation for all primes
q. Such an elliptic curve E has no q-torsion over Q∞,3 for q > 2 by the same
arguments as in the proof of Theorem 1.2 and has no 2-torsion over Q∞,3,
as the cubic field generated by a 2-torsion point of E is not Galois over Q,
and is hence not contained in Q∞,3.

To obtain an E/Q such that E(Q∞,3)tors ' Z/3Z, take an elliptic curve
with E(Q)tors ' Z/3Z, no 9-isogenies over Q, and surjective mod q Galois
representations for all q 6= 3, such as the one with Cremona reference 106c1.
The same arguments as above and as in the proof Theorem 1.2 show that
E(Q∞,3)tors ' Z/3Z. �

6. Examples of torsion growth

In this last section, we address the following question. Fix a prime p.
Given a group G that can appear as E(Q∞,p)tors for some E/Q, do there
exist infinitely many j-invariants such that there exists an E/Q with such
a j-invariant with E(Q∞,p)tors ' G but E(Q)tors 6' G? By Theorem 1.1 we
need only consider the cases where p = 2, 3.

Theorem 6.1. Let G be one of the following groups:

Z/NZ, 3 ≤ N ≤ 10, or N = 12,

Z/2Z⊕ Z/2NZ, 1 ≤ N ≤ 4,

There exist infinitely many elliptic curves E/Q with distinct j-invariants
such that E(Q∞,2)tors ' G and E(Q)tors 6' G.

Proof. We break this down into cases depending on whether E(Q)[2] needs
to be trivial or not.

Suppose that G = Z/NZ for some odd integer N . Then there exist infin-
itely many elliptic curves E/Q with distinct j-invariants such thatE(Q)tors '

https://www.lmfdb.org/EllipticCurve/Q/106/d/2


114 M. CHOU, H. DANIELS, I. KRIJAN AND F. NAJMAN

Z/NZ and E has no additional isogenies over Q. This is true because for
each N in the statement the elliptic curves E/Q with E(Q)tors ' Z/NZ
come in a non-isotrivial 1-parameter family that generically doesn’t have
any additional isogenies. So by Hilbert irreducibility, outside of a “thin” set
every curve in the family also has no additional isogenies. For more details
about Hilbert irreducibility and thin sets, see [23, Chapter 9]. Thus, for each
of these E the quadratic twist E2 of E by 2 will have trivial torsion over
Q, because for odd N we have that E(Q(

√
2))[N ] ' E(Q)[N ] ⊕ E2(Q)[N ]

and since Q(
√

2) does not contain any mth-roots of unity for any 2 < m | N
the existence of the Weil-pairing gives that E2(Q)[N ] = {O}. Further,
since E and E2 become isomorphic over Q(

√
2) ⊆ Q∞,2, it follows that

E2(Q∞,2)tors ' Z/NZ. Notice that the torsion can’t grow any further since
E and hence E2 don’t have any additional isogenies.

Next, suppose that G = Z/2nZ with n ≥ 2. Again there are infinitely
many elliptic curves E/Q such that E(Q)tors ' Z/2nZ and E has no addi-
tional isogenies over Q. Now we have E2(Q)tors ' Z/2Z and E2(Q2,∞)tors '
Z/2nZ or Z/2Z⊕Z/2nZ. Again, the torsion can’t grow any further since E
and hence E2 don’t have any additional isogenies. If n > 4, we can’t have
that E2(Q2,∞)tors ' Z/2Z⊕ Z/2nZ by Theorem 1.2, while when n = 2, 3, 4
both cases are possible depending on the class of the discriminant of E
modulo squares. Checking the generic elliptic curves with a rational torsion
subgroup isomorphic to Z/2nZ for n = 2, 3, 4 we see that there are infinitely
many curves whose discriminant are congruent to 2 mod squares and infin-
itely many curves whose discriminants are congruent to −1 mod squares.
In the first case we have that E2(Q2,∞)tors ' Z/2Z ⊕ Z/2nZ, while in the
second case E2(Q2,∞)tors ' Z/2nZ. So all that remains is to check the case
when G = Z/2Z⊕ Z/2Z.

To finish the last case we give a non-isotrivial family Et with Et(Q)tors '
Z/2Z and Q(Et[2]) = Q(

√
2). This family is

Et : y2 = x3 − 2

t2 − 1/2
x2 − 2

t2 − 1/2
x

and generically these curves have no other isogenies and so for infinitely
many of them Et(Q2,∞)tors ' Z/2Z⊕ Z/2Z. �

We list in Table 1 examples of elliptic curves with minimal discriminant
achieving growth to each possible torsion group over Q∞,2.

