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Atomic decomposition of product Hardy
spaces via wavelet bases

on spaces of homogeneous type

Yongsheng Han, Ji Li, M. Cristina Pereyra
and Lesley A. Ward

Abstract. Weprovide an atomic decomposition of the productHardy spaces
Hp(X̃) which were recently developed by Han, Li, and Ward in the setting
of product spaces of homogeneous type X̃ = X1 × X2. Here each factor
(Xi , di , �i), for i = 1, 2, is a space of homogeneous type in the sense ofCoifman
and Weiss. These Hardy spaces make use of the orthogonal wavelet bases of
Auscher and Hytönen and their underlying reference dyadic grids. However,
no additional assumptions on the quasi-metric or on the doubling measure
for each factor space aremade. To carry out this program, we introduce prod-
uct (p, q)-atoms on X̃ and product atomic Hardy spaces Hp,q

at (X̃). As conse-
quences of the atomic decomposition of Hp(X̃), we show that for all q > 1
the product atomic Hardy spaces coincide with the product Hardy spaces,
and we show that the product Hardy spaces are independent of the particu-
lar choices of both thewavelet bases and the reference dyadic grids. Likewise,
the product Carleson measure spaces CMOp(X̃), the bounded mean oscilla-
tion space BMO(X̃), and the vanishing mean oscillation space VMO(X̃), as
de�ned by Han, Li, and Ward, are also independent of the particular choices
of both wavelets and reference dyadic grids.
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1. Introduction
The product Hardy spaces Hp(X̃) were recently developed in [HLW] in the

setting of product spaces of homogeneous type X̃ = X1 ×X2, where each factor
(Xi, di, �i), i = 1, 2, is a space of homogeneous type in the sense of Coifman
and Weiss. In this paper we provide an atomic decomposition of these product
Hardy spacesHp(X̃).

Spaces of homogeneous type were introduced by Coifman and Weiss in the
early 1970s [CW1]. We say that (X, d, �) is a space of homogeneous type in the
sense of Coifman and Weiss if X is a set, d is a quasi-metric on X, and � is
a nonzero Borel-regular measure on X satisfying the doubling condition. A
quasi-metric d on a set X is a function d ∶ X × X ⟶ [0,∞) satisfying (i)
d(x, y) = d(y, x) ≥ 0 for all x, y ∈ X; (ii) d(x, y) = 0 if and only if x = y; and
(iii) the quasi-triangle inequality: there is a constant A0 ∈ [1,∞) such that,

d(x, y) ≤ A0
[
d(x, z) + d(z, y)

]
for all x, y, z ∈ X. (1.1)

The quasi-metric ball is de�ned by B(x, r) ∶= {y ∈ X ∶ d(x, y) < r} for x ∈ X
and r > 0. Note that the quasi-metric, in contrast to a metric, may not be
Hölder regular and quasi-metric balls may not be open1. We say that a nonzero
measure � satis�es the doubling condition if there is a constant C� ≥ 1 such
that for all x ∈ X and r > 0,

0 < �
(
B(x, 2r)

)
≤ C� �

(
B(x, r)

)
<∞. (1.2)

We say a measure � is Borel regular if for each measurable setA there is a Borel
set B such that B ⊂ A and �(B) = �(A). This Borel regularity ensures that the
Lebesgue Di�erentiation Theorem holds on (X, d, �) and that step functions
are dense in L2(X, �) [AlM, AuH2].

We point out that the doubling condition (1.2) implies that there exist pos-
itive constants C and ! (known as an upper dimension of X) such that for all
x ∈ X, � ≥ 1 and r > 0,

�
(
B(x, �r)

)
≤ C�!�

(
B(x, r)

)
. (1.3)

We can express C and ! in condition (1.3) in terms of the doubling constant C�
of the measure. In fact we can and will choose C = C� ≥ 1 and ! = log2 C�.

Throughout this paper we assume that �(X) = ∞. Given a space of homoge-
neous type (X, d, �), the quasi-triangle constant A0, the doubling constant C�,
and an upper dimension! are referred to as the geometric constants of the space
X.

In the classical theory, the Hardy spaces Hp can be de�ned via maximal
functions, via approximations of the identity and Littlewood-Paley theory, via

1Any quasi-metric de�nes a topology, for which the balls B(x, r) form a base. However when
A0 > 1 the balls need not be open. The measure � is assumed to be de�ned on a �-algebra that
contains all balls B(x, r) and all Borel sets induced by this topology.
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square functions, or via atomic decompositions, and all these de�nitions coin-
cide. When moving to more exotic settings one can start with any of the equiv-
alent de�nitions and then hope to show that they all de�ne the same space.
In the one-parameter setting of spaces of homogeneous type this program was
carried out, but additional conditions were required on the quasi-metric or on
themeasure. The �rst author was involved inmany of these developments. For
more details see Section 2.

A natural question arises: can one develop the theory of the spaces Hp and
BMO on spaces of homogeneous type in the sense of Coifman and Weiss, with
only the original quasi-metric d and a Borel-regular doubling measure �?

This question was posed, and answered in the a�rmative, in [HLW], in both
the one-parameter and product settings. The key idea used in [HLW] was to
employ the remarkable orthonormal wavelet basis constructed by Auscher and
Hytönen for spaces of homogeneous type [AuH1] to de�ne appropriate product
square functions and Hardy spaces. Note that it is in the construction of the
wavelets that the Borel regularity of the measure is required [AuH2]. In the
current paper we provide an atomic decomposition in the product setting and,
as a consequence of our main result, we show that the Hp(X̃) spaces de�ned
via a wavelet basis in [HLW] are independent not only of the chosen wavelet
basis, but also of the choice of underlying reference dyadic grids.

In the one-parameter setting the Hardy space Hp(X) was built in [HLW]
using the Hytönen-Auscher wavelets (themselves built upon a �xed reference
dyadic grid). Using the Plancherel-Pólya inequalities proved in [HLW] (see
also [Han2]), one can observe that the spacesHp(X) are well de�ned, meaning
they are independent of the choice of wavelet basis (built upon the same ref-
erence dyadic grid). Later, in [HHL1], the atomic and molecular characteriza-
tions of the one-parameter Hardy space were studied; it was shown thatHp(X)
is equivalent to Hp

at(X), the Coifman-Weiss atomic Hardy space, and therefore
the de�nition of Hp(X) is independent of the choice of the wavelets and of the
underlying reference dyadic grid. See also the work in [FY] for characteriz-
ing the atomic Hardy space via wavelet bases. More recently, in [HeHLLYY],
the authors provided a complete real-variable theory of one-parameter Hardy
spaces on spaces of homogeneous type, especially for proving the radial max-
imal characterization of Hp

at(X), which answered completely a question asked
by Coifman and Weiss [CW2, p.642].

We now turn to the product case. As in the one-parameter case, the product
Plancherel-Pólya inequalities proved in [HLW] would imply that Hp(X̃) is in-
dependent of the choice of wavelet basis (built upon �xed reference dyadic grids
on each component of the product X̃ of spaces of homogenenous type). In this
paper, instead we introduce the product (p, q)-atoms for 0 < p ≤ 1 < q and
corresponding atomic product Hardy spacesHp,q

at (X̃), whose de�nition is inde-
pendent of any wavelet bases and also of the reference dyadic grids. As a direct
application, we deduce that the product Hardy spaces Hp(X̃) are independent
of the choices of wavelets and of underlying reference dyadic grids. This result
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is consistent with the product theory on the Euclidean setting ℝn × ℝm, and
parallel to the one-parameter theory on spaces of homogenenous type (X, d, �)
as presented in [HHL1].

Important features in the one-parameter case, treated in [HHL1], are that
Hp(X) ∩ L2(X) is dense in Hp(X) and functions in Hp(X) ∩ L2(X) have a nice
atomic decomposition which converges in both L2(X) and Hp(X). These fea-
tures allow a linear operator bounded on L2(X) to pass through the sum in an
atomic decomposition, hence reducing the proof of the boundedness of the op-
erator to verifying uniformboundedness on atoms. See the discussion in [HHL1,
p.3431–3432] regarding applications of these features to prove T(1) theorems.
Similar density features hold in the product case, as shown in [HLLin]; to be
more precise, Hp(X̃) ∩ Lq(X̃) is dense in Hp(X̃) for all q > 1. In this paper, we
will show in addition that for all q > 1 and all p with 0 < p ≤ 1,Hp(X̃)∩Lq(X̃)
is a subset of Lp(X̃), with the Lp-(semi)norm controlled by theHp-(semi)norm.
These facts will be an important cornerstone in proving the atomic decomposi-
tion forHp(X̃).

The product Carlesonmeasure spaceCMOp(X̃)was introduced in [HLW]. It
was shown in the same paper thatCMOp(X̃) is the dual ofHp(X̃), that the space
of bounded mean oscillation BMO(X̃) coincides with CMO1(X̃) and hence is
the dual ofH1(X̃), and that the vanishingmean oscillation spaceVMO(X̃) is the
predual ofH1(X̃). As a consequence of our result for the product Hardy spaces,
we see that the spaces CMOp(X̃), BMO(X̃), and VMO(X̃) are also independent
not only of the chosen wavelet basis, but also of the chosen reference dyadic
grids. Note that in the one-parameter case it was shown in [HHL1, Proposition
4.3] that CMOp(X) coincides with the Campanato space C 1

p
−1(X), which is the

dual of the Coifman-Weiss atomic Hardy space Hp
at(X), and is a space de�ned

independently of any wavelets and their reference dyadic grids.
When X̃ = X1×⋯×Xn, the spacesHp(X̃) constructed in [HLW] are de�ned

for all p > max
{ !i
!i+�i

∶ i = 1, 2,⋯ , n
}
. Here �i ∈ (0, 1) is the exponent of

Hölder regularity of the Auscher-Hytönen wavelets, de�ned on the spaces of
homogeneous type (Xi, di, �i), that are used in the construction of Hp(X̃), and
!i > 0 is an upper dimension of Xi, for i = 1, . . . , n.

Our main result is the following.

MainTheorem. Let X̃ = X1×X2, where for i = 1, 2, (Xi, di, �i) are spaces of ho-
mogeneous type in the sense of Coifman andWeiss as described above, with quasi-
metrics di and Borel-regular doubling measures �i . Let !i be an upper dimension
for Xi , and let �i be the exponent of regularity of the Auscher-Hytönen wavelets
used in the construction of the Hardy space Hp(X̃). Suppose that max

{ !i
!i+�i

∶

i = 1, 2
}
< p ≤ 1 < q < ∞, and f ∈ Lq(X̃). Then f ∈ Hp(X̃) if and only if f
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has an atomic decomposition:

f =
∞∑

j=−∞
�jaj, (1.4)

where the aj are (p, q)-atoms,
∑∞

j=−∞ |�j|p < ∞, and the series converges in
Lq(X̃). Moreover, the series also converges inHp(X̃) and

‖f‖Hp(X̃) ∼ inf
{( ∞∑

j=−∞
|�j|p

) 1
p ∶ f =

∞∑

j=−∞
�jaj

}
,

where the in�mum is taken over all decompositions as in (1.4). The implicit con-
stants are independent of the Lq(X̃)-norm and theHp(X̃)-(semi)norm of f. They
depend only on the geometric constants of the spaces Xi for i = 1, 2.

For simplicity we work in the case of two factors: X̃ = X1 × X2. However,
we expect our results and proofs to go through for arbitrarily many factors; in
particular one would need a n-parameter version of Journé’s Lemma on spaces
of homogeneous type, which would generalise both Pipher’s n-parameter Eu-
clidean version [P] and Han, Li and Lin’s two-parameter version on spaces of
homogeneous type [HLLin].

Remark1.1. Using an approximation argument and the fact thatLq(X̃)∩Hp(X̃)
is dense in Hp(X̃) for all q > 1, we will deduce that the atomic decomposition
and norm characterization hold for all distributions inHp(X̃), not just those in
Lq(X̃). That is the content of Corollary A.

We deduce three corollaries from theMain Theorem. First, the atomic prod-
uct spacesHp,q

at we de�ne coincide, for all q > 1, with the product Hardy spaces
Hp de�ned in [HLW].

Corollary A. For all q with 1 < q <∞ and p withmax
{ !i
!i+�i

∶ i = 1, 2
}
< p ≤

1, we have
Hp,q
at (X̃) = Hp(X̃).

Thus, we can de�neHp
at(X̃) to beH

p,q
at (X̃) for any q > 1.

Second, as a consequence, we deduce that the product Hardy spaces are in-
dependent both of wavelets and of reference dyadic grids.

Corollary B. Let X̃ and p with p > max
{ !i
!i+�i

∶ i = 1, 2
}
be as in the Main

Theorem. Then the Hardy spacesHp(X̃) as de�ned in [HLW] are independent of
the particular choices of the Auscher-Hytönenwavelets and of the reference dyadic
grids used in their construction.

Third, the Carleson measure spaces and the spaces of bounded mean oscil-
lation and of vanishing mean oscillation are also independent of both wavelets
and reference dyadic grids.
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Corollary C. Let X̃ and max
{ !i
!i+�i

∶ i = 1, 2
}
< p ≤ 1 be as in the Main

Theorem. Then the Carleson measure spaces CMOp(X̃), the space of bounded
mean oscillationBMO(X̃), and the space of vanishingmean oscillationVMO(X̃),
as de�ned in [HLW], are independent of the particular choices of the Auscher-
Hytönen wavelets and of the reference dyadic grids used in their construction.

In the special case when p = 1 and q = 2, the (p, q)-atoms de�ned in this
paper, and the corresponding atomic decomposition found forHp(X̃) ∩ Lq(X̃),
were used in establishing dyadic structure theorems for H1(X̃) and BMO(X̃)
[KLPW, De�nition 5.3 and Theorem 5.4]. To achieve this goal, correspond-
ing dyadic atomic Hardy spaces were introduced in [KLPW, De�nition 6.3 and
Theorem 6.5].

We would like to mention that Fu and Yang [FY] present a characterization
of the Coifman and Weiss atomic Hardy space H1

at(X) in the one-parameter
case, using theAuscher-Hytönenwavelets, under the assumptions that (X, d, �)
is a metric measure space of homogeneous type, diam(X) = ∞, and X is a
non-atomic space, meaning that �({x}) = 0 for all x ∈ X. They prove that
the Auscher-Hytönen wavelets form an unconditional basis inH1(X) and from
there they deduce that a function being inH1

at(X) is equivalent to the uncondi-
tional convergence in L1(X) of the function’s wavelet expansion, and equivalent
to the boundedness on L1(X) of each of three di�erent discrete square func-
tions, one of them coinciding with that in the de�nition ofH1(X) presented in
[HLW]. All these one-parameter Hardy spaces H1(X) coincide when the con-
ditions assumed in [FY] are met. Fu and Yang did not address the case p < 1,
nor the product case, which are the focus of this article.

The paper is organized as follows. In Section 2 we place our work in his-
torical context, describing some of the progress made to date, from the orig-
inal work of Coifman and Weiss until the present setting, mostly in the one-
parameter case.

In Section 3we recall the basic ingredients involved in the de�nition of prod-
uctHardy andBMO spaces, on spaces of homogeneous type in the sense of Coif-
man andWeisswith only the original quasi-metric and aBorel-regular doubling
measure �, as introduced in [HLW]. These preliminaries include the Hytönen-
Kairema systems of dyadic cubes [HyK], the Auscher-Hytönen orthonormal
basis and reference dyadic grids [AuH1, AuH2], and the test functions and dis-
tributions in both the one-parameter and product settings [HLW].

In Section 4 we recall the de�nitions in [HLW] of product Hardy spaces
Hp(X̃); their duals and the Carleson measure spaces CMOp(X̃); the space of
bounded mean oscillation BMO(X̃); and the space of vanishing mean oscilla-
tion VMO(X̃), which turns out to be the predual of H1(X̃). These de�nitions
are based on product square functions, themselves de�ned using the Auscher-
Hytönen wavelets and the reference dyadic grids used in their construction
in [HLW]. We prove a key new lemma in Section 4 that allows us to decom-
pose the Auscher-Hytönen wavelets into compactly supported building blocks
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rescaled as needed and with appropriate size, smoothness, and cancellation
properties, following the approach in Nagel and Stein [NS]. In turn this lemma
allows us to show that, within the allowed range of p dictated by the geomet-
ric constants and the Hölder-continuity parameters of the wavelets, functions
in Hp(X̃) ∩ Lq(X̃) for 1 < q < ∞ are Lp-integrable, with Lp-(semi)norm con-
trolled by theirHp-(semi)norm.

In Section 5we introduce the product (p, q)-atoms and atomic productHardy
spacesHp,q

at (X̃) for 1 < q <∞ and forp in the same range forwhich the product
Hardy spaces Hp(X̃) are de�ned. We restate the Main Theorem, and use it to
prove Corollaries A, B, and C, thus establishing that the atomic product Hardy
spaces Hp,q

at (X̃) coincide with the product Hardy spaces Hp(X̃) for all q > 1,
and that the spaces CMOp(X̃), BMO(X̃), and VMO(X̃) are independent of the
choices of wavelet bases and of reference dyadic grids on X1 and X2 used in
their construction. Finally we prove the Main Theorem, yielding an atomic
decomposition for Hp(X̃) ∩ Lq(X̃) in terms of (p, q)-atoms for each q with 1 <
q < ∞, with convergence in both Hp and Lq and showing that (p, q)-atoms
are uniformly in Hp(X̃). Key in this decomposition is the use of a Journé-type
covering lemma in the product setting, which was proved in [HLLin].

Throughout the paper the following notation is used. First, A ≲ B means
there is a constant C > 0 depending only on the geometric constants (quasi-
triangle constants of the quasi-metrics, doubling constants of themeasures, and
upper dimensions of Xi for i = 1, 2) such that A ≤ CB. Second, A ∼ B means
that A ≲ B and B ≲ A. Third, the value of a constant C > 0 may change
from line to line within a string of inequalities. If the constant C depends on
some other parameter(s), for example on q > 1 and � > 0, then we may denote
it by Cq,�. Likewise, the notation ≲q,� indicates that the implied constant in
the inequality depends also on the parameters q and �. We denote by �A the
characteristic function of a setA ⊂ X, that is,�A(x) = 1 if x ∈ A and�A(x) = 0
otherwise.

2. Context and signi�cance
In this section we discuss the developments in the theory of one-parameter

Hardy spaces that led to the results presented in this paper. This is by nomeans
a comprehensive historical survey, rather a series of snapshots that will give
some perspective to our work. For a more complete survey see [HHL2].

We recall the atomic Hardy space Hp
at(X) on a space of homogeneous type,

following [CW2]. Given (X, d, �), a space of homogeneous type in the sense of
Coifman and Weiss, as presented in the Introduction, the atomic Hardy space
Hp
at(X) is de�ned to be a certain subcollection of the bounded linear functionals

on the Campanato space C�(X) with � =
1
p
− 1, 0 < p ≤ 1. Namely, Hp

at(X) is
de�ned to be those bounded linear functionals on C�(X) that admit an atomic
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decomposition

f =
∞∑

j=1
�jaj, (2.1)

where the functions aj are (p, 2)-atoms,
∑∞

j=1 |�j|
p <∞, and the series in (2.1)

converges in the dual space of C�(X). The quasi-norm of f inHp
at(X) is de�ned

by

‖f‖Hp
at(X)

∶= inf
{( ∞∑

j=1
|�j|p

) 1
p
}
,

where the in�mum is taken over all such atomic representations of f.
Here a function a(x) is said to be a (p, 2)-atom if the following conditions

hold:
(i) (Support condition) the support of a(x) is contained in a ball B(x0, r)

for some x0 ∈ X and r > 0;

(ii) (Size condition) ‖a‖L2(X) ≤ �
(
B(x0, r)

) 1
2
− 1
p ; and

(iii) (Cancellation condition) ∫X a(x)d�(x) = 0.
Recall that the Campanato space C�(X), � ≥ 0, consists of those functions f

for which

{
1

�(B)
∫
B
|f(x) − fB|2d�(x)}

1
2

≤ C[�(B)]�, (2.2)

where B is any quasi-metric ball, fB ∶= 1
�(B)

∫B f(x)d�(x), and the constant
C > 0 is independent of the ball B. Let ‖f‖C�(X) be the in�mum of all C for
which (2.2) holds. On ℝn the Campanato spaces C�(ℝn) coincide with the �-
Lipschitz class when 0 < � ≤ 1 and with BMO when � = 0, thanks to the
John-Nirenberg inequality.

The Coifman-Weiss de�nition of the atomic Hardy space Hp
at(X) does not

require any regularity on the quasi-metric d, and requires only the doubling
property on the Borel-regular measure �. Moreover, for each atomic decompo-
sition

∑∞
j=1 �jaj where the functions aj are (p, 2)-atoms with

∑∞
j=1 |�j|

p <∞,

the series automatically converges in the dual space of C�(X) with � = 1
p
− 1.

Indeed, if a is a (p, 2)-atom and g ∈ C�(X) with � =
1
p
− 1, then, applying �rst

the support and cancellation conditions on the atom a and second Hölder’s in-
equality together with the size condition on the atom a, we obtain

||||| ∫B
a(x)g(x)d�(x)

||||| =
||||| ∫B

a(x)[g(x) − gB]d�(x)
|||||

≤ ‖a‖2
(
∫
B
[g(x) − gB]2 d�(x)

) 1
2

≤ ‖g‖C�(X),
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where B = B(x0, r).
Therefore, if

∑∞
j=1 �jaj is an atomic decomposition, g ∈ C�(X), and � =

1
p
− 1, then

|||||
⟨ ∞∑

j=1
�jaj, g

⟩||||| ≤
∞∑

j=1
|�j| ‖g‖C�(X) ≤

{ ∞∑

j=1
|�j|p

} 1
p ‖g‖C�(X),

which implies that the atomic decomposition
∑∞

j=1 �jaj converges in the dual
space of C�(X).

In fact, in [CW2, TheoremA, p.592], Coifman andWeiss de�ne (p, q)-atoms,
replacing 2 by q > 1 in the de�nition above, and de�ne corresponding atomic
Hardy spacesHp,q

at (X). They show that for each �xed p ≤ 1, the spacesHp,q
at (X)

for q > 1 all coincide. We will show in Section 5 that the analogue of this result
holds for appropriately de�ned product (p, q)-atoms and product atomic spaces
Hp,q
at (X̃) in the bi-parameter case X̃ = X1 × X2.
The atomic Hardy spaces have many applications. For example, if an opera-

tor T is bounded on L2(X) and from Hp
at(X) to L

p(X) for some p ≤ 1, then T is
bounded on Lq(X) for 1 < q ≤ 2. See [CW2] for this and for more applications.

We would like to point out that Coifman and Weiss introduced the atomic
Hardy spacesHp

at(X) on spaces of homogeneous type (X, d, �)where the quasi-
metric balls were required to be open; see [CW2] for more details. To establish
the maximal function characterization of the atomic Hardy space of Coifman
and Weiss, some additional geometrical considerations on the quasi-metric d
and the measure � were imposed. For this purpose, Macías and Segovia [MS1]
proved the following fundamental results. The �rst pertains to quasi-metric
spaces; the second to spaces of homogeneous type.

First, suppose that (X, d) is a space endowed with a quasi-metric d that may
have no regularity. Then there exists a quasi-metric d′ that is topologically
equivalent to d such that d(x, y) ∼ d′(x, y) for all x, y ∈ X and there exist
constants � ∈ (0, 1) and C > 0 so that d′ has the following regularity:

|d′(x, y) − d′(x′, y)| ≤ C d′(x, x′)� [d′(x, y) + d′(x′, y)]1−� (2.3)

for all x, x′, y ∈ X. Moreover, if the quasi-metric balls are de�ned by this new
quasi-metric d′, that is, B′(x, r) ∶= {y ∈ X ∶ d′(x, y) < r} for r > 0, then these
balls are open in the topology induced by d′. See [MS1, Theorem 2, p.259].
Second, suppose that (X, d, �) is a space of homogeneous type in the sense of
Coifman andWeiss, with the property that the balls are open subsets. Then the
function d′′ ∶ X × X → ℝ de�ned by

d′′(x, y) ∶= inf {�(B) ∶ x, y ∈ B, B is a d-ball}

if x ≠ y, and d′′(x, y) = 0 if x = y, is a quasi-metric topologically equivalent
to d. Furthermore, the measure � satis�es the following property for all d′′-
balls B′′(x, r), where x ∈ X and r > 0:

�
(
B′′(x, r)

)
∼ r. (2.4)
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See [MS1, Theorem 3, p.259]. Spaces satisfying property (2.4) are called 1-
Ahlfors regular quasi-metric spaces2. Note that property (2.4) is much stronger
than the doubling condition.

Startingwith a quasi-metricd forwhich the balls are not necessarily open, we
can obtain d′, and we can then pass to its topologically equivalent quasi-metric
d′′(x, y) ∶= inf {�(B′) ∶ x, y ∈ B′, B′ is a d′-ball} to obtain a quasi-metric
satisfying (2.3) and with the measure � satisfying (2.4).

Macías and Segovia obtained a grand maximal function characterization for
the atomic Hardy spaces Hp(X) on spaces of homogeneous type (X, d, �) that
satisfy the regularity condition (2.3) on the quasi-metric d, and property (2.4)
on the measure �, with 1∕(1 + �) < p ≤ 1, where � is the regularity exponent
of the quasi-metric [MS2, Theorem (5.9), p.306].

For an authoritative modern account of Hardy spaces on n-Ahlfors regular
quasi-metric spaces, see the book byAlvarado andMitrea [AlM]. Given a quasi-
metric d, the authors work with an equivalence class of quasi-metrics that in-
cludes d and the Macías-Segovia quasi-metric. In contrast, the approach in
the present paper is to keep the original quasi-metric d untouched but to allow
for a certain randomness in the cubes that enter into the construction of the
wavelets.

To develop the Littlewood-Paley characterization of Hardy spaces on normal
spaces of homogeneous type (X, d, �) of order �, in other words, spaces satisfy-
ing the regularity condition (2.3) on the quasi-metric d and property (2.4) on
the measure �, a suitable approximation to the identity was required. The con-
struction of such an approximation to the identity is due to Coifman [DaJS],
and this construction leads to a corresponding Calderón-type reproducing for-
mula and Littlewood-Paley theory [DeH, p.3–4]. A further discretization of this
Calderón reproducing formula is needed, and it was achieved, using the dyadic
cubes of Christ [Chr], by the �rst author and Sawyer. See [Han1,Han2,HaS] for
more details. In the present paper, a further discretization will also be needed;
we will instead use the dyadic cubes of Hytönen and Kairema [HyK] on which
the wavelets of Auscher and Hytönen [AuH1, AuH2] are based.

To carry out the Littlewood-Paley characterization of the atomicHardy space
on a normal space (X, d, �) of order �, the following test function spaces were
introduced in [HaS].

