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All lines on a smooth cubic surface in terms
of three skew lines

StephenMcKean, Daniel Minahan and Tianyi Zhang

Abstract. Jordan showed that the incidence variety of a smooth cubic sur-
face containing 27 lines has solvable Galois group over the incidence variety
of a smooth cubic surface containing 3 skew lines. As noted by Harris, it fol-
lows that for any smooth cubic surface, there exist formulas for all 27 lines
in terms of any 3 skew lines. In response to a question of Farb, we com-
pute these formulas explicitly. We also discuss how these formulas relate to
Schlä�i’s count of lines on real smooth cubic surfaces.
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1. Introduction
Given a complex smooth cubic surface S containing three skew lines, we

compute the equations of all 27 lines on S. We then apply these equations to
study lines on real smooth cubic surfaces. Schlä�i showed that real smooth cu-
bic surfaces contain 3, 7, 15, or 27 lines [Kol58]. Moreover, a real smooth cubic
surface contains three skew lines if and only if the cubic surface contains an
elliptic line (as de�ned by Segre [Seg42]). Given a real smooth cubic surface S

Received August 6, 2020.
2010Mathematics Subject Classi�cation. 14N15.
Key words and phrases. Cubic surface, real lines, enumerative geometry.

ISSN 1076-9803/2021

1305

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2021/Vol27.htm


1306 STEPHENMCKEAN, DANIEL MINAHAN AND TIANYI ZHANG

that contains an elliptic line, we give a cubic polynomial g(t) ∈ ℝ[t] (Proposi-
tion 3.1) and a pair of complex numbers s1, s2 (Notation 5.5) that determine the
number of real lines contained in S.

Theorem 1.1. Let S be a real smooth cubic surface that contains an elliptic line.
(a) S contains exactly 7 real lines if and only if g(t) has only one real root and

s1, s2 are not real.
(b) S contains exactly 15 real lines if and only if (i) all roots of g(t) are real

and s1, s2 are not real, or (ii) g(t) has only one real root and s1, s2 are real.
(c) S contains 27 real lines if and only if all roots of g(t) and s1, s2 are real.

Remark 1.2. Let k ⊆ ℂ be a �eld. Let S be a smooth cubic surface over k
with three skew k-rational lines. As pointed out by the referee, the equations
in this paper allow one to characterize the number of k-rational lines on S. See
[McK21] for a similar application of these equations to the study of lines on
cubic surfaces over ℚ.

In algebraic geometry, enumerative problems can often be rephrased in terms
of covering spaces of incidence varieties. By studying the monodromy of these
covers, one can speak of the Galois group of an enumerative problem. These
Galois groups can provide additional insight into the enumerative problems
at hand. For example, Jordan showed that the Galois group of 27 lines on a
smooth cubic surface is the odd orthogonal groupO−6 (ℤ∕2ℤ) ≤ S27 [Jor57] (see
also [Har79, pp. 715-718]). Since O−6 (ℤ∕2ℤ) is not a solvable group, there is no
equation in radicals for the 27 lines on a given smooth cubic surface. However,
given a smooth cubic surface and a particular arrangement of lines contained
therein, we obtain a new Galois group G ≤ O−6 (ℤ∕2ℤ) that may be solvable.

Let S be a smooth cubic surface over an algebraically closed �eld of charac-
teristic 0. Let ℙ19 be the projective space parametrizing cubic surfaces in ℙ3,
and let G(1, 3) be the Grassmannian of lines in ℙ3. Consider the incidence va-
rieties

Φ27 = {(S, L1, ..., L27) ∈ ℙ19 × G(1, 3)27 ∶ Li ⊆ S for all i},
Φ3,skew = {(S, L1, L2, L3) ∈ ℙ19 × G(1, 3)3 ∶

Li ⊆ S for all i and Li ∩ Lj = ∅ for all i ≠ j}.
Jordan showed that the covering Φ27 → Φ3,skew has Galois group of order

12, which is thus solvable [Jor57]. In fact, Harris noted that this Galois group is
dihedral [Har79, p. 718]. Because the Galois group ofΦ27 → Φ3,skew is solvable,
Harris remarked there exists a formula in radicals for all 27 lines on a smooth
cubic surface in terms of the cubic surface and any three skew lines that it con-
tains [Har79, pp. 718–719]. At theRoots of Topologyworkshop at theUniversity
of Chicago in 2018, Benson Farb asked if these formulas could be written out
explicitly. The bulk of this paper is devoted to giving explicit equations for all
lines on a smooth cubic surface in terms of any three skew lines on the same
surface. We then use these equations to prove Theorem 1.1 in Section 9.
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1.1. Outline. The layout of the paper is as follows. In Section 2, we introduce
notation and conventions for the paper. In Sections 3 through 7, we assume that
we are given a smooth cubic surface S containing the skew lines E1 = V(x0, x1),
E2 = V(x2, x3), and E3 = V(x0 − x2, x1 − x3) and solve for the remaining 24
lines. In Section 8, we solve the general case using a projective change of coor-
dinates. We discuss how the formulas obtained in this paper relate to Schlä�i’s
enumeration of real lines on smooth cubic surfaces over ℝ in Section 9. In
Appendix A, we include visualizations of real cubic surfaces with 27, 15, and
7 lines. We are greatly indebted to Steve Trettel for preparing these graphics.
In Appendix B, we list the equations of all 27 lines on a smooth cubic surface
containing E1, E2, E3.

