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The Tate module of a simple abelian
variety of type IV

Grzegorz Banaszak and Aleksandra Kaim-Garnek

Abstract. The aim of this paper is to investigate the Galois module struc-
ture of the Tate module of an abelian variety de�ned over a number �eld. We
focus on simple abelian varieties of type IV in Albert classi�cation. We de-
scribe explicitly the decomposition of theO�[GF]-module T�(A) into compo-
nents that are rationally and residually irreducible. Moreover these compo-
nents are non-degenerate, hermitian modules that rationally and residually
are non-degenerate, hermitian vector spaces.
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1. Introduction
Let A be an abelian variety of dimension g over a number �eld F. Let ℛ ∶=

EndF(A). PutD ∶= ℛ⊗ℤℚ and let E be the center ofD. The ringℛ is an order
in D. Becauseℛ is �nitely generated ℤ-module thenℛ ∩ E = O0

E is an order in
OE . Throughout the paper we �x a polarization of A. Let l be a prime number
and let Tl(A) be the Tate module of A. Let GF ∶= Gal(F∕F) and let

�l ∶ GF → GL(Tl(A))

be the l-adic representation associated with A.

From now on, we assume that ℛ is de�ned over F, i.e. ℛ = EndF(A) so
D = EndF(A)⊗ℤ ℚ.
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In this paper we also assume that A is simple, hence D is a division algebra of
�nite dimension over ℚ with a positive involution ′ [14, p. 193-203]. Let E0 be
the sub�eld of elements of E �xed by ′. We put d2 ∶= [D ∶ E], e ∶= [E ∶ ℚ]
and e0 ∶= [E0 ∶ ℚ].

Recall that, due to A. A. Albert, simple abelian varieties can be classi�ed
according to the type of their endomorphism algebra (see: [1] and [14, Theorem
2, p. 201-203]):
TYPE I: D = E = E0 is a totally real �eld.

TYPE II: E = E0 is a totally real �eld and D is a quaternion division algebra
over ℚ such that D ⊗E0 ℝ ≅ M2(ℝ) for any embedding � ∶ E0 → ℝ.

TYPE III: E = E0 is a totally real �eld and D is a quaternion division algebra
over ℚ such that D ⊗E0 ℝ ≅ ℍ for any embedding � ∶ E0 → ℝ.

TYPE IV: E0 is a totally real �eld, E is a totally imaginary quadratic extension
of E0 and D is a division algebra overℚ such that D⊗E0 ℝ ≅ Md(ℂ) for
any embedding � ∶ E0 → ℝ.

If A is of type I then d = 1. If A is of type II or III then d = 2, and if A is of
type IV then d ≥ 1 can be arbitrary. Moreover, if A is a simple abelian variety
of type IV then E is a quadratic imaginary extension of a totally real �eld E0 so
e = 2e0 cf. [14, Theorem 2, p. 201-203].

Let � be a prime ideal in OE dividing l. Let O� be the completion of OE at �,
E� ∶= Frac(O�) and k� ∶= O�∕�. Observe that for each l ∶

El ∶= E ⊗ℚ ℚl =
∏

�|l
E� and OEl ∶= OE ⊗ℤ ℤl =

∏

�|l
O�. (1.1)

For l ∤ [OE ∶ O0
E], we have O

0
E ⊗ℤ ℤl = OE ⊗ℤ ℤl. Hence, for such an l, the

ring OEl acts on Tl(A) and we put T�(A) ∶= Tl(A) ⊗OEl
O�. Hence, for each

l ∤ [OE ∶ O0
E] ∶

Tl(A) =
⨁

�|l
T�(A). (1.2)

The aimof this paper is to describe explicitly the decomposition of theO�[GF]-
moduleT�(A) for a simple abelian varietyA of type IV into components that are
rationally and residually irreducible. We also show that these components are
compatible with corresponding non-degenerate, hermitian forms. This work
is a continuation of the research in [2], [3] and [4] on the Galois l-adic repre-
sentations for abelian varieties of types I, II and III. In the papers loc. cit., the
�rst author with W. Gajda and P. Krasoń showed that T�(A) has the following
decomposition for l ≫ 0:

T�(A) ≅W�(A)d,

whereW�(A) is a freeO�-module of rank 2g
ed
,with non-degenerate bilinear,GF-

equivariant form
 � ∶W�(A) ×W�(A)→ O�
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such that W�(A) ∶= W�(A) ⊗O�
E� is an absolutely irreducible GF-module

with a non-degenerate, GF-equivariant bilinear form  0� ∶=  � ⊗O�
E� (resp.

W�(A) = W�(A) ⊗O�
k� is an absolutely irreducible GF-module with a non-

degenerate, GF-equivariant bilinear form  � ∶=  � ⊗O�
k�). For type I and II,

the forms  �,  0� and  � are alternating and for type III the forms  �,  0� and  �
are symmetric.

For the case of abelian varieties of type II, this result extends integrally and
residually the main result of [8, Theorem A] by W. C. Chi.

The Galois module structure of Tl(A) for abelian varietiesA of types I, II and
III has been widely investigated as well as Galois module structure of Tl(A)
for abelian varieties A of type IV with D commutative (in particular see [9] for
type IV). Such results are useful for current research. Results in [2], [3] and [4]
also found a variety of applications eg. [5], [6], [7], [10], [16], [17], [18] just to
mention a few recent papers. Similarly as in [2], [3] and [4], we expect to prove
the Mumford-Tate conjecture for some families of abelian varieties of type IV
based on results of this paper.