De�nition 2.1 (Test functions [HaS]). Let (X, d, �) be a normal space of homo-
geneous type of order �. Fix x0 ∈ X, r > 0, � ∈ (0, �] where � is the regularity
exponent of d, and  > 0. A function f de�ned on X is said to be a test function
of type (x0, r, �, ) centered atx0 ∈ X iff satis�es the following three conditions:

(i) (Size condition) For all x ∈ X,

|f(x)| ≤ C r
(
r + d(x, x0)

)1+ ;

2A quasi-metric Borel measure space (X, d, �) is n-Ahlfors regular if �
(
B(x, r)

)
∼ rn.
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(ii) (Hölder regularity condition) For allx, y ∈ Xwithd(x, y) < (2A0)−1
(
r+

d(x, x0)
)
,

|f(x) − f(y)| ≤ C
( d(x, y)
r + d(x, x0)

)� r
(
r + d(x, x0)

)1+ ; and

(iii) (Cancellation condition)

∫
X
f(x)d�(x) = 0.

Denote byℳ(x0, r, �, ) the set of all test functions of type (x0, r, �, ). The
norm of f inℳ(x0, r, �, ) is de�ned by

‖f‖ℳ(x0,r,�,) ∶= inf {C > 0 ∶ (i) and (ii) hold}.

For each �xed x0, letℳ(�, ) ∶= ℳ(x0, 1, �, ). It is easy to check that for
each �xed x′0 ∈ X and r > 0, we haveℳ(x′0, r, �, ) =ℳ(�, ) with equivalent
norms. Furthermore, it is also easy to see thatℳ(�, ) is a Banach space with
respect to the norm onℳ(�, ).

We remark that the above test function spaceℳ(�, ) on (X, d, �) o�ers the
same service as the Schwartz test function space S∞ = {f ∈ S ∶ ∫ f(x)x� dx =
0, |�| ≥ 0} does on ℝn, and as the Campanato space C�(X) does on a space X
of homogenenous type in the sense of Coifman and Weiss.

In [NS], Nagel and Stein developed the product Lp-theory (1 < p < ∞)
in the setting of Carnot-Carathéodory spaces formed by vector �elds satisfy-
ing Hörmander’s m-�nite rank condition, where m ≥ 2 is a positive integer.
The Carnot-Carathéodory spaces studied in [NS] are spaces of homogeneous
type with a regular quasi-metric d and a measure � satisfying the conditions
�
(
B(x, sr)

)
∼ sm+2�

(
B(x, r)

)
for s ≥ 1 and �

(
B(x, sr)

)
∼ s4�

(
B(x, r)

)
for s ≤ 1.

These conditions on the measure are weaker than property (2.4) but are still
stronger than the original doubling condition (1.2).

Motivated by thework of Nagel and Stein, Hardy spaces via Littlewood-Paley
theory were developed by the �rst author, Müller and Yang [HMY2, HMY1] on
spaces of homogeneous type with a regular quasi-metric and a measure satis-
fying some additional conditions. To be precise, let (X, d, �) be a space of ho-
mogeneous type where the quasi-metric d satis�es the Hölder regularity prop-
erty (2.3), and the measure � satis�es the doubling condition (1.2) and the re-
verse doubling condition; that is, there are constants � ∈ (0, !] and c ∈ (0, 1]
such that

c���
(
B(x, r)

)
≤ �

(
B(x, �r)

)
(2.5)

for all x ∈ X, r with
0 < r < sup

x,y∈X
d(x, y)∕2,

and � with
1 ≤ � < sup

x,y∈X
d(x, y)∕2r.
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The �rst author, Müller, and Yang observed in [HMY2, HMY1] that Coifman’s
construction of an approximation to the identity still works on spaces of homo-
geneous type (X, d, �) with these properties.

They also showed how to de�ne the corresponding test functions of type
(x0, r, �, ). Their de�nition is very similar to De�nition 2.1 above, except that
one power of

(
r + d(x, x0)

)
in the denominator is replaced by

(
�
(
B(x, r)

)
+

�
(
B(x, d(x, x0))

))
. Also, their de�nition is identical to the de�nition of test

functions needed in our setting, De�nition 3.5, except that in their case � ∈
[0, �] where � is the regularity exponent of the metric, while in our case � ∈
[0, �] where � is the Hölder exponent of the wavelets.

Applying Coifman’s approximation to the identity and a proof similar to the
one in [Han1, Han2, HaS], the �rst author, Müller, and Yang proved that a
discrete Calderón reproducing formula still holds on (X, d, �) when the quasi-
metric d satis�es the regularity condition (2.3) and the measure � satis�es the
doubling condition (1.2) and the reverse doubling condition (2.5). As a conse-
quence, the Hardy spaces de�ned via the Littlewood-Paley theory were estab-
lished for such spaces of homogeneous type and, moreover, these Hardy spaces
have atomic decompositions. See [HMY2] for more details.

However, there are settings for which the reverse doubling condition is not
available. One speci�c example of such a space of homogeneous type appears
in the Bessel setting treated by Muckenhoupt and Stein [MuS]. They studied
the Bessel operator

∆� = − d
dx2

− 2�
x

d
dx

, � ∈
(
− 1
2 ,∞

)
, x ∈ (0,∞),

with the underlying space (X, d, �) =
(
(0,∞), | ⋅ |, x2� dx

)
. The corresponding

Hardy space was studied in [BDT] and the weak factorization was obtained in
[DLWY]. We note that the measure x2� dx is doubling when � ∈ (− 1

2
,∞),

however when � ∈ (− 1
2
, 0) the measure does not satisfy a reverse doubling

condition. We also note that we cannot change themetric twice as in [MS1], for
if we didwewould be changing thewhole setting, including the Bessel operator
in question.

In [HLW], the �rst, second and fourth authors developed a theory of Hardy
spaces Hp and BMO on spaces of homogeneous type in the sense of Coifman
and Weiss, with only the original quasi-metric d and a (Borel-regular) dou-
bling measure �, in both the one-parameter and product settings. A crucial
idea in [HLW] was to use a square-function characterization where the square
function was built using the Auscher-Hytönen orthonormal wavelet basis on
spaces of homogeneous type [AuH1, AuH2]. In the current paper we provide
an atomic decomposition for Hp(X̃) ∩ Lq(X̃) for each q with 1 < q < ∞, for
X̃ = X1 × X2 with Xi a space of homogenenous type in the sense of Coifman
and Weiss for i = 1, 2. This atomic decomposition is completely independent
of any wavelet bases and reference dyadic grids on Xi for i = 1, 2 used to de�ne
Hp(X̃). As a consequence of the main result of this paper, the Hp(X̃) spaces
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de�ned in [HLW] via a particular Auscher-Hytönen wavelet basis are indepen-
dent not only of the chosen wavelet bases, but also of the choice of reference
dyadic grids.

3. Preliminaries
In this section, we will recall �rst Hytönen and Kairema’s systems of dyadic

cubes [HyK], second Auscher andHytönen’s orthonormal basis [AuH1] paying
close attention to their underlying reference dyadic grids, and third the sets of
test functions and distributions developed in [HLW] in both one-parameter and
the product settings. We recall that the Auscher and Hytönen wavelets in both
one-parameter and product settings are suitable test functions. These are all
necessary ingredients in the de�nition of product Hardy spaces introduced in
[HLW] that we present in Section 4.

3.1. Systems of dyadic cubes. We now describe the Hytönen and Kairema
[HyK] families of dyadic “cubes” built on geometrically doubling quasi-metric
spaces. A quasi-metric space (X, d) is geometrically doubling if there exists a
natural number N such that any quasi-metric ball B(x, r) can be covered with
no more than N balls of half the radius. Coifman and Weiss [CW1] showed
that spaces of homogeneous type (X, d, �) are geometrically doubling quasi-
metric spaces. The Hytönen-Kairema construction builds on seminal work of
Guy David [Da], Christ [Chr], and Sawyer and Wheeden [SW].

Theorem3.1 ([HyK], Theorem2.2). Givena geometrically doubling quasi-metric
space (X, d), letA0 > 0 denote the quasi-triangle constant for the metric d. Given
constants c0 and C0 with 0 < c0 ≤ C0 <∞, and constant � ∈ (0, 1) satisfying

12A3
0C0� ≤ c0. (3.1)

Given a set of points {zk�}�∈Ak
, where Ak is a countable set of indices for each k ∈

ℤ, with the properties that

d(zk�, zk�) ≥ c0�k (� ≠ �), min
�∈Ak

d(x, zk�) < C0�k for all x ∈ X, (3.2)

(called a (c0, C0)-maximal set of �k-separated points), we can construct families

of sets Q̃k� ⊆ Qk� ⊆ Q
k
� (called open, half-open and closed dyadic cubes), such

that:

Q̃k� and Q
k
� are the interior and closure of Q

k
�, respectively; (3.3)

(Nested family) if l ≥ k, then either Ql� ⊆ Qk� or Qk� ∩ Ql� = ∅; (3.4)

(Disjoint union) X =
⋃

�∈Ak

Qk� for all k ∈ ℤ; (3.5)

(Inner and outer balls) B(zk�, c1�k) ⊆ Qk� ⊆ B(zk�, C1�k), (3.6)

where c1 ∶= (3A2
0)
−1c0 and C1 ∶= 2A0C0;
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if l ≥ k and Ql� ⊆ Qk�, then B(zl� , C1�
l) ⊆ B(zk�, C1�k). (3.7)

The open and closed cubes Q̃k� and Q
k
� depend only on the points zl� for l ≥ k.

The half-open cubes Qk� depend on zl� for l ≥ min(k, k0), where k0 ∈ ℤ is a
preassigned number entering the construction.

We denote byD the family of dyadic cubes {Qk�}k∈ℤ,Ak
as in Theorem 3.1. We

will refer to D as a Hytönen-Kairema dyadic system or grid on X. We will refer
to any cube Qk+1� ∈ D that is contained in Qk� ∈ D as a child of Qk�. Note that
every cube has at least one child and no more than M children, where M is a
uniform bound determined by the geometric doubling condition.

The existence of countable sets of separated points as in (3.2) is ensured by
the geometric doubling property of the quasi-metric space (X, d). For a given
Hytönen-Kairema dyadic system of cubes, we will call c0 and C0 the separation
constants of the system, c1 andC1 the dilation constants of the system, and � the
base side length of the cube. Collectively these will be called structural constants
of the dyadic system or of the dyadic grid. Note that in (3.6), as it should be, the
dilation constants c1 and C1, determining the radii of the inner and outer balls
for each cube, satisfy 0 < c1 < C1, since by hypothesis the separation constants
satisfy 0 < c0 ≤ C0, but a priori C1 is not necessarily greater than one. We will
sometimes denote by B′Q and B′′Q the inner and outer balls of a dyadic cube Q.

Given a cube Qk�, we denote the quantity �k by l(Qk�), by analogy with the
sidelength of a Euclidean cube. We de�ne the dilate �Qk� of a dyadic cube to be
the �-dilate of its outer ball. That is, for � > 0,

�Qk� ∶= B(zk�, �C1�k).

By construction, the cubes are unions of quasi-metric balls, hence in the set-
ting of a space of homogeneous type, the cubes aremeasurable. In the presence
of a doubling measure � (doubling with respect to balls) the measure � is “dou-
bling” with respect to Hytönen-Kairema cubes. More precisely,

�(�Qk�) ≤
(
�
C1
c1

)!
�
(
B(zk1 , c1�

k)
)
≤ �!

(C1
c1

)!
�(Qk�), (3.8)

where the �rst inequality is a consequence of the doubling property (1.3), and
the second holds simply because the inner ball of a cube sits inside the cube.
Also note that by construction, speci�cally properties (3.6) and (3.1), the ra-
tio C1∕c1 = 6A3

0(C0∕c0) ≤ �−1∕2, where � ∈ (0, 1) is the base side length
of the cubes. Potentially the base side length parameter � can be arbitrarily
small, therefore making the upper bound in (3.8) arbitrarily large. Also, the ra-
tio C1∕c1 may be under control, but that does not imply the outer dilation con-
stant cannot be arbitrarily large, since a priori we could allow the inner dilation
constant to also be arbitrarily large. These facts can be problematic, therefore
we single out the dyadic systems that do not su�er from these problems, and
we call them regular families of dyadic systems or grids.
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De�nition 3.2 (Regular families of dyadic systems). Given a geometric dou-
bling quasi-metric space (X, d). A family {Db}b∈B of Hytönen-Kairema dyadic
systems on X is regular if the outer dilation constants {Cb1 }b∈B and the ratio of
the outer and inner dilation constants {Cb1∕c

b
1 }b∈B of the systems in the fam-

ily are uniformly bounded by constants depending only on the quasi-triangle
constant A0 of the quasi-metric d.

In the proof of the main theorem in Section 5.4 we will have atomic decom-
positions in the setting of a product of spaces of homogenenous type, X1 × X2,
with atoms a associated to dyadic grids Da

i belonging to regular families on
(Xi, di, �i) for i = 1, 2. Often we will estimate the measure of dilates of cubes
Qi ∈ Da

i as in inequality (3.8), and will simply say “by doubling”

�i(�Qi) ≲ �!i�i(Qi). (3.9)

The ≲will only depend on the geometric constants of the spaces Xi for i = 1, 2,
but not on the structural constants of the dyadic grids, because Da

i belong to
a regular family of dyadic systems. Elsewhere in the proof of the main theo-
rem the outer dilation constants Ci1 will come into the estimates, and we will
need them also to be uniformly bounded by a constant depending only on the
geometric constants of Xi for i = 1, 2.

3.2. Orthonormal basis, reproducing formula, and cut-o� functions.
Auscher and Hytönen [AuH1] constructed a remarkable orthonormal basis

of L2(X), where (X, d, �) is a space of homogeneous type. To state their result,
we �rst recall the reference dyadic points xk� as follows.

Let � be a �xed small positive parameter (� ≤ 10−3A−10
0 , where A0 is the

quasi-triangle constant of the quasi-metric d). For k = 0, let X 0 ∶= {x0�}�∈A0

be amaximal set of 1-separated points inX. Inductively, for k ∈ ℤ+, letX k ∶=
{xk�}�∈Ak

⊇ X k−1 and X −k ∶= {x−k� }�∈A−k
⊆ X −(k−1) be maximal �k- and

�−k-separated collections inX k−1 andX −(k−1), respectively. The familiesX k

have the separation properties required in Theorem 3.1 for the construction of
cubes, with separation constants c0 = 1, C0 = 2A0, base side length the given
� ∈ (0, 1), and with the additional property that X k ⊆ X k+1 for k ∈ ℤ. We
denote the corresponding cubes byQk�, and the dyadic systemDW . We will call
DW the reference dyadic system or grid underlying the wavelets.

A randomization X k(!) of the families X k, as discussed in [HyK, HyM],
has the separation properties for each randomparameter! (in a certain spaceΩ
equipped with a probability measure ℙ!) needed to construct the dyadic cubes
Qk�(!) according to Theorem 3.1. However, in [AuH1, Theorem 2.11]) they
modify the construction so that the randomized dyadic cubes Qk�(!) have uni-
form (in the randomparameter! ∈ Ω) dilation constants (in fact c1(!) =

1
6
A−5
0

and C1(!) = 6A4
0 > 1 for all ! ∈ Ω), and an additional “small boundary layer

property” on average with respect to the probability measure introduced by the
randomization [AuH1, Equation (2.3)]. It is in measuring the smallness of the
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boundary layer that a small parameter � > 0 appears, dependent only on the
geometric constants of the space X. This parameter � is the Hölder regular-
ity of the wavelets de�ned in Theorem 3.3. In this randomized construction,
the reference dyadic point xk� may also be viewed as the center of the random
cubesQk�(!) for all! belonging to the parameter spaceΩ. For the details of this
beautiful construction see [AuH1, Section 2].

Now denote Y k ∶= X k+1∖X k, and relabel the points xk� that belong to Y k

as yk�, where � ∈ Ak+1∖Ak and k ∈ ℤ. To each such point yk�, Auscher and
Hytönen associate a function  k� that is almost supported near yk� at scale �k
(these functions are not compactly supported, but have exponential decay).
Also note that to each Hytönen-Kairema cube Qk� there corresponds the point
xk� and to each of the children of Qk� there correspond other points xk+1� , one
of which coincides by construction with xk�. Thus the number of indices � in
Ak+1∖Ak corresponding to Qk� is exactly N(Qk�) − 1, where N(Qk�) denotes the
number of children of Qk�. This is the right number of wavelets we will need
per cube if our intuition is guided by tensor product wavelets in ℝn, or Haar
functions on spaces of homogeneous type based on Hytönen-Kairema cubes,
as constructed for example in [KLPW]. Later on we will write � ∈ Y k mean-
ing � ∈ Ak+1∖Ak.

We now state the theorem describing precisely the wavelets of Auscher and
Hytönen.

Theorem 3.3 ([AuH1], Theorem 7.1). Let (X, d, �) be a space of homogeneous
type with quasi-triangle constantA0, with reference dyadic system of cubesDW =
{Qk�}k∈ℤ,�∈A k that has base side length � ∈ (0, 1) and small boundary layer pa-
rameter � ∈ (0, 1]. Let

a ∶= (1 + 2 log2A0)−1. (3.10)

There exist an orthonormal basis { k�}k∈ℤ,�∈Ak+1⧵Ak
of L2(X) and �nite constants

C > 0 and � > 0 such that for all k ∈ ℤ and � ∈ Ak+1 ⧵ Ak each function  k�
satis�es the following conditions:

(i)  k� is centered at yk� ∈ Y k;
(ii)  k� has exponential decay determined by parameters a and �, namely for

all x ∈ X,

| k�(x)| ≤
C

√
�
(
B(yk�, �k)

) exp
(
− �

(d(yk�, x)
�k

)a)
; (3.11)

(iii)  k� has (local) Hölder regularity with Hölder exponent �, namely for all
x, y ∈ X such that d(x, y) ≤ �k,

| k�(x) −  k�(y)| ≤
C

√
�
(
B(yk�, �k)

)
(d(x, y)

�k
)�
exp

(
− �

(d(yk�, x)
�k

)a)
; (3.12)
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(iv)  k� has vanishing mean, namely

∫
X
 k�(x)d�(x) = 0. (3.13)

In Theorem 3.3, the constants C, �, �, and � are independent of k, �, and yk�.
They depend only on the geometric constants of the space X: quasi-triangle
inequality, doubling constant, and upper dimension. The constant � ∈ (0, 1),
determining the side length of the reference dyadic cubes, is a �xed small pa-
rameter, more precisely, � ≤ 10−3A−10

0 .
In what follows, we refer to the functions  k� as Auscher-Hytönen wavelets or

simply wavelets. The wavelet expansion, convergent in the sense of L2(X), is
given by

f(x) =
∑

k∈ℤ

∑

�∈Y k

⟨f,  k�⟩ k�(x). (3.14)

Here ⟨f, g⟩ ∶= ∫X f(x)g(x)d�(x)denotes theL
2-pairing. TheAuscher-Hytönen

wavelets { k�}k∈ℤ,�∈Yk
form an unconditional basis of Lq(X) for all q with 1 <

q < ∞; see [AuH1, Corollary 10.4]. Therefore, the reproducing formula (3.14)
also holds for f ∈ Lq(X). Note that for the reproducing formula (3.14) to hold,
it su�ces that themeasure � is Borel regular; see addendum [AuH2]. Also note
that it is possible to build di�erent wavelets based on the same reference dyadic
points [AuH1].

In the Auscher-Hytönen construction of wavelets, the reference dyadic grids
DW form a regular family of dyadic systems according to De�nition 3.2, be-
cause the outer dilation constants and the ratio of the outer and inner dilation
constants are respectively, C1 = 6A4

0 > 1 and C1∕c1 = 36A9
0, for all the systems

in the family.
For a general space of homogeneous type, theHölder exponent � of thewave-

lets is bounded above by a constant �0 (0 < � < �0) that only depends on the
geometric parameters of the geometrically doubling space (X, d) [AuH1]. The
constant �0 is usually much smaller than one, even in the case of metric spaces.
In [HyT], Hytönen and Tapiola presented a di�erent construction of the metric
wavelets that allows one to obtain Hölder-regularity for any exponent � < 1,
strictly below but arbitrarily close to one.

The wavelets’ regularity parameter � enters into the de�nition of the Hardy
spacesHp(X) on spaces of homogeneous type (X, d, �). In particular, � together
with an upper dimension ! of the doubling measure � determines the range of
p for which the Hardy space is de�ned, namely !∕(� + !) < p ≤ 1. The larger
� is, the smaller p can be chosen. A similar phenomenon occurs for the Hardy
spaces on product spaces of homogeneous type, as pointed out in [HLW], see
also Section 4. This is parallel to the theory on ℝn where the theory of Hp-
spaces with just the cancellation property is limited to n∕(n + 1) < p ≤ 1, and
to access smaller values of p, the test functions must have larger number of
vanishing moments, unavailable in general spaces of homogeneous type.
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The construction of wavelets hinges on the construction of certain “splines”
on X de�ned using the probability measure ℙ! on the space Ω. For every
(k, �) ∈ ℤ×Y k Auscher andHytönen [AuH1, Equation (3.1)] de�ne the spline
function sk� ∶ X → [0, 1] by

sk�(x) ∶= ℙ!
(
x ∈ Q

k
�(!)

)
.

The spline functions sk� are bumps supported on a ball centered at xk� and ra-
dius roughly �k, and they satisfy some interpolation, reproducing, and Hölder-
continuity properties, described precisely in [AuH1, Theorem 3.1].

The splines in turn were used in [HLW] to construct smooth cut-o� func-
tions.

Lemma 3.4 ([HLW], Lemma 3.8). For each �xed x0 ∈ X and R0 ∈ (0,∞), there
exists a smooth cut-o� function ℎ(x) such that 0 ≤ ℎ(x) ≤ 1,

ℎ(x) ≡ 1 when x ∈ B(x0, R0∕4), ℎ(x) ≡ 0 when x ∈ B(x0, A2
0R0)

c,

and there exists a positive constant C, independent of x0, R0, x, and y (dependent
only on geometric constants of the space X) such that

|ℎ(x) − ℎ(y)| ≤ C
(d(x, y)

R0

)�
.

Note that the cut-o� functions satisfy a global Hölder regularity condition
with the same exponent � as the wavelets in Theorem 3.3. We will use these
smooth cut-o� functions onX in the proof of the key decomposition Lemma 4.8
for the wavelets.

3.3. Test function spaces and distributions. We now recall the de�nition
of the test functions and distributions on (X, d, �) that will enter into the de�ni-
tion of the Hardy spaces on product of spaces of homogeneous type. In partic-
ular, we observe that the normalized Auscher-Hytönen wavelets are test func-
tions.

Let Vr(x) ∶= �
(
B(x, r)

)
for x ∈ X, r > 0 and V(x, y) ∶= �

(
B(x, d(x, y))

)
for

x, y ∈ X.

De�nition 3.5 (Test functions [HLW], De�nition 3.1). Fix x0 ∈ X, r > 0,
� ∈ (0, �] where � ≤ 1 is the Hölder regularity exponent from Theorem 3.3,
and  > 0. A �-measurable function f de�ned on X is said to be a test function
of type (x0, r, �, ) centered atx0 ∈ X iff satis�es the following three conditions.

(i) (Size condition) For all x ∈ X there is a constant C > 0 such that

|f(x)| ≤ C 1
Vr(x0) + V(x, x0)

( r
r + d(x, x0)

)
.

(ii) (Local Hölder regularity condition) For all x, y ∈ X with d(x, y) <
(2A0)−1(r + d(x, x0)) there is a constant C > 0 such that

|f(x) − f(y)| ≤ C
( d(x, y)
r + d(x, x0)

)� 1
Vr(x0) + V(x, x0)

( r
r + d(x, x0)

)
.
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(iii) (Cancellation condition)

∫
X
f(x)d�(x) = 0.

These test functions generalize the test functions in De�nition 2.1, which
applies to the case when �(B′(x, r)) ∼ r and the quasi-metric d′ has the Hölder
regularity (2.3) with exponent �. Notice that in this case

(
Vr(x0) + V(x, x0)

)
∼(

r + d′(x, x0)
)
, and both de�nitions coincide. One can also compare to corre-

sponding de�nitions in [HMY2, HMY1] in the case when the quasi-metric d
satis�es the Hölder regularity (2.3) with exponent � and the measure satis�es
the doubling condition (1.2) and the reverse doubling condition (2.5). In these
cases the only di�erence is that � is in (0, �] instead of being in (0, �]; otherwise
the de�nitions are identical.

Let G(x0, r, �, ) denote the set of all test functions of type (x0, r, �, ). The
norm on G(x0, r, �, ) is de�ned by

‖f‖G(x0,r,�,) ∶= inf {C > 0 ∶ (i) and (ii) hold}.

Now �x x0 ∈ X. Let G(�, ) ∶= G(x0, 1, �, ). It is easy to check that
G(x1, r, �, ) = G(�, ) with equivalent norms for each �xed x1 ∈ X and r > 0.
Furthermore, it is also easy to see that if 0 < � ≤ � then G(�, ) ⊂ G(�, ) and
G(�, ) is a Banach space with respect to the norm on G(�, ).

For 0 < � ≤ �, let
◦
G�(�, ) be the completion of the spaceG(�, ) in the norm

of G(�, ). For f ∈
◦
G�(�, ), we de�ne ‖f‖ ◦

G�(�,)
∶= ‖f‖G(�,). The spaces

◦
G�(�, ) are nested; if 0 < � ≤ �′ and 0 <  ≤ ′ then

◦
G�(�′, ′) ⊂

◦
G�(�, ).

The distribution space (
◦
G�(�, ))′ is the set of all bounded linear functionals

on
◦
G�(�, ). We denote by ⟨f, ℎ⟩ the natural pairing of elements ℎ ∈

◦
G�(�, )

and f ∈ (
◦
G�(�, ))′.

The normalized Auscher-Hytönen wavelets are test functions in G(�, ) for
any  > 0. Later on we will take advantage of this fact, inherited from the
exponential decay of the wavelets, and choose  to be large enough.

The reproducing formula holds in the space of test functions and distribu-
tions with parameters �′, ′ ∈ (0, �). More precisely, the following propositions
hold.

Proposition 3.6 ([HLW], Theorem 3.3). Suppose { k�}k∈ℤ,�∈Yk
is an orthonor-

mal basis as in Theorem 3.3, with Hölder regularity of order �. Then the normal-

ized wavelet  k�(x)∕
√
�
(
B(yk�, �k)

)
belongs to the set G(yk�, �k, �, ) of test func-

tions of type (yk�, �k, �, ) centered at yk� ∈ X for each k ∈ ℤ, � ∈ Yk, and  > 0.
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Proposition 3.7 ([HLW], Theorem 3.4). Suppose that f ∈
◦
G�(�, ) with �,  ∈

(0, �). Then the reproducing formula (3.14)holds in
◦
G�(�′, ′) for each�′ ∈ (0, �)

and ′ ∈ (0, ).