Given three skew lines on a smooth cubic surface, there are various ways
to geometrically recover the remaining 24 lines. Harris describes one such
method [Har79, pp. 718-719], which we utilize for most of our approach. How-
ever, we occasionally apply a di�erent geometric method than Harris’s when
this simpli�es the resulting computations. In Section 3, we consider the quadric
surface Q de�ned by the skew lines E1, E2, E3. These lines are contained in
one ruling of Q, and the other ruling intersects S in precisely three skew lines
C4, C5, C6. In Section 4, we intersect S with the planes spanned by Ei and Cj.
Each of these intersections consists of three lines by Bézout’s Theorem; these
lines are Ei, Cj, and Li,j. For the next step, Harris suggests solving a quadratic
equation de�ned by Plücker relations. This proved to be di�cult in the gen-
erality needed for this paper, so we use a di�erent approach in Section 5. In
particular, the four lines E1, E2, L3,4, L3,5 are skew, so there are exactly two lines,
calledC3 and L1,2, meeting all four of these skew lines. Following Eisenbud and
Harris [EH16, 3.4.1], we letQ′ be the quadric surface de�ned by E1, E2, L3,4. By
Bézout’s Theorem, Q′ ∩ L3,5 consists of two points. Each of these points is con-
tained in a line in the ruling that does not contain E1, E2, L3,4; these two lines
are C3 and L1,2. In Section 6, we solve for four more lines. Here, the general
technique is to repeat the process of Section 4, using projective changes of coor-
dinates as needed. While Harris suggests computing the remaining ten lines in
this manner, the method becomes complicated for the lines E4, E5, E6, L4,5, L4,6,
and L5,6. In Section 7 we solve for these �nal six lines using the same process
as in Section 5.

1.2. Related work. Pannizut, Sertöz, and Sturmfels [PSS19] also give explicit
equations for certain lines on smooth cubic surfaces. Let S be a smooth cu-
bic surface whose de�ning polynomial f = ∑

i+j+k+l=3 �i,j,k,lx
i
0x

j
1x

k
2x

l
3 has full

support (that is, �i,j,k,l ≠ 0 for all i+j+k+l = 3). Pick 6 skew lines contained in
S and label them E1, ..., E6. Then there exists a unique blow-down � ∶ S → ℙ2
that sends E1, ..., E6 to distinct points with �(E1) = [1∶0∶0], �(E2) = [0∶1∶0],
�(E3) = [0 ∶ 0 ∶ 1], and �(E4) = [1 ∶ 1 ∶ 1]. The authors give local charts {U}
on S and formulas for the quadratic maps {�|U ∶ U → ℙ2} [PSS19, Theorem
4.2]. All lines on S can be recovered by �−1, so this result gives equations for all
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lines on a smooth cubic surface (whose de�ning polynomial has full support)
in terms of 6 skew lines.

1.3. Acknowledgements. We thank Benson Farb for asking this paper’s mo-
tivating question. We also thankMatt Baker, DanMargalit, Joe Rabino�, Bernd
Sturmfels, and JesseWolfson for helpful suggestions and support. We thank the
anonymous referee for their detailed comments and suggestions that greatly
improved the clarity and accuracy of the paper. Finally, we are especially grate-
ful to Steve Trettel for the included graphics.

2. Notation and conventions
Throughout this paper, we will work in ℙ3 ∶= ℙ3ℂ = Proj(ℂ[x0, x1, x2, x3]).

2.1. Lines on cubic surfaces. Following [Har79], we denote the 27 lines on
a smooth cubic surface S by Ei, Cj for 1 ≤ i, j ≤ 6 and Li,j for i ≠ j and 1 ≤
i, j ≤ 6. As Harris describes [Har79, p. 717], there are 72 di�erent sets of six
disjoint lines on S:

{Ei}6i=1,
{Ei, Ej, Ek, Lm,n}m,n≠i,j,k,
{Ei, Ci, Lj,k}k≠i,
{Ci, Cj, Ck, Lm,n}m,n≠i,j,k,
{Ci}6i=1.

2.2. Cubic surface. For the rest of the paper, let S = V(f) be a smooth cubic
surface containing the skew lines E1 = V(x0, x1), E2 = V(x2, x3), and E3 =
V(x0 − x2, x1 − x3), where

f(x0, x1, x2, x3) =
∑

i+j+k+l=3
�i,j,k,lxi0x

j
1x

k
2x

l
3.