Remark. Clearly it is impossible for an elliptic curve to have its torsion
“grow” and become trivial so in Theorem 6.1 G cannot be the trivial group
and since an elliptic curve can only go from having trivial 2-torsion to having
a point of order 2 in an extension degree divisible by 3, it cannot be that
torsion grows to Z/2Z over Q∞,2.

Now we consider the cases of torsion growth over Q∞,3. By the results in
Section 5 we need to consider the cases of torsion growth listed on Table 2 (we
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Cremona Reference E(Q)tors E(Q∞,2)tors

704d1 {O} Z/3Z
24a6 Z/2Z Z/4Z

704a1 {O} Z/5Z
320c1 Z/2Z Z/6Z
832f {O} Z/7Z
24a3 Z/4Z Z/8Z

1728j3 {O} Z/9Z
768b1 Z/2Z Z/10Z
30a5 Z/6Z Z/12Z
14a5 Z/2Z Z/2Z⊕ Z/2Z
24a2 Z/2Z⊕ Z/2Z Z/2Z⊕ Z/4Z
14a2 Z/6Z Z/2Z⊕ Z/6Z
32a4 Z/4Z Z/2Z⊕ Z/8Z

Table 1. Elliptic curves of minimal conductor with torsion
growth over Q∞,2.

Cremona Reference E(Q)tors E(Q∞,3)tors

162b2 {O} Z/7Z
324a2 {O} Z/2Z⊕ Z/2Z
27a3 Z/3Z Z/9Z

162b1 Z/3Z Z/21Z
27a4 Z/3Z Z/27Z

324a1 Z/3Z Z/2Z⊕ Z/6Z

Table 2. Elliptic curves of minimal conductor with torsion
growth over Q∞,3.

offer an example of minimal conductor for each type of growth in question).
We prove that besides Z/3Z to Z/21Z and Z/3Z to Z/27Z (which are easily
explained by X0(21) and X0(27) having finitely many rational points), all of
these cases occur for infinitely many j-invariants.

First we have a theorem that gives the conductor of a cyclic cubic number
field in terms of its defining polynomial.

http://www.lmfdb.org/EllipticCurve/Q/704d1
http://www.lmfdb.org/EllipticCurve/Q/24a6
http://www.lmfdb.org/EllipticCurve/Q/704a1
http://www.lmfdb.org/EllipticCurve/Q/320c1
http://www.lmfdb.org/EllipticCurve/Q/832f1
http://www.lmfdb.org/EllipticCurve/Q/24a3
http://www.lmfdb.org/EllipticCurve/Q/1728j3
http://www.lmfdb.org/EllipticCurve/Q/768b1
http://www.lmfdb.org/EllipticCurve/Q/30a5
http://www.lmfdb.org/EllipticCurve/Q/14a5
http://www.lmfdb.org/EllipticCurve/Q/24a2
http://www.lmfdb.org/EllipticCurve/Q/14a2
http://www.lmfdb.org/EllipticCurve/Q/32a4
http://www.lmfdb.org/EllipticCurve/Q/162b2
http://www.lmfdb.org/EllipticCurve/Q/324a2
http://www.lmfdb.org/EllipticCurve/Q/27a3
http://www.lmfdb.org/EllipticCurve/Q/162b1
http://www.lmfdb.org/EllipticCurve/Q/27a4
http://www.lmfdb.org/EllipticCurve/Q/324a1
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Theorem 6.2 ([11]). Let K be a number field with [K : Q] = 3 and
Gal(K/Q) ' Z/3Z. Then K = Q(θ) for a θ satisfying θ3 +Aθ+B = 0 with
A,B ∈ Z and, for any R ∈ Z, if R2 | A and R3 | B, then |R| = 1. Further,
the conductor f(K) is given by

f(K) = 3α
∏

p(prime)≡1 mod 3
p|(A,B)

p

where, letting C be the square root of the discriminant of K,

α =

{
0 if 3 - A or 3 || A, 3 - B, 33 | C
2 if 32 || A, 32 || B or 3 || A, 3 - B, 32 || C.

The following lemma gives a way to construct an elliptic curve with torsion
growth {O} over Q to Z/2Z⊕Z/2Z over Q∞,3 and also an elliptic curve with
torsion growth Z/3Z over Q to Z/2Z⊕ Z/6Z over Q∞,3.