As a consequence, the reproducing formula also holds for distributions.

Corollary 3.8 ([HLW], Corollary 3.5). The reproducing formula (3.14) holds in

(
◦
G�(�′, ′))′, when �′, ′ ∈ (0, �).

3.4. Product setting. Consider the product setting X̃ = X1 × X2, where each
(Xi, di, �i), i = 1, 2, is a space of homogeneous type as de�ned in Section 1. For
i = 1, 2, let A(i)

0 be the constant in the quasi-triangle inequality (1.1), let C�i be
the doubling constant as in inequality (1.2), and let !i be an upper dimension
of Xi as in inequality (1.3). By Theorem 3.3, on each space of homogeneous
type (Xi, di, �i) for i = 1, 2, there is a wavelet basis { ki�i }ki∈ℤ,�i∈Y ki , with Hölder
regularity exponent �i ∈ (0, 1] as in inequality (3.12), and reference dyadic grid
DW
i with dilation constants ci1, C

i
1 and their ratio Ci1∕c

i
1 depending uniformly

on A(i)
0 .

The spaces of product test functions and distributions on the product space
X̃ are de�ned as follows.

De�nition 3.9 (Product test functions and distributions [HLW], Section 3). Let
X̃ = X1×X2 where (Xi, di, �i) is a space of homogenenous type for each i = 1, 2.
Suppose x̃0 = (x0, y0) ∈ X̃ and ri > 0, take �i so that 0 < �i ≤ �i, and take
i > 0, for i = 1, 2. Denote r̃ = (r1, r2), �̃ = (�1, �2), and ̃ = (1, 2). A
function f(x, y) de�ned on X̃ is said to be a test function of type (x̃0, r̃, �̃, ̃) if
the following conditions hold. First, for each �xed y ∈ X2, f(x, y), as a func-
tion of the variable x, is a test function in G(x0, r1, �1, 1) on X1. Second, for
each �xed x ∈ X1, f(x, y), as a function of the variable y, is a test function
in G(y0, r2, �2, 2) on X2. Third, the following mixed conditions are satis�ed,
where V2,r2(y0) ∶= �2(BX2(y0, r2)), and V2(y0, y) ∶= �2

(
BX2(y0, d2(y, y0))

)
:

(i) (Size condition in y variable) For all y ∈ X2,

‖f(⋅, y)‖G(x0,r1,�1,1) ≤ C 1
V2,r2(y0) + V2(y0, y)

( r2
r2 + d2(y, y0)

)2
.

(ii) (Hölder regularity condition in y variable) For all y, y′ ∈ X2 with

d2(y, y′) ≤
(
r2 + d2(y, y0)

)
∕2A(2)

0 ,

we have

‖f(⋅, y) − f(⋅, y′)‖G(x0,r1,�1,1) ≤ C
( d2(y, y′)
r2 + d2(y, y0)

)�2

× 1
V2,r2(y0) + V2(y0, y)

( r2
r2 + d2(y, y0)

)2
.
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(iii) (Size and regularity conditions in x variable) Properties (i) and (ii) also
hold interchanging the roles of x and y.

When f is a test function of type (x̃0, r̃, �̃, ̃), we write f ∈ G(x̃0, r̃, �̃, ̃). The
expression ‖f‖G(x̃0,r̃,�̃,̃) ∶= inf {C ∶ (i), (ii) and (iii) hold} de�nes a norm on
G(x̃0, r̃, �̃, ̃).

We denote by G(�̃, ̃) the class G(x̃0, 1̃, �̃, ̃) for any �xed x̃0 ∈ X̃ and where
1̃ = (1, 1). Then G(x̃0, r̃, �̃, ̃) = G(�̃, ̃), with equivalent norms, for all x̃0 ∈ X̃
and r1 > 0, r2 > 0. Furthermore, G(�̃, ̃) is a Banach space with respect to the
norm on G(�̃, ̃).

For �i ∈ (0, �i] and i > 0, for i = 1, 2, let
◦
G�̃(�̃, ̃) be the completion of

the space G(�̃, ̃) in G(�̃, ̃) in the norm of G(�̃, ̃). For f ∈
◦
G�̃(�̃, ̃), we de�ne

‖f‖ ◦
G�̃(�̃,̃)

∶= ‖f‖G(�̃,̃).

The distribution space
( ◦
G�̃(�̃, ̃)

)′
consists of all bounded linear functionals

on
◦
G�̃(�̃, ̃). We denote by ⟨f, ℎ⟩ the natural pairing of elements ℎ ∈

◦
G�̃(�̃, ̃)

and f ∈
( ◦
G�̃(�̃, ̃)

)′
.

Given Auscher-Hytönen wavelets { ki�i }ki∈ℤ,�i∈Y ki with Hölder regularity �i
on each space of homogeneous type (Xi, di, �i) for i = 1, 2, the correspond-

ing normalized tensor product wavelets  ̃k1�1(x1) ̃
k2
�2(x2) belong to

◦
G�̃(�̃, ̃)when

�i ∈ (0, �i] and i > 0 for i = 1, 2. See [HLW, p.124]. The L2-normalized

wavelets are given by  ̃ki�i (xi) ∶=  ki�i (xi)∕
√
�i

(
BXi (y

ki
�i , �

ki
i )

)
for i = 1, 2.

We are aware the tilde notation is being used to denote the product space and
ordered pairs, now also to denote the L2-normalized wavelets, and later on to
denote enlargement of open domains in the product space and L1-normalized
functions. We expect the reader not to get too confused with the multiple pur-
poses of this notation. We will write periodic reminders when a new tilde ap-
pears.

The following reproducing formula holds on the product space X̃ = X1×X2.

Theorem 3.10 ([HLW], Theorem 3.11). For i = 1, 2, let { ki�i }ki∈ℤ,�i∈Y ki be
Auscher-Hytönen wavelets with Hölder regularity �i > 0 with reference dyadic
grids DW

i on the space of homogeneous type (Xi, di, �i), and �x constants �i , i ∈
(0, �i) . Then the following hold:

(a) The reproducing formula

f(x1, x2) =
∑

k1∈ℤ

∑

�1∈Y k1

∑

k2∈ℤ

∑

�2∈Y k2

⟨f,  k1�1 
k2
�2⟩ 

k1
�1(x1) 

k2
�2(x2) (3.15)

holds in
◦
G�̃(�̃′, ̃′), for each �′i ∈ (0, �i) and ′i ∈ (0, i), for i = 1, 2.
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(b) The reproducing formula (3.15) also holds in (
◦
G�̃(�̃, ̃))′, the space of dis-

tributions.

Furthermore, whenf ∈ Lq(X̃)with q > 1, the series (3.15) converges uncon-
ditionally in the Lq(X̃)-norm. This is a consequence of the Auscher-Hytönen
wavelets being an unconditional basis on Lq(Xi) for i = 1, 2; see [AuH1, Corol-
lary 10.4].

4. Product Hardy spaces, duals, predual, key auxiliary result and
theorem
In this section we �rst recall the Hardy spaces Hp(X̃), their duals the Car-

lesonmeasure spacesCMOp(X̃), and the spaces of bounded and vanishingmean
oscillation, BMO(X̃) and VMO(X̃), respectively the dual and predual ofH1(X̃).
All these spaces, in the setting of product spaces of homogeneous type, were
introduced in [HLW] in terms of a square function de�ned via the Auscher-
Hytönen wavelet bases and their reference dyadic grids. We prove a key lemma
that shows each of the Auscher-Hytönen wavelets can themselves be further
decomposed into compactly supported building blocks with appropriate size,
smoothness, and cancellation conditions inherited from the wavelets. Finally,
we use the key lemma to prove a key auxiliary theorem stating that for 1 < q <
∞ and 0 < p ≤ 1 the setHp(X̃)∩Lq(X̃) is a subset of Lp(X̃)with Lp-(semi)norm
controlled by the Hp-(semi)norm. The key auxiliary results proved in this sec-
tion will be needed in the proof of the Main Theorem in Section 5.

4.1. Biparameter Hardy spaces, CMOp, BMO, and VMO. We focus on the
bi-parameter setting X̃ = X1 × X2, where each factor (Xi, di, �i) is a space of
homogeneous type as de�ned in Section 1, with the constant !i being an upper
dimension of Xi for i = 1, 2.

The family { ki�i }ki∈ℤ,�i∈Y ki is an Auscher-Hytönen orthonormal wavelet ba-
sis on Xi with reference dyadic gridDW

i , exponential decay constants ai and �i,
and order of regularity �i ∈ (0, 1) for i = 1, 2, as in Theorem 3.3. All the dyadic
rectangles in this section are of the form R = Qk1�1 × Q

k2
�2 where Q

ki
�i ∈ DW

i for
i = 1, 2.

We denote by
◦
G and (

◦
G)′ for short the product test function spaces

◦
G�̃(�̃′, ̃′)

and spaces of distributions
( ◦
G�̃(�̃′, ̃′)

)′
, respectively, where �′i , 

′
i ∈ (0, �i) for

i = 1, 2. Note that we �x some �′i , 
′
i in (0, �i) andworkwith those test functions

and the distributions in the dual space. At the end of the day it does not mat-
ter which �′i , 

′
i were chosen, as long as they belong to the interval (0, �i). The

product wavelets  k1�1 
k2
�2 ∈

◦
G and therefore if f ∈ (

◦
G)′ the notation ⟨f,  k1�1 

k2
�2⟩

means the action of the functional f on the product wavelet, which is an appro-
priate test function. We have used the prime ′ on the parameters �′i and 

′
i in

the de�nition of
◦
G and (

◦
G)′ with a dash (′), so as not to confuse them with the
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parameters �i and i for which the wavelets  ki�i belong to G(�i, i), namely all
�i ∈ (0, �i) and i > 0 for i = 1, 2. In the proofs below, we will want to choose

the wavelets’ parameter i as large as necessary. The space of distributions (
◦
G)′

appears in the de�nitions of the product Hp, CMOp, BMO, and VMO-spaces
presented in this section as well as in the de�nition of atomic Hp,q

at -spaces in
Section 5.

In [HLW], the Hardy spaces Hp(X̃) for X̃ = X1 × X2 are de�ned as follows
for p0 < p ≤ 1, where we let p0 ∶= max{!i∕(!i + �i) ∶ i = 1, 2}.

De�nition 4.1 ([HLW], De�nition 5.1). Suppose p0 < p ≤ 1. The Hardy

spaceHp(X̃) is de�ned to be the collection of distributions in (
◦
G)′ whose square

function is in Lp(X̃),

Hp(X̃) ∶=
{
f ∈ (

◦
G)′ ∶ S(f) ∈ Lp(X̃)

}
.

Here the product Littlewood-Paley square function S(f) of f related to the given
orthonormal basis { k�}k∈ℤ,�∈Y k and reference dyadic gridsDW

i onXi for i = 1, 2,
is de�ned by

S(f)(x1, x2) ∶=
{ ∑

k1∈ℤ

∑

�1∈Y k1

∑

k2∈ℤ

∑

�2∈Y k2

|||||⟨f,  
k1
�1 

k2
�2⟩ �̃Qk1�1

(x1)�̃Qk2�2
(x2)

|||||
2} 1

2

(4.1)
with Qki�i ∈ DW

i and �̃Qki�i
(xi) ∶= �Qki�i

(xi)�i(Q
ki
�i )

−1∕2 for i = 1, 2. For f ∈

Hp(X̃), de�ne theHp-(semi)norm3

‖f‖Hp(X̃) ∶= ‖S(f)‖Lp(X̃).

De�nition (4.1) corresponds to [HLW,De�nition 4.7, equation (4.10)], where
the product square function is called S̃ instead of S.

In [HLW] the Carleson measure spaces CMOp(X̃) are de�ned as follows.

De�nition 4.2 ([HLW], De�nition 5.2). Suppose p0 < p ≤ 1. The Carleson
measure space CMOp(X̃) is de�ned by

CMOp(X̃) ∶=
{
f ∈ (

◦
G)′ ∶ Cp(f) <∞

}
.

Here the quantity Cp(f) is de�ned by

Cp(f) ∶= sup
Ω

{ 1

�(Ω)
2
p
−1

∑

R=Qk1�1×Q
k2
�1⊂Ω

|⟨f,  k1�1 
k2
�2⟩|

2
}1∕2

, (4.2)

where Ω runs over all open sets in X̃ with �nite measure, and it is understood,
here and in the sequel, that the indices ki ∈ ℤ and �i ∈ Yki for i = 1, 2. The

3For p < 1, the semi-norm ‖ ⋅ ‖Hp(X1×X2) satis�es all the axioms of a norm except the triangle
inequality, instead it satis�es ‖f + g‖p

Hp(X̃)
≤ ‖f‖p

Hp(X̃)
+ ‖g‖p

Hp(X̃)
.
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space BMO of functions of bounded mean oscillation is de�ned by

BMO(X̃) ∶= CMO1(X̃).

One of the main results in [HLW] establishes the duality between the Hardy
spaces and the Carleson measure spaces.

Theorem 4.3 ([HLW], Theorem 5.3). Suppose p0 < p ≤ 1. Then (Hp(X̃))′ =
CMOp(X̃). In particular, when p = 1 we have

(
H1(X̃)

)′
= BMO(X̃).

The vanishing mean oscillation space VMO(X̃) was introduced in [HLW],
and it was shown in the same paper to be the predual ofH1(X̃). For the conve-
nience of the reader we record the de�nition and the duality theorem.

De�nition 4.4 ([HLW], De�nition 5.9). The spaceVMO(X̃) of functions of van-
ishing mean oscillation is the subspace of BMO(X̃) whose elements satisfy the
following three properties:

(a) lim
�→0+

sup
�(Ω)<�

{ 1
�(Ω)

∑

R=Qk1�1×Q
k2
�1⊂Ω

|⟨f,  k1�1 
k2
�2⟩|

2
}1∕2

= 0;

(b) lim
N→∞

sup
diam(Ω)>N

{ 1
�(Ω)

∑

R=Qk1�1×Q
k2
�1⊂Ω

|⟨f,  k1�1 
k2
�2⟩|

2
}1∕2

= 0; and

(c) lim
N→∞

sup
Ω∶Ω⊂

(
B(x1,x2,N)

)c
{ 1
�(Ω)

∑

R=Qk1�1×Q
k2
�1⊂Ω

|⟨f,  k1�1 
k2
�2⟩|

2
}1∕2

= 0.

Here the suprema run over all open setsΩ in X̃ with �nite measure, and either
with small measure in (a), with large diameter in (b), or living far away from
an arbitrary �xed point (x1, x2) ∈ X̃ in (c), where B(x1, x2, N) ∶= B(x1, N) ×
B(x2, N).

Theorem 4.5 ([HLW], Theorem 5.10). TheHardy spaceH1(X̃) is the dual of the
space of vanishing mean oscillation VMO(X̃). Namely,

(
VMO(X̃)

)′
= H1(X̃).

Note that the de�nitions for the Hp, CMOp, BMO, and VMO spaces all use
given Auscher-Hytönen wavelets and their underlying reference grids in Xi for
i = 1, 2. Whether these de�nitions are independent of the chosen wavelets
and reference grids is an important question, answered in the a�rmative in
the current paper.

4.2. Key decomposition lemma andHp ∩Lq ⊂ Lp theorem. We point out

that
◦
G, and thus Hp(X̃) ∩ Lq(X̃) for q > 1, are dense in Hp(X̃) with respect to

the Hp(X̃)-(semi)norm; see [HLW, p.40–41]. We now show that functions in
the dense subsetHp(X̃) ∩ Lq(X̃) also lie in Lp(X̃), in other words for q > 1,

Hp(X̃) ∩ Lq(X̃) ⊂ Lp(X̃),
with Lp-(semi)norm controlled by the Hp-(semi)norm. As an aside recall that
the Lp-(semi)norm is not a norm when 0 < p < 1, satisfying instead of the
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triangle inequality the following inequality: ‖f+g‖p
Lp(X̃)

≤ ‖f‖p
Lp(X̃)

+‖g‖p
Lp(X̃)

.

Our key auxiliary theorem in this section is the following.

Theorem 4.6. Given spaces of homogeneous type (Xi, di, �i) with an upper di-
mension !i , with reference dyadic grids DW

i , and associated Auscher-Hytönen
wavelet bases { ki�i }ki∈ℤ,�i∈Yki with Hölder regularity �i ∈ (0, 1), for i = 1, 2.
Suppose p0 ∶= max

{ !1
!1+�1

, !2
!2+�2

}
< p ≤ 1, and take q > 1. If a function

f ∈ Hp(X̃) ∩ Lq(X̃), then f ∈ Lp(X̃) and there exists a constant Cp > 0, inde-
pendent of the Lq-norm of f, such that

‖f‖Lp(X̃) ≤ Cp‖f‖Hp(X̃).

As a consequence of Theorem 4.6, we have the following result.

Corollary 4.7. Let q > 1. ThenH1(X̃) ∩ Lq(X̃) is a subset of L1(X̃).

To prove Theorem 4.6, we �rst establish an auxiliary result, Lemma 4.8, on
the decomposition of the orthonormal basis functions  k� into building blocks
with compact support and other convenient properties. These building blocks
will inherit from the wavelets, appropriately scaled, size and smoothness con-
ditions as well as cancellation.

We follow the approach of Nagel and Stein (see [NS, Section 3.5]).

Lemma 4.8. Let (X, d, �) be a space of homogeneous type with A0 the quasi-
triangle constant of the quasi-metric d, and ! an upper dimension of the Borel
regular doubling measure �. Fix parameters  > ! and C > 1. Suppose that  k�
is a basis function (awavelet) as inTheorem 3.3, with exponential decay exponents
� > 0 and a = (1 + 2 log2A0)−1 and with Hölder-regularity exponent �. Then

there exist functions ',Cl,k,� for each integer l ≥ 0 such that for all x ∈ X and for
each k ∈ ℤ, � ∈ Y k, we have the following decomposition for the L2-normalized

wavelets  ̃k� ∶=  k�(x)∕
√
�
(
B(yk�, �k)

)
∶

 ̃k�(x) =
∞∑

l=0
(2lC)−',Cl,k,�(x). (4.3)

Here each 'l,k,� satis�es the following properties.

(i) (Compact support) supp',Cl,k,� ⊂ B(yk�, 2A2
0 C2

l �k).
(ii) (Boundedness) There is a constant C > 0 such that for all x ∈ X

|',Cl,k,�(x)| ≤ C(C2l)!∕�
(
B(yk�, C2l�k)

)
.

(iii) (Local Hölder regularity) There is a constant C > 0 such that for all
x, y ∈ X with d(x, y) ≤ �k,

|',Cl,k,�(x) − ',Cl,k,�(y)| ≤ C (C2l�k)−� (C2l)!d(x, y)�∕�
(
B(yk�, C2l�k)

)
.
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(iv) (Cancellation) ∫X '

l,k,�(x)d�(x) = 0.

Here C is a positive constant independent of yk�, �k, and l. However C will de-
pend on the �xed  > 0 and the geometric constants of the space X. The equality
(4.3) holds pointwise, as well as in Lq(X) for q ∈ (1,∞).

Lemma 4.8 allows for two parameters, a decay parameter  > ! and a di-
lation parameter C > 1. Later on we will pick  large enough so that some
geometric series converge and we will need C to match dilation parameters for
the (p, q)-atoms which are independent of the wavelets, and based on possibly
separate dyadic grids. When C = 1 we simply write 'l,k,�.

In the local Hölder regularity condition (iii) in Lemma 4.8, the range of va-
lidity, d(x, y) ≤ �k, is inherited from the wavelets local regularity condition as
in Theorem 3.3(iii). In the proof of Lemma 4.8 we will see that a type of Hölder
regularity like the one test functions have, see De�nition 3.5(ii), with range
of validity d(x, y) <

(
2A0)−1(�k + d(x, yk�)

)
provided x ∈ B(yk�, A2

0 C2
l�k) ⧵

B(yk�, C2l−1�k∕4), will also hold because the wavelets are test functions by The-
orem 3.6. We will need this estimate in the proof of the Main Theorem in Sec-
tion 5.

What is gained in this decomposition is the compact support of the building
blocks, as opposed to the exponential decay of the wavelets being decomposed.
What is lost is the orthonormality of the wavelets, however the building blocks
will have an appropriate “almost-orthogonality” property that will be needed
in the proof of Theorem 4.6. This almost-orthogonality of the building blocks
is captured in Lemma 4.9 stated on page 1208 and proved after the proof of
Theorem 4.6 on page 1210.

Proof of Lemma 4.8. Fix  > !, k ∈ ℤ, and � ∈ Yk. Let

ΛC0 (x) ∶= ℎ0(x)  ̃k�(x) and (4.4)

ΛCl (x) ∶=
(
ℎl(x) − ℎl−1(x)

)
 ̃k�(x) for l ≥ 1. (4.5)

The cut-o� functions ℎl ∈ C�(X) are given by Lemma 3.4 based on x0 = yk� and
with parameter R0 = C2l�k for each l ≥ 0. They have the following properties
for l > 0: �rst 0 ≤ ℎl(x) ≤ 1; second

ℎl(x) ≡ 1 when x ∈ B(yk�, C2l�k∕4), ℎl(x) ≡ 0 when x ∈ B(yk�, A2
0 C2

l�k)c;
(4.6)

and third, there exists a constant C > 0 independent of yk� and l, depending
only on the geometric constants of the space X, such that for all x, y ∈ X the
following global Hölder regularity holds:

|ℎl(x) − ℎl(y)| ≤ C
(d(x, y)

C2l�k

)�
. (4.7)
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By de�nition, the function Λ0 is supported on B(yk�, A2
0 C�

k) and the function
ΛCl for l ≥ 1 is supported on B(yk�, A2

0 C2
l�k) ⧵ B(yk�, C2l−1�k∕4). By a tele-

scoping sum argument we see that

L∑

l=0
ΛCl (x) = ℎL(x)  ̃k�(x) and is identical to  ̃k�(x) on B(yk�, C2L�k∕4).

It follows that  ̃k�(x) =
∑
l≥0Λ

C
l (x) pointwise. Moreover, for all x ∈ X and

every  > 0,

|ΛCl (x)| ≲
(C2l)−

�
(
B(yk�, �k)

) ≲
(C2l)!−

�
(
B(yk�, C2l�k)

) . (4.8)

The second inequality follows from the doubling property of the measure. The
�rst inequality can be seen since k�(x)has the exponential decay property (3.11),
|ℎl(x)−ℎl−1(x)| ∈ [0, 1], andΛCl is supported on the annulusB(y

k
�, A2

0 C2
l�k)⧵

B(yk�, C2l−1�k∕4). Note that for �, a > 0 the function e−�zaz de�ned for z ≥ 0
is a bounded function for each  > 0, with an upper bound depending on  > 0.

Following the argument in [NS, p.550–551], de�ne al ∶= ∫X Λ
C
l (x)d�(x).

Using (4.8) it is clear that al = O
(
(C2l)!−

)
. De�ne sl ∶=

∑
0≤j≤l aj. Note

that by the Lebesgue domination theorem,

∑

l≥0
al = ∫

X
 ̃k�(x)d�(x) = 0,

therefore we have sl = −
∑

j>l aj, which gives sl = O
(
(C2l)!−

)
.

We now de�ne the function Λ̃Cl ∶ X → ℝ by

Λ̃Cl (x) ∶= ΛCl (x) − al �l(x) + sl
(
�l(x) − �l+1(x)

)

= ΛCl (x) + sl−1 �l(x) − sl �l+1(x).

Here for each l ≥ 0 the function �l is the L1-normalization of the function ℎl
supported on B(yk�, A2

0 C2
l�k) given by

�l(x) ∶= ℎl(x)
[
∫
X
ℎl(z)d�(z)

]−1
. (4.9)

Finally we de�ne the functions ',Cl,k,� in the decomposition of the wavelets

',Cl,k,�(x) ∶= (C2l)Λ̃Cl (x). (4.10)
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Note that Λ̃Cl does not depend on , although it depends on the �xed k and �.
It is easy to verify that the decomposition (4.3) holds. Namely

∑

l≥0
(C2l)−',Cl,k,�(x) =

∑

l≥0
Λ̃Cl (x)

=
∑

l≥0
ΛCl (x) −

∑

l≥0
al�l(x) +

∑

l≥0
sl

(
�l(x) − �l+1(x)

)

=  ̃k�(x),

where the last equality follows from the facts that  ̃k�(x) =
∑
l≥0Λ

C
l (x) and∑

l≥0 al�l =
∑
l≥0 sl(�l(x) − �l+1(x)), using summation by parts and noting

that al = sl − sl−1.
Now we verify that ',Cl,k,� satis�es properties (i), (ii), (iii), and (iv).

In fact, from the de�nition of ',Cl,k,� it is easy to see that properties (i) and (iv)
hold. We now turn to property (ii). From the size estimate (4.8) we have that

|ΛCl (x)| ≲
(C2l)!−

�
(
B(yk�, C2l�k)

) (4.11)

for each  > 0, where! is an upper dimension of themeasure�. Next, it follows
from the de�nition of the function �l that

|�l(x)| ≲
1

�
(
B(yk�, C2l�k)

)

because 0 ≤ ℎl(x) ≤ 1 and

�
(
B(yk�, C2l−1�k∕4)

)
≤ ∫

X
ℎl(z)d�(z) ≤ �

(
B(yk�, A2

0 C2
l�k)

)
.

Furthermore, using the doubling property of �, we conclude that

∫
X
ℎl(z)d�(z) ∼ �

(
B(yk�, C2l�k)

)
. (4.12)

Consequently, recalling that al = O
(
(C2l)!−) and sl = O

(
(C2l)!−), we con-

clude that property (ii) holds.
Similarly, from the Hölder regularity (3.12) of  k� and estimate (4.7) of the

cut-o� functions ℎl, together with the de�nition of the function �l, we obtain
that property (iii) holds. More precisely, we need to verify that there is a con-
stant C > 0 depending only on the geometric constants of X and on , such
that for all x, y ∈ X with d(x, y) ≤ �k, and for all l, �, and k the following
inequality holds:

|'Cl,k,�(x) − ',Cl,k,�(y)| ≤
C (C2l�k)−� (C2l)!

�
(
B(yk�, C2l�k)

) d(x, y)�.
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Without loss of generalitywe can assume that d(x, y) > 0, in otherwords x ≠ y.
Using de�nition (4.10) of the atoms'l,k,� and the triangle inequalitywe get that

|',Cl,k,�(x) − ',Cl,k,�(y)| ≤ (C2l)
(
|ΛCl (x) − ΛCl (y)| + |sl−1| |�l(x) − �l(y)|

+ |sl| |�l+1(x) − �l+1(y)|
)
.