Since S contains E1, E2, E3, it follows that f(0, 0, x2, x3) = f(x0, x1, 0, 0) =
f(x0, x1, x0, x1) = 0. Evaluating

f(1, 0, 0, 0), f(0, 1, 0, 0), f(0, 0, 1, 0), f(0, 0, 0, 1), f(1, 1, 0, 0),
f(0, 0, 1, 1), f(1, 0, 1, 0), f(0, 1, 0, 1), f(1, 1, 1, 1), f(1,−1, 1,−1)

induces the following relations:

�3,0,0,0 = �0,3,0,0 = �0,0,3,0 = �0,0,0,3 = 0, (1)
�2,1,0,0 = �1,2,0,0 = �0,0,2,1 = �0,0,1,2 = 0,
�0,2,0,1 + �0,1,0,2 = �2,0,1,0 + �1,0,2,0 = 0,
�0,2,1,0 + �1,0,0,2 + �1,1,0,1 + �0,1,1,1 = 0,
�0,1,2,0 + �2,0,0,1 + �1,0,1,1 + �1,1,1,0 = 0.
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2.3. Projective change of coordinates. An invertible matrix A ∈ GL4(ℂ)
gives a projective change of coordinates by [a0∶a1∶a2∶a3]↦ [b0∶b1∶b2∶b3],
where (b0, b1, b2, b3)T = A(a0, a1, a2, a3)T. By slight abuse of notation, we also
denote this projective change of coordinates by A ∶ ℙ3 → ℙ3. Given a variety
X = V(g1, ..., gn), the change of coordinates A takes X to

AX = V(g1◦A−1, ..., gn◦A−1).

We also note that if l = ∑ aixi is a linear function and l◦A−1 = ∑ bixi, then
(A−1)T(a0, a1, a2, a3)T = (b0, b1, b2, b3)T.

3. Three lines from a biruled quadric surface
The three skew lines E1, E2, E3 de�ne the quadric surface Q = V(x0x3 −

x1x2). Moreover, Q contains the rulings Ms = {[s ∶ as ∶ 1 ∶ a] ∈ ℙ3} and
Nt = {[t ∶1∶bt ∶b] ∈ ℙ3}, withM∞ = {[1∶a ∶0∶0]} andN∞ = {[1∶0∶b ∶0]}.
Note thatM0 = E1,M∞ = E2, andM1 = E3.

Proposition 3.1. Let t4, t5, t6 be the roots of

g(t) = (�2,0,1,0)t3 + (�2,0,0,1 + �1,1,1,0)t2 + (�0,2,1,0 + �1,1,0,1)t + �0,2,0,1
= −((�1,0,2,0)t3 + (�0,1,2,0 + �1,0,1,1)t2 + (�1,0,0,2 + �0,1,1,1)t + �0,1,0,2).

Then C4 = V(x0 − t4x1, x2 − t4x3), C5 = V(x0 − t5x1, x2 − t5x3), and C6 =
V(x0 − t6x1, x2 − t6x3).

Proof. The lines C4, C5, C6 are contained in both the cubic surface S and the
ruling Nt. A line {[t ∶ 1 ∶ bt ∶ b] ∶ b ∈ ℂ} is contained in S if and only if
f(t, 1, bt, b) = 0 for all b. Expanding this out and simplifying via the relations
given in Equation 1, we have

f(t, 1, bt, b) = (b − b2)g(t),

which vanishes for all b ∈ ℂ if and only if g(t) = 0. The roots t4, t5, t6 of g(t)
will correspond to C4, C5, C6. In particular, Nti = {[ti ∶ 1 ∶ bti ∶ b]} = V(x0 −
tix1, x2− tix3) is a line contained in S. SinceNt4 , Nt5 , Nt6 lie on the same ruling
of Q, we may (without loss of generality) call them C4, C5, C6, respectively. We
also note that ti ≠ tj for i ≠ j, or else we would have Ci = Cj, contradicting the
overall count of 27 lines on a smooth cubic surface. �

4. Nine residual lines
Next, we consider the planes Hi,j spanned by Ei and Cj for 1 ≤ i ≤ 3 and

4 ≤ j ≤ 6. Intersecting eachHi,j with S will give a new line Li,j contained in S.
In particular, since Ei, Cj ⊂ S, Bézout’s Theorem implies that S ∩Hi,j consists
of Ei, Cj, and a third line.
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Proposition 4.1. We have the equations L1,i = V(x0 − tix1,l1,i), L2,i = V(x2 −
tix3,l2,i), and L3,i = V((x0 − x2) − ti(x1 − x3),l3,i), where

l1,i = (t2i �2,0,1,0 + ti�1,1,1,0 + �0,2,1,0)x1
+ (ti�1,0,2,0 + �0,1,2,0)x2
+ (t2i �1,0,2,0 + ti(�0,1,2,0 + �1,0,1,1) + �0,1,1,1)x3,

l2,i = (ti�2,0,1,0 + �2,0,0,1)x0
+ (t2i �2,0,1,0 + ti(�2,0,0,1 + �1,1,1,0) + �1,1,0,1)x1
+ (t2i �1,0,2,0 + ti�1,0,1,1 + �1,0,0,2)x3,

l3,i = (t2i �2,0,1,0 + ti�1,1,1,0 + �0,2,1,0)x1
+ (ti�2,0,1,0 + �0,1,2,0 + �1,1,1,0)x2
+ (ti�2,0,0,1 − �1,0,0,2)x3.

Proof. Note that H1,i = V(x0 − tix1), H2,i = V(x2 − tix3), and H3,i = V((x0 −
x2)−ti(x1−x3)). Since S∩Hi,j consists of three lines, it is given by the vanishing
of a product of three linear homogeneous polynomials. Two of these factors
will be given by Ei and Cj, and the third will de�ne Li,j. The intersection S ∩
H1,i is given by the vanishing of f(tix1, x1, x2, x3) by substituting x0 = tix1.
The linear factors corresponding to E1 and Ci are x1 and x2 − tix3, respectively.
By simplifying (using the relations from Equation 1 when necessary), one can
check that f(tix1, x1, x2, x3) = x1(x2 − tix3)l1,i. It follows that L1,i is given by
the vanishing of x0 − tix1 and l1,i.