Lemma 6.3. Let

j3(h) =
(h+ 27)(h+ 3)3

h
.

Suppose that we have u, v ∈ Z with (u, v) = 1 and u2 + 27v2 = 4 · 3k · p3 for
some k = 2, 3 and some p ≡ 1 (mod 3). Then there is an elliptic curve E/Q
with j-invariant j3(u

2

v2
) such that

E(Q)tors = {O} and E(Q∞,3)tors ' Z/2Z⊕ Z/2Z.
Moreover there is a quadratic twist E′ of E such that

E′(Q)tors ' Z/3Z and E′(Q∞,3)tors ' Z/2Z⊕ Z/6Z.

Proof. LetE/Q be an elliptic curve withE(Q)tors ' Z/3Z andE(Q∞,3)tors '
Z/2Z⊕ Z/6Z. Then E has a rational 3-isogeny and square discriminant, so
E corresponds to a rational point on X0(3), and so

j(E) =
(h+ 27)(h+ 3)3

h
,

for some h ∈ Q. A model for an elliptic curve with such a j-invariant is given
by

Eh : y2 = f(x) = x3 +
−27(h+ 3)3(h+ 27)

(h2 + 18h− 27)2
x+

54(h+ 3)3(h+ 27)

(h2 + 18h− 27)2
,

and by computing the discriminant of this model we can see that Eh has
square discriminant if and only if h ∈ (Q∗)2. If we choose an h such
that the discriminant of Eh is a square, then Gal(Q(Eh[2])/Q) ' Z/3Z
and Q(Eh[2]) = Q(f).

Now we examine Q(f) to determine when Q(f) = Q1,3. This will occur
precisely when the conductor of Q(f) is divisible only by 3. Through a
change of variables we see that Q(f) = Q(x3 +A(h)x+B(h)) where

A(h) = −27(h+ 3)(h+ 27) and B(h) = 54(h+ 27)(h2 + 18h− 27).
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We homogenize the equations by letting h = u2

v2
be written in lowers terms,

so that all parameters are integers to obtain

A(u, v) = −27(u2 + 3v2)(u2 + 27v2)

and
B(u, v) = 54(u2 + 27v2)(u4 + 18u2v2 − 27v4).

By Theorem 6.2 the conductor will be a power of 3 when the gcd of A(u, v)
and B(u, v) is divisible only by 3, primes p ≡ 2 mod 3, and by cubes, since
by a change of variables we can remove cubes from the gcd of A(u, v) and
B(u, v).

We can see that (A(u, v), B(u, v)) = 2a ·3b ·(u2+27v2) for some a, b ∈ Z≥0,
since if a prime divides both u2 +3v2 and u4 +18u2v2−27v4 then it must be
2 or 3. Thus, if we choose u and v as in the statement of the lemma, we see
that Q(Eh[2]) will have conductor a power of 3, and thus Q(Eh[2]) = Q1,3.

Finally, by construction, Eh is defined over Q and has a rational 3-isogeny.
Thus, there is a quadratic twist of Eh that has a 3-torsion point over Q. Note
that taking a quadratic twist does not change the field of definition of the
2-torsion points, so this twist indeed has the growth we are looking for over
Q1,3. �

Now, we have a lemma to ensure there are infinitely many non-isomorphic
E/Q with the above torsion growth.

Lemma 6.4. For any prime p ≡ 1 (mod 3) and k = 2, 3 there exist u, v ∈ Z
with (u, v) = 1 such that u2 + 27v2 = 4 · 3k · p3.

Proof. Let K = Q(
√
−3). Then

u2 + 27v2 = NmK/Q(u+ 3v
√
−3)

and so we wish to prove that there are elements of the form u+ 3v
√
−3 with

(u, v) = 1 of norm 4 · 3k · p3 for any p ≡ 1 mod 3 and for k = 2, 3. Since
norms are multiplicative, and we see that

4 · 32 = NmK/Q(3 + 3
√
−3)

and
4 · 33 = NmK/Q(9 + 3

√
−3)

it remains to show that there is an element of norm p3 in K.
Let α be a root of x2 + x+ 1, so that the ring of integers of K is equal to

Z[α]. Since p ≡ 1 mod 3, this prime splits in K and so

p = pp = (x+ yα)(x+ yα2)

for some x, y ∈ Z. We have NmK/Q(p) = p and so we claim p3 is the element
we want to take. We can find relatively prime a, b ∈ Z such that

p3 = a+ 3bα.
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Indeed, simply writing p3 = (x + yα)3 for some x, y ∈ Z and expanding
shows that the coefficient of α is divisible by 3. Further, if d = (a, b) > 1,
then

p3 = (d)

(
a

d
+ 3

b

d
α

)
.