Since sl = O
(
(C2l)−), it su�ces to show that there is a constant C > 0 such

that for all x, y ∈ X with d(x, y) ≤ �k the following two inequalities hold:

(C2l)|ΛCl (x) − ΛCl (y)| ≤
C (C2l�k)−� (C2l)!

�
(
B(yk�, C2l�k)

) d(x, y)�, (4.13)

|�l(x) − �l(y)| ≤
C (C2l�k)−�

�
(
B(yk�, C2l�k)

) d(x, y)�. (4.14)

We �rst estimate (4.14). Using de�nition (4.9) of �l, estimate (4.12), and the
fact that ℎl satis�es estimate (4.7) for all x, y ∈ X, we obtain

|�l(x) − �l(y)| ≲
|ℎl(x) − ℎl(y)|

�
(
B(yk�, C2l�k)

) ≲
(C2l�k)−�

�
(
B(yk�, C2l�k)

) d(x, y)�.

This is more than what we wanted to show, since x and y are not required to be
�k-close to each other, and the similarity constants are independent of .

Wenowestimate (4.13). We argue in the casewhenl > 0 andnote thatwhen
l = 0 a similar calculation, somewhat simpler, yields the desired estimate. By
de�nition (4.5) of ΛCl when l > 0, we conclude that

|ΛCl (x) − ΛCl (y)| ≤ |ℎl(x) ̃k�(x) − ℎl(y) ̃k�(y)|

+ |ℎl−1(x) ̃k�(x) − ℎl−1(y) ̃k�(y)|.

For all l > 0 we estimate using the triangle inequality

|ℎl(x)  ̃k�(x) − ℎl(y)  ̃k�(y)| ≤ ‖ℎl‖L∞(X)| ̃k�(x) −  ̃k�(y)|

+ ‖ ̃k�‖L∞(X)|ℎl(x) − ℎl(y)|.

Using the exponential decay and Hölder regularity estimates (3.11) and (3.12)
for the wavelet  k�, together with the fact that ‖ℎl‖L∞(X) ≤ 1 and the Hölder
regularity estimate (4.7) of ℎl, we conclude that, when d(x, y) ≤ �k,

|ℎl(x)  ̃k�(x) − ℎl(y)  ̃k�(y)| ≲
exp

[
− �

(d(yk� ,x)
�k

)a]

�
(
B(yk�, �k)

)
[d(x, y)�

�k�
+

d(x, y)�

(C2l�k)�

]

≲Γ
�−k�(C2l)!

(
1 + (C2l)−�

)

�
(
B(yk�, C2l�k)

) d(x, y)�
[ �k

�k + d(yk�, x)

]Γ
,
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for all Γ > 0. We have used the doubling property (1.3) in the last inequal-
ity. When x is in the support of ΛCl , namely in the annulus B(yk�, A2

0 C2
l�k) ⧵

B(yk�, C2l−1�k∕4), then d(x, yk�) �−k ∼ C2l. We conclude that for all Γ > 0

(C2l)|ΛCl (x) − ΛCl (y)| ≲Γ
(C2l�k)−� (C2l)!

�
(
B(yk�, C2l�k)

) d(x, y)� (C2l)
(
(C2l)� + 1

)

×
[ 1
1 + d(yk�, x) �−k

]Γ

≲Γ
(C2l�k)−� (C2l)!

�
(
B(yk�, C2l�k)

) d(x, y)� (C2l)+�−Γ.

Picking Γ = + � we get estimate (4.13) at least when x is in the support of ΛCl
and d(x, y) ≤ �k. Clearly when both x and y are not in the support of ΛCl then

ΛCl (x) − ΛCl (y) = 0. The only remaining case is when y is in the support of ΛCl
and x is not. The calculations above are symmetric in x and y; interchanging
their roles we conclude that when d(x, y) ≤ �k then

(C2l)|ΛCl (x) − ΛCl (y)| ≲
(C2l�k)−� (C2l)!

�
(
B(yk�, C2l�k)

) d(x, y)�.

This proves estimate (4.13) and shows that condition (iii) in the lemma holds.
By Proposition 3.6,  ̃k� is a test function of type (yk�, �k, �,  + �). Using the

test-function properties instead of the local Hölder regularity of the wavelets as
we just did, one can verify in a similar manner that when x ∈ supp(ΛCl ) and
d(x, y) ≤ (2A0)−1(�k + d(x, yk�)) then

(C2l)|ΛCl (x) − ΛCl (y)| ≲
(C2l�k)−�

�
(
B(yk�, �k)

)
+ �

(
B(x, d(x, yk�))

)d(x, y)�. (4.15)

Finally we can verify that the convergence in equality (4.3) is not just point-
wise, but also in Lq(X) for q ∈ (1,∞). Indeed, let

 k,N� (x) =
√
�(B(yk�, �k))

N∑

l=0
(C2l)−',Cl,k,�(x).

Then, using the already proven boundedness and support properties (i) and (ii)
of ',Cl,k,� in Lemma 4.8, we readily see that

‖ k� −  k,N� ‖Lq(X) ≤
√
�
(
B(yk�, �k)

) ∞∑

l=N+1
(C2l)−‖',Cl,k,�‖Lq(X)

≲ (C)!−�
(
B(yk�, �k)

) 1
2

∞∑

l=N+1
2(−+!)l�

(
B(yk�, C2l�k)

)− 1
q′
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≲ (C)!−�
(
B(yk�, �k)

) 1
2
− 1
q′

∞∑

l=N+1
2(−+!)l.

Since  > !, asN →∞, the series on the right-hand-side converges to zero. In
the last inequality we simply observed that

�
(
B(yk�, C2l�k)

)−1∕q′
≤ �

(
B(yk�, �k)

)−1∕q′

since the power is negative. �

We now present the proof of the key auxiliary theorem.

Proof of Theorem 4.6. Suppose that f ∈ Hp(X̃) ∩ Lq(X̃) and let � denote the
product measure �1 ×�2. Then, by the reproducing formula (3.15), Lemma 4.8
with Ci = 1 for i = 1, 2, and Fubini for summations, we have

f(x1, x2) =
∑

k1∈ℤ

∑

�1∈Y k1

∑

k2∈ℤ

∑

�2∈Y k2

⟨f,  k1�1 
k2
�2⟩ 

k1
�1(x1) 

k2
�2(x2)

=∶
∑

l1,l2≥0
2−l11 2−l22fl1,l2(x1, x2), (4.16)

where fl1,l2 is de�ned by

fl1,l2(x1, x2) ∶=
∑

k1∈ℤ
�1∈Y k1

∑

k2∈ℤ
�2∈Y k2

⟨f,  k1�1 
k2
�2⟩ �1 '

1
l1,k1,�1

(x1) �2 '
2
l2,k2,�2

(x2).

(4.17)

Here we are denoting 'ili ,ki ,�i ∶= 'i ,1li ,ki ,�i
and �i ∶=

√
�i

(
B(yki�i , �

ki )
)
for i =

1, 2 (we are abusing notation, to be more precise we should write �ki�i instead
of simply �i). The parameter i is an arbitrary constant larger than the upper
dimension of Xi, that is i > !i, for i = 1, 2, and to be determined later. All
these series converge unconditionally in the Lq(X̃)-normwhen q > 1, allowing
us to reorder the series at will.

Now for j ∈ ℤ, we let Ωj be a level set for S(f), more precisely

Ωj ∶= {(x1, x2) ∈ X̃ ∶ S(f)(x1, x2) > 2j}. (4.18)

Notice that Ωj+1 ⊂ Ωj for all j ∈ ℤ and that by the well-known layer-cake4

formula for the Lp-(semi)norm of S(f) it holds that

‖S(f)‖p
Lp(X̃)

∼p
∑

j∈ℤ
2pj�(Ωj). (4.19)

Also, by Tchebichev’s inequality, when f ∈ Lp(X1 × X2),

�(Ωj) ≤ 2−jp ∫
Ωj

|S(f)(x1, x2)|p d�(x1, x2). (4.20)

4Assume F ∈ Lp(X, �); then ‖F‖pLp(�) = ∫ ∞
0 p�p−1�{x ∈ X ∶ |F(x)| > �}d�.
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If f = 0 in Lq(X̃) then S(f) = 0 in Lq(X̃) and the theorem is trivially true.
Assume f ≠ 0 in Lq(X̃), notice that this implies that S(f) ≠ 0 in Lq(X1 × X2),
and it ensures that there is j0 ∈ ℤ such that �(Ωj) > 0 for all j ≤ j0.

Recall that the reference dyadic grids underlying the wavelets on Xi are de-
notedDW

i for i = 1, 2. Given dyadic cubes Qki�i ∈ DW
i for i = 1, 2, let R = Rk1,k2�1,�2

denote the dyadic rectangle in X1 × X2 they determine, that is, Rk1,k2�1,�2 ∶= Qk1�1 ×
Qk2�2 . Let

ℬj ∶=
{
R dyadic rectangle ∶ �(R ∩ Ωj) >

1
2�(R), �(R ∩ Ωj+1) ≤

1
2�(R)

}
.

(4.21)
In particular, since S(f) ≠ 0 in Lq(X̃), each dyadic rectangle Rk1,k2�1,�2 belongs

to exactly one set ℬj. We can reorder the quadruple sum in (4.17) over

(k1, k2, �1, �2) ∈ ℤ2 × Y k1 × Y k2

by �rst adding over j ∈ ℤ and second adding over those (k1, k2, �1, �2) such
that Rk1,k2�1,�2 ∈ ℬj, obtaining

fl1,l2(x1, x2) =
∑

j∈ℤ

∑

Rk1 ,k2�1 ,�2∈ℬj

⟨f,  k1�1 
k2
�2⟩ �1 '

1
l1,k1,�1

(x1) �2 '
2
l2,k2,�2

(x2). (4.22)

Next, we will show below that for each j ∈ ℤ,

‖‖‖‖‖
∑

Rk1 ,k2�1 ,�2∈ℬj

⟨f,  k1�1 
k2
�2⟩ �1 '

1
l1,k1,�1

�2 '
2
l2,k2,�2

‖‖‖‖‖
p

Lp(X̃)

≲ (l1!1 + l2!2)
1− p

q 2
l1!1(1+

p
q′
)
2
l2!2(1+

p
q′
)
2jp�(Ωj). (4.23)

Together with the special reproducing formula (4.16) and estimate (4.19), in-
equality (4.23) yields the conclusion of Theorem 4.6. More precisely, since
0 < p ≤ 1,

‖f‖p
Lp(X̃)

≤
∑

l1,l2≥0
2−l11p2−l22p‖fl1,l2‖

p
Lp(X̃)

≤
∑

l1,l2≥0
2−l11p2−l22p

∑

j∈ℤ

‖‖‖‖
∑

Rk1 ,k2�1 ,�2∈ℬj

⟨f,  k1�1 
k2
�2⟩�1'

1
l1,k1,�1

�2'
2
l2,k2,�2

‖‖‖‖
p

Lp(X̃)

≲
∑

l1,l2≥0
2−l11p2−l22p(l1!1 + l2!2)

1− p
q 2
l1!1(1+

p
q′
)
2
l2!2(1+

p
q′
) ∑

j∈ℤ
2jp�(Ωj)

≲ ‖S(f)‖p
Lp(X̃)

= ‖f‖p
Hp(X̃)

.

Where we have chosen i > !i(1∕p + 1∕q′) for i = 1, 2, to ensure convergence
of the relevant series over l1 and l2. Note that since 1∕p ≥ 1, this constraint
implies that i > !i for i = 1, 2, a constraint needed in Lemma 4.8.
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Thus, it su�ces to verify the claim (4.23). To this end, we de�ne the �0-
enlargement Ω̃j ∶= Ω̃�0

j of the open set Ωj by

Ω̃j ∶= {(x1, x2) ∈ X̃ ∶ Ms(�Ωj
)(x1, x2) > �0 ∶=

1
2C�1C�2

( c11
C11

)!1( c21
C21

)!2
}.

(4.24)
Here ci1, C

i
1 are the dilation constants of the gridsDW

i andMs is the strong max-
imal function

Msg(x1, x2) ∶= sup
B1×B2∋(x1,x2)

1
�1(B1)�2(B2)

∫
B1×B2

|g(y1, y2)|d�(y1, y2),

de�ned for functions g ∈ L1loc(X̃), and where Bi are balls in Xi for i = 1, 2.
The constant �0 in (4.24) is determined by the doubling constants of the

measures �i, the upper dimensions !i, and the ratio of the dilation constants
ci1 = (A(i)

0 )
−5∕6 and Ci1 = 6(A(i)

0 )
4 involved in the radius of the inner and

outer balls sandwiching the reference dyadic cubes for the wavelets, as in prop-
erty (3.6), for i = 1, 2. More precisely, �0 is a constant depending only on the
geometric constants of Xi for i = 1, 2,

�0 =
(
2C�1C�2

(
36(A(1)

0 )9
)!1(36(A(2)

0 )9
)!2)−1. (4.25)

Furthermore �0 ∈ (0, 1) and is chosen so that if R ∈ ℬj then R ⊂ Ω̃j. More pre-
cisely, if R ∈ ℬj then by de�nition �(R∩Ωj)∕�(R) > 1∕2. The dyadic rectangle
R = Q1 × Q2 and, for i = 1, 2, each dyadic cube Qi ∈ DW

i contains B′i , its inner
ball, and is contained in B′′i , its outer ball, that is B

′
i ⊂ Qi ⊂ B′′i . Moreover,

�i(B′′i ) ≤ C�i
(Ci1
ci1

)!i
�i(B′i ) by the doubling property (1.3) of the measure �i for

i = 1, 2. Hence

1
2 <

�(R ∩ Ωj)
�(R)

≤
�
(
(B′′1 × B

′′
2 ) ∩ Ωj

)

�1(B′1)�2(B
′
2)

≤ C�1C�2
(C11
c11

)!1(C21
c21

)!2 �
(
(B′′1 × B

′′
2 ) ∩ Ωj

)

�1(B′′1 )�2(B
′′
2 )

.

We conclude that B′′1 × B
′′
2 ⊂ Ω̃j and therefore R = Q1 × Q2 ⊂ Ω̃j.

By de�nition every open set Ω is contained in its �-enlargement

Ω̃� ∶=
{
(x1, x2) ∈ X1 × X2 ∶ Ms(�Ω)(x1, x2) > �

}
(4.26)

for � ∈ (0, 1), that is Ω ⊂ Ω̃�. In particular Ωj ⊂ Ω̃j and hence �(Ωj) ≤ �(Ω̃j)
for all j ≥ 0. More interestingly, by weak-L2 properties of the strong maximal
function we get

�(Ω̃j) ≤ C(
‖�Ωj

‖L2(X1×X2)
�0

)
2

= C
�20
�(Ωj). (4.27)
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We also de�ne the (l1,l2)-enlargement Ω̃j,l1,l2 of Ω̃j. Recall that 2liQi ∶=
B(yki�i , 2

liCi1�
ki ), where Ci1 is the dilation constant determining the radius of the

outer ball of the dyadic cube Qi ∈ DW
i for each i = 1, 2. Let

Ω̃j,l1,l2 ∶=
⋃

R=Q1×Q2⊂Ω̃j

2l1Q1 × 2l2Q2. (4.28)

It is clear from this de�nition that Ω̃j ⊂ Ω̃j,l1,l2 for all l1,l2 ≥ 0. Note that
Ω̃j,l1,l2 is a subset of {(x1, x2) ∈ X1 × X2 ∶ Ms(�Ω̃j

)(x1, x2) ≥ 2−l1!1−l2!2}.
Indeed, for every (x1, x2) ∈ Ω̃j,l1,l2 there must be a dyadic rectangle R = Q1 ×
Q2 ∈ Ω̃j such that (x1, x2) ∈ 2l1Q1 × 2l2Q2. Also for 2l1Q1 × 2l2Q2 we get

�
(
Ω̃j ∩ (2l1Q1 × 2l2Q2)

)

�(2l1Q1 × 2l2Q2)
≥

�
(
Ω̃j ∩ (Q1 × Q2)

)

2l1!1+l2!2�(Q1 × Q2)
= 1
2l1!1+l2!2

.

HenceMs(�XΩ̃j )(x1, x2) ≥ 2−l1!1−l2!2 . We conclude that

�(Ω̃j,l1,l2) ≲ (l1!1 + l2!2)2l1!12l2!2�(Ω̃j), (4.29)

by an argument similar to [CF, p.191, line 17], denoting x̃ = (x1, x2) and using
the L log+ L to weak L1 estimate for the strong maximal function applied to
f = �Ω̃j

, namely

�{(x̃) ∈ X̃ ∶ Ms(f)(x̃) > �} ≲ ∫
X̃

|f(x̃)|
�

log (1 +
|f(x̃)|
�

)d�(x̃). (4.30)

The L log+ L to weak L1 estimate (4.30) for the strong maximal function can
be deduced for the strong dyadic maximal function (de�ned asMs but instead
of product of balls we consider products of dyadic cubes in X1 and X2) from
the weak (1, 1) estimates on each individual dyadic maximal function on Xi for
i = 1, 2, see [Fa, Theorem1] and also [Fe2]. By [KLPW, Theorem3.1(ii)] we can
control pointwise the strong maximal function Ms (with respect to balls) by a
�nite sum of strong dyadicmaximal functions (with respect to adjacent systems
of dyadic cubes [KLPW, Section 2.4], the equivalent to the 1/3 trick in ℝ for
spaces of homogeneous type). Hence we obtain the desired estimate (4.30).

For each setℬj of dyadic rectangles, we de�ne the function fℬj
∶ X̃ → ℝ to

be
fℬj

(x1, x2) ∶=
∑

Rk1 ,k2�1 ,�2∈ℬj

⟨f,  k1�1 
k2
�2⟩ 

k1
�1(x1) 

k2
�2(x2), (4.31)

and hence by de�nition of the square function

S(fℬj
)(x1, x2) =

( ∑

Rk1 ,k2�1 ,�2∈ℬj

||||
⟨
f,  ̃k1�1 ̃

k2
�2
⟩||||
2
�Rk1 ,k2�1 ,�2

(x1, x2)
) 1
2 , (4.32)

where  ̃ki�i =  ki�i∕�i denotes the normalized wavelets for i = 1, 2.
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Note that by construction, the function 'ili ,ki ,�i has compact support on

B(yki�i , 2(A
(i)
0 )

2 2li�ki )

which is contained inB(yki�i , 2
liCi1�

ki ) for i = 1, 2. The last statement holds since
in the Auscher-Hytönen construction the dilation constant Ci1 determining the
radius of the outer balls is Ci1 = 6(A(i)

0 )
4 > 2(A(i)

0 )
2 for each i = 1, 2 [AuH1,

Theorem 2.11]. As explained on page 1205, if Rk1,k2�1,�2 ∈ ℬj, then R
k1,k2
�1,�2 ∈ Ω̃j,

and thus the support of '1l1,k1,�1(x1)'
2
l2,k2,�2

(x2) is contained in Ω̃j,l1,l2 .
Therefore, by Hölder’s inequality with exponents s = q∕p > 1 and s′ =

q∕(q − p),
‖‖‖‖‖

∑

Rk1 ,k2�1 ,�2∈ℬj

⟨f,  k1�1 
k2
�2⟩�1'

1
l1,k1,�1

�2'
2
l2,k2,�2

‖‖‖‖‖
p

Lp(X̃)
(4.33)

≤ �(Ω̃j,l1,l2)
1− p

q
‖‖‖‖‖

∑

Rk1 ,k2�1 ,�2∈ℬj

⟨f,  k1�1 
k2
�2⟩�1'

1
l1,k1,�1

�2'
2
l2,k2,�2

‖‖‖‖‖
p

Lq(X̃)
.

To estimate the Lq-norm of the sum in the right-hand-side of (4.33) we use a
duality argument. Hence, for all g ∈ Lq′(X̃)with ‖g‖Lq′ (X̃) ≤ 1, we estimate the
inner product

|||||
⟨ ∑

Rk1 ,k2�1 ,�2∈ℬj

⟨f,  k1�1 
k2
�2⟩�1'

1
l1,k1,�1

�2'
2
l2,k2,�2

, g
⟩|||||

=
|||||

∑

Rk1 ,k2�1 ,�2∈ℬj

�21�
2
2
⟨
f,  ̃k1�1 ̃

k2
�2
⟩
⟨'1l1,k1,�1'

2
l2,k2,�2

, g⟩
|||||

≤
∑

Rk1 ,k2�1 ,�2∈ℬj

�1(Q
k1
�1)�2(Q

k2
�2)

|||||
⟨
f,  ̃k1�1 ̃

k2
�2
⟩|||||

|||||⟨'
1
l1,k1,�1

'2l2,k2,�2 , g⟩
|||||

≤ ∫
X1×X2

∑

Rk1 ,k2�1 ,�2∈ℬj

|||||
⟨
f,  ̃k1�1 ̃

k2
�2
⟩|||||

|||||⟨'
1
l1,k1,�1

'2l2,k2,�2 , g⟩
|||||�Rk1k2�1 ,�2

(x̃)d�(x̃).

In the last inequality x̃ = (x1, x2) ∈ X1 × X2 and we used that

�1(Q
k1
�1)�2(Q

k2
�2) = ∫

X1×X2
�Rk1 ,k2�1 ,�2

(x̃)d�(x̃).

We continue estimating, �rst applying the Cauchy-Schwarz inequality on the
sum, second applying Hölder’s inequality, with exponents q > 1 and q′, to the
integral, and third using the notation introduced in (4.31) and (4.32):

|||||
⟨ ∑

Rk1 ,k2�1 ,�2∈ℬj

⟨f,  k1�1 
k2
�2⟩�1'

1
l1,k1,�1

�2'
2
l2,k2,�2

, g
⟩|||||
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≤ ( ∫
X1×X2

(
∑

Rk1 ,k2�1 ,�2∈ℬj

|||||
⟨
f,  ̃k1�1 ̃

k2
�2
⟩|||||
2
�Rk1 ,k2�1 ,�2

(x̃))
q
2
d�(x̃))

1
q

×( ∫
X1×X2

(
∑

Rk1 ,k2�1 ,�2∈ℬj

|||||⟨'
1
l1,k1,�1

'2l2,k2,�2 , g⟩
|||||
2
�Rk1 ,k2�1 ,�2

(x̃))
q′

2
d�(x̃))

1
q′

≲q 2l1!12l2!2‖S(fℬj
)‖Lq(X̃). (4.34)

The last inequality is deduced from the fact that ‖g‖Lq′ (X̃) ≤ 1 and the follow-
ing Littlewood–Paley estimate, whose proof will be provided after �nishing the
proof of Theorem 4.6.

Lemma 4.9. There is a constant C > 0 (depending on the geometric constants
and on q > 1) such that for all functions g ∈ Lq′(X̃) and all positive integers l1
and l2,

‖‖‖‖‖‖‖

[ ∑

Rk1 ,k2�1 ,�2∈ℬj

|||||⟨'
1
l1,k1,�1

'2l2,k2,�2 , g⟩
|||||
2
�Rk1 ,k2�1 ,�2

] 1
2
‖‖‖‖‖‖‖Lq′ (X̃)

≲q 2l1!12l2!2‖g‖Lq′ (X̃). (4.35)

The dual estimate (4.34) implies that
‖‖‖‖‖

∑

Rk1 ,k2�1 ,�2∈ℬj

⟨f,  k1�1 
k2
�2⟩�1'

1
l1,k1,�1

�2'
2
l2,k2,�2

‖‖‖‖‖Lq(X̃)

≲q 2l1!12l2!2‖S(fℬj
)‖Lq(X̃)

= 2l1!12l2!2( ∫
X1×X2

{
∑

Rk1 ,k2�1 ,�2∈ℬj

|||||
⟨
f,  ̃k1�1 ̃

k2
�2
⟩|||||
2
�Rk1 ,k2�1 ,�2

(x̃)}
q
2
d�(x̃))

1
q

≲q 2l1!12l2!2( ∫
X1×X2

{
∑

R=Rk1 ,k2�1 ,�2∈ℬj

|||||
⟨
f,  ̃k1�1 ̃

k2
�2
⟩|||||
2

(4.36)

×
|||||Ms

(
�R∩(Ω̃j⧵Ωj+1)

)
(x̃)

|||||
2
}
q
2
d�(x̃))

1
q
.

In the last inequalitywehaveused the de�nitions (4.21), of the setℬj, and (4.24),
of the enlargement set Ω̃j via the strong maximal function, to deduce that

�R(x1, x2) ≲
||||Ms

(
�R∩(Ω̃j⧵Ωj+1))

(
x1, x2)

||||
2
.

More precisely, recall that if R = Q1 × Q2 belongs to ℬj then it is a subset of
Ω̃j. Hence R ∩ (Ω̃j ⧵ Ωj+1) = R ⧵ Ωj+1, and since R ∈ ℬj it is also true that
�(R ∩ Ωj+1) ≤

1
2
�(R). Therefore �(R ⧵Ωj+1) ≥

1
2
�(R). As before, denote by B′i

and B′′i the inner and outer balls of the dyadic cubes Qi for i = 1, 2. Recall that
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B′i ⊂ Qi ⊂ B′′i , therefore R ⧵Ωj+1 ⊂ B′′1 ×B
′′
2 . Using the doubling property (1.3)

we get for R ∈ ℬj

1
�(B′′1 × B

′′
2 )

∫
B′′1 ×B

′′
2

�R∩(Ω̃j⧵Ωj+1)(z1, z2)d�(z1, z2) =
�(R ⧵Ωj+1)

�(B′′1 × B
′′
2 )

≥ 1
2

�(R)
�(B′′1 × B

′′
2 )

≥ 1
2
�(B′1 × B

′
2)

�(B′′1 × B
′′
2 )

= 1
2
�1(B′1)

�1(B′′1 )

�2(B′2)

�2(B′′2 )

≥ 1
2C�1C�2

[ c11
C11

]!1[ c21
C21

]!2
= �0.

Therefore, for all R ∈ ℬj and for all x̃ = (x1, x2) ∈ R, we get

Ms
(
�R∩(Ω̃j⧵Ωj+1)

)
(x̃) ≥ �0 > 0.

Hence we obtain �R(x̃) = �2R(x̃) ≲
||||Ms

(
�R∩(Ω̃j⧵Ωj+1))

(
x̃)||||

2
, as claimed. Note

that the similarity constant is �−20 , which only depends on the geometric con-
stants of Xi for i = 1, 2, by de�nition (4.25).