Similarly, the intersection S ∩H2,i is given by the vanishing of

f(x0, x1, tix3, x3) = x3(x0 − tix1)l2,i,

again using the given relations to simplify when necessary. Thus L2,i = V(x2 −
tix3,l2,i). The intersection S ∩ H3,i is given by the vanishing of f(x2 + ti(x1 −
x3), x1, x2, x3) = (x1 − x3)(x2 − tix3)l3,i, again simplifying with the given rela-
tions. Thus L3,i = V((x0 − x2) − ti(x1 − x3),l3,i). �

5. Two more lines from a quadric surface
To solve for the lines C3 and L1,2, we need to �nd the two lines that meet the

four skew lines E1, E2, L3,4, L3,5. We �rst give a projective change of coordinates
A such thatAE1 = E1,AE2 = E2, andAL3,4 = E3. We then intersectAL3,5 with
the quadric surface Q = V(x0x3 − x1x2) de�ned by E1, E2, E3. The intersection
Q ∩ AL3,5 will consist of two points, which gives two lines in the ruling Nt =
{[t ∶ 1 ∶ bt ∶ b]}, namelyAC3 andAL1,2. We then obtain C3 and L1,2 by applying
the projective change of coordinates A−1.
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Notation 5.1. Let

c1 = t24�2,0,1,0 + t4�1,1,1,0 + �0,2,1,0,
c2 = t4�2,0,1,0 + �0,1,2,0 + �1,1,1,0,
c3 = t4�2,0,0,1 − �1,0,0,2,

so that l3,4 = c1x1 + c2x2 + c3x3. Similarly, let

d1 = t25�2,0,1,0 + t5�1,1,1,0 + �0,2,1,0,
d2 = t5�2,0,1,0 + �0,1,2,0 + �1,1,1,0,
d3 = t5�2,0,0,1 − �1,0,0,2,

so that l3,5 = d1x1 + d2x2 + d3x3.

Proposition 5.2. We have that d1 ≠ 0.

Proof. Suppose d1 = 0. Then L3,5 = V((x0 − x2) − t5(x1 − x3), d2x2 + d3x3)
contains the point [t5 ∶ 1 ∶ 0 ∶ 0], which is also contained in E2 = V(x2, x3).
However, these lines are necessarily skew, so we obtain a contradiction. Thus
d1 ≠ 0. �

Consider the projective change of coordinates given by

AT =
⎛
⎜
⎜
⎝

1 0 0 0
−t4 c1 0 0
0 0 1 −c2
0 0 −t4 −c3

⎞
⎟
⎟
⎠

.

Note that AE1 = E1, AE2 = E2, and AL3,4 = E3. Any projective change of
coordinates in ℙ3 is determined by its image on three skew lines. Moreover, A
takes the skew lines E1, E2, L3,4 to the skew lines E1, E2, E3. It follows that A is
non-singular, so detA = −c1(c3 + t4c2) ≠ 0. Thus

(A−1)T =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0 0
t4
c1

1
c1

0 0
0 0 c3

c3+c2t4
− c2
c3+c2t4

0 0 − t4
c3+c2t4

− 1
c3+c2t4

⎞
⎟
⎟
⎟
⎟
⎠

is non-singular with A−1E1 = E1, A−1E2 = E2, and A−1E3 = L3,4.
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Notation 5.3. Let

u1 =
t4 − t5
c1

,

u2 = −c3 + c2t5
c3 + c2t4

,

u3 =
t4 − t5
c3 + c2t4

,

v2 =
c1
d1
⋅ d2c3 − d3c2
c3 + c2t4

,

v3 = − c1d1
⋅ d2t4 + d3
c3 + c2t4

,

so that AL3,5 = V(x0 + u1x1 + u2x2 + u3x3, x1 + v2x2 + v3x3).
Recall that E1, E2, E3 are contained in the ruling Ms = {[s ∶ as ∶ 1 ∶ a]}

of Q = V(x0x3 − x1x2). We will intersect AL3,5 with Q to obtain two lines in
the ruling Nt = {[t ∶ 1 ∶ bt ∶ b]}. Substituting x0 = −u1x1 − u2x2 − u3x3 and
x1 = −v2x2 − v3x3 in the de�ning equation for Q, we �nd that

Q ∩ AL3,5 = V(v2x22 + (u1v2 − u2 + v3)x2x3 + (u1v3 − u3)x23).

The points of Q ∩ AL3,5 are determined by the ratio x2
x3
, so it su�ces to solve

the quadratic equation

v2(
x2
x3
)2 + (u1v2 − u2 + v3)

x2
x3
+ (u1v3 − u3) = 0. (2)

By Bézout’s Theorem, Q ∩ AL3,5 consists of two points. There are thus two
distinct solutions to Equation 2. In particular, (u1v2−u2+v3)2 ≠ 4v2(u1v3−u3).
If v2 ≠ 0, then we can use the quadratic formula to solve this equation.