In this paper we address all abelian varieties of type IV, especially those with
D noncommutative. In general, endomorphism algebras of abelian varieties of
type IV are much more complicated than endomorphism algebras of abelian
varieties of types I, II and III. Indeed, the degree of D over E may be arbitrary
and the standard involution acts nontrivially on its center which is CM�eld, c.f.
[14, Theorem 2, p. 201-203]. Nevertheless, we obtain new results for abelian
varieties of type IV (see Theorem 1.1 below) showing striking similarity with
corresponding results for abelian varieties of types I, II and III discussed above.

In Section 2, we describe as explicitly as possible (Lemma 2.1) the endomor-
phism algebraD of a simple abelian variety of type IV and its splitting �eld L to
obtain an L-algebra isomorphism:

s ∶ D ⊗E0 L
+ = D ⊗E L

∼
,→ Md(L).

Lemma 2.1 is an arithmetic re�nement of computations in D. Mumford’s book
[14, §Application I, Step IV]. It is one of themain technical devices in our paper.
Observe how Lemma 2.1 signi�cantly di�ers from corresponding lemma ([4,
Lemma 2.11]) for abelian varieties of type III. Based on this, we also obtain an
S-integral splitting of the algebra ℛS ∶= ℛ ⊗ℤ ℤS at the end of this section.
This result and construction of the �nite set S can be found in Corollary 2.3.
We also construct a positive involution x ↦ x∗ of D which has the extension
X ↦ X∗ ∶= X

Tr
to the ring Md(L) via splitting s (see Lemma 2.1 for details).

In Section 3, we carefully investigate the Tate module of abelian variety of type
IV based on results of Section 2. Namely, adding a few assumptions on S and
working as far as possible S-integrally, we eventually construct non-degenerate,



THE TATE MODULE OF A SIMPLE ABELIAN VARIETY OF TYPE IV 1243

GF-equivariant hermitian forms (see Lemma 3.5) to obtain, in Sections 4 and 5,
our main result as follows.

Theorem 1.1 (Theorems 4.3, 5.2). Let A be an abelian variety of type IV. Let l
be a prime outside of a �nite set S. Let �|l be a prime of OE such that � is inert
over �0 ∶= � ∩OE0 and � splits completely inOL. TheO�[GF]-module T�(A) has
the following decomposition:

T�(A) ≅W�(A)d,

whereW�(A) is a free O�-module of rank 2g
ed

with a non-degenerate, hermitian,
GF-equivariant form

 � ∶W�(A) ×W�(A)→ O�

such that W�(A) ∶= W�(A) ⊗O�
E� is an absolutely irreducible GF-module

with a non-degenerate, hermitian, GF-equivariant form  0� ∶=  � ⊗O�
E� (resp.

W�(A) ∶= W�(A) ⊗O�
k� is an absolutely irreducible GF-module with a non-

degenerate, hermitian, GF-equivariant form  � ∶=  � ⊗O�
k�).

Remark 1.2. The restrictions on prime l in Theorem 1.1 result mainly from
complexity of the endomorphism algebra of A.

2. Ring of endomorphisms of an abelian variety of type IV
Let A be a simple abelian variety of type IV satisfying all assumptions stated

in Section 1. Let ′ be the standard Rosati involution on D. This is a positive
involution. Any other positive involution ∗ of D is of the form x∗ = x′−1
with  ∈ D and ′ = . There exists a positive involution x∗ = x′−1 of D and
an isomorphism [14, Theorem 2, p. 201-203]

D ⊗ℚ ℝ
∼
,→ Md(ℂ) ×⋯ ×Md(ℂ)⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

e0 copies

,

which carries this involution into (X1,… , Xe0)↦ (X
Tr
1 ,… , X

Tr
e0 ).Under the above

isomorphism  ⊗ 1maps to (C1,… , Ce0), where each Ci is a hermitian positive
de�nite matrix. It follows that there exists a positive involution x∗ = x′−1 of
D and an isomorphism

D ⊗E0 ℝ
∼
,→ Md(ℂ), (2.1)

which carries the involution ∗ of D into the involution X ↦ X∗ ∶= X
Tr

by the
isomorphism (2.1) and  ⊗ 1 ↦ C, where C is a hermitian positive de�nite
matrix.

For our applications, we need an arithmetic re�nement of the above state-
ments as follows.
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Lemma 2.1. There exist a �nite Galois extension L∕E0 containing E, an element
 ∈ D with ′ =  and an L-algebra isomorphism

s ∶ D ⊗E0 L
+ = D ⊗E L

∼
,→ Md(L) (2.2)

such that via this isomorphism the positive involution x ↦ x∗ ∶= x′−1 of D
has the extensionX ↦ X∗ ∶= X

Tr
to the ringMd(L) and s(⊗1) = C, whereC is

a hermitian positive de�nite matrix. Here, L+ denotes the maximal real sub�eld
of L. Changing base to ℝ over L+ the isomorphism (2.2) naturally extends to an
isomorphism of the form (2.1) with the same properties.