Recall the Fe�erman-Stein vector-valued strong maximal function estimate
in [FS]: given q, r > 1, there is a constant Cq > 0 such that for appropriate
sequences of functions {fk}k≥1

‖‖‖‖‖
{ ∞∑

k=1
Ms(fk)r

}1∕r‖‖‖‖‖Lq(X̃)
≤ Cq

‖‖‖‖‖
{ ∞∑

k=1
|fk|r

}1∕r‖‖‖‖‖Lq(X̃)
. (4.37)

We use estimate (4.37) with r = 2 and q > 1, to conclude that

‖S(fℬj
)‖Lq(X̃) ≲q ( ∫

X̃

(
∑

R=Rk1 ,k2�1 ,�2∈ℬj

|||||
⟨
f,  ̃k1�1 ̃

k2
�2
⟩|||||
2
�R∩(Ω̃j⧵Ωj+1)(x̃))

q
2
d�(x̃))

1
q

= ( ∫

Ω̃j⧵Ωj+1

(
∑

R=Rk1 ,k2�1 ,�2∈ℬj

|||||
⟨
f,  ̃k1�1 ̃

k2
�2
⟩|||||
2
�R(x̃))

q
2
d�(x̃))

1
q

= ( ∫

Ω̃j⧵Ωj+1

|S(fℬj
)(x1, x2)|q d�(x̃))

1
q
. (4.38)

The function fℬj
was de�ned in (4.31), and its square function S(fℬj

) in (4.32).
Note that pointwise S(fℬj

) ≤ S(f). Moreover when (x1, x2) ∉ Ωj+1 by de�ni-
tion S(f)(x1, x2) ≤ 2j+1. Therefore,

‖S(fℬj
)‖Lq(X̃) ≲q 2j�(Ω̃j)1∕q. (4.39)
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All together we conclude that
‖‖‖‖‖

∑

Rk1 ,k2�1 ,�2∈ℬj

⟨f,  k1�1 
k2
�2⟩�1'

1
l1,k1,�1

�2'
2
l2,k2,�2

‖‖‖‖‖Lq(X̃)
≲q 2l1!12l2!22j�(Ω̃j)

1
q . (4.40)

Finally, �rst using estimates (4.33) and (4.40), and secondusing estimate (4.29),
we get the Lp-estimate claimed in (4.23):
‖‖‖‖‖

∑

Rk1 ,k2�1 ,�2∈ℬj

⟨f,  k1�1 
k2
�2⟩�1'

1
l1,k1,�1

�2'
2
l2,k2,�2

‖‖‖‖‖
p

Lp(X̃)

≲q �(Ω̃j,l1,l2)
1− p

q 2l1!1p2l2!2p2jp�(Ω̃j)
p
q

≲q (l1!1 + l2!2)
1− p

q 2
l1!1(1−

p
q
)
2
l2!2(1−

p
q
)
�(Ω̃j)

1− p
q 2l1!1p 2l2!2p 2jp �(Ω̃j)

p
q

≲q (l1!1 + l2!2)
1− p

q 2
l1!1(1+

p
q′
)
2
l2!2(1+

p
q′
)
2jp�(Ωj).

Here the last estimate follows from �(Ω̃j) ≲ �(Ωj) by (4.27). Note that all
constants depend only on the geometric constants of Xi for i = 1, 2, sometimes
via the parameter �0 de�ned in (4.25). This estimate �nishes the proof of the
claim (4.23), and hence Theorem 4.6 is proved. �

Proof of Lemma 4.9. Estimate (4.35) can be established using an argument
similar to the one made when proving the second inequality in the product
Plancherel–Pólya inequalities from [HLW, Theorem4.9, equation (4.13)]. More
speci�cally, there are su�ciently large integers Ni > 0 for i = 1, 2, and a con-
stant Cq > 0 (depending only on the geometric constants of Xi for i = 1, 2 and
q > 1) such that for all g ∈ Lq′(X̃) the following inequality holds:

‖‖‖‖‖‖‖
{
∑

k1,k2

∑

�1∈Y k1 ,�2∈Y k2

|||||⟨'
1
l1,k1,�1

'2l2,k2,�2 , g⟩
|||||
2
�Rk1 ,k2�1 ,�2

}
1
2 ‖‖‖‖‖‖‖Lq′ (X̃)

≤ Cq2l1w12l2w2
‖‖‖‖‖‖‖
{
∑

k1,k2

∑

�1∈X k1+N1

�2∈X k2+N2

inf
z1∈Q

k1+N1
�1

z2∈Q
k2+N2
�2

|D(1)
k1
D(2)
k2
(g)(z1, z2)|2

× �Qk1+N1�1
�Qk2+N2�2

}
1
2 ‖‖‖‖‖‖‖Lq′ (X̃)

, (4.41)

where D(1)
k1

is the integral operator in X1 with kernel

D(1)
k1
(x, y) =

∑

�1∈Y k1

 k1�1 (x) 
k1
�1
(y),

and similarly forD(2)
k2
. The statement in [HLW, Theorem4.9] refers to Plancherel-

Pólya inequalities with the wavelets  ki�i instead of the functions 'ili ,ki ,�i on the
left-hand-side of equation (4.41). However, carefully tracing the proof of [HLW,



ATOMIC DECOMPOSITION OF PRODUCT HARDY SPACES Hp(X̃) 1211

Equation (4.13)], one realizes that all that is required are the size, smoothness,
and cancellation conditions of the functions 'ili ,ki ,�i (proved in Lemma 4.8) and

of the kernelsD(i)
ki
(x, y) for i = 1, 2 (proved in [HLW, Lemma 3.6]). The key ob-

servations are �rst, for every (y1, y2) ∈ X̃
⟨
'1l1,k1,�1'

2
l2,k2,�2

, D(1)
k1
D(2)
k2
(⋅, y1, ⋅, y2)

⟩
X̃

=
⟨
'1l1,k1,�1 , D

(1)
k1
(⋅, y1)

⟩
X1

⟨
'2l2,k2,�2 , D

(2)
k2
(⋅, y2)

⟩
X2
.

Second, the following almost-orthogonality estimate is valid for i = 1, 2: for all
integers ki and k′i let �

′
i ∶= �

min{ki ,k′i }
i , where �i is the base side length for the

reference dyadic cubes in Xi. Then for each positive integer Ni, each  > 0,
each point z ∈ Q

k′i+Ni

�′i
⊂ Xi and each center point x

k′i+Ni

�′i
∈ Q

k′i+Ni

�′i

|⟨'ili ,ki ,�i (⋅), D
(i)
k′i
(⋅, z)⟩| ≲

2li!i�
|ki−k′i |�
i

V�′i (x
ki
�i ) + V�′i (x

k′i+Ni

�′i
) + V(xki�i , x

k′i+Ni

�′i
)

×
( �′i

�′i + di(x
ki
�i , x

k′i+Ni

�′i
)

)
. (4.42)

Here Vri (xi) = �i
(
BXi (xi, ri)

)
, V(xi, yi) = �i

(
BXi (xi, di(xi, yi)

)
, and the similar-

ity constants depend only on the geometric constants of Xi for i = 1, 2. This
estimate is the analogue of estimate [HLW, Equation (4.4)] with the functions
' instead of the wavelets on the left-hand side of the inner product. It is in
proving estimate (4.42) that the size, smoothness, and cancellation properties
of the functions 'ili ,ki ,�i are needed. Also needed are the corresponding proper-

ties for the kernels of the operators D(i)
k′i

established in [HLW, Lemma 3.6]. The
right-hand side of (4.41) is pointwise bounded by the same expression where
the in�mum in the sum is replaced by the supremum. Another application of
Plancherel-Pólya as stated in [HLW, equation (4.12)] shows that for all positive
integers N1 and N2 there is a constant Cq > 0 (depending only on geometric
constants and q > 1) such that

‖‖‖‖‖‖‖
{
∑

k1,k2

∑

�1∈X k1+N1

�2∈X k2+N2

sup
z1∈Q

k1+N1
�1

z2∈Q
k2+N2
�2

|D(1)
k1
D(2)
k2
(g)(z1, z2)|2�Qk1+N1�1

�Qk2+N2�2
}
1
2 ‖‖‖‖‖‖‖Lq′ (X̃)

≤ Cq‖S(g)‖Lq′ (X̃). (4.43)

Here S(g) is the product Littlewood-Paley square function of g as in De�ni-
tion 4.1. This time there are wavelets on both sides of (4.43) exactly as in [HLW,
equation (4.12)].
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From (4.41) and the product Plancherel–Pólya inequality (4.43) we see that
the left-hand side of (4.35) is bounded by the Lq′-norm of S(g). From Theorem
4.8 in [HLW], since we are in the case q′ > 1, we obtain that

‖S(g)‖Lq′ (X̃) ≤ Cq′‖g‖Lq′ (X̃).

Putting all the pieces together we get estimate (4.35), with a constantC > 0 that
depends only on the geometric constants of Xi for i = 1, 2 and on q > 1. This
�nishes the proof of Lemma 4.9. �

5. Atomic product Hardy spaces

Wenowprovide an atomic decomposition forHp(X̃). More precisely, wewill
�nd an atomic decomposition for each function f ∈ Lq(X̃) ∩ Hp(X̃) with 1 <
q <∞ and p0 < p ≤ 1, where the decomposition converges both in the Lq(X̃)-
norm and in the Hp(X̃)-(semi)norm. Recall that p0 ∶= max{!i∕(!i + �i) ∶
i = 1, 2}. To achieve this decomposition we will need a Journé-type covering
lemma and a suitable de�nition of product (p, q)-atoms on X̃ = X1 × X2, valid
for (Xi, di, �i) spaces of homogeneous type in the sense of Coifman and Weiss
for i = 1, 2. We will also de�ne atomic product Hardy spaces Hp,q

at (X̃), and as
a consequence of the main theorem we will show these spaces coincide with
Hp(X̃) for all q > 1.

The de�nition of the product Hardy spaces Hp(X̃) uses Auscher-Hytönen
wavelet bases on each space of homogeneous type Xi, with Hölder regularity
�i ∈ (0, 1], and corresponding reference dyadic grids DW

i , for i = 1, 2, provided
p > p0. In this section we will show that functions in Hp(X̃) ∩ Lq(X̃) can be
decomposed into product (p, q)-atoms based on the wavelets’ reference dyadic
grids DW

i for i = 1, 2. Product (p, q)-atoms do not require wavelets in their
de�nition, but there is an underlying dyadic grid associated to each atom. We
will show that product (p, q)-atoms, based on regular families of dyadic grids,
are inHp(X̃)with uniform bounds on theirHp-(semi)norm dependent only on
the geometric constants of the spaces Xi for i = 1, 2. These observations allow
us to deduce that the product Hp, CMOp, BMO, and VMO spaces, de�ned a
priori using Auscher-Hytönen wavelets, are independent of the wavelets and
the reference dyadic grids chosen (and indeed of the reference dyadic points
{xk�} chosen), yielding Corollary B and Corollary C stated in the introduction.

We would like to point out that the convergence in both the L2(X̃)-norm
and Hp(X̃)-(semi)norm is crucial for proving the boundedness of Calderón-
Zygmund operators fromHp(X̃) to Lp(X̃) as described in [HLLin].

5.1. Journé-type covering lemma. In the product theory the Journé-type
covering lemmas play a fundamental role. The Journé covering lemma was
established by Journé [J] on ℝ × ℝ, and by Pipher [P] on ℝn1 ×⋯ × ℝnk . Re-
cently, following the same ideas and techniques as in [P], a Journé-type cov-
ering lemma was developed for X̃ = X1 × X2 by the �rst two authors and Lin
[HLLin] for certain spaces of homogeneous type.
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In this section, for i = 1, 2, (Xi, di, �i) denotes a space of homogeneous type
in the sense of Coifman and Weiss with !i an upper dimension, A(i)

0 the quasi-
triangle constant, C�i the doubling constant, and with an underlying dyadic
grid Di whose structural constants are ci0, C

i
0, c

i
1, C

i
1, and �i, as in Theorem 3.1.

Let Ω ⊂ X̃ be an open set of �nite measure and for i = 1, 2, let mi(Ω) de-
note the family of dyadic rectangles R = Q1 × Q2 in Ω which are maximal in
the ith “direction”, here Qi ∈ Di. Also denote by m(Ω) the set of all maximal
dyadic rectangles contained inΩ. Note that neitherm(Ω) norm1(Ω) norm2(Ω)
are disjoint collections of rectangles; this is one of the main di�culties when
dealing with the product and multi-parameter settings.

Given a dyadic rectangle R = Q1 × Q2 ∈ m1(Ω), let Q̂2 = Q̂2(Q1) be the
largest dyadic cube in D2 containing Q2 such that

�
((
Q1 × Q̂2

)
∩ Ω

)
> 1
2�(Q1 × Q̂2), (5.1)

where � = �1 ×�2 is the measure on X̃. Similarly, given a dyadic rectangle R =
Q1 × Q2 ∈ m2(Ω), let Q̂1 = Q̂1(Q2) be the largest dyadic cube in D1 containing
Q1 such that

�
((
Q̂1 × Q2

)
∩ Ω

)
> 1
2�(Q̂1 × Q2).

We now state the Journé-type covering lemma on X1 × X2.

Lemma 5.1 ([HLLin], Lemma 2.2). For i = 1, 2, let (Xi, di, �i) be spaces of ho-
mogeneous type in the sense of Coifman and Weiss as described in the Introduc-
tion, with quasi-metrics di and Borel-regular doubling measures �i , each space
with an underlying dyadic grid Di . Let Ω be an open subset in X̃ with �nite
measure. Let w ∶ [0,∞) → [0,∞) be any �xed increasing function such that∑∞

j=0 jw(C02
−j) < ∞, where C0 is any given positive constant. Then there exists

a positive constantC (dependent on the �xed increasing functionw, the geometric
constants of the spaces Xi , and the structural constants of the underlying dyadic
grids via the ratios of the dilation constants Ci1∕c

i
1, for i = 1, 2) such that

∑

R=Q1×Q2∈m1(Ω)
�(R)w

(l(Q2)
l(Q̂2)

)
≤ C�(Ω) (5.2)

and
∑

R=Q1×Q2∈m2(Ω)
�(R)w

(l(Q1)
l(Q̂1)

)
≤ C�(Ω). (5.3)

In applications, we may take w(t) = t� for any � > 0 and the underlying
dyadic grids may be reference dyadic grids for the wavelets, or may belong to a
regular family of dyadic grids that contains them. In these cases the constant
C = C� depends only on � and the geometric constants of the spaces Xi for
i = 1, 2.

In [HLLin] the setting is the product of two spaces of homogeneous typewith
a regularity condition on the metrics and a reverse doubling condition on the
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measures. However the proof of the Journé-type lemma uses only the doubling
property of the measures, and goes through in the present setting. In the same
paper the authors introduced (p, q)-atoms in their setting, similar to those we
de�ne in this paper. Our (p, q)-atoms will have additional enlargement param-
eters (l1,l2) ∈ ℤ2

+ that were not present in [HLLin].

5.2. Product (p, q)-atoms and atomic Hardy spaces. First we de�ne prod-
uct (p, q)-atoms for all p ∈ (0, 1] and q > 1. Second we de�ne product atomic
Hardy spaces, Hp,q

at (X̃), for all q > 1 and for all p with p0 < p ≤ 1, where
p0 ∶= max{!i∕(!i + �i) ∶ i = 1, 2}.

De�nition 5.2 (Product (p, q)-atoms). Suppose that 0 < p ≤ 1 and 1 < q <
∞. For i = 1, 2, let (Xi, di, �i) be spaces of homogeneous type in the sense of
Coifman and Weiss, with upper dimension !i. A function a(x1, x2) de�ned on
X̃ is a product (p, q)-atom if it satis�es the following conditions.

(1) (Support condition on open set) There are an open setΩ of X̃ with �nite
measure and integers l1,l2 ≥ 0, such that supp a ⊂ Ω̃l1,l2 , where
Ω̃l1,l2 is the (l1,l2)-enlargement of Ω̃, the �0-enlargement ofΩ, de�ned
respectively in (4.28) and in (4.26), with �0 as de�ned in (4.25).

(2) (Size condition) There is a constant Cq > 0 such that

‖a‖Lq(X1×X2) ≤ Cq
(
(l1!1 + l2!2)2l1!1+l2!2�(Ω̃)

)1∕q−1∕p
.

(3) (Further decomposition into rectangle atoms with cancellation) There
are underlying dyadic grids Da

i on Xi for i = 1, 2, such that the func-
tion a can be decomposed into rectangle (p, q)-atoms aR associated to a
dyadic rectangleR = Q1×Q2, withQi ∈ Da

i and satisfying the following
conditions.
(i) (Support condition) Let Ci = 2(A(i)

0 )
2 > 0 for i = 1, 2. For all

rectangle atoms aR, we have that

supp aR ⊂ C12l1Q1 × C22l2Q2 ⊂ Ω̃l1,l2 .

(ii) (Cancellation condition on each variable)

∫
Xi
aR(x1, x2)d�i(xi) = 0 for a.e. xj ∈ Xj and (i, j) ∈ {(1, 2), (2, 1)}.

(iii-a) (Decomposition and size condition for 2 ≤ q <∞) If q ≥ 2 then

a =
∑

R∈m(Ω)
aR

and there is a constant Cq > 0 such that

[ ∑

R∈m(Ω)
‖aR‖

q
Lq(X̃)

]1∕q
≤ Cq

(
(l1!1 + l2!2)2l1!1+l2!2�(Ω̃)

)1∕q−1∕p
.
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(iii-b) (Decomposition and size condition for 1 < q < 2) If q ∈ (1, 2) then

a =
∑

R∈m1(Ω)
aR +

∑

R∈m2(Ω)
aR,

and for all � > 0, there exists a constant Cq,� > 0 such that we
have, for each (i, j) ∈ {(1, 2), (2, 1)},

[
∑

R∈mi(Ω)

(l(Qj)

l(Q̂j)

)�
‖aR‖

q
Lq(X̃)

]
1
q
≤ Cq,�

(
(l1!1 + l2!2)2l1!1+l2!2�(Ω̃)

) 1
q
− 1
p .

The constants �0, Cq, Cq,� depend only on the geometric constants of Xi for
i = 1, 2 and as indicated on q and �. The families of rectanglesm(Ω),mi(Ω) for
i = 1, 2were de�ned on page 1213. We will call the integers li ≥ 0 enlargement
parameters of the atom.

We remark that, when X̃ = ℝn×ℝm, (p, 2)-atomswith conditions (i), (ii) and
(iii-a) (with q = 2, and l1 = l2 = 0) were introduced by R. Fe�erman [Fe1].
When (Xi, di, �i) are spaces of homogeneous type with the quasi-metric di sat-
isfying the regularity condition (2.3) and the doubling measure �i satisfying a
reverse doubling condition (1.2), for i = 1, 2, the (p, q)-atoms with l1 = l2 = 0
were de�ned in [HLLin, De�nition 2.3]. In [KLPW, De�nition 5.3] the product
(1, 2)-atoms as in De�nition 5.2 were used when l1 = l2 = 0.

Note that there are no wavelets and no regularity parameters �i involved in
the de�nition of the (p, q)-atoms. In item (3) of De�nition 5.2 any pair of under-
lying dyadic grids is acceptable, as long as properties (i)–(iii) are met. However
we will be interested in the situation when the underlying dyadic grids Da

i be-
long to a regular family of dyadic grids onXi that contains all possible reference
dyadic grids DW

i for all possible wavelets on Xi for i = 1, 2.
The open set Ω is a placeholder and the maximal rectangles in item (3) do

refer toΩ. The positive constants Ci = 2(A(i)
0 )

2 for i = 1, 2 in item (3)(i) are the
same for all (p, q)-atoms. However the enlargement parameters, li for i = 1, 2,
in item (1)may change from (p, q)-atom to (p, q)-atom. Wewill see, in the proof
of the atomic decomposition for Hp(X̃), that the (p, q)-atoms will be indexed
by a parameter j ∈ ℤ and by the enlargement parameters li ≥ 0 for i = 1, 2.

We can now de�ne atomic product Hardy spacesHp,q
at (X̃).

De�nition 5.3 (Atomic product Hardy spaces). For i = 1, 2, let (Xi, di, �i) be
spaces of homogeneous type in the sense of Coifman andWeiss as described in
the Introduction, with quasi-metricsdi andBorel-regular doublingmeasures�i.
Let !i be an upper dimension for Xi, and let �i be the exponent of regularity of
a family of Auscher-Hytönen wavelets on Xi. Let p0 ∶= max{!i∕(!i + �i) ∶ i =
1, 2}. Suppose that p0 < p ≤ 1 and 1 < q <∞. Then

Hp,q
at (X̃) ∶= {f ∈ (

◦
G)′ ∶ f =

∞∑

j=−∞
�jaj,

∞∑

j=−∞
|�j|p <∞},
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where for each j ∈ ℤ, the function aj is a (p, q)-atom with underlying dyadic
grids D

aj
i for i = 1, 2, belonging to a regular family of dyadic grids on Xi that

contains the reference dyadic grids of all possible Auscher-Hytönen wavelets

on Xi. Furthermore, the convergence of the series is in (
◦
G)′. We de�ne a semi-

norm onHp,q
at (X̃) as follows

‖f‖Hp,q
at (X̃)

∶= inf
{( ∞∑

j=−∞
|�j|p

) 1
p ∶ f =

∞∑

j=−∞
�jaj

}
,

where the in�mum is taken over all possible atomic decompositions of f.

Recall that (
◦
G)′ is short for the spaces of distributions

( ◦
G�̃(�̃′, ̃′)

)′
, where

we have �xed �′i , 
′
i ∈ (0, �i) and �i is the regularity exponent of the Auscher-

Hytönen wavelets on Xi for i = 1, 2. In the one parameter theory, in the cor-
responding de�nition of atomic Hardy space Hp

at(X), it is required that f ∈
(C 1

p
−1(X))

′ the dual of the Campanato space, see [HHL1, discussion surround-

ing Lemma 2.6 on p.3448].
The underlying dyadic grids can change from atom to atom. The underlying

dyadic grids Da
i for i = 1, 2, for a given atom a, can be any dyadic grids belong-

ing to a regular family of dyadic grids onXi that contains all the reference dyadic
grids associated to all possible wavelets onXi for i = 1, 2. In particular theymay
not coincide with the reference dyadic gridsDW

i associated to the wavelet basis
on Xi for i = 1, 2, used in the de�nition of the product Hardy space Hp(X̃).
This ensures that by de�nition, the product atomic Hardy spaces Hp,q

at (X̃) are
independent of the reference dyadic grids and wavelets used in the de�nition
ofHp(X̃). We may as well restrict the regular family of dyadic grids on each Xi
in the de�nition of atomic Hardy spaces to be the collection of reference dyadic
grids for all possible wavelets on Xi for i = 1, 2.

We will show in Section 5.3 that Hp,q
at (X̃) is the same space for all q > 1,

hencewe can safelywriteHp
at(X̃). Moreoverwewill show thatHp

at(X̃) = Hp(X̃).
In [HHL1] they work with (p, 2)-atoms only, and therefore their Hp

at(X̃) is by
de�nition what we denote Hp,2

at (X̃). Note that if f ∈ Hp,q
at (X̃) ∩ L

q(X̃) the con-
vergence of the atomic series also holds in Lq(X̃) and that Hp,q

at (X̃) ∩ L
q(X̃) is

dense inHp,q
at (X̃) in the atom (semi)norm.

5.3. Main theorem on atomic decomposition, and corollaries. Themain
result in this section, Theorem 5.4, is to show that Lq(X̃)∩Hp(X̃) has an atomic
decomposition. This theorem was cited and used in [KLPW, Theorem 5.4], in
the case p = 1 and q = 2, to establish dyadic structure theorems forH1(X̃) and
BMO(X̃).

Theorem 5.4 was stated in the introduction and called Main Theorem. For
the convenience of the reader we restate the theorem here.
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Theorem 5.4 (Main Theorem). For i = 1, 2, let (Xi, di, �i) be spaces of homoge-
neous type in the sense of CoifmanandWeiss as described in the Introduction, with
quasi-metrics di and Borel-regular doubling measures �i . Let !i be an upper di-
mension forXi , let�i be the exponent of regularity of theAuscher-Hytönenwavelets
used in the construction of the Hardy spaceHp(X̃), let p0 ∶= max{!i∕(!i + �i) ∶
i = 1, 2}, and let DW

i be the reference dyadic grids for the wavelets in Xi . Suppose
that p0 < p ≤ 1, 1 < q < ∞, and f ∈ Lq(X̃). Then f ∈ Hp(X̃) if and only if f
has an atomic decomposition, that is,

f =
∞∑

j=−∞
�jaj. (5.4)

Here, �rst the functions aj are (p, q)-atoms with respect to an underlying dyadic
gridD

aj
i belonging to a regular family of dyadic grids on Xi that contains all pos-

sible reference grids for wavelets onXi for i = 1, 2, second
∑∞

j=−∞ |�j|p <∞, and
third the series converges in Lq(X̃). Moreover, the series also converges in Hp(X̃)
and

‖f‖Hp(X̃) ∼ inf
{( ∞∑

j=−∞
|�j|p

) 1
p ∶ f =

∞∑

j=−∞
�jaj

}
,

where the in�mum is taken over all decompositions as in (5.4) and the implicit
constants are independent of the Lq(X̃) andHp(X̃)-(semi)norms off, and depend
only on the geometric constants of Xi for i = 1, 2.

We repeat, the underlying dyadic grid Da
i needed for each atom may or not

coincidewith the reference dyadic gridDW
i associated to the underlyingAuscher-

Hytönen wavelets on Xi for i = 1, 2, used in the de�nition ofHp(X̃).
As corollaries of the Main Theorem 5.4 we conclude �rst that Hp,q

at (X̃) coin-
cides withHp(X̃) for all q > 1, and second that theHardy spacesHp(X̃) de�ned
via speci�c Auscher-Hytönen wavelet bases based on speci�c reference dyadic
grids on Xi for i = 1, 2, are indeed independent of the choices of both wavelet
bases and reference dyadic grids.

Corollary 5.5 (Corollary A in the Introduction). For all 1 < q < ∞ and p0 <
p ≤ 1 then

Hp,q
at (X̃) = Hp(X̃).

Proof. By Theorem 5.4 for each q > 1,

Hp,q
at (X̃) ∩ L

q(X̃) = Lq(X̃) ∩Hp(X̃),

the closure of the right-hand-side in theHp-(semi)norm isHp(X̃), and the clo-
sure of the left-hand-side in the atom (semi)norm isHp,q

at (X̃). Both (semi)norms
are equivalent by Theorem 5.4, therefore we conclude that Hp(X̃) = Hp,q

at (X̃).
This is precisely what we wanted to prove. �
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For any p with p0 < p ≤ 1 we now de�ne Hp
at(X̃), the atomic product Hp-

space, by
Hp
at(X̃) ∶= Hp,q

at (X̃), (5.5)
for any given q > 1. The atomic product Hp-space is well-de�ned by Corol-
lary 5.5.

Corollary 5.6 (Corollary B in the Introduction). Let p > p0. Then the Hardy
spaces Hp(X̃) as de�ned in [HLW] are independent of the particular choices of
the Auscher-Hytönen wavelets and of the reference dyadic grids used in their con-
struction.