Remark 5.4. IfQ∩AL3,5 consisted of fewer than two points, then there would
be at most one line meeting E1, E2, E3, L3,5, which would contradict the overall
count of 27 distinct lines on S.
Notation 5.5. Let

s1 =
−(u1v2 − u2 + v3) +

√
(u1v2 − u2 + v3)2 − 4v2(u1v3 − u3)

2v2
and

s2 =
−(u1v2 − u2 + v3) −

√
(u1v2 − u2 + v3)2 − 4v2(u1v3 − u3)

2v2
be the solutions of v2(

x2
x3
)2+(u1v2−u2+v3)

x2
x3
+(u1v3−u3) = 0. If (u1v2−u2+

v3)2 − 4v2(u1v3 − u3) = rei� with r ≥ 0 and 0 ≤ � < 2� is a complex number,
then we denote

√
rei� =

√
rei�∕2 and −

√
rei� = −

√
rei�∕2.

Proposition 5.6. Wehave the equationsC3 = V(x0+(−s1c1−t4)x1, (1+s1c2)x2+
(s1c3 − t4)x3) and L1,2 = V(x0 + (−s2c1 − t4)x1, (1 + s2c2)x2 + (s2c3 − t4)x3).
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Proof. Note that a line {[t∶1∶bt∶b] ∶ b ∈ ℂ} of the rulingNt is determined by
the ratio x2

x3
= bt

b
= t. That is, the lineNsi = V(x0 − six1, x2 − six3) contains the

point of Q ∩AL3,5 corresponding to
x2
x3
= si. Without loss of generality, we may

denote AC3 = V(x0 − s1x1, x2 − s1x3) and AL1,2 = V(x0 − s2x1, x2 − s2x3). The
proof is then completed by applying A−1AC3 = C3 and A−1AL1,2 = L1,2. �

Remark 5.7. If v2 = 0, then Equation 2 only has one root, say s1. The other
solution to this equation comes from x3

x2
= 0, which corresponds to s2 = ∞.

SinceN∞ = V(x1, x3), wehaveL1,2 = V(c1x1,−c2x2−c3x3) = V(x1, c2x2+c3x3).
This agrees with the formula L1,2 = V(x0+(−s2c1− t4)x1, (1+ s2c2)x2+(s2c3−
t4)x3) by dividing all terms by s2 = ∞.

6. Four lines as residual lines
Given our original three skew lines, along with the other fourteen lines that

wehave found, the remaining ten lines are residually determined. That is, given
two lines Λ1,Λ2 in S, the intersection of S with the planeH containing Λ1 and
Λ2 is a third line contained in S. The intersection S∩H is given by the vanishing
of the product of three linear homogeneous polynomials; two of these factors
correspond to Λ1 and Λ2, and the third factor corresponds to the desired line.
We will frequently use projective changes of coordinates to simplify these com-
putations. However, we only use this approach to �nd four of the remaining ten
lines. Finding the lines E4, E5, E6, L4,5, L4,6, and L5,6 proved to be di�cult, so we
give a di�erent approach in Section 7. We will use the fact that Ei is residual to
Cj and Li,j if i ≠ j [Har79, p. 719].

6.1. C2 andL1,3. Wewill solve for L1,3 andC2 by applying the following discus-
sion for L = C3 and L = L1,2, respectively. The plane containing E1 and L ∶=
V(x0 + ax1, bx2 + cx3) isH = V(x0 + ax1). To obtain the third line, say Λ, con-
tained in S∩H, we factor f(−ax1, x1, x2, x3) = x1(bx2+cx3)(mx1+nx2+px3).
Simplifying, we �nd the following equations:

bm = a2�2,0,1,0 − a�1,1,1,0 + �0,2,1,0,
cm = a2�2,0,0,1 − a�1,1,0,1 + �0,2,0,1,
bn = −a�1,0,2,0 + �0,1,2,0,
cp = −a�1,0,0,2 + �0,1,0,2,

bp + cn = −a�1,0,1,1 + �0,1,1,1.

Since L is a line, we note that (b, c) ≠ (0, 0), so |b|2 + |c|2 > 0. Thus

m =
b̄(a2�2,0,1,0 − a�1,1,1,0 + �0,2,1,0) + c̄(a2�2,0,0,1 − a�1,1,0,1 + �0,2,0,1)

|b|2 + |c|2 . (3)
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Next, since |b|4 + |c|2 > 0 and |b|2 + |c|4 > 0, we use the expressions
c2n = c(bp + cn) − b(cp)

= c(−a�1,0,1,1 + �0,1,1,1) − b(−a�1,0,0,2 + �0,1,0,2)
and

b2p = b(bp + cn) − c(bn)
= b(−a�1,0,1,1 + �0,1,1,1) − c(−a�1,0,2,0 + �0,1,2,0)

to solve for n and p. This yields

n =
c̄2(c(−a�1,0,1,1 + �0,1,1,1) − b(−a�1,0,0,2 + �0,1,0,2)) + b̄(−a�1,0,2,0 + �0,1,2,0)

|b|2 + |c|4
(4)

and

p =
b̄2(b(−a�1,0,1,1 + �0,1,1,1) − c(−a�1,0,2,0 + �0,1,2,0)) + c̄(−a�1,0,0,2 + �0,1,0,2)

|b|4 + |c|2 .
(5)

Remark 6.1. It follows that the residual lineΛ in the planeH is given byV(x0+
ax1, mx1 + nx2 + px3), wherem, n, p are as above.