Proof. From [13, Theorem 16, Chap. 29], we know that D has maximal sub-
�elds which are splitting �elds of degree d over E. Hence, let L0 be a maximal
sub�eld of degree d = [L0 ∶ E] such that D ⊗E L0

∼
,→ Md(L0). Let L1∕E0 be the

Galois closure of L0∕E0. Naturally D ⊗E L1
∼
,→ Md(L1). Moreover, we obtain:

D ⊗E0 L
+
1 = D ⊗E E ⊗E0 L

+
1 = D ⊗E L1

∼
,→ Md(L1). (2.3)

Now we argue similarly to [14, p. 199-200]. By the Skolem-Noether theorem,
the Rosati involution on D⊗E0 L

+
1 (acting trivially on L+1 ) extends to an involu-

tion ofMd(L1) of the following form:

X ↦ A1X∗A−1
1 (2.4)

with A1 ∈ GLd(L1). Because (2.4) is an involution, we get A∗
1 = � A1 for an

element � ∈ L×1 such that |�| = 1. Let L2∕E0 be the Galois closure of L1(�
1
2 )∕E0.

We obtain:

D ⊗E0 L
+
2 = D ⊗E E ⊗E0 L

+
2 = D ⊗E L2

∼
,→ Md(L2). (2.5)

If � ≠ 1 observe that:

(�
1
2A1)∗ = �−

1
2 A∗

1 = �−
1
2 �A1 = �

1
2 A1,

�
1
2A1X∗(�

1
2A1)−1 = A1X∗A−1

1 .

Hence, A2 ∶= �
1
2A1 ∈ Md(L2) is a hermitian matrix and the Rosati involution

on D ⊗E0 L
+
2 (acting trivially on L+2 ) extends to an involution ofMd(L2) of the

following form:
X ↦ A2X∗A−1

2 . (2.6)

Observe that A2 is a �xed point of the involution (2.6). The set of elements
in D ⊗E0 L

+
2 �xed by this involution via (2.5) (equivalently �xed by the Rosati

involution) is of the form V ⊗E0 L
+
2 , where V is the E0-vector space V = {� ∈

D ∶ �′ = �}. Indeed, by primitive element theorem there is � ∈ L+2 such that
L+2 = E0(�). Let r ∶= [L+2 ∶ E0]. Then every element of D⊗E0 L

+
2 is of the form
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∑r−1
i=0 �i ⊗ �i for some �i ∈ D. The element

∑r−1
i=0 �i ⊗ �i is �xed by the Rosati

involution if and only if
r−1∑

i=0
(�′i − �i)⊗ �i = 0

and this occurs if and only if �′i = �i for each i.

Let
∑r−1

i=0 �i⊗�
i ∈ V⊗E0L

+
2 be the element sent via (2.5) toA2.Note thatE0 is

dense inℝ with respect to the absolute value. Therefore, we can �nd elements
ei ∈ E0, close enough to �i ∈ L+2 , such that the element

� ⊗ 1 =
r−1∑

i=0
�iei ⊗ 1 =

r−1∑

i=0
�i ⊗ ei

maps via (2.5) to B2 such that A2B∗2A
−1
2 = B2 and A3 ∶= B−12 A2 is very close to

unit matrix Id.Observe thatA3 is a hermitianmatrix. Indeed, we have (B−12 )∗ =
(B∗2)

−1 = A−1
2 B−12 A2. Hence:

A∗
3 = (B−12 A2)∗ = A2(B−12 )∗ = A2A−1

2 B−12 A2 = B−12 A2 = A3.

The hermitian matrix A3, being very close to Id, is positive de�nite. There
exist a �niteGalois extensionL3∕E0withL2 ⊂ L3, a unitarymatrixU ∈ GLd(L3)
and a diagonal matrixD3 ∈ GLd(L+3 )with positive entries on the diagonal such
that A3 = UD2

3 U
∗. Put B3 ∶= UD3U∗ ∈ GLd(L3). Observe that B∗3 = B3 and

A3 = B23. By (2.5) we obtain:

D ⊗E0 L
+
3 = D ⊗E E ⊗E0 L

+
3 = D ⊗E L3

∼
,→ Md(L3). (2.7)

Observe that the map:
x ↦ x∗ ∶= �−1x′� (2.8)

is an involution of D⊗E0 L
+
3 and it extends via (2.7) to the following involution

ofMd(L3) ∶
X ↦ A3X∗A−1

3 . (2.9)

Now we put L ∶= L3 and  ∶= �−1. Composing the isomorphism (2.7) x ↦ X
with the conjugation by B3, namely X ↦ B−13 XB3, we obtain the isomorphism:

s ∶ D ⊗E0 L
+ ∼
,→ Md(L), (2.10)

s(x) ∶= B−13 XB3. (2.11)

Observe that:
s(x∗) = s(x)∗. (2.12)

Indeed:

s(x∗) = s(x′−1) = B−13 A3X∗A−1
3 B3 = B3X∗B−13 = (B−13 XB3)∗ = s(x)∗.
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Hence the involution x ↦ x∗ = x′−1 extends via (2.10) to the involution
X ↦ X∗ ofMd(L). The last statement of the lemma follows because:

D⊗E0ℝ = D⊗EE⊗E0 L
+⊗L+ℝ = D⊗E L⊗L+ℝ

∼
,→ Md(L)⊗L+ℝ = Md(ℂ).