Proof. Given p > p0, de�ne Hp(X̃) as in [HLW], using a particular choice
of reference dyadic grids, DW

i for i = 1, 2, and a particular choice of basis of
Auscher-Hytönen wavelets de�ned on those grids. For p > 1 we already know
that Hp(X̃) = Lp(X̃); see [HLW]. For p0 < p ≤ 1, choose q > 1. By the Main
Theorem, the setHp(X̃)∩Lq(X̃) coincideswith the set of functions in Lq(X̃) that
have atomic decompositions in terms of (p, q)-atoms. Each (p, q)-atom a in a
decomposition, has underlying dyadic grids Da

i for i = 1, 2, possibly di�erent
from DW

i , but belonging to a regular families of dyadic grids on Xi that contain
all possible reference dyadic grids onXi. The atomic decompositions areapriori
unrelated to the Auscher-Hytönen wavelets and their reference dyadic grids.
Further,Hp(X̃)∩Lq(X̃) is dense inHp(X̃) in theHp-(semi)norm. Note that the
closure is independent of the choice of square function (which depends on the
choice of wavelets and hence of reference dyadic grids) in theHp-(semi)norm,
because we can instead use the equivalent atom (semi)norm. Thus Hp(X̃) is
independent of the particular choice of reference dyadic grids and the particular
choice of basis ofAuscher-Hytönenwavelets de�ned on these grids, as required.

�

As a further corollary of these results and the duality theorems, Theorem 4.3
and Theorem4.5, we conclude that the Carlesonmeasure spacesCMOp(X̃), the
space of bounded mean oscillation BMO(X̃), and the space of vanishing mean
oscillation VMO(X̃) are all independent of the chosen wavelets and reference
dyadic grids.

Corollary 5.7 (Corollary C in the Introduction). Let p0 < p ≤ 1. Then the Car-
lesonmeasure spacesCMOp(X̃), the space of boundedmean oscillationBMO(X̃),
and the space of vanishing mean oscillation VMO(X̃), as de�ned in [HLW], are
independent of the particular choices of the Auscher-Hytönen wavelets and of the
reference dyadic grids used in their construction.

Proof. By Theorem 4.3, if p0 < p ≤ 1 then CMOp(X̃) is the dual of Hp(X̃). By
Corollary 5.6, the Hardy space Hp(X̃) is independent of the particular choice
of reference dyadic grids and the particular choice of basis of Auscher-Hytönen
wavelets de�ned on these grids, therefore so will be its dual CMOp(X̃). Also
by De�nition 4.2 we know that BMO(X̃) = CMO1(X̃), and by Theorem 4.5 we
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know that
(
VMO(X̃)

)′
= H1(X̃), hence since H1(X̃) is independent of chosen

reference dyadic grids and wavelets so will be BMO(X̃) and VMO(X̃). �

5.4. Proof of themain theorem. In the proof of theMain Theorem5.4, given
a function f ∈ Hp(X̃) ∩ Lq(X̃) we will show it can be decomposed into (p, q)-
atoms based upon the reference dyadic grids, DW

i for i = 1, 2, corresponding to
the underlying wavelets. For the converse, it will su�ce to verify that a given
(p, q)-atom a, based on possibly di�erent dyadic grids Da

i belonging to a reg-
ular family of dyadic grids that contains all possible reference dyadic grids for
wavelets on Xi for i = 1, 2, must belong to Hp(X̃) with uniform control on its
Hp-(semi)norm. We will have to carefully balance the geometry on both sets of
dyadic grids with the size, support, and cancellation properties of the functions
',Cil,ki ,�i

for i = 1, 2 (building blocks for the wavelet  ki�i found in Lemma 4.3)
and the rectangular (p, q)-atoms aR; for example, when estimating the inner
product ⟨',C1l,k,�1

(⋅), aR(⋅, x2)⟩L2(X1) for �2-a.e. x2 ∈ X2, as we do on page 1230.

To achieve this balance we will choose Ci = Ci2li where Ci = 2(A(i)
0 )

2 and li
for i = 1, 2 are the enlargement parameters appearing in the de�nition of the
(p, q)-atom.

Proof of Theorem 5.4. (⇒) Following the proof of Theorem 4.6, for any func-
tion f ∈ Hp(X̃)∩Lq(X̃), we have by (4.16) and (4.22), that for some su�ciently
large i > 0 (in fact for i > !i(1∕p + 1∕q′)), letting Ci = 1, and denoting
'i ,1li ,ki ,�i

= 'ili ,ki ,�i , for i = 1, 2,

f(x1, x2) =
∑

l1,l2≥0
2−l11−l22fl1,l2(x1, x2)

=
∑

l1,l2≥0
2−l11−l22

∑

j∈ℤ

∑

Rk1 ,k2�1 ,�2∈ℬj

⟨f,  k1�1 
k2
�2⟩ �1 '

1
l1,k1,�1

(x1) �2 '
2
l2,k2,�2

(x2).

Here the series converges unconditionally in the Lq(X̃)-norm. As before, the

constants �i ∶=
√
�i

(
B(yki�i , �

ki )
)
for i = 1, 2, the dyadic rectangle Rk1,k2�1,�2 ∶=

Qk1�1 ×Q
k2
�2 , with Q

ki
�i ∈ DW

i for i = 1, 2, and the setℬj was de�ned by (4.21). We
now set

f(x1, x2) ∶=
∑

l1,l2≥0

∑

j∈ℤ
2−l11−l22�j,l1,l2 a

1,2
j,l1,l2

(x1, x2), (5.6)

where the functions a1,2j,l1,l2
will be (p, q)-atoms with respect to the reference

dyadic grids DW
i for i = 1, 2 associated to the wavelets (as shown below), pro-

vided 1 and 2 are su�ciently large, and are de�ned by

a1,2j,l1,l2
(x1, x2) ∶=

1
�j,l1,l2

∑

Rk1 ,k2�1 ,�2∈ℬj

⟨f,  k1�1 
k2
�2⟩ �1 '

1
l1,k1,�1

(x1) �2 '
2
l2,k2,�2

(x2),
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and the coe�cients �j,l1,l2 are de�ned di�erently according to whether q < 2
or not.

First, when 2 ≤ q <∞, de�ne the coe�cient �j,l1,l2 as follows:

�j,l1,l2 ∶= 2l1!1+l2!2 ‖S(fℬj
)‖Lq(X̃)

(
(l1!1 + l2!2)2l1!1+l2!2�(Ω̃j)

) 1
p
− 1
q .
(5.7)

Second, when 1 < q < 2, de�ne the coe�cient �j,l1,l2 as follows:

�j,l1,l2 ∶= 2l1!1+l2!2 ‖S(fℬj
)‖L2(X̃)

(
(l1!1 + l2!2)2l1!1+l2!2�(Ω̃j)

) 1
p
− 1
2 .
(5.8)

Here fℬj
was de�ned in (4.31), and hence

S(fℬj
) =

( ∑

Rk1 ,k2�1 ,�2∈ℬj

|||||
⟨
f,  ̃k1�1 ̃

k2
�2

⟩|||||
2
�Rk1 ,k2�1 ,�2

) 1
2 ,

where  ̃ki�i =  ki�i∕�i denotes the normalized wavelets for i = 1, 2. The open
set Ω̃j,l1,l2 is the (l1,l2)-enlargement of Ω̃j de�ned in (4.28), the open set Ω̃j
is the �0-enlargement of Ωj de�ned in (4.24), and the level set Ωj is de�ned
in (4.18). The constant �0 > 0was de�ned in (4.25) and is purely dependent on
the geometric constants of the spaces Xi for i = 1, 2.

Notice that when 1 < q <∞ estimate (4.36) provides

‖a1,2j,l1,l2
‖q
Lq(X̃)

≲q �−qj,l1,l22
q(l1!1+l2!2)‖S(fℬj

)‖q
Lq(X̃)

, (5.9)

where the similarity depends only on the geometric constants of Xi for i = 1, 2
and on q > 1.

When 2 ≤ q < ∞, using (5.7), the de�nition of the coe�cient �j,l1,l2 pro-
vides the following Lq-estimate for the atom:

‖a1,2j,l1,l2
‖q
Lq(X̃)

≲q
(
(l1!1 + l2!2)2l1!1+l2!2�(Ω̃j)

)1− q
p . (5.10)

In particular when q = 2 we obtain the following L2-estimate for the atom:

‖a1,2j,l1,l2
‖2
L2(X̃)

≲
(
(l1!1 + l2!2)2l1!1+l2!2�(Ω̃j)

)1− 2
p . (5.11)

We now verify that the functions a1,2j,l1,l2
are (p, q)-atoms with respect to the

reference dyadic grids DW
i for i = 1, 2 associated to the underlying wavelets,

with the open set Ωj playing the role of Ω in De�nition 5.2, and with enlarge-
ment parameters l1,l2 ≥ 0.

First we check that a1,2j,l1,l2
satis�es condition (1) of De�nition 5.2. Recall that

'ili ,ki ,�i (xi) is supported on the ball B(yki�i , 2(A
(i)
0 )

2 2li�ki ) ⊂ Xi for each i = 1, 2.
Hence, if R ∈ ℬj, then the support of '1l1,k1,�1(x1)'

2
l2,k2,�2

(x2) is contained in
the open set Ω̃j,l1,l2 = (Ω̃j)l1,l2 , as explained on page 1205. Note that since
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f ∈ Lq(X̃) for 1 < q < ∞, then Ωj and Ω̃j,l1,l2 have �nite measure. More
precisely, by estimates (4.29) and (4.27) and by Tchebichev’s inequality (4.20),

�(Ω̃j,l1,l2) ≲ (l1!1 + l2!2)2l1!1+l2!2�(Ωj)

≤ (l1!1 + l2!2)2l1!1+l2!22−jq‖S(f)‖
q
Lq(X̃)

≲q (l1!1 + l2!2)2l1!1+l2!22−jq‖f‖
q
Lq(X̃)

<∞.

Thus condition (1) of De�nition 5.2 holds.
Second we verify that a1,2j,l1,l2

satis�es condition (2) of De�nition 5.2. For
2 ≤ q < ∞ this is estimate (5.10). For 1 < q < 2, since a1,2j,l1,l2

is supported
in Ω̃j,l1,l2 , applying Hölder’s inequality with exponent s = 2∕q > 1, and using
(4.29) and the L2-estimate (5.11), yields

‖a1,2j,l1,l2
‖Lq(X̃) ≤ ‖a1,2j,l1,l2

‖L2(X̃) �(Ω̃j,l1,l2)
1
q
− 1
2

≲
(
(l1!1 + l2!2)2l1!1+l2!2�(Ω̃j)

) 1
2
− 1
p
(
(l1!1 + l2!2)2l1!1+l2!2�(Ω̃j)

) 1
q
− 1
2

≲
(
(l1!1 + l2!2)2l1!1+l2!2�(Ω̃j)

) 1
q
− 1
p .

As a consequence, we get that a1,2j,l1,l2
satis�es condition (2) of De�nition 5.2.

Third, it remains to check that a1,2j,l1,l2
satis�es condition (3) of De�nition 5.2.

To see this, we can further decompose a1,2j,l1,l2
into rectangular atoms a1,2

j,l1,l2,R
de�ned for each x̃ = (x1, x2) by

a1,2
j,l1,l2,R

(x̃) ∶= 1
�j,l1,l2

∑

R=Rk1 ,k2�1 ,�2∈ℬj ,

�(R)=R

⟨f,  k1�1 
k2
�2⟩ �1 '

1
l1,k1,�1

(x1) �2 '
2
l2,k2,�2

(x2),

where R = Q1 × Q2 with Qi ∈ DW
i , a dyadic cube associated to the wavelets on

Xi for i = 1, 2. Here � ∶ ℬj → m(Ωj) denotes a function that assigns to each
R ∈ ℬj a rectangle �(R) = R ∈ m(Ωj), so that R ⊂ R. This will be important
when verifying condition (3)(iii-a) in De�nition 5.2. Likewise when verifying
condition (3)(iii-b) in De�nition 5.2 we will assign each R ∈ ℬj to only one
R ∈ m1(Ωj) ∪m2(Ωj) with R ⊂ R.

We can verify that supp a1,2
j,l1,l2,R

⊂ 2(A(1)
0 )2 2l1Q1×2(A

(2)
0 )2 2l2Q2, by de�ni-

tion of the rectangle atoms and the support conditions of the functions 'ili ,ki ,�i ,
for i = 1, 2. We deduce that ∫Xi a

1,2
j,l1,l2,R

(x1, x2)d�i(xi) = 0 for a.e. xj ∈ Xj, by

the cancellation conditions of the functions 'ili ,ki ,�i for (i, j) ∈ {(1, 2), (2, 1)},
and the facts that the integrand a1,2

j,l1,l2,R
∈ Lq(X̃) for q > 1 and has com-

pact support. These show that the support and cancellation conditions (3)(i)
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and (3)(ii) of De�nition 5.2 hold, with support constants Ci = 2(A(i)
0 )

2, as re-
quired, and enlargement constants li ≥ 0, for i = 1, 2.

We now show that a1,2j,l1,l2
satis�es the decomposition and size conditions in

(3)(iii-a) when 2 ≤ q <∞, and (3)(iii-b) when 1 < q < 2, of De�nition 5.2.
For 2 ≤ q < ∞, �rst observe that a1,2j,l1,l2

=
∑

R∈m(Ωj)
a1,2
j,l1,l2,R

, this is true

because each R ∈ ℬj is assigned to exactly one R ∈ m(Ω), namely to R =
�(R). Second, we have by de�nition of the rectangular atom and the triangle
inequality

‖a1,2
j,l1,l2,R

‖Lq(X̃) = sup
g∶ ‖g‖Lq′ (X̃)≤1

||||
⟨
a1,2
j,l1,l2,R

, g
⟩||||

≤ sup
g∶ ‖g‖Lq′ (X̃)≤1

�−1j,l1,l2
∑

R=Rk1 ,k2�1 ,�2∈ℬj ,

�(R)=R

||||⟨f,  ̃
k1
�1 ̃

k2
�2⟩

|||| �
2
1 �

2
2
||||⟨'

1
l1,k1,�1

'2l2,k2,�2 , g⟩
||||.

Therefore, �rst raising to the q power, and secondusing theCauchy-Schwarz in-
equality on the sum together with Lemma 4.9 as we didwhen estimating (4.34),
we conclude that

‖a1,2
j,l1,l2,R

‖q
Lq(X̃)

≲q sup
g∶ ‖g‖Lq′ (X̃)≤1

�−qj,l1,l2
|||||||

∑

R=Rk1 ,k2�1 ,�2∈ℬj ,

�(R)=R

||||⟨f,  ̃
k1
�1 ̃

k2
�2⟩

|||| �
2
1 �

2
2
||||⟨'

1
l1,k1,�1

'2l2,k2,�2 , g⟩
||||
|||||||

q

≲q 2(l1!1+l2!2)q�
−q
j,l1,l2

∫
X̃

|||||||

∑

R=Rk1 ,k2�1 ,�2∈ℬj ,

�(R)=R

||||⟨f,  ̃
k1
�1 ̃

k2
�2⟩

||||
2
�Rk1 ,k2�1 ,�2

(x̃)
|||||||

q
2
d�(x̃).

We now add this estimate over all R ∈ m(Ωj), note that the power q∕2 ≥ 1 can
be pulled out of the sum (namely

∑
k |ak|

q∕2 ≤ (
∑

k |ak|)
q∕2), and remember

that each R ∈ ℬj is assigned to exactly one R ∈ m(Ωj) that contains it, and get

∑

R∈m(Ωj)

‖‖‖‖a
1,2
j,l1,l2,R

‖‖‖‖
q

Lq(X̃)
≲q 2(l1!1+l2!2)q �

−q
j,l1,l2

‖S(fℬj
)‖q
Lq(X̃)

≲q
(
(l1!1 + l2!2) 2l1!1+l2!2�(Ω̃j)

)1− q
p , (5.12)

where in the last inequality we used the de�nition (5.7) of �j,l1,l2 . This proves
condition (3)(iii-a) of De�nition 5.2.

For 1 < q < 2, applying Hölder’s inequality and the Journé-type covering
lemma, we will show that condition (3)(iii-b) of De�nition 5.2 holds. First we
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observe that in this case the decomposition

a1,2j,l1,l2
=

∑

R∈m1(Ωj)

a1,2
j,l1,l2,R

+
∑

R∈m′
2(Ωj)

a1,2
j,l1,l2,R

holds. Here the second sum is over m′
2(Ωj) ∶= m2(Ωj) ⧵ m1(Ωj) to avoid du-

plicates. The decomposition is true because this time we assign each R ∈ ℬj

to exactly one R ∈ m1(Ωj) ∪ m2(Ωj), namely R = �(R) where the function
� ∶ ℬj → m1(Ωj) ∪ m2(Ωj). Second, let us show that given � > 0 there is a
constant Cq,� > 0 such that

∑

R∈m1(Ωj)

(l(Q2)
l(Q̂2)

)�
‖a1,2

j,l1,l2,R
‖q
Lq(X̃)

≤ Cq,�
(
(l1!1 + l2!2)2l1!1+l2!2�(Ω̃j)

)1− q
p .

A similar argument will take care of the sum over R ∈ m2(Ωj), and hence over
R ∈ m′

2(Ωj). First, using Hölder’s inequality with exponent s = 2∕q > 1, the
support property of the rectangular atoms, and the doubling condition of the
measures (as in (3.9)), we get that

‖a1,2
j,l1,l2,R

‖q
Lq(X̃)

≲ ‖aj,l1,l2,R‖
q
L2(X̃)

(
2l1!1+l2!2�(R)

) 2−q
2 .

Second, substituting this estimate and using Hölder’s inequality in the sum
with exponents s = 2∕q and s′ = 2∕(2 − q), we get

∑

R∈m1(Ωj)

(l(Q2)
l(Q̂2)

)�
‖a1,2

j,l1,l2,R
‖q
Lq(X̃)

≲
∑

R∈m1(Ωj)

(l(Q2)
l(Q̂2)

)�
‖a1,2

j,l1,l2,R
‖q
L2(X̃)

(
2l1!1+l2!2�(R)

) 2−q
2

≲
(
2l1!1+l2!2

∑

R∈m1(Ωj)

(l(Q2)
l(Q̂2)

) 2�
2−q�(R)

) 2−q
2
( ∑

R∈m1(Ωj)

‖a1,2
j,l1,l2,R

‖2
L2(X̃)

) q
2

≲q,�
(
2l1!1+l2!2�(Ωj)

)1− q
2
(
(l1!1 + l2!2)2l1!1+l2!2�(Ω̃j)

) q
2
− q
p

≲q,�
(
(l1!1 + l2!2)2l1!1+l2!2�(Ω̃j)

)1− q
p .

We used the Journé-type covering lemma with �′ = 2�
2−q

> 0, and estimate
(5.12) (for q = 2), in the third inequality. In the last inequality we used the fact
that �(Ω̃j) ∼ �(Ωj). Altogether we obtain the desired atomic decomposition
for f.

Finally by computations similar to those in the proof of Theorem 4.6 we con-
clude that when f ∈ Hp(X̃) ∩ Lq(X̃) then inf

∑
j∈ℤ |�j|p ≤ C ‖f‖p

Hp(X̃)
, where

the in�mum is taken over all decompositions of the form f =
∑

j∈ℤ �jaj, the
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functions aj are (p, q)-atoms, and
∑

j∈ℤ |�j|p < ∞. More precisely, it suf-
�ces to show that for the decomposition we just proved, namely f(x1, x2) =∑

j∈ℤ;l1,l2≥0
2−l11−l22�j,l1,l2a

1,2
j,l1,l2

(x1, x2), the following inequality holds:
∑

j∈ℤ;l1,l2≥0
|2−l11−l22�j,l1,l2|

p ≲q ‖S(f)‖p
Lp(X̃)

. (5.13)

When 1 < q < 2, according to de�nition (5.8) we get, using that the square
function is bounded on L2(X̃), that

∑

j∈ℤ
l1,l2≥0

|2−l11−l22�j,l1,l2|
p =

∑

j∈ℤ
l1,l2≥0

‖S(fℬj
)‖p
L2(X̃)

2l1p(!1−1)2l2p(!2−2)

×
(
(l1!1 + l2!2)2l1!1+l2!2�(Ω̃j)

)1− p
2

≲
∑

j∈ℤ
‖fℬj

‖p
L2(X̃)

�(Ω̃j)
1− p

2
∑

l1,l2≥0
2l1p(!1−1)2l2p(!2−2)

× 2l1!1(1−
p
2
)2l2!2(1−

p
2
)(l1!1 + l2!2)

1− p
2 .

The series over l1,l2 converges if we choose i > !i
( 1
p
+ 1

2

)
for i = 1, 2. There-

fore,
∑

j∈ℤ
l1,l2≥0

|2−l11−l22�j,l1,l2|
p ≲

∑

j∈ℤ
2pj�(Ω̃j ⧵Ωj+1)

p
2 �(Ω̃j)

1− p
2 ≲

∑

j∈ℤ
2pj�(Ω̃j).

In the �rst inequality we have used the following estimate for the L2-norm of
fℬj

:

‖fℬj
‖2
L2(X̃)

=
∑

Rk1 ,k2�1 ,�2∈ℬj

||||⟨f,  
k1
�1 

k2
�2⟩

||||
2

≤ 2
∑

Rk1 ,k2�1 ,�2∈ℬj

�
(
Rk1,k2�1,�2 ∩ (Ω̃j∖Ωj+1)

)

�1(Q
k1
�1)�2(Q

k2
�2)

||||⟨f,  
k1
�1 

k2
�2⟩

||||
2

= 2‖S(fℬj
)‖2
L2(Ω̃j∖Ωj+1)

≤ 2‖S(f)‖2
L2(Ω̃j∖Ωj+1)

≲ 22j�(Ω̃j ⧵Ωj+1).

In the above calculation we used Plancherel in the �rst line, and we used the
fact that when R ∈ ℬj then 2�

(
R ∩ (Ω̃j∖Ωj+1)

)
> �(R) in the second line

(as shown on page 1208). In the third line, the last inequality holds because if
(x1, x2) ∉ Ωj+1 then |S(f)(x1, x2)| ≤ 2j+1.

Finally, recalling that �(Ω̃j) ≲ �(Ωj), and using (4.19) we conclude that
∑

j∈ℤ;l1,l2≥0
|2−l11−l22�j,l1,l2|

p ≲
∑

j∈ℤ
2pj�(Ωj) ≲ ‖S(f)‖p

Lp(X̃)
.
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Therefore inequality (5.13) holds when 1 < q < 2 whenever the parameters
i satisfy the constraint i > !i

( 1
p
+ 1

2

)
for i = 1, 2. Notice that in this range

q′ > 2 and
( 1
p
+ 1

2

)
>

( 1
p
+ 1

q′
)
, therefore the constraint needed in the proof of

Theorem 4.6 on page 1204 is satis�ed.
When q ≥ 2, according to de�nition (5.7), by a similar argument to that in the

proof of Theorem 4.6, speci�cally using (4.39) and provided that i > !i
( 1
p
+ 1
q′
)

for i = 1, 2, we get that
∑

j∈ℤ
l1,l2≥0

|2−l11−l22�j,l1,l2|
p =

∑

j∈ℤ
l1,l2≥0

‖S(fℬj
)‖p
Lq(X̃)

2l1p(!1−1)2l2p(!2−2)

×
(
(l1!1 + l2!2)2l1!1+l2!2�(Ω̃j)

)1− p
q

≲q
∑

j∈ℤ
2pj�(Ω̃j)

p
q �(Ω̃j)

1− p
q

×
∑

l1,l2≥0
2l1p(!1−1)2l2p(!2−2)2

l1!1(1−
p
q
)
2
l2!2(1−

p
q
)
(l1!1 + l2!2)

1− p
q

≲q
∑

j∈ℤ
2pj�(Ωj) ≲q ‖S(f)‖p

Lp(X̃)
.

Weconclude that (5.13) holdswhen q ≥ 2whenever the parameters i satisfy
the constraint i > !i

( 1
p
+ 1
q′
)
for i = 1, 2. Notice that this is the same constraint

needed in the proof of Theorem 4.6 on page 1204. All the constants appearing
in the inequalities ≤ and similarities ∼ depend on the geometric constants of
the spaces Xi for i = 1, 2, and possibly on the parameters q > 1 or � > 0 as
indicated.

(⇐) Given an atomic decomposition f =
∑

j∈ℤ �jaj for a function f ∈ Lq(X̃) ∩
Hp,q
at (X̃), with

∑
j∈ℤ |�j|p < ∞. By de�nition each product (p, q)-atom aj has

underlying dyadic grids D
aj
i on Xi for i = 1, 2 belonging to regular families of

dyadic grids onXi that contain all the reference dyadic grids for wavelets onXi.
The series is assumed to converge in Lq(X̃), hence it su�ces to verify that there
is a constant C > 0 such that for all such (p, q)-atoms a

‖S(a)‖Lp(X̃) ≤ C. (5.14)

The constant C > 0 will depend only on the geometric constants of the spaces
Xi for i = 1, 2 and onp and q, but not on the enlargement parameters l1,l2 ≥ 0
of De�nition 5.2 of the (p, q)-atom. The constant will depend on the structural
constants of the atom’s underlying dyadic grids, Da

i for i = 1, 2, via the outer
balls dilation constants Ci1 and the ratio of the outer and inner balls dilation
constants Ci1∕c

i
1. These quantities will appear when using the doubling prop-

erty for dilates of cubes as in (3.8). Both quantities are uniformly bounded by
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a constant depending only on the quasi-triangle constants of the quasi-metric
di, since the gridsDa

i are assumed to belong to a regular family of dyadic grids
on Xi for i = 1, 2. See De�nition 3.2 and inequality (3.9).

Once we prove estimate (5.14) for the atoms, if f ∈ Lq(X̃) has an atomic
decomposition f =

∑
i �iai, where the series converges in both Lq-norm and

Hp-(semi)norm, then by subadditivity of the square function, and since p ≤ 1,
together with (5.14), we conclude that

‖f‖p
Hp(X̃)

= ‖S(f)‖p
Lp(X̃)

≤
∑

i∈ℤ
|�i|p‖S(ai)‖

p
Lp(X̃)

≤ Cp
∑

i∈ℤ
|�i|p <∞,

which immediately proves the norm estimate ‖f‖Hp(X̃) ≲ inf {
( ∑

i∈ℤ
|�i|p

)1∕p
}.

To this end, �x a (p, q)-atom a with supp a ⊂ Ω∗, where Ω∗ is an appropri-
ate enlargement of the open setΩ in De�nition 5.2, more preciselyΩ∗ = Ω̃�0

l1,l2
for some enlargement parameters l1,l2 > 0. Recall that �(Ω) ∼ �(Ω̃�0) ≤
�(Ω̃�0

l1,l2
) ≲ (l1!1 + l2!2)2l1!1+l2!2�(Ω̃�0), where the last inequality holds

by (4.29). Assume the (p, q)-atom has a decomposition a =
∑

R∈m(Ω) aR when
q ≥ 2, and a decomposition a =

∑
R∈m1(Ω)

aR +
∑

R∈m′
2(Ω)

aR when 1 < q < 2.
We will work in detail the �rst case when q ≥ 2. A similar argument will take
care of the second case, 1 < q < 2; we only need to start with dyadic rectangles
R inm1(Ω) or inm2(Ω).