Notation 6.2. Thinking ofm, n, p (Equations 3, 4, and 5) as functions of a, b, c,
let

(m1, n1, p1) = (m, n, p)(−s1c1 − t4, 1 + s1c2, s1c3 − t4).
Likewise, let

(m2, n2, p2) = (m, n, p)(−s2c1 − t4, 1 + s2c2, s2c3 − t4).
Proposition 6.3. We have the equations L1,3 = V(x0 + (−s1c1 − t4)x1, m1x1 +
n1x2 + p1x3) and C2 = V(x0 + (−s2c1 − t4)x1, m2x1 + n2x2 + p2x3).
Proof. If (a, b, c) = (−s1c1− t4, 1+ s1c2, s1c3− t4), then L ∶= V(x0+ax1, bx2+
cx3) = C3 and hence the residual line is Λ = L1,3. If (a, b, c) = (−s2c1 − t4, 1 +
s2c2, s2c3 − t4), then L ∶= V(x0 + ax1, bx2 + cx3) = L1,2 and hence the residual
line is Λ = C2. Remark 6.1 then gives us the desired equations. �

6.2. C1 and L2,3. We now apply the approach of Section 6.1 for L = C3 and
L = L1,2 to solve for L2,3 and C1, respectively. We will give a projective change
of coordinates B that �xes E2 and takes L ∶= V(x0 + ax1, bx2 + cx3) to BL =
V(x0 + ax1, x2). Intersecting the cubic surface BS = V(f◦B−1) with the plane
H containing E2 and BL, we will be able to solve for the third line Λ contained
in BS ∩H. We then obtain the desired line, namely C1 or L2,3, as the line B−1Λ.
Let

(B−1)T =

⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 b̄

|b|2+|c|2
c̄

|b|2+|c|2
0 0 c −b

⎞
⎟
⎟
⎟
⎠

.
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Note that L is a line, so (b, c) ≠ (0, 0). Since (b, c) ≠ (0, 0), it follows that B
is well-de�ned and moreover detB = −1. We have that BE2 = E2 and BL =
V(x0+ax1, x2+(bc− bc)x3) = V(x0+ax1, x2). The planeH = V(x2) contains
both E2 and BL. The intersection BS ∩H is given by the vanishing of

f◦B−1|x2=0 = f(x0, x1, cx3,−bx3)
= x3(x0 + ax1)(ℎx0 + jx1 + kx3).

Evaluating f◦B−1|x2=0, we obtain the following relations:

ℎ = �2,0,1,0c − �2,0,0,1b, (6)
j + aℎ = �1,1,1,0c − �1,1,0,1b,

k = �1,0,2,0c2 − �1,0,1,1bc + �1,0,0,2b2. (7)

Subtracting aℎ from j + aℎ, we have

j = �1,1,1,0c − �1,1,0,1b − a
(
�2,0,1,0c − �2,0,0,1b

)
. (8)

Remark 6.4. It follows that BS∩H contains the lines E2, BL, andΛ = V(ℎx0+
jx1 + kx3, x2). Applying B−1, we have

B−1Λ = V(ℎx0 + jx1 +
c̄k

|b|2+|c|2
x2 −

b̄k
|b|2+|c|2

x3, bx2 + cx3).

Notation 6.5. Thinking of ℎ, j, k (Equations 6, 8, and 7) as functions of a, b, c,
let (ℎ1, j1, k1) = (ℎ, j, k)(−s1c1−t4, 1+s1c2, s1c3−t4). Likewise, let (ℎ2, j2, k2) =
(ℎ, j, k)(−s2c1 − t4, 1 + s2c2, s2c3 − t4).

Proposition 6.6. We have the equations

L2,3 = V
(
ℎ1x0 + j1x1 +

(s1c3−t4)k1
|1+s1c2|2+|s1c3−t4|2

x2 −
(1+s1c2)k1

|1+s1c2|2+|s1c3−t4|2
x3,

(1 + s1c2)x2 + (s1c3 − t4)x3
)

and

C1 = V
(
ℎ2x0 + j2x1 +

(s2c3−t4)k2
|1+s2c2|2+|s2c3−t4|2

x2 −
(1+s2c2)k2

|1+s2c2|2+|s2c3−t4|2
x3,

(1 + s2c2)x2 + (s2c3 − t4)x3
)
.

Proof. If (a, b, c) = (−s1c1− t4, 1+ s1c2, s1c3− t4), then L ∶= V(x0+ax1, bx2+
cx3) = C3 and hence the residual line isΛ = BL2,3. If (a, b, c) = (−s2c1− t4, 1+
s2c2, s2c3 − t4), then L ∶= V(x0 + ax1, bx2 + cx3) = L1,2 and hence the residual
line is Λ = BC1. Remark 6.4 then gives us the desired equations. �

Remark 6.7. If s2 = ∞, we can again obtain the correct lines from the above
formulas by dividing all terms by s2 = ∞ as discussed in Remark 5.7.
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7. The �nal six lines
We now want to solve for E4, E5, E6, L4,5, L4,6, and L5,6. For i, j, k distinct

elements of {4, 5, 6}, we note that Li,j and Ek are the two lines passing through
the four skew lines Ci, Cj, L1,k, and L2,k. We will use the same methods as
in Section 5 to solve for these lines. We �rst give two projective changes of
coordinates. Let