(2.13)
Naturally, the involution x ↦ x∗ = x′−1 of D extends to the involution X ↦
X∗ ofMd(ℂ).

The following diagram illustrates relations between consecutive extensions
of �elds E0 and E used in this proof.

E L0 L1 L2 L ∶= L3 ℂ

ℚ E0 L+0 L+1 L+2 L+3 ℝ

d

2 2 2 2 2

e0

e
2

�

Remark 2.2. Lemma 2.1 is useful for the proof of Proposition 3.7 which is cru-
cial in the proof of Lemma 4.1 ultimately leading to the proof of Theorem 1.1.

Recall that the ring ℛ is a �nitely generated free ℤ-module. Let O0
E0

∶=
ℛ ∩OE0 and O

0
E ∶= ℛ ∩OE . Then O0

E0
is an order in OE0 and O

0
E is an order in

OE .
Let S be a set of primes of ℤ containing prime numbers that divide the in-

dexes [OE0 ∶ O0
E0
] and [OE ∶ O0

E].

Corollary 2.3. One can enlarge S so that the primes not in S are unrami�ed in
OL, all primes dividing the polarization degree ofA are in S, the Rosati involution
acts on ℛS ∶= ℛ⊗ℤ ℤS,  ∈ ℛ×

S , and the L-algebra isomorphism (2.2) restricts
to an OL,S-algebra isomorphism:

s ∶ ℛS ⊗OE0 ,S
OL+,S = ℛS ⊗OE,S

OL,S
∼
,→ Md(OL,S). (2.14)

Moreover with these assumptions the involution ∗ of D ⊗E0 L
+ restricts to the in-

volution ∗ ofℛS⊗OE0 ,S
OL+,S which, in turn, extends to the involutionX ↦ X∗ ∶=

X
Tr

ofMd(OL,S).

Proof. Follows immediately from Lemma 2.1 and its proof. �

3. Weil pairing of an abelian variety of type IV
Let T(A) = H1(A(ℂ),ℤ) and V(A) = T(A) ⊗ℤ ℚ. The polarization on A

induces a non-degenerate alternatingℤ-bilinear form, the Riemann form ofA:
� ∶ T(A) × T(A)→ ℤ. (3.1)

Let �0 ∶= � ⊗ℤ ℚ ∶ V(A) × V(A) → ℚ. Then for all v1, v2 ∈ V(A) and
x ∈ D we have:

�0(xv1, v2) = �0(v1, x′v2). (3.2)
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There exists a unique E-bilinear form (E acts on factor V(A) on the right by
complex conjugation):

�0 ∶ V(A) × V(A)→ E (3.3)

with �0(v1, v2) = TrE∕ℚ(f�0(v1, v2))wheref ∈ E andf = −f [11, Lemma4.6].
In addition, it is also proven loc. cit. that �0 is E-hermitian. Now let TS ∶=

T(A)⊗O0
E
OE,S and VS ∶= TS ⊗OE,S

E. Observe that:

V(A) = T(A)⊗ℤ ℚ = T(A)⊗O0
E
O0
E ⊗ℤ ℚ = T(A)⊗O0

E
E

= T(A)⊗O0
E
OE,S ⊗OE,S

E = TS ⊗OE,S
E = VS.

We can enlarge the set S from previous section, if necessary, so that f ∈ O×
E,S

and the E-hermitian form (3.3) restricts to the following OE,S-hermitian form

�S ∶ TS × TS → OE,S (3.4)

such that �S(v1, v2) = TrE∕ℚ(f�S(v1, v2)) where �S ∶= � ⊗ℤ ℤS. Observe that
�0 = �S ⊗OE,S

E.

Recall that we put El ∶= E ⊗ℚ ℚl and OEl ∶= OE ⊗ℤ ℤl. Note that El =
OEl ⊗ℤl

ℚl.

From now on till the end of this paper we assume that l ∉ S.

ThenOEl = OE,S⊗ℤS
ℤl.We can naturally extend the action of complex conju-

gation on E to the action on rings El andOEl imposing trivial action onℚl. The
action will be denoted in the same way as complex conjugation i.e. the action
on x ∈ El will be denoted x. Observe that f ∈ O×

El
. By [3, Lemma 3.1] and the

idea of the proof of [11, Lemma 4.6] there is a unique OEl -bilinear form (OEl
acts on factor Tl(A) on the right by complex conjugation)

�l ∶ Tl(A) × Tl(A)→ OEl (3.5)

such that the ℤl-bilinear form �l ∶= � ⊗ℤ ℤl ∶

�l ∶ Tl(A) × Tl(A)→ ℤl (3.6)

has the following property:

�l(v1, v2) = TrEl∕ℚl
(f�l(v1, v2)). (3.7)

We can also prove as in loc.cit. that �l is OEl -hermitian.