Let Ω̃ be the �-enlargement of Ω and let ˜̃Ω be the �-enlargement of Ω̃, as
de�ned in (4.26) for � = 1∕2, that is,

Ω̃ = {(x1, x2) ∈ X̃ ∶ Ms(�Ω)(x1, x2) > 1∕2},
˜̃Ω = {(x1, x2) ∈ X̃ ∶ Ms(�Ω̃)(x1, x2) > 1∕2}.

It will be useful to keep in mind thatΩ ⊂ Ω̃ ⊂ ˜̃Ω and that �(Ω) ∼ �(Ω̃) ∼ �( ˜̃Ω)
by (4.27).

Moreover, recall that mi(Ω) denotes the family of dyadic rectangles R ⊂ Ω,
R = Q1 × Q2, with Qi ∈ Da

i , which are maximal in the ith “direction”, i = 1, 2.
We de�nemi(Ω̃) similarly. Also recall thatm(Ω) is the set of all maximal dyadic
rectangles contained inΩ. Then for any R = Q1×Q2 ∈ m(Ω), set R̂ ∶= Q̂1×Q2.
By de�nition of Q̂1 in page 1213, one has thatQ1 ⊂ Q̂1, �(R̂∩Ω) > �(R̂)∕2, and
that Q̂1 ∈ Da

1 is maximal with respect to these properties, hence R̂ ∈ m1(Ω̃).

Similarly, set ˆ̂R ∶= Q̂1 × Q̂2 ∈ m2( ˜̃Ω), since Q2 ⊂ Q̂2, �(
ˆ̂R ∩ Ω̃) > �(ˆ̂R)∕2, and

Q̂2 ∈ Da
2 is maximal with respect to these properties.

The setΩ is a placeholder, rectanglesR refer back toΩ, rectangles R̂ to Ω̃, and
rectangles ˆ̂R to ˜̃Ω. However wewant to relate to the support of the (p, q)-atom a
for the estimates, hence we will consider the (l1,l2)-enlargement of these sets.
Speci�cally echoing the∗notationwe are using for the supportΩ∗ ofa, wewrite
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Ω̃∗ ∶= (Ω̃)l1,l2 and
˜̃Ω∗ ∶= ( ˜̃Ω)l1,l2 . We will also consider appropriate (l1,l2)-

enlargements of the rectangles, speci�cally ˆ̂R∗ ∶= 2l1Q̂1 × 2l2Q̂2 and R∗ =
2l1Q1 × 2l2Q2.

Decompose ‖S(a)‖p
Lp(X̃)

into pieces that are near or far fromΩ∗ (the support
of a):

‖S(a)‖p
Lp(X̃)

= A + B,

where

A ∶= ∫
∪R∈m(Ω)100C

ˆ̂R∗
|S(a)(x1, x2)|p d�(x1, x2) (near Ω∗),

B ∶= ∫
(∪R∈m(Ω)100C

ˆ̂R∗)c
|S(a)(x1, x2)|p d�(x1, x2) (far from Ω∗).

Here Cˆ̂R∗ ∶= C12l1Q̂1 × C22l2Q̂2. The constants Ci = 2(A(i)
0 )

2, for i = 1, 2,
are the dilation constants appearing in the support of the rectangular atoms
property (3)(i) of De�nition 5.2, and the parameters li, for i = 1, 2, are the en-
largement parameters in the support of the (p, q)-atom in property (1) of De�-
nition 5.2. To ease notation, we will denote Ci = Ci2li for i = 1, 2. This ensures
that C1Q1 × C2Q2 ⊂ Cˆ̂R∗, and supp(a) ⊂ ∪R∈m(Ω)C

ˆ̂R∗.
Applying Hölder’s inequality with exponent s = q∕p > 1, the desired esti-

mate A ≲ 1 for the integral A follows from the Lq-boundedness of S and the
Lq-norm estimate of the atom a as in (2) of De�nition 5.2. More precisely,

A ≲ ‖a‖p
Lq(X̃)

(
�(∪R∈m(Ω)100C

ˆ̂R∗)
)1− p

q ≲q
(
(l1!1 + l2!2)2l1!1+l2!2�(Ω)

) p
q
−1

×
(
(l1!1 + l2!2)(100C1)!1(100C2)!2�( ˜̃Ω)

)1− p
q

≲q
(
�(Ω)

) p
q
−1(

�( ˜̃Ω)
)1− p

q ≲q 1.

In the second inequality, similar to (4.29), we again used the L log+ L to weak
L1 estimate of the strong maximal function to estimate the upper bound of
�(∪R∈m(Ω)100C

ˆ̂R∗). In the last inequality we used the fact that �(Ω) ∼ �( ˜̃Ω).
Using the decomposition of the atom a as in (3)(ii-a) of De�nition 5.2, the

sublinearity of the product square function S, and that p ≤ 1, the integral B can
be estimated as follows:

B ≤
∑

R∈m(Ω)
∫
(100Cˆ̂R∗)c

|S(aR)(x1, x2)|p d�(x1, x2).

We split the integral over (100Cˆ̂R∗)c into two parts, one over (100C1Q̂1)c×X2
and the other over X1 × (100C2Q̂2)c. Denote the sum over R ∈ m(Ω) of the �rst
integrals by B1 and of the second integrals by B2, respectively, so that B ≤ B1 +
B2. It su�ces to estimate B1 since the estimate for B2 is similar by symmetry.
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To estimate the sum B1, we further split each integral into two pieces, one
over (100C1Q̂1)c×100C2Q2 and the other over (100C1Q̂1)c×(100C2Q2)c. Denote
the sum over R ∈ m(Ω) of the �rst integrals by B11 and of the second integrals
B12 respectively, so that B1 = B11 + B12.

Estimate for B11. Applying Fubini for the integrals, then Hölder’s inequality
on the second variable with exponent s = q∕p > 1, using the doubling property
of �2, and writing x̃ = (x1, x2), we estimate

B11 =
∑

R∈m(Ω)
∫
(100C1Q̂1)c×(100C2Q2)

|S(aR)(x̃)|p d�(x̃)

≲
∑

R∈m(Ω)

(
(C2)!2�2(Q2)

)1− p
q ∫

x1∉100C1Q̂1
[ ∫

X2
|S(aR)(x̃)|q d�(x2)]

p
q
d�(x1).

We estimate the inner integral on the right-hand side using an Lq-vector-valued
one-parameter square function estimate with respect to the variable x2 for �1-
a.e.x1, where we consider x1 a �xed parameter. More precisely, let F ∶ X2 →
Lql2(S)(X2, �2) =∶ L

q
l2(X2) where S is a countable set, meaning that for each

x2 ∈ X2, F(x2) = {Fk(x2)}k∈S ∈ l2(S) where ‖F(⋅)‖l2(S) ∈ Lq(X2). Fur-
thermore we let ‖F‖Lql2 (X2)

∶= ‖‖‖‖‖F(⋅)‖l2(S)
‖‖‖‖Lq(X2)

. Then, using the notation

�̃Qki�i
= �Qki�i

∕�i(Q
ki
�i ) (denoting an L

1-normalization instead of denoting an L2-

normalization) and where Qki�i ∈ DW
i , we de�ne

S2(F)(x2) ∶=
( ∑

k2∈ℤ

∑

�2∈Y k2

‖‖‖‖‖⟨ 
k2
�2 , F⟩L2(X2)

‖‖‖‖‖
2

l2(S)
�̃Qk2�2

(x2)
) 1
2 .

Here ⟨ k2�2 , F⟩L2(X2) denotes the sequence {⟨ 
k2
�2 , Fk⟩L2(X2)}k∈S. For all q > 1 the

following vector-valued inequality holds: ‖‖‖‖S2(F)
‖‖‖‖Lq(X2)

≤ Cq
‖‖‖‖F

‖‖‖‖Lq
l2
(X2)

. We

recall that { k2�2}k2∈ℤ,Y k2 is an orthogonal wavelet basis in X2 satisfying suitable
size, smoothness, and cancellation conditions. Hence by following the proof
of the Lq-boundedness of the Littlewood-Paley square function as in [HLW] for
q > 1, we obtain the Lq-boundedness of the vector-valued Littlewood-Paley
operator S2. For the Euclidean version, we refer to [Gra, Section 5.1.2].

With these preliminaries in mind, we can now estimate for �1-a.e. x1 ∈ X1
the Lq(X2)-norm of S(aR)(x1, ⋅), more precisely,

∫
X2

|S(aR)(x1, x2)|q d�2(x2)

= ∫
X2

[ ∑

k2∈ℤ
�2∈Y k2

∑

k1∈ℤ
�1∈Y k1

||||⟨ 
k1
�1 

k2
�2 , aR⟩L2(X1×X2)

||||
2
�̃Qk1�1

(x1)�̃Qk2�2
(x2)

] q
2 d�2(x2)
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= ∫
X2

[ ∑

k2∈ℤ
�2∈Y k2

( ∑

k1∈ℤ
�1∈Y k1

||||
⟨
 k2�2 , F

(x1)
⟩
L2(X2)

||||
2
�̃Qk1�1

(x1)
)
�̃Qk2�2

(x2)
] q
2 d�2(x2)

= ∫
X2

[ ∑

k2∈ℤ

∑

�2∈Y k2

‖‖‖‖‖⟨ 
k2
�2 , F

(x1)⟩L2(X2)
‖‖‖‖‖
2

l2(S)
�̃Qk2�2

(x2)
] q
2 d�2(x2)

= ∫
X2

||||S2(F
(x1))(x2)

||||
q
d�2(x2) ≤ C ∫

X2

‖‖‖‖F
(x1)(x2)

‖‖‖‖
q

l2(S)
d�2(x2).

Here F(x1)(x2) = {Fx2,x1k1,�1
}k1∈ℤ,�1∈Y k1 , where

Fx2,x1k1,�1
∶= ⟨aR(⋅, x2),  

k1
�1⟩L2(X1)

(
�̃Qk1�1

(x1)
)1∕2

and S = {(k1, �1) ∶ k1 ∈ ℤ, �1 ∈ Yk1} is a countable set.
Altogether we now estimate the term B11 as follows:

B11 ≲
∑

R∈m(Ω)

(
(C2)!2�2(Q2)

)1− p
q

× ∫
x1∉100C1Q̂1

[ ∫
X2

‖‖‖‖F
(x1)(x2)

‖‖‖‖
q

l2(S)
d�2(x2)]

p
q
d�1(x1)

=
∑

R∈m(Ω)

(
(C2)!2�2(Q2)

)1− p
q ∫

x1∉100C1Q̂1

[ ∫
X2

[ ∑

k1∈ℤ
�1∈Y k1

|||| ∫
X1

 k1�1(y1)aR(y1, x2)d�1(y1)
||||
2
�̃Qk1�1

(x1)
] q
2 d�2(x2)]

p
q
d�1(x1).

Applying the decomposition (4.3) in Lemma 4.8 to k1�1 , we get that for  > !1
(where  is to be determined later) and for C1 = C1 2l1 playing the role of C,

 k1�1(y1) =
√
�
(
B(yk1�1 , �

k1)
) ∞∑

l=0
(2lC1)−'

,C1
l,k1,�1

(y1).

Substituting and noting that �
(
B(yk1�1 , �

k1)
)
�̃Qk1�1

(x1) = �Qk1�1
(x1), we continue

estimating:

B11 ≲
∑

R∈m(Ω)

(
(C2)!2�2(Q2)

)1− p
q ∫

x1∉100C1Q̂1

[ ∫
X2

[ ∑

k1∈ℤ
�1∈Y k1

|||||

∞∑

l=0
(2lC1)−

⟨
',C1l,k1,�1

, aR(⋅, x2)
⟩
L2(X1)

|||||
2
�Qk1�1

(x1)
] q
2 d�2(x2)]

p
q
d�1(x1).
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First apply the Cauchy-Schwarz inequality to the sum over l ≥ 0 after factor-
ing out the constant (C1)− and considering the decaying exponential factor as
a weight so that

∑
l≥0 2

−l < ∞ is a harmless �nite constant. Second, inter-
change sums over l and over (k1, �1) ∈ S, applying Hölder’s inequality with
exponent s = q∕2 > 1 (we are in the case q ≥ 2 and when q = 2 this step is
unnecessary. When 1 < q < 2 the power q∕2 < 1 and it will travel into the

sum over l, the only di�erence being that the exponential factor will be 2−
lq
2

instead of 2−l) to the sum over l and considering the decaying exponential
factor as a weight as before. Third, interchange the sum over l and the inte-
gral over X2, using the fact that p∕q < 1 and the exponent can travel inside the
sum over l. Finally, interchange the sum over l with the outer integral over
(100C1Q̂1)c and then with the sum over R ∈ m(Ω). We �nd that

B11 ≲ (C1)−p
∑

R∈m(Ω)

(
(C2)!2�2(Q2)

)1− p
q ∫

x1∉100C1Q̂1

∞∑

l=0
2
− lp

q

[ ∫
X2

[ ∑

k1∈ℤ
�1∈Y k1

|||||
⟨
',C1l,k1,�1

, aR(⋅, x2)
⟩
L2(X1)

|||||
2
�Qk1�1

(x1)
] q
2 d�2(x2)]

p
q
d�1(x1)

≲ (C1)−p
∞∑

l=0
2
− lp

q
∑

R∈m(Ω)

(
(C2)!2�2(Q2)

)1− p
q ∫

x1∉100C1Q̂1

[ ∫
X2

[ ∑

k1∈ℤ
�1∈Y k1

|||||
⟨
',C1l,k1,�1

, aR(⋅, x2)
⟩
L2(X1)

|||||
2
�Qk1�1

(x1)
] q
2 d�2(x2)]

p
q
d�1(x1).

(In the case 1 < q < 2 the only di�erence in the estimate is that instead of 2
− lp

q

one gets the exponential 2−
lp
2 , where q has been replaced by 2 in the exponent’s

denominator.)
The support of aR is C1Q1 × C2Q2. Note that if y1 ∈ C1Q1 then d1(y1, z1) ≤

C11C1 l(Q1), where z1 is the center of Q1 and C11 is the dilation constant for
the outer balls in the �xed dyadic grid Da

1 on X1. Recall that R = Q1 × Q2. If
C11C1 l(Q1) ≤ �k11 , then d1(y1, z1) ≤ �k11 and using the smoothness property (iii)

in Lemma 4.8 of ',C1l,k1,�1
, the cancellation condition (3)(ii) in the �rst variable of

aR in De�nition 5.2, together with the geometric considerations and Hölder’s
inequality, we conclude that when both x1 and y

k1
�1 are in Q

k1
�1 ,

||||||
⟨
',C1l,k1,�1

(⋅), aR(⋅, x2)
⟩
L2(X1)

||||||
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≤ ∫
C1Q1

||||'
,C1
l,k1,�1

(y1) − ',C1l,k1,�1
(z1)

||||
||||aR(y1, x2)

||||d�1(y1)

≲

(
C1l(Q1)

)�1(C12l�
k1
1 )

−�1(C12l)!1

�1
(
BX1(y

k1
�1 , C12l�

k1
1 )

) ∫
C1Q1

||||aR(y1, x2)
||||d�1(y1)

≲
l(Q1)�1(2l�

k1
1 )

−�1(C12l)!1

�1
(
BX1(x1, C12l�

k1
1 )

)
(
(C1)!1�1(Q1)

) q−1
q ‖aR(⋅, x2)‖Lq(X1).

Here the doubling condition on the measure allows us to compare nearby balls

with the same radius; speci�cally,
�1(BX1 (x1,2

l�k11 ))

�1(BX1 (y
k1
�1 ,2

l�k11 ))
∼ 1, since we are assuming

that x1 and y
k1
�1 are in Q

k1
�1 .

Assume now that C11C1l(Q1) > �k11 . Recall that to get the desired estimate
for the inner product it su�ces to obtain the estimate for the inner product with
di�erences of the functions (2lC1)Λ

C1
l instead of di�erences of the functions

',C1l,k1,�1
. The other piece can be estimated as above. Therefore we can assume

that y1 ∈ C1Q1 ∩ supp(Λ
C1
l ). This means

2l−3C1�
k1
1 ≤ d1(y1, y

k1
�1) ≤ (A(1)

0 )22lC1�
k1
1

and d1(y1, z1) ≤ C11C1l(Q1). We also know that x1 ∈ (100(2A(1)
0 )C1Q̂1)c, hence

d1(z1, x1) ≥ 100(2A(1)
0 )C11C1l(Q̂1) ≥ 100(2A(1)

0 )C11C1l(Q1) and x1 ∈ Qk1�1 there-
fore

d1(z1, y
k1
�1) ∼ d1(y1, y

k1
�1) ≥ 100(2A(1)

0 )C11C1l(Q1).

From the proof of Lemma 4.8, we can use a test-function-like smoothness prop-
erty for the function ΛC1l encoded in (4.15) and valid when y1 ∈ supp(ΛC1l ) and
d(y1, z1) ≤ (2A(1)

0 )−1
(
�k11 + d(y1, y

k1
�1)

)
, which both hold by the assumptions

made in this case, namely:

(2lC1)|Λ
C1
l (y1) − ΛC1l (z1)| ≲

(C12l�
k1
1 )

−�1d(y1, z1)�1

�
(
B(yk1�1 , �

k1
1 )

)
+ �

(
B(y1, d(y1, y

k1
�1))

) .

Furthermore since nearby balls with same radius have comparable measure by
the doubling property, �

(
B(y1, d(y1, y

k1
�1))

)
∼ �

(
B(yk1�1 , C12

l�k11 )
)
; we get that in

our case

(2lC1)|Λ
C1
l (x) − ΛC1l (y)| ≲

(C12l�
k1
1 )

−�1

�
(
B(yk1�1 , C12l�

k1
1 )

)
(
C11C1l(Q1)

)�1 . (5.15)
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Inequality (5.15) together with the geometric considerations and Hölder’s
inequality, and given that both x1 and y

k1
�1 are in Q

k1
�1 , yield

∫
C1Q1∩ supp(Λ

C1
l )
(C12l)

||||Λ
C1
l (y1) − ΛC1l (z1)

||||
||||aR(y1, x2)

||||d�1(y1)

≲
l(Q1)�1(2l�

k1
1 )

−�1

�1
(
BX1(y

k1
�1 , C12l�

k1
1 )

) ∫
C1Q1

||||aR(y1, x2)
||||d�1(y1)

≲
l(Q1)�1(2l�

k1
1 )

−�1

�1
(
BX1(x1, C12l�

k1
1 )

)
(
(C1)!1�1(Q1)

) q−1
q ‖aR(⋅, x2)‖Lq(X1).

Note that in the �rst ≲ the constant (C11)
�1 ≤ C11 has been absorbed since it is

bounded above by a constant depending only on the geometric constants of the
space X1.

Therefore we conclude that in all cases, when both x1 and y
k1
�1 are in Q

k1
�1 ,

||||||
⟨
',C1l,k1,�1

, aR(⋅, x2)
⟩
L2(X1)

||||||

≲
l(Q1)�1(2l�

k1
1 )

−�1(C12l)!1

�1
(
BX1(x1, C12l�

k1
1 )

)
(
(C1)!1�1(Q1)

) q−1
q ‖aR(⋅, x2)‖Lq(X1).

Notice that in the above calculation l(Q1) refers to the underlying dyadic
grid Da

1 for the atom, possibly di�erent than the reference dyadic grid DW
1 for

the wavelets on X1. Also note that the inequalities ≲ and the similarities ∼
introduce constants depending only on the geometric constants of the space of
homogeneous type, in this case X1.

Now recall that supp(',C1l,k1,�1
) ⊂ BX1(y

k1
�1 , 2(A

(1)
0 )2 2lC1�

k1
1 ), so the inner prod-

uct we just estimated will be nonzero only when

(C1 Q1) ∩ BX1(y
k1
�1 , 2(A

(1)
0 )2 2lC1�

k1
1 ) ≠ ∅,

where yk1�1 is the center of the cube Qk1�1 ∈ DW
1 that contains x1 ∉ 100C1Q̂1.

Therefore, when estimating B11, in the sum over k1 and �1 the only scales that
intervene are those integers l ≥ 0 such that 2lC1�

k1
1 ∼ d1(x1, z1), where z1 is

the center of Q1 (it helps to draw a picture to understand the geometry). With
this in mind, applying the above estimate on the inner product we conclude
that

B11 ≲ (C1)−p
∞∑

l=0
2
− lp

q
∑

R∈m(Ω)

(
(C2)!2�2(Q2)

)1− p
q

× ∫

x1∉100C1Q̂1

[ ∫
X2

[ ∑

k1,�1∶
2lC1�

k1
1 ∼d1(x1,z1)

|||||||

l(Q1)�1(2l�
k1
1 )

−�1(C12l)!1

�1
(
BX1(x1, 2l�

k1
1 )

)
(
(C1)!1�1(Q1)

)1− 1
q
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× ‖aR(⋅, x2)‖Lq(X1)
|||||||

2

�Qk1�1
(x1)

] q
2 d�2(x2)]

p
q
d�1(x1).

There is exactly one dyadic cube Qk1�1 ∈ DW
1 in generation k1 containing x1, so

the double sum over k1, �1 reduces to a single sum over k1. Furthermore, note
that when 2lC1�

k1
1 ∼ d1(x1, z1) then

�1
(
BX1(x1, 2

lC1�
k1
1 )

)
∼ �1

(
BX1(x1, d1(x1, z1))

)
≲ (C1)!1�1

(
BX1(x1, 2

l�k11 )
)
.

Therefore

B11 ≲ (C1)−p
∞∑

l=0
2
− lp

q
∑

R∈m(Ω)

(
(C2)!2�2(Q2)

)1− p
q ‖aR‖

p
Lq(X̃)

∫

x1∉100C1Q̂1

[
∑

k1∶
2lC1�

k1
1 ∼d1(x1,z1)

|||||
l(Q1)�1(2l�

k1
1 )

−�1(2lC1)!1

�1
(
BX1(x1, d1(x1, z1))

)
(
(C1)!1�1(Q1)

)1− 1
q
|||||
2
]
p
2
d�1(x1)

≲ (C1)−p
∞∑

l=0
2
− lp

q
∑

R∈m(Ω)

(
(C2)!2�2(Q2)

)1− p
q ‖aR‖

p
Lq(X1×X2)

2l!1p

×
(
(C1)!1�1(Q1)

)p− p
q ∫

x1∉100C1Q̂1

[
∑

k1∶
2lC1�k1∼d1(x1,z1)

(2l�k1)−2�1]
p
2

×
l(Q1)�1p(C1)!1p

�1
(
BX1(x1, d1(x1, z1))

)p d�1(x1).

Notice that the sum over k1 is a geometric sum comparable to
( C1
d1(x1,z1)

)2�1 .
Therefore

B11 ≲ (C1)(!1−)p
∞∑

l=0
2
− lp

q
∑

R∈m(Ω)

(
(C2)!2�2(Q2)

)1− p
q ‖aR‖

p
Lq(X1×X2)

×2l!1p
(
(C1)!1�1(Q1)

)p− p
q ∫

x1∉100C1Q̂1

d1(x1, z1)−�1pl(Q1)�1p(C1)�1p

�1
(
BX1(x1, d1(x1, z1))

)p d�1(x1).

The integral over (100C1Q̂1)c can be further decomposed into integrals over dis-
joint annuliDj+1⧵Dj. HereDj ∶= 2j100C1Q̂1, so that for all j ≥ 0, (100C1Q̂1)c =
∪j≥0(Dj+1 ⧵ Dj). For x1 ∈ Dj ⧵ Dj−1 we have that (C1)�1pd1(x1, z1)−�1p ∼
2−j�1p l(Q̂1)−�1p. Note that nearby balls with the same radius have compara-
ble mass by the doubling property of the measure. In particular,

�1
(
BX1(z1, d1(x1, z1))

)
∼ �1

(
BX1(x1, d1(x1, z1)),
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and certainly Q̂1 ⊂ Dj ⊂ BX1(z1, d1(x1, z1)) ⊂ Dj+1. All together, we obtain the
following estimate

∫
x1∈(100C1Q̂1)c

d1(x1, z1)−�1pl(Q1)�1p(C1)�1p

�1
(
BX1(x1, d1(x1, z1))

)p d�1(x1)

≲
l(Q1)�1pl(Q̂1)−�1p

�1(Q̂1)p−1
∑

j≥0
(
�1(Dj+1)
�1(Dj)

2−j�1p),

where the sum over j is comparable to 1 by the doubling condition of �1. Note
that  > !1 hence (C1)(!1−)p < 1, that p − 1 < 0 hence (C1)!1(p−1) < 1, and
recall that (Ci)!i ∼ 2li!i for i = 1, 2. Substituting we obtain

B11 ≲
∞∑

l=0
2
− lp

q
∑

R∈m(Ω)

(
2l1!1+l2!2�(R)

)1− p
q ‖aR‖

p
Lq(X̃)

l(Q1)�1p 2l!1p

×
(
(C1)!1�1(Q1)

)p−1
l(Q̂1)−�1p∕�1(Q̂1)p−1

≲
∑

R∈m(Ω)

(
2l1!1+l2!2�(R)

)1− p
q ‖aR‖

p
Lq(X̃)

[
l(Q1)∕l(Q̂1)

]�1p

×
[
�1(Q1)∕�1(Q̂1)

]p−1 ∞∑

l=0
2
− lp

q
+l!1p.

For the geometric sum to converge we need to choose  > q !1 when q ≥ 2, and
when 1 < q < 2 we choose  > 2!1. With this choice and using the doubling
property (1.3) once more since p − 1 < 0, we estimate for 2 ≤ q <∞,

B11 ≲ 2
(l1!1+l2!2)(1−

p
q
) ∑

R∈m(Ω)
‖aR‖

p
Lq(X̃)

�(R)
1− p

q w
(l(Q1)
l(Q̂1)

)
, (5.16)

where w(x) = x� with � = p�1 + (p − 1)!1 > 0. This is where we explicitly
used the choice of p > p0 where p0 = max

(
!i∕(!i + �i) ∶ i = 1, 2}. It was also

used in the de�nition ofHp(X̃) in [HLW].
To be more precise on how the doubling condition was used in (5.16), let ẑ1

be the center of Q̂1 and z1 the center of Q1. Recall that Q1 ⊂ Q̂1, then

�1(Q̂1)
�1(Q1)

≤
�1

(
BX1(ẑ1, C

1
1l(Q̂1))

)

�1
(
BX1(z1, c

1
1l(Q1))

)

≤
�1

(
BX1(z1, A

(1)
0 (d1(ẑ1, z1) + C11l(Q̂1)))

)

�1
(
BX1(z1, c

1
1l(Q1))

)

≤
�1

(
BX1(z1, 2A

(1)
0 C11l(Q̂1))

)

�1
(
BX1(z1, c

1
1l(Q1))

)
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≲
(2A(1)

0 C11l(Q̂1)

c11l(Q1)

)!1
≲

(l(Q̂1)
l(Q1)

)!1
.