However, taking norms on both sides shows that d = p, so then p | p3, which
is impossible.

Thus, we have found elements in K of norm 4 · 32, 4 · 33, and p3 for
any prime p ≡ 1 mod 3. The lemma follows from expanding the product of
3 + 3

√
−3 and 9 + 3

√
−3 with p3 to show that the product is indeed of the

form u+ 3v
√
−3 with (u, v) = 1. �

An immediate corollary of this lemma is:

Corollary 6.5. There are infinitely many j ∈ Q such that there exists
an elliptic curve E/Q with j(E) = j that satisfies E(Q)tors = {O} and
E(Q∞,3)tors ' Z/2Z⊕ Z/2Z.

There are infinitely many j ∈ Q such that there exists an elliptic curve
E/Q with j(E) = j that satisfies E(Q)tors ' Z/3Z and E(Q∞,3)tors '
Z/2Z⊕ Z/6Z.

Now we illustrate a parallel idea for torsion growth from {O} to Z/7Z and
from Z/3Z to Z/9Z over Q∞,3, respectively.

Lemma 6.6. Let

j7(h) =
(h2 + 13h+ 49)(h2 + 5h+ 1)3

h
.

Suppose that we have u, v ∈ Z with (u, v) = 1 and u2+13uv+49v2 = 3k·p3 for
some k = 2, 3 and some p ≡ 1 (mod 3). Then there is an elliptic curve E/Q
with j-invariant j7(uv ) such that E(Q)tors = {O} and E(Q∞,3)tors ' Z/7Z.

Proof. Let E/Q be an elliptic curve with E(Q∞,3)tors ' Z/7Z. Then E/Q
has a 7-isogeny over Q, so it corresponds to a rational point on X0(7), and
so

j(E) =
(h2 + 13h+ 49)(h2 + 5h+ 1)3

h
for some h ∈ Q. A model for an elliptic curve with such a j-invariant is given
by

Eh : y2 = x3 − 27(h2 + 5h+ 1)3(h2 + 13h+ 49)

(h4 + 14h3 + 63h2 + 70h− 7)2
x

+
54(h2 + 5h+ 1)3(h2 + 13h+ 49)

(h4 + 14h3 + 63h2 + 70h− 7)2
.

We can compute the 7th division polynomial of Eh, and obtain that it has
one irreducible factor of degree 3, which we denote by f7, and one irreducible
factor of degree 21. We wish to determine for which values of h does this
degree 3 factor define the extension Q1,3.
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By a change of coordinates we see that Q(f3(h)) = Q(x3 +A(h)x+B(h))
where

A(h) = −3(h2 + 13h+ 49) and B(h) = −(2h+ 13)(h2 + 13h+ 49).

We homogenize the equations by letting h = u
v with (u, v) = 1 so that all

parameters are integers to obtain

A(u, v) = −3(u2 + 13uv + 49v2)

and
B(u, v) = −(2u+ 13v)(u2 + 13uv + 49v2).

By Theorem 6.2 the conductor will be a power of 3 when the gcd of A(u, v)
and B(u, v) is divisible only by 3, primes p ≡ 2 mod 3, and by cubes, since
by a change of variables, we can remove cubes from the gcd of A(u, v) and
B(u, v).

We can see that (A(u, v), B(u, v)) = 2a · 3b · (u2 + 13uv + 49v2) for some
a, b ∈ Z≥0. Thus, if we choose u and v as in the statement of the lemma,
we see that Q(f7) will have conductor a power of 3, and thus Q(f7) = Q1,3.
Now taking an appropriate quadratic twist, we can make Q(f7) = Q(P ) for
a point P ∈ E[7] of order 7. �

Lemma 6.7. Let h = u
v for u, v ∈ Z with (u, v) = 1 satisfying

u2 + 3uv + 9v2 = 33 · p3

for some prime p ≡ 1 (mod 3) and let Eh/Q be the elliptic curve given by

Eh : y2 = x3 − 27h5(h3 − 24)5x+ 54h6(h3 − 24)6(h6 − 36h3 + 216).

Then Eh(Q)tors ' Z/3Z and Eh(Q∞,3)tors ' Z/9Z.