Lemma 3.1. There is the following isomorphism of OEl -hermitian forms:

�l = �S ⊗OE,S
OEl . (3.8)

Proof. There is the following equality in ℤl ∶

�S(u1, u2)⊗ℤS
1 = TrE∕ℚ(f�S(u1, u2))⊗ℤS

1 (3.9)
= TrEl∕ℚl

(f �S ⊗OE,S
OEl (u1 ⊗OE,S

1, u2 ⊗OE,S
1)).
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Since �S ⊗ℤS
ℤl = �l and OEl = OE,S ⊗ℤS

ℤl, we obtain by (3.9) the following
equality in ℤl for all u1, u2 ∈ TS and �1, �2 ∈ OEl ∶

�l(u1⊗�1, u2⊗�2) = TrEl∕ℚl
(f �S⊗OE,S

OEl (u1⊗OE,S
�1, u2⊗OE,S

�2)). (3.10)

Observe that

Tl(A) = T(A)⊗ℤ ℤl = T(A)⊗O0
E
O0
E ⊗ℤ ℤl = T(A)⊗O0

E
OE,S ⊗ℤS

ℤl =

= TS ⊗OE,S
OE,S ⊗ℤS

ℤl = TS ⊗OE,S
OEl . (3.11)

Hence by (3.10), for all v1, v2 ∈ Tl(A) we obtain:

�l(v1, v2) = TrEl∕ℚl
(f �S ⊗OE,S

OEl (v1, v2)). (3.12)

By uniqueness of the form �l (3.5) and by equality (3.12), we obtain the equal-
ity (3.8). �

Lemmas 3.2 and 3.3 below extend [8, Lemma (2.3)] to abelian varieties of type
IV.

Lemma 3.2. For all v1, v2 ∈ V(A), u1, u2 ∈ TS, x ∈ D, y ∈ ℛS there are the
following equalities:

�0(xv1, v2) = �0(v1, x′v2),
�S(yu1, u2) = �S(u1, y′u2).

Proof. Fix x ∈ D. Consider theℚ-bilinear form �x(v1, v2) ∶ V(A)×V(A)→ ℚ,
de�ned as follows:

�x(v1, v2) ∶= �0(xv1, v2) = �0(v1, x′v2).

Consider two E-bilinear forms �01, �
0
2 ∶ V(A) × V(A)→ E ∶

�01(v1, v2) ∶= �0(xv1, v2) and �02(v1, v2) ∶= �0(v1, x′v2).

Recall that
�0(xv1, v2) = TrE∕ℚ(f �0(xv1, v2))

and
�0(v1, x′v2) = TrE∕ℚ(f �0(v1, x′v2)),

where f ∈ E. Hence

�x(v1, v2) = TrE∕ℚ(f �01(v1, v2)) = TrE∕ℚ(f �02(v1, v2)).

We have �01 = �02 by [11, Lemma 4.6]. So the �rst equality follows. Fix y ∈ ℛS.
Consider two OE,S-bilinear forms �1, �2 ∶ TS × TS → OE,S de�ned as follows:

�1(u1, u2) ∶= �S(yu1, u2) and �2(u1, u2) ∶= �S(u1, y′u2).

Observe that bilinear forms �i are restrictions to TS ×TS of E-bilinear forms �0i
with y in place of x.Hence, the second equality of the lemma follows from the
�rst. �



THE TATE MODULE OF A SIMPLE ABELIAN VARIETY OF TYPE IV 1249

Lemma 3.3. For all v1, v2 ∈ Tl(A) and g ∈ GF we have the following equality:

�l(gv1, gv2) = �c(g)�l(v1, v2).

Here �c is the cyclotomic character �c ∶ GF → ℤl.

Proof. By Galois equivariance of the Weil pairing for all v1, v2 ∈ Tl(A) and all
g ∈ GF we have:

�l(gv1, gv2) = �c(g) �l(v1, v2). (3.13)

Fix g ∈ GF and consider ℤl-bilinear form: �g(v1, v2) ∶ Tl(A) × Tl(A) → ℤl
de�ned as follows:

�g(v1, v2) ∶= �l(gv1, gv2) = �c(g) �l(v1, v2).

Consider two OEl -bilinear forms: �1l , �
2
l ∶ Tl(A) × Tl(A)→ OEl ∶

�1l (v1, v2) ∶= �l(gv1, gv2) and �2l (v1, v2) ∶= �c(g)�l(v1, v2).

By (3.7) we obtain

�g(v1, v2) = TrEl∕ℚl
(f�1l (v1, v2)) = TrEl∕ℚl

(f�2l (v1, v2))

for f ∈ O×
El
. Hence, we obtain �1l = �2l by [11, Lemma 4.6]. �

Now de�ne the following OE,S-hermitian form

 S ∶ TS × TS → OE,S, (3.14)

 S(v1, v2) = �S(−1v1, v2).

Let
 0 ∶=  S ⊗OE,S

E ∶ V × V → E. (3.15)

Because the form (3.1) is non-degenerate, the forms �, �0,  and  0 are also
non-degenerate.

Lemma 3.4. For every x ∈ ℛS and all v1, v2 ∈ TS we have:

 S(xv1, v2) =  S(v1, x∗v2),

where, as de�ned in previous section, x∗ = x′−1.

Proof. Recall that ′ =  and let x ∈ ℛS.We obtain the following equality for
all v1, v2 ∈ TS from the property of Rosati involution, Lemma 3.2, the de�nition
of S and the fact that �S and  S are OE,S-hermitian forms.

 S(xv1, v2) = �S(−1xv1, v2) = �S(v1, x′−1v2) = �S(v1, −1x′−1v2)

= �S(v1, −1x∗v2) =  S(v1, x∗v2).