We continue estimating B11. Applying Hölder’s inequality to the right-hand

side of (5.16), with exponent s = q∕p > 1, setting w̃ = w
q

q−p , using property
(iii-a) in the de�nition of (p, q)-atoms, and applying the Journé-type covering
lemma gives

B11 ≲ 2
(l1!1+l2!2)(1−

p
q
)|||||||

∑

R∈m(Ω)
‖aR‖

q
Lq(X̃)

|||||||

p
q |||||||

∑

R∈m(Ω)
�(R) w̃

(l(Q1)
l(Q̂1)

)|||||||

1− p
q

≲ 2
(l1!1+l2!2)(1−

p
q
)(
(l1!1 + l2!2)2l1!1+l2!2�(Ω̃)

) p
q
−1
�(Ω)

1− p
q ≲ 1.

The last inequality holds because �(Ω̃) ∼ �(Ω).

For 1 < q < 2, setting w = w
1
2 , w̃ = w

q
q−p and ˜̃w = w

q
p and applying the

same estimate as above, we obtain

B11 ≲ 2
(l1!1+l2!2)(1−

p
q
) ∑

R∈m(Ω)
‖aR‖

p
Lq(X̃)

�(R)
1− p

q w
(l(Q1)
l(Q̂1)

)

≲ 2
(l1!1+l2!2)(1−

p
q
) ∑

R∈m(Ω)
‖aR‖

p
Lq(X̃)

w
(l(Q1)
l(Q̂1)

)
�(R)

1− p
q w

(l(Q1)
l(Q̂1)

)
.

Applying Hölder’s inequality with exponent s = q∕p > 1, and then using prop-
erty (iii-b), with � = q∕(2p) > 0, from the atoms and the Journé-type covering
lemma implies

B11 ≲ 2
(l1!1+l2!2)(1−

p
q
)
(

∑

R∈m(Ω)
‖aR‖

q
Lq(X̃)

˜̃w
(l(Q1)
l(Q̂1)

)
)
p
q

× (
∑

R∈m(Ω)
�(R) w̃

(l(Q1)
l(Q̂1)

)
)
1− p

q

≲ 2
(l1!1+l2!2)(1−

p
q
)(
(l1!1 + l2!2)2l1!1+l2!2�(Ω̃)

) p
q
−1
�(Ω)

1− p
q ≲ 1.

The last inequality holds because p
q
−1 < 0 so (l1!1 +l2!2)

p
q
−1
< 1. The con-

stants involved in the similarities depend only on p and q, the geometric con-
stants of the spaces directly (quasi-triangle constants A(i)

0 , doubling constants,
and upper dimensions !i for i = 1, 2) or indirectly via the absolute constants
Ci appearing in the de�nition of the (p, q)-atoms, or the constants appearing in
the Journé Lemma, or the dilation constants of the underlying dyadic grids or
their ratios, themselves depending only on the geometric constants.
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Estimate for B12. Using the cancellation condition of the atoms aR, and de-
noting ỹ = (y1, y2) and x̃ = (x1, x2), we write B12 as

B12 =
∑

R∈m(Ω)
∫

x1∉100C1Q̂1

∫

x2∉100C2Q2

|||||||

k̂1∑

k1=−∞

k̂2∑

k2=−∞

||||| ∫X̃
[ k1�1(y1) −  k1�1(z1)]

× [ k1�1(y2) −  k1�1(z2)] aR(ỹ)d�(ỹ)
�Qk1�1

(x1)

�1(Q
k1
�1)

�Qk2�2
(x2)

�2(Q
k2
�2)

|||||
q|||||||

p
q
d�(x̃).

Here the constants k̂1 and k̂2 satisfy �
k̂1
1 ≈ l(Q̂1) and �

k̂2
2 ≈ l(Q2), respectively.

Applying the smoothness properties of  k1�1(x1, y1) and  
k1
�1(x2, y2) yields that

B12 satis�es the same estimate as B11 does, as in (5.16). This concludes the
proof of Theorem 5.4. �

References
[AlM] Alvarado, Ryan; Mitrea, Marius. Hardy spaces on Ahlfors-regular quasi

metric spaces, a sharp theory. Lecture Notes in Mathematics, 2142. Springer,
2015. viii+486 pp. ISBN: 978-3-319-18131-8; 978-3-319-18132-5. MR3310009, Zbl
1322.30001, doi: 10.1007/978-3-319-18132-5. 1174, 1182

[AuH1] Auscher, Pascal; Hytönen, Tuomas. Orthonormal bases of regular wavelets
in spaces of homogeneous type. Appl. Comput. Harmon. Anal. 34 (2013), no. 2,
266–296. MR3008566, Zbl 1261.42057, doi: 10.1016/j.acha.2012.05.002. 1175, 1178,
1182, 1184, 1185, 1187, 1188, 1189, 1190, 1194, 1207

[AuH2] Auscher, Pascal; Hytönen, Tuomas. Addendum to Orthonormal bases
of regular wavelets in spaces of homogeneous type. Appl. Comput. Harmon.
Anal. 39 (2015), no. 3, 568–569. MR3398952, Zbl 1332.42029, arXiv:1503.05397,
doi: 10.1016/j.acha.2015.03.009. 1174, 1175, 1178, 1182, 1184, 1189

[BDT] Betancor, Jorge J.; Dziubański, Jacek; Torrea, Jose Luis. On Hardy spaces
associated with Bessel operators. J. Anal. Math. 107 (2009), 195–219. MR2496404,
Zbl 1195.44023, doi: 10.1007/s11854-009-0008-1. 1184

[CF] Chang, Sun-Yung A.; Fefferman, Robert. A continuous version of duality
of H1 with BMO on the bidisc. Ann. of Math. (2) 112 (1980), no. 1, 179–201.
MR0584078, Zbl 0451.42014, doi: 10.2307/1971324. 1206

[Chr] Christ, Michael. A T(b) theorem with remarks on analytic capacity and the
Cauchy integral. Colloq. Math. 60/61 (1990), no. 2, 601–628. MR1096400, Zbl
0758.42009, doi: 10.4064/cm-60-61-2-601-628. 1182, 1185

[CW1] Coifman, Ronald R.; Weiss, Guido. Analyse harmonique non-commutative
sur certains espaces homogènes. Étude de certaines intégrales singulières. Lec-
ture Notes in Mathematics, 242. Springer-Verlag, Berlin-New York, 1971. v+160 pp.
MR0499948, Zbl 0224.43006, doi: 10.1007/BFb0058946. 1174, 1185

[CW2] Coifman, Ronald R.; Weiss, Guido. Extensions of Hardy spaces and their use
in analysis. Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR0447954, Zbl
0358.30023, doi: 10.1090/S0002-9904-1977-14325-5. 1175, 1179, 1181

[Da] David, Guy. Morceaux de graphes lipschitziens et intégrales singulières sur
une surface. Rev. Mat. Iberoamericana 4, no. 1 (1988), 73–114. MR1009120, Zbl
0696.42011, doi: 10.4171/RMI/64. 1185

http://www.ams.org/mathscinet-getitem?mr=3310009
http://www.emis.de/cgi-bin/MATH-item?1322.30001
http://www.emis.de/cgi-bin/MATH-item?1322.30001
http://dx.doi.org/10.1007/978-3-319-18132-5
http://www.ams.org/mathscinet-getitem?mr=3008566
http://www.emis.de/cgi-bin/MATH-item?1261.42057
http://dx.doi.org/10.1016/j.acha.2012.05.002
http://www.ams.org/mathscinet-getitem?mr=3398952
http://www.emis.de/cgi-bin/MATH-item?1332.42029
http://arXiv.org/abs/1503.05397
http://dx.doi.org/10.1016/j.acha.2015.03.009
http://www.ams.org/mathscinet-getitem?mr=2496404
http://www.emis.de/cgi-bin/MATH-item?1195.44023
http://dx.doi.org/10.1007/s11854-009-0008-1
http://www.ams.org/mathscinet-getitem?mr=0584078
http://www.emis.de/cgi-bin/MATH-item?0451.42014
http://dx.doi.org/10.2307/1971324
http://www.ams.org/mathscinet-getitem?mr=1096400
http://www.emis.de/cgi-bin/MATH-item?0758.42009
http://www.emis.de/cgi-bin/MATH-item?0758.42009
http://dx.doi.org/10.4064/cm-60-61-2-601-628
http://www.ams.org/mathscinet-getitem?mr=0499948
http://www.emis.de/cgi-bin/MATH-item?0224.43006
http://dx.doi.org/10.1007/BFb0058946
http://www.ams.org/mathscinet-getitem?mr=0447954
http://www.emis.de/cgi-bin/MATH-item?0358.30023
http://www.emis.de/cgi-bin/MATH-item?0358.30023
http://dx.doi.org/10.1090/S0002-9904-1977-14325-5
http://www.ams.org/mathscinet-getitem?mr=1009120
http://www.emis.de/cgi-bin/MATH-item?0696.42011
http://www.emis.de/cgi-bin/MATH-item?0696.42011
http://dx.doi.org/10.4171/RMI/64


ATOMIC DECOMPOSITION OF PRODUCT HARDY SPACES Hp(X̃) 1237

[DaJS] David, Guy; Journé, Jean-Lin; Semmes, Stephen W. Opérateurs de Calderón–
Zygmund, fonctions para-accrétives et interpolation. Rev. Mat. Iberoamericana 1
(1985), no. 4, 1–56. MR0850408, Zbl 0604.42014, doi: 10.4171/RMI/17. 1182

[DeH] Deng, Donggao; Han, Yongsheng. Harmonic analysis on spaces of homoge-
neous type. Lecture Notes in Mathematics, 1966. Springer-Verlag, Berlin, 2009.
xii+154 pp. ISBN: 978-3-540-88744-7. MR2467074, Zbl 1158.43002. 1182

[DLWY] Duong, Xuan Thinh; Li, Ji; Wick, Brett D.; Yang, Dongyong. Factorization
for Hardy spaces and characterization for BMO spaces via commutators in the
Bessel setting. Indiana Univ. Math. J. 66 (2017), no. 4, 1081–1106. MR3689327, Zbl
1376.42028, arXiv:1509.00079, doi: 10.1512/iumj.2017.66.6115. 1184

[Fa] Fava, Norberto Angel. Weak type inequalities for product operators. Studia
Math. 42 (1972), 271–288. MR0308364, Zbl 0237.47006, doi: 10.4064/sm-42-3-271-
288. 1206

[Fe1] Fefferman, Robert.Calderón–Zygmund theory for product domains: Hpspaces.
Proc. Nat. Acad. Sci. USA, 83 (1986), no. 4, 840–843. MR0828217, Zbl 0602.42023,
doi: 10.1073/pnas.83.4.840. 1215

[Fe2] Fefferman, Robert. A note on a lemma of Zó. Proc. Amer. Math. Soc. 96 (1986),
no. 2, 241–246. MR0818452, Zbl 0628.42005, doi: 10.2307/2046161. 1206

[FS] Fefferman, Charles Louis; Stein, Elias M. Hp spaces of several vari-
ables. Acta Math. 129 (1972), no. 3–4, 137–193. MR0447953, Zbl 0257.46078,
doi: 10.1007/BF02392215. 1209

[FY] Fu, Xing; Yang, Dachun. Wavelet characterizations of the atomic Hardy
space H1 on spaces of homogeneous type. Appl. Comput. Harmon. Anal.
44 (2018), no. 1, 1–37. MR3707862, Zbl 1381.42032, arXiv:1509.04150,
doi: 10.1016/j.acha.2016.04.001. 1175, 1178

[Gra] Grafakos, Loukas. Classical Fourier analysis. Second edition. Graduate Texts in
Mathematics, 249. Springer, New York, 2008. xvi+489 pp. ISBN: 978-0-387-09431-1.
MR2445437, Zbl 1220.42001, doi: 10.1007/978-0-387-09432-8. 1228

[Han1] Han, Yongsheng. Calderón-type reproducing formula and the Tb theorem.
Rev. Mat. Iberoamericana 10 (1994), no. 1, 51–91. MR1271757, Zbl 0797.42009,
doi: 10.4171/RMI/145. 1182, 1184

[Han2] Han, Yongsheng Plancherel-Pólya type inequality on spaces of homogeneous
type and its applications. Proc. Amer. Math. Soc. 126 (1998), no. 11, 3315–3327.
MR1459123, Zbl 0920.42011, doi: 10.1090/S0002-9939-98-04445-1. 1175, 1182, 1184

[HHL1] Han, Yanchang; Han, Yongsheng; Li, Ji. Criterions of the bounded-
ness of singular integrals on spaces of homogeneous type. J. Funct. Anal. 271
(2016), no. 12, 3423–3464. MR3558247, Zbl 1350.42027, arXiv:1601.06124,
doi: 10.1016/j.jfa.2016.09.006. 1175, 1176, 1216

[HHL2] Han, Yanchang; Han, Yongsheng; Li, Ji.Geometry andHardy spaces on spaces
of homogeneous type in the sense ofCoifman andWeiss.Sci. ChinaMath. 60 (2017),
no. 11, 2199–2218. MR3714572, Zbl 1397.42013, doi: 10.1007/s11425-017-9152-4.
1179

[HLLin] Han, Yongsheng; Li, Ji; Lin, Chin-Cheng. Criterion of the L2 boundedness and
sharp endpoint estimates for singular integral operators on product spaces of ho-
mogeneous type. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5) 16 (2016), no. 3, 845–907.
MR3618079, Zbl 1362.42029, doi: 10.2422/2036-2145.201411_002. 1176, 1177, 1179,
1212, 1213, 1214, 1215

[HLW] Han, Yongsheng; Li, Ji; Ward, Lesley A. Hardy space theory on
spaces of homogeneous type via orthonormal wavelet bases. Appl. Com-
put. Harmon. Anal. 45 (2018), no. 1, 120–169. MR3790058, Zbl 1390.42030,
doi: 10.1016/j.acha.2016.09.002. 1174, 1175, 1176, 1177, 1178, 1184, 1185, 1189,
1190, 1191, 1192, 1193, 1194, 1195, 1196, 1210, 1211, 1212, 1218, 1228, 1234

http://www.ams.org/mathscinet-getitem?mr=0850408
http://www.emis.de/cgi-bin/MATH-item?0604.42014
http://dx.doi.org/10.4171/RMI/17
http://www.ams.org/mathscinet-getitem?mr=2467074
http://www.emis.de/cgi-bin/MATH-item?1158.43002
http://www.ams.org/mathscinet-getitem?mr=3689327
http://www.emis.de/cgi-bin/MATH-item?1376.42028
http://www.emis.de/cgi-bin/MATH-item?1376.42028
http://arXiv.org/abs/1509.00079
http://dx.doi.org/10.1512/iumj.2017.66.6115
http://www.ams.org/mathscinet-getitem?mr=0308364
http://www.emis.de/cgi-bin/MATH-item?0237.47006
http://dx.doi.org/10.4064/sm-42-3-271-288
http://dx.doi.org/10.4064/sm-42-3-271-288
http://www.ams.org/mathscinet-getitem?mr=0828217
http://www.emis.de/cgi-bin/MATH-item?0602.42023
http://dx.doi.org/10.1073/pnas.83.4.840
http://www.ams.org/mathscinet-getitem?mr=0818452
http://www.emis.de/cgi-bin/MATH-item?0628.42005
http://dx.doi.org/10.2307/2046161
http://www.ams.org/mathscinet-getitem?mr=0447953
http://www.emis.de/cgi-bin/MATH-item?0257.46078
http://dx.doi.org/10.1007/BF02392215
http://www.ams.org/mathscinet-getitem?mr=3707862
http://www.emis.de/cgi-bin/MATH-item?1381.42032
http://arXiv.org/abs/1509.04150
http://dx.doi.org/10.1016/j.acha.2016.04.001
http://www.ams.org/mathscinet-getitem?mr=2445437
http://www.emis.de/cgi-bin/MATH-item?1220.42001
http://dx.doi.org/10.1007/978-0-387-09432-8
http://www.ams.org/mathscinet-getitem?mr=1271757
http://www.emis.de/cgi-bin/MATH-item?0797.42009
http://dx.doi.org/10.4171/RMI/145
http://www.ams.org/mathscinet-getitem?mr=1459123
http://www.emis.de/cgi-bin/MATH-item?0920.42011
http://dx.doi.org/10.1090/S0002-9939-98-04445-1
http://www.ams.org/mathscinet-getitem?mr=3558247
http://www.emis.de/cgi-bin/MATH-item?1350.42027
http://arXiv.org/abs/1601.06124
http://dx.doi.org/10.1016/j.jfa.2016.09.006
http://www.ams.org/mathscinet-getitem?mr=3714572
http://www.emis.de/cgi-bin/MATH-item?1397.42013
http://dx.doi.org/10.1007/s11425-017-9152-4
http://www.ams.org/mathscinet-getitem?mr=3618079
http://www.emis.de/cgi-bin/MATH-item?1362.42029
http://dx.doi.org/10.2422/2036-2145.201411_002
http://www.ams.org/mathscinet-getitem?mr=3790058
http://www.emis.de/cgi-bin/MATH-item?1390.42030
http://dx.doi.org/10.1016/j.acha.2016.09.002


1238 YONGSHENG HAN, JI LI, M. CRISTINA PEREYRA AND LESLEY A. WARD

[HMY1] Han, Yongsheng; Müller, Detlef; Yang, Dachun. Littlewood–Paley
characterizations for Hardy spaces on spaces of homogeneous type. Math.
Nachr. 279 (2006), no. 13–14, 1505–1537. MR2269253, Zbl 1179.42016,
doi: 10.1002/mana.200610435. 1183, 1184, 1191

[HMY2] Han, Yongsheng; Müller, Detlef; Yang, Dachun. A theory of Besov
and Triebel–Lizorkin spaces on metric measure spaces modeled on Carnot-
Carathéodory spaces.. Abstr. Appl. Anal. 2008, Article ID 893409, 250 pp.
MR2485404, Zbl 1193.46018, doi: 10.1155/2008/893409. 1183, 1184, 1191

[HaS] Han, Yongsheng; Sawyer, Eric T. Littlewood-Paley theory on spaces of homo-
geneous type and the classical function spaces.Mem. Amer. Math. Soc. 110 (1994),
no. 530, vi+126 pp. MR1214968, Zbl 0806.42013, doi: 10.1090/memo/0530. 1182,
1184

[HeHLLYY] He, Ziyi; Han, Yongsheng; Li, Ji; Liu, Liguang; Yang, Dachun; Yuan, Wen.
A complete real-variable theory of Hardy spaces on spaces of homogeneous type.
J. Fourier Anal. Appl. 25 (2019), no. 5, 2197–2267. MR4014799, Zbl 1427.42026,
arXiv:1803.10394, doi: 10.1007/s00041-018-09652-y. 1175

[HyK] Hytönen, Tuomas; Kairema, Anna. Systems of dyadic cubes in a doubling
metric space. Colloq. Math. 126 (2012), no. 1, 1–33. MR2901199 , Zbl 1244.42010,
arXiv:1012.1985, doi: 10.4064/cm126-1-1. 1178, 1182, 1185, 1187

[HyM] Hytönen, Tuomas; Martikainen, Henri. Non-homogeneous Tb theorem and
random dyadic cubes on metric measure spaces. J. Geom. Anal. 22 (2012), no. 4,
1071–1107. MR2965363, Zbl 1261.42017, arXiv:0911.4387, doi: 10.1007/s12220-
011-9230-z. 1187

[HyT] Hytönen, Tuomas; Tapiola, Olli. Almost Lipschitz-continuous
wavelets in metric spaces via a new randomization of dyadic cubes. J. Ap-
prox.Theory 185 (2014), 12–30. MR3233063, Zbl 1302.42054, arXiv:1310.2047,
doi: 10.1016/j.jat.2014.05.017. 1189

[J] Journé, Jean-Lin. Calderón–Zygmund operators on product spaces. Rev.
Mat. Iberoamericana 1 (1985), no. 3, 55–91. MR0836284, Zbl 0634.42015,
doi: 10.4171/RMI/15. 1212

[KLPW] Kairema, Anna; Li, Ji; Pereyra, M. Cristina; Ward, Lesley A.Haar bases on
quasi-metricmeasure spaces, and dyadic structure theorems for function spaces on
product spaces of homogeneous type. J. Func. Anal. 271 (2016), no. 7, 1793–1843.
MR3535320, Zbl 1347.42040, doi: 10.1016/j.jfa.2016.05.002. 1178, 1188, 1206, 1215,
1216

[MS1] Macías, Roberto A.; Segovia, Carlos. Lipschitz functions on spaces of homo-
geneous type. Adv. inMath. 33 (1979), no. 3, 257–270. MR0546295, Zbl 0431.46018,
doi: 10.1016/0001-8708(79)90012-4. 1181, 1182, 1184

[MS2] Macías Roberto A.; Segovia, Carlos. A decomposition into atoms of distri-
butions on spaces of homogeneous type. Adv. in Math. 33 (1979), no. 3, 271–309.
MR0546296, Zbl 0431.46019, doi: 10.1016/0001-8708(79)90013-6. 1182

[MuS] Muckenhoupt, Benjamin; Stein, Elias M. Classical expansions and their rela-
tion to conjugate harmonic functions. Trans. Amer. Math. Soc. 118 (1965), 17–92.
MR0199636, Zbl 0139.29002, doi: 10.2307/1993944. 1184

[NS] Nagel, Alexander; Stein, EliasM.On the product theory of singular integrals.
Rev. Mat. Iberoamericana 20 (2004), no. 2, 531–561. MR2073131, Zbl 1057.42016,
doi: 10.4171/RMI/400. 1179, 1183, 1197, 1199

[P] Pipher, Jill. Journé’s covering lemma and its extension to higher dimen-
sions. Duke Math. J. 53 (1986), no. 3, 683-690. MR0860666, Zbl 0645.42018,
doi: 10.1215/S0012-7094-86-05337-8. 1177, 1212

http://www.ams.org/mathscinet-getitem?mr=2269253
http://www.emis.de/cgi-bin/MATH-item?1179.42016
http://dx.doi.org/10.1002/mana.200610435
http://www.ams.org/mathscinet-getitem?mr=2485404
http://www.emis.de/cgi-bin/MATH-item?1193.46018
http://dx.doi.org/10.1155/2008/893409
http://www.ams.org/mathscinet-getitem?mr=1214968
http://www.emis.de/cgi-bin/MATH-item?0806.42013
http://dx.doi.org/10.1090/memo/0530
http://www.ams.org/mathscinet-getitem?mr=4014799
http://www.emis.de/cgi-bin/MATH-item?1427.42026
http://arXiv.org/abs/1803.10394
http://dx.doi.org/10.1007/s00041-018-09652-y
http://www.ams.org/mathscinet-getitem?mr=2901199 
http://www.emis.de/cgi-bin/MATH-item?1244.42010
http://arXiv.org/abs/1012.1985
http://dx.doi.org/10.4064/cm126-1-1
http://www.ams.org/mathscinet-getitem?mr=2965363
http://www.emis.de/cgi-bin/MATH-item?1261.42017
http://arXiv.org/abs/0911.4387
http://dx.doi.org/10.1007/s12220-011-9230-z
http://dx.doi.org/10.1007/s12220-011-9230-z
http://www.ams.org/mathscinet-getitem?mr=3233063
http://www.emis.de/cgi-bin/MATH-item?1302.42054
http://arXiv.org/abs/1310.2047
http://dx.doi.org/10.1016/j.jat.2014.05.017
http://www.ams.org/mathscinet-getitem?mr=0836284
http://www.emis.de/cgi-bin/MATH-item?0634.42015
http://dx.doi.org/10.4171/RMI/15
http://www.ams.org/mathscinet-getitem?mr=3535320
http://www.emis.de/cgi-bin/MATH-item?1347.42040
http://dx.doi.org/10.1016/j.jfa.2016.05.002
http://www.ams.org/mathscinet-getitem?mr=0546295
http://www.emis.de/cgi-bin/MATH-item?0431.46018
http://dx.doi.org/10.1016/0001-8708(79)90012-4
http://www.ams.org/mathscinet-getitem?mr=0546296
http://www.emis.de/cgi-bin/MATH-item?0431.46019
http://dx.doi.org/10.1016/0001-8708(79)90013-6
http://www.ams.org/mathscinet-getitem?mr=0199636
http://www.emis.de/cgi-bin/MATH-item?0139.29002
http://dx.doi.org/10.2307/1993944
http://www.ams.org/mathscinet-getitem?mr=2073131
http://www.emis.de/cgi-bin/MATH-item?1057.42016
http://dx.doi.org/10.4171/RMI/400
http://www.ams.org/mathscinet-getitem?mr=0860666
http://www.emis.de/cgi-bin/MATH-item?0645.42018
http://dx.doi.org/10.1215/S0012-7094-86-05337-8


ATOMIC DECOMPOSITION OF PRODUCT HARDY SPACES Hp(X̃) 1239

[SW] Sawyer, Eric T.; Wheeden, Richard L.Weighted inequalities for fractional in-
tegrals on Euclidean and homogeneous spaces. Amer. J. Math. 114 (1992), no. 4,
813–874. MR1175693, Zbl 0783.42011, doi: 10.2307/2374799. 1185

(YongshengHan)DepartmentofMathematics, AuburnUniversity, AL36849-5310, USA
hanyong@auburn.edu

(Ji Li)Department ofMathematics and Statistics, Macquarie University, NSW 2019,
Australia
ji.li@mq.edu.au

(M. Cristina Pereyra) Department of Mathematics and Statistics, University of New
Mexico, Albuquerque, NM 87131, USA
crisp@math.unm.edu

(Lesley A. Ward)UniSA STEM, University of South Australia, Mawson Lakes SA 5095,
Australia
lesley.ward@unisa.edu.au

This paper is available via http://nyjm.albany.edu/j/2021/27-46.html.

http://www.ams.org/mathscinet-getitem?mr=1175693
http://www.emis.de/cgi-bin/MATH-item?0783.42011
http://dx.doi.org/10.2307/2374799
mailto:hanyong@auburn.edu
mailto:ji.li@mq.edu.au
mailto:crisp@math.unm.edu
mailto:lesley.ward@unisa.edu.au
http://nyjm.albany.edu/j/2021/27-46.html

	1. Introduction
	2. Context and significance
	3. Preliminaries
	4. Product Hardy spaces, duals, predual, key auxiliary result and theorem
	5. Atomic product Hardy spaces
	References