(A−1
i,j )

T =
⎛
⎜
⎜
⎝

tj 1 0 0
ti 1 0 0
0 0 tj 1
0 0 ti 1

⎞
⎟
⎟
⎠

and (B−1i,j,k)
T =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0 0
0 − tj−tk

ti−tk
0 (tj−tk)

"(ti−tk)
0 0 1

�
0

0 0 0 − 1
"

⎞
⎟
⎟
⎟
⎟
⎠

,

where

 = (1 − ti−tk
tj−tk

)(t2k�2,0,1,0 + tk�1,1,1,0 + �0,2,1,0), (9)

� = t2k�1,0,2,0 + tk(tj�1,0,2,0 + �0,1,2,0 + �1,0,1,1) + (tj�0,1,2,0 + �0,1,1,1),
" = t2k�1,0,2,0 + tk(ti�1,0,2,0 + �0,1,2,0 + �1,0,1,1) + (ti�0,1,2,0 + �0,1,1,1).

Since ti ≠ tj (as noted in the proof of Proposition 3.1), we have that Ai,j is
non-singular. As a result, the fact that Ci, Cj, and L1,k are skew implies that
Ai,jCi, Ai,jCj, and Ai,jL1,k are skew. Moreover, we have that Ai,jCi = V(x0, x2)
and Ai,jCj = V(x1, x3). We also have

Ai,jL1,k = V((tj − tk)x0 + (ti − tk)x1,
(t2k�2,0,1,0 + tk�1,1,1,0 + �0,2,1,0)(x0 + x1) + �x2 + "x3)

= V(x0 +
ti−tk
tj−tk

x1, x1 + �x2 + "x3).

As mentioned in the proof of Proposition 3.1, we have that ti ≠ tj ≠ tk, so
ti−tk
tj−tk

is a complex number not equal to 0 or 1. Also note that if � = 0, then
ACj and Ai,jL1,k intersect at [0 ∶ 0 ∶ 1 ∶ 0], contradicting the fact that they are
skew. Similarly, if " = 0, thenAi,jCi andAi,jL1,k intersect at [0 ∶ 0∶0∶1], again
contradicting our skew assumption. We thus have that � ≠ 0 and " ≠ 0, so the
change of coordinates given by Bi,j,k is well-de�ned and non-singular. Now we
have

Bi,j,kAi,jCi = V(x0, x2),
Bi,j,kAi,jCj = V(x1, x3),
Bi,j,kAi,jL1,k = V(x0 − x1, x2 − x3).

These three skew lines lie on the ruling Nt = {[t ∶ 1 ∶ bt ∶ b]} of the quadric
surface Q = V(x0x3 − x1x2). In particular, we have N0 = Bi,j,kAi,jCi, N∞ =
Bi,j,kAi,jCj, and N1 = Bi,j,kAi,jL1,k. Next, we will intersect Bi,j,kAi,jL2,k with
Q. By Bézout’s Theorem, this intersection will consist of two points (which are
distinct by the same reasoning outlined in Remark 5.4). The lines in the ruling
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Ms = {[s ∶ as ∶ 1 ∶ a]} passing through these two points will be Bi,j,kAi,jLi,j and
Bi,j,kAi,jEk. We have that

Bi,j,kAi,jL2,k = Bi,j,kV((tj − tk)x2 + (ti − tk)x3, �x0 + �x1 + �x2 + �x3)

= V((tj−tk)
"

x1 +
tj−tk
�
x2 −

ti−tk
"
x3,

�x0 + (−�(tj−tk)
ti−tk

+ �(tj−tk)
"(ti−tk)

)x1 +
�
�
x2 −

�
"
x3)

= V(�
"
x1 + x2 −

�(ti−tk)
"(tj−tk)

x3,

�x0 +
�(tj−ti)−�"(tj−tk)

"(ti−tk)
x1 +

�
"
( ti−tj
tj−tk

)x3).

where

� = t2k�2,0,1,0 + tk(tj�2,0,1,0 + �2,0,0,1 + �1,1,1,0) + (tj�2,0,0,1 + �1,1,0,1), (10)

� = t2k�2,0,1,0 + tk(ti�2,0,1,0 + �2,0,0,1 + �1,1,1,0) + (ti�2,0,0,1 + �1,1,0,1),
� = t2k�1,0,2,0 + tk�1,0,1,1 + �1,0,0,2.

Proposition 7.1. We have that � ≠ 0.