�
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It follows from Lemma 2.1 that the involution ∗ induced onDL ∶= D⊗E L ≅
Md(L) from D is of the form B∗ = B

Tr
for each B ∈ Md(L). Consider the com-

plex conjugation � ∈ Gal(L∕E0). Take a prime number l and �0|l in OE0 such
that Frob!∕�0 = � for a prime ideal ! ∈ Spec(OL). Let � = OE ∩! be the prime
ideal in OE below ! and over �0. Because the order of � is 2 in Gal(L∕E0) and
� ∈ Gal(E∕E0) is also of order 2, hence � is inert over �0 and � splits completely
inOL. There are in�nitely many such primes � by Chebotarev’s theorem. Then
we have

[L! ∶ E�] = 1 and O� = O!. (3.16)
Put
T�(A) ∶= TS ⊗OE,S

O�, V�(A) ∶= T�(A)⊗O�
E�, A[�] ∶= T�(A)∕�T�(A).

(3.17)
Note that A[�] is a k�[GF]-module. De�ne a �-adic hermitian form as follows:

�� ∶= �S ⊗OE,S
O� ∶ T�(A) × T�(A) → O�. (3.18)

Observe that �� = �l ⊗OEl
O� by Lemma 3.8. We also obtain the following

hermitian forms:
�0� ∶= �� ⊗O�

E� ∶ V�(A) × V�(A) → E�,

�� ∶= �� ⊗O�
k� ∶ A[�] × A[�] → k�.

Since ′ = , the following forms are also hermitian:
 � ∶ T�(A) × T�(A)→ O�, (3.19)

 �(v1, v2) = ��(−1v1, v2),

 0� ∶=  � ⊗O�
E� ∶ V�(A) × V�(A) → E�, (3.20)

 � ∶=  � ⊗O�
k� ∶ A[�] × A[�] → k�. (3.21)

Lemma 3.5. Hermitian forms ��, �0�, ��,  �,  
0
�,  � are non-degenerate

and GF-equivariant.

Proof. Since the form �l (3.6) is non-degenerate, the form �l (3.5) is also non-
degenerate by property (3.7). Consider the bilinear forms:

�l ∶= �l ⊗ℤl
ℤ∕l ∶ A[l] × A[l]→ ℤ∕l,

�l ∶= �l ⊗OEl
OEl∕l ∶ A[l] × A[l]→ OEl∕l

related by the following equality

�l(v1, v2) = TrEl∕ℚl
(f�l(v1, v2)). (3.22)

where f ∈ O×
El
. Because l does not divide the polarisation of A, then �l(v1, v2)

is non-degenerate. Hence, �l(v1, v2) is non-degenerate by (3.22). By [3, Lemma
3.2], forms ��, �0�, �� are non-degenerate. Hence, it is obvious that the forms
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 �,  0�,  � are non-degenerate. It follows immediately from Lemma 3.3 that
��, �0�, �� are GF-equivariant. By de�nition of  �, it follows that the forms
 �,  0�,  � are GF-equivariant, because GF commutes with EndF(A). �

Observe that we have the following isomorphism

D� ∶= D ⊗E E� ≅ Md(E�). (3.23)

Indeed, by (3.16)we haveD� = D⊗EE� = D⊗EL! = D⊗EL⊗LL! = Md(L!) =
Md(E�). Then (3.23) induces the following isomorphism of O�-modules

ℛ� ∶= ℛS ⊗OE,S
O� ≅ Md(O�). (3.24)

By (1.1), we have

ℛ⊗ℤ ℤl = ℛ⊗O0
E
OEl = ℛS ⊗OE,S

OEl =
∏

�|l
ℛ�. (3.25)

On the other hand, by [12, Satz 4]:

ℛ⊗ℤ ℤl
∼
,→ Endℤl[GF](Tl(A)). (3.26)

By (1.2), (3.25) and (3.26), we obtain the following isomorphism ofO�-algebras.
ℛ�

∼
,→ EndO�[GF](T�(A)). (3.27)

Finally, (3.24) and (3.27) give the following isomorphism of O�-algebras:

EndO�[GF](T�(A))
∼
,→ Md(O�). (3.28)

Remark 3.6. Since �|�0 is unrami�ed and inert, we have

Gal(E∕E0) ≅ Gal(E�∕E0,�0) ≅ Gal(k�∕k�0).

Hence, the element Frob�∕�0 = � ∈ Gal(E∕E0) can be considered as an element
in Gal(E�∕E0,�0). Thus if a matrix B ∈ Md(E) is considered as an element of
Md(E�), � acts on B via Frob�∕�0 and we will denote B ∶= Frob�∕�0(B).

Proposition 3.7. (i) For every v1, v2 ∈ T�(A) and B ∈ ℛ�, we have

 �(Bv1, v2) =  �(v1, B
Tr
v2).

(ii) For every v1, v2 ∈ V�(A) and B ∈ D�, we have

 0�(Bv1, v2) =  0�(v1, B
Tr
v2).

(iii) For every v1, v2 ∈ A[�] and B ∈ ℛ� ⊗O�
k� ≅ Md(k�), we have

 �(Bv1, v2) =  �(v1, B
Tr
v2).