Proof. For such torsion growth to occur, an elliptic curve must have a 3-
torsion point over Q as well as a 9-isogeny over Q whose kernel contains this
point of order 3. A model for elliptic curves over Q with this level structure
is given in [3] Table 6, and they are elliptic curves precisely of the form

Eh : y2 = x3 − 27h5(h3 − 24)5x+ 54h6(h3 − 24)6(h6 − 36h3 + 216)

for some h ∈ Q. We can compute the 9th division polynomial of Eh and
divide it by the 3rd division polynomial and obtain one factor of degree 3,
which we denote by f9. We wish to determine for which values of h does this
degree 3 factor define the extension Q1,3.

By a change of coordinates we see that Q(f9(h)) = Q(x3 +A(h)x+B(h))
where

A(h) = −432(h2 + 3h+ 9) and B(h) = −1728(2h+ 3)(h2 + 3h+ 9).

We homogenize the equations by letting h = u
v with (u, v) = 1 so that all

parameters are integers to obtain

A(u, v) = −432(u2+3uv+9v2) and B(u, v) = −1728(2u+3v)(u2+3uv+9v2).
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By Theorem 6.2 the conductor will be a power of 3 when the gcd of A(u, v)
and B(u, v) is divisible only by 3, primes p ≡ 2 mod 3, and by cubes, since
by a change of variables, we can remove cubes from the gcd of A(u, v) and
B(u, v).

We can see that (A(u, v), B(u, v)) = 2a · 3b · (u2 + 3uv + 9v2) for some
a, b ∈ Z≥0. Thus, if we choose u and v as in the statement of the lemma,
we see that Q(f9) will have conductor a power of 3, and thus Q(f9) = Q1,3.
Now, if P is a generator of the kernel of the isogeny, then GQ acts on 〈P 〉
by multiplication by 1, 4, or 7, since 3P ∈ E(Q). Hence, P is fixed by an
index 3 subgroup of GQ, and thus defined over a cubic field, in particular,
the cubic field where its x-coordinate is defined, i.e. Q(f9) = Q1,3. �

We remark that the criteria given in Lemma 6.6 and Lemma 6.7 are asking
when 33p3 is primitively represented by some binary quadratic form. In both
Lemmas, the binary quadratic forms have discriminant −27. We now prove
that both the above criteria are satisfied for infinitely many primes p by
proving a statement about integers represented by binary quadratic forms of
discriminant −27.

Lemma 6.8. Let f(x, y) be any binary quadratic form of discriminant −27.
Then there exist primitive solutions to f(x, y) = 33 ·p3 for all p ≡ 1 (mod 3).

Proof. Since f(x, y) has discriminant −27, there is an SL2(Z) transforma-
tion of variables so that

f(x, y) ∼ u2 + uv + 7v2,

i.e.

[
u

v

]
= M

[
x

y

]
for some M ∈ SL2(Z). Moreover, SL2(Z) transformations

preserve the gcd of the coordinates, so we need only find primitive solutions
to

u2 + uv + 7v2 = 33 · p3

for all primes p ≡ 1 (mod 3). We let K = Q(
√
−3) with ring of integers by

Z[α] where α = −1+
√
−3

2 is a primitive 3rd root of unity. Notice that

u2 + uv + 7v2 = NmK/Q(u+ 3vα),

so we want to find elements in K of the form u + 3vα with (u, v) = 1 and
norm 33 · p3.

Let p be a prime such that p ≡ 1 (mod 3). Then p is split in K, so

p = pp = (x+ yα)(x+ yα2)

for some x, y ∈ Z. Recalling the argument given in the proof of Lemma 6.4,

p3 = a+ 3bα

for some relatively prime integers a, b ∈ Z. Further, we have that 3 is ramified
in K,

(3) = p2
3 = (1 + 2α)2
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and finally that p3
3 = (3 + 2(3α)). Thus, an element of norm 33p3 is

p3
3p

3

and the lemma follows from expanding the product of the two elements to
show that the product is indeed of the form u+ 3vα with (u, v) = 1. �

Thus, an immediate corollary is

Corollary 6.9. There are infinitely many j ∈ Q such that there exists
an elliptic curve E/Q with j(E) = j that satisfies E(Q)tors = {O} and
E(Q∞,3)tors ' Z/7Z.

There are infinitely many j ∈ Q such that there exists an elliptic curve
E/Q with j(E) = j that satisfies E(Q)tors ' Z/3Z and E(Q∞,3)tors ' Z/9Z.
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