Proof. It follows from Lemmas 2.1, 3.4 and the isomorphism (3.24). �

De�nition 3.8. Let P be the set of prime numbers l ∉ S such that there is �0|l
inOE0 and � inert over �0 inOE and � splits completely inOL (see the discussion
below Lemma 3.4).
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Remark 3.9. Observe that the set P has a positive Dirichlet’s density because
of Chebotarev’s theorem. Our main results Theorems 4.3 and 5.2 will be for-
mulated for primes l ∈ P.

4. Main theorem for d ≤ 2
Based on results of previous sections, we construct the Tate module decom-

position for an abelian variety of type IV when d = [D ∶ E]
1
2 = 2. We observe

that we can prove Theorem 4.3 applying the same idempotents as for types II
and III as well as the standard idempotents. This observation is the key for

proving ourmain result for arbitrary degree d = [D ∶ E]
1
2 which will be shortly

described in the next section. We also brie�y explain, at the beginning of the
proof of Theorem 4.3, how the construction works for the case d = 1.

Following [8, p. 91-92], consider the following matrices:

t = (1 0
0 −1) , u = (0 1

1 0) .

Consider the idempotent e = 1
2
(1 + t) = (1 0

0 0). De�ne:

X ∶= e T�(A) and Y = (1 − e) T�(A),

X ∶= X ⊗O�
E�, Y ∶= Y ⊗O�

E�, X ∶= X ⊗O�
k�, Y ∶= Y ⊗O�

k�.
By (3.27), the action of ℛ� commutes with the action of O�[GF] on T�(A).

Hence, the equality u e u = (1 − e) yields a O�[GF] - isomorphism between X
and Y, a E�[GF] - isomorphism between X and Y, and a k�[GF] - isomorphism
between X and Y.

Lemma 4.1. [4, Lemma 3.22]Modules X and Y are orthogonal with respect to
 �. Moreover, modules X and Y are orthogonal with respect to  0�, and X and Y
are orthogonal with respect to  �.

Proof. Note that t e = e and t(1 − e) = −(1 − e). Then for every v1 ∈ X and
v2 ∈ Y, we obtain tv1 = v1 and tv2 = −v2. Hence by Proposition 3.7, we obtain

 �(v1, v2) =  �(t v1, v2) =  �(v1, t∗ v2) =  �(v1, t
Tr
v2)

=  �(v1, t v2) =  �(v1,−v2) = − �(v1, v2).

Hence,  �(v1, v2) = 0 for every v1 ∈ X and for every v2 ∈ Y. �

Thediscussion before Lemma4.1 gives the following isomorphismofO�[GF]-
modules

T�(A) ≅ X ⊕X. (4.1)
Then by (3.28) we obtain the following isomorphism of O�-algebras,

M2(EndO�[GF](X))
∼
,→ EndO�[GF](T�(A))

∼
,→ M2(O�). (4.2)
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Because O� is a discrete valuation ring, by rank and dimension comparison
we obtain:

EndO�[GF](X)
∼
,→ O�, EndE�[GF](X)

∼
,→ E�, Endk�[GF](X)

∼
,→ k�. (4.3)

Therefore, the representations ofGF on the spacesX andY (resp. on the spaces
X and Y) are absolutely irreducible over E� (resp. k�). Then bilinear form  0�
(resp.  �) restricted to the spaces X and Y (resp. to the spaces X and Y) is
non-degenerate or isotropic.

Remark 4.2. It is also possible to obtain another decomposition of the Tate

module with the idempotent f = 1
2
(1 + u) = 1

2
(1 1
1 1). Then one may take

X = f T�(A) and Y = (1 − f) T�(A). Such a decomposition is considered in
[4] and in this case it has the same properties as the decomposition in Lemma
4.1 (cf. also [8, p. 91-93]).

Theorem4.3. LetA be anabelian variety of type IV, and letd ≤ 2. For each l ∈ P
there exists a free O�-moduleW�(A) of rank

2g
ed

with the following properties:

(i) There exists an isomorphism of O�[GF]-modules

T�(A) ≅W�(A)⊕W�(A).

(ii) There exists a hermitian non-degenerate form

 � ∶ W�(A) ×W�(A)→ O�.

(iii) ForW�(A) =W�(A)⊗O�
E�, the induced hermitian form

 0� ∶ W�(A) ×W�(A)→ E�
is non-degenerate.

(iv) ForW�(A) =W�(A)⊗O�
k�, the induced hermitian form

 � ∶ W�(A) ×W�(A)→ k�
is non-degenerate.

(v) The GF-modulesW�(A) andW�(A) are absolutely irreducible. The her-
mitian forms  �,  0� and  � are GF - equivariant.

Proof. For the case d = 1, we takeW�(A) = T�(A) and the forms (3.19), (3.20)
and (3.21). Then statements (i)−(v)hold in this case by Lemma3.5 and equality
D = E.

Now consider the case d = 2. Part (i) follows by (4.1) takingW�(A) ∶= X.
By Lemma 3.5, the hermitian forms (3.19), (3.20) and (3.21) are non-degenerate
and GF-equivariant. Restricting forms (3.19), (3.20) and (3.21) to the corre-
sponding forms in (ii), (iii) and (iv) gives again hermitian and GF-equivariant
forms. We denote the restrictions also  �,  0� and  � by abuse of notations. The
GF-modulesW�(A) andW�(A) are absolutely irreducible by (4.3). Hence (v)
holds. In addition, the forms in (iii) and (iv) are non-degenerate or isotropic.
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By Lemma 4.1 and decompositions V�(A) ≅ W�(A) ⊕ W�(A) and A[�] ≅
W�(A) ⊕ W�(A), they can not be isotropic because forms (3.20) and (3.21)
are non-degenerate. Hence, (iii) and (iv) holds. Since the form (iii) is non-
degenerate, the form (ii) is non-degenerate so (ii) follows. �

5. Main theorem for d > 2
Let matrices t, u and e be as in the previous section. For d > 2 consider the

d × d matrix êi consisting of 1 at the i-th place of the diagonal and zeros at all
other places for i = 1, 2,… , d. Observe that êi ∈ EndO�[GF](T�(A)) by (3.28).

Let Xi ∶= êi T�(A) for i = 1, 2,… , d. Also put Xi ∶= Xi ⊗O�
E� and Xi ∶=

Xi ⊗O�
k�. Consider the following d × d matrices:

Uij =

i j
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1
⋱

0 1 i
⋱

1 0 j
⋱

1

and Tij =

i j
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

0
⋱

1 0 i
⋱

0 −1 j
⋱

0

Uij is the permutation matrix obtained from the identity matrix Id by swap-
ping i-th and j-th rows. Tij is the matrix with only two non-zero entries 1 in
the ii-th place and −1 in the jj-th place.

By (3.28), Uij, Tij ∈ EndO�[GF](T�(A)) for all i, j = 1,… , d. The equality
Uij êiUij = êj gives the following O�[GF]-isomorphism:

Xi → Xj (5.1)
êiv ↦ êjv

for every v ∈ T�(A).Hence allO�[GF]-modulesX1,… ,Xd are pairwise isomor-
phic. It follows that all E�[GF]-modulesX1,… , Xd are pairwise isomorphic and
all k�[GF]-modules X1,… ,Xd are pairwise isomorphic.

Lemma 5.1. ThemodulesX1,… ,Xd are orthogonal with respect to �. Moreover
X1,… , Xd are orthogonal with respect to  0� and X1,… ,Xd are orthogonal with
respect to  �.

Proof. Note that Tij êi = êi and Tij êj = −êj. Then, for every v1 ∈ Xi and
v2 ∈ Xj, we obtain Tij v1 = v1 and Tij v2 = −v2. Hence

 �(v1, v2) =  �(Tij v1, v2) =  �(v1, T∗ij v2) =  �(v1, T
Tr
ij v2)

=  �(v1, Tij v2) =  �(v1,−v2) = − �(v1, v2).

Thus  �(v1, v2) = 0 for every v1 ∈ Xi and for every v2 ∈ Xj. �
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Let X ∶= X1.We obtain the following isomorphism of O�[GF]-modules:

T�(A) ≅
d⨁

i=1
X = Xd. (5.2)

By (3.28), there is a natural isomorphism of O�-algebras

Md(EndO�[GF](X))
∼
,→ EndO�[GF](T�(A))

∼
,→ Md(O�). (5.3)

Again by rank and dimension comparison, we obtain:

EndO�[GF](X)
∼
,→ O�, EndE�[GF](X)

∼
,→ E�, Endk�[GF](X)

∼
,→ k�. (5.4)

Therefore, the representation of GF on the space X (resp. on the space X) is
absolutely irreducible over E� (resp. k�). Then, the hermitian form  0� (resp.
 �) restricted to the space X (resp. to the space X) is either non-degenerate or
isotropic.
Theorem 5.2. Let A be an abelian variety of type IV. Let d > 2 and l ∈ P. Then
there exists a free O�-moduleW�(A) of rank

2g
ed

with the following properties:

(i) There exists an isomorphism of O�[GF]-modules T�(A) ≅W�(A)d.
(ii) There exists a hermitian, non-degenerate form

 � ∶ W�(A) ×W�(A)→ O�.
(iii) ForW�(A) ∶=W�(A)⊗O�

E�, the induced hermitian form

 0� ∶ W�(A) ×W�(A)→ E�
is non-degenerate.

(iv) ForW�(A) ∶=W�(A)⊗O�
k�, the induced hermitian form

 � ∶ W�(A) ×W�(A)→ k�
is non-degenerate.

(v) The GF modulesW�(A) andW�(A) are absolutely irreducible. The her-
mitian forms  �,  0� and  � are GF-equivariant.

Proof. The proof for d > 2 is very similar to the proof of Theorem 4.3 for
d = 2. Indeed, part (i) follows from (5.2) by taking W�(A) := X. By Lemma
3.5, the hermitian forms (3.19), (3.20) and (3.21) are non-degenerate and GF-
equivariant. Restricting forms (3.19), (3.20) and (3.21) to the corresponding
forms in (ii), (iii) and (iv) gives again hermitian and GF-equivariant forms. We
denote the restrictions also �, 0� and � by abuse of notation. TheGF-modules
W�(A) andW�(A) are absolutely irreducible by (5.4). Hence, (v) holds. In ad-
dition the forms in (iii) and (iv) are non-degenerate or isotropic. By Lemma
5.1 and decompositions V�(A) ≅ W�(A)d and A[�] ≅ W�(A)d, they can not
be isotropic because forms (3.20) and (3.21) are non-degenerate. Hence, (iii)
and (iv) holds. Since the form (iii) is non-degenerate, the form (ii) is non-
degenerate so (ii) follows. �
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