Proof. If� = 0, thenAi,jL2,k = V((tj−tk)x2+(ti−tk)x3, �x1+�x2+�x3). Note
thatAi,jCj = V((ti−tj)x1, (ti−tj)x3) = V(x1, x3). Thus the point [1∶0∶0∶0] is
contained in bothAi,jL2,k andAi,jCj, so these lines are not skew. However, this
contradicts the fact that L2,k and Cj are skew, so we conclude that � ≠ 0. �

We compute the intersection Q ∩ Bi,j,kAi,jL2,k by substituting x2 = −�
"
x1 +

�(ti−tk)
"(tj−tk)

x3 and x0 = �(ti−tj)+�"(tj−tk)
�"(ti−tk)

x1 −
�
�"
( ti−tj
tj−tk

)x3 into the de�ning equa-

tion for Q. We thus have Q ∩ Bi,j,kAi,jL2,k = V(�
"
x21 + (�(ti−tj)+�"(tj−tk)

�"(ti−tk)
−

�
"
( ti−tk
tj−tk

))x1x3−
�
�"
( ti−tj
tj−tk

)x23). Lines in the rulingMs are determined by the ratio
x1
x3
, so it su�ces to solve the quadratic equation �(x1

x3
)2 + (�(ti−tj)+�"(tj−tk)

�(ti−tk)
−

�( ti−tk
tj−tk

))x1
x3
− �

�
( ti−tj
tj−tk

) = 0. These solutions are given by

x1
x3

= 1
2�

⋅ ( − �(ti−tj)(tj−tk)+�"(tj−tk)2−�(ti−tk)2

�(ti−tk)(tj−tk)

±
√
(�(ti−tj)(tj−tk)+�"(tj−tk)

2−�(ti−tk)2

�(ti−tk)(tj−tk)
)2 + 4��

�
( ti−tj
tj−tk

)).

Note that these solutions are given byBézout’s Theoremapplied toQ∩Bi,j,kAi,jL2,k.
By Remark 5.4, these solutions are necessarily distinct.

Notation 7.2. Note that , �, " (see Equation 9) and�, �, � (see Equation 10) de-
pend on i, j, k. Let i,j,k, �i,j,k, "i,j,k, �i,j,k, �i,j,k, �i,j,k denote the values of , �, ", �, �, �
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as functions of i, j, k. Furthermore, let

q+i,j,k =
1
2�

⋅ ( − �(ti−tj)(tj−tk)+�"(tj−tk)2−�(ti−tk)2

�(ti−tk)(tj−tk)

+
√
(�(ti−tj)(tj−tk)+�"(tj−tk)

2−�(ti−tk)2

�(ti−tk)(tj−tk)
)2 + 4��

�
( ti−tj
tj−tk

))

and

q−i,j,k =
1
2�

⋅ ( − �(ti−tj)(tj−tk)+�"(tj−tk)2−�(ti−tk)2

�(ti−tk)(tj−tk)

−
√
(�(ti−tj)(tj−tk)+�"(tj−tk)

2−�(ti−tk)2

�(ti−tk)(tj−tk)
)2 + 4��

�
( ti−tj
tj−tk

)).

Remark 5.4 implies that q+i,j,k ≠ q−i,j,k. It follows thatwe have the lineMq±i,j,k
=

V(x0 − q±i,j,kx2, x1 − q±i,j,kx3).

Proposition 7.3. We have the equations

Ek = V(x0 − tix1 − �i,j,kq+i,j,k(x2 − tix3),

( ti−tk
tj−tk

− i,j,kq+i,j,k)(x0 − tjx1) − "i,j,kq+i,j,k(x2 − tjx3))

and

Li,j = V(x0 − tix1 − �i,j,kq−i,j,k(x2 − tix3),

( ti−tk
tj−tk

− i,j,kq−i,j,k)(x0 − tjx1) − "i,j,kq−i,j,k(x2 − tjx3)).

Proof. Without loss of generality, we may assume

Bi,j,kAi,jCk = V(x0 − q+i,j,kx2, x1 − q+i,j,kx3)

and
Bi,j,kAi,jLi,j = V(x0 − q−i,j,kx2, x1 − q−i,j,kx3).

We thus have

Ck = (Bi,j,kAi,j)−1V(x0 − q+i,j,kx2, x1 − q+i,j,kx3),
Li,j = (Bi,j,kAi,j)−1V(x0 − q−i,j,kx2, x1 − q−i,j,kx3).

The inverse matrices are

AT
i,j =

1
tj − ti

⎛
⎜
⎜
⎝

1 −1 0 0
−ti tj 0 0
0 0 1 −1
0 0 −ti tj

⎞
⎟
⎟
⎠
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and

BTi,j,k =

⎛
⎜
⎜
⎜
⎝

1 0 0 0
0 − ti−tk

tj−tk
0 −i,j,k

0 0 �i,j,k 0
0 0 0 −"i,j,k

⎞
⎟
⎟
⎟
⎠

.

�

8. The general case
Let S′ = V(f′) be a smooth cubic surface, where

f′(x0, x1, x2, x3) =
∑

i+j+k+l=3
�i,j,k,lxi0x

j
1x

k
2x

l
3.

Moreover, let

Λ1 = V
( 3∑

i=0
aixi,

3∑

i=0
a′ixi

)
,

Λ2 = V
( 3∑

i=0
bixi,

3∑

i=0
b′ixi

)
,

Λ3 = V
( 3∑

i=0
cixi,

3∑

i=0
c′ixi

)

be three skew lines contained in S′. We will give a projective change of coor-
dinates A taking Λi to Ei for 1 ≤ i ≤ 3. Applying the work of the previous
sections of the paper, we will have formulas for all 27 lines on AS′, with each
�i,j,k,l being given by a formula in terms of the �i,j,k,l. The formulas for the 27
lines on S′ will then be obtained by applying A−1. Consider the matrix

(B−1)T =
⎛
⎜
⎜
⎝

a0 a′0 b0 b′0
a1 a′1 b1 b′1
a2 a′2 b2 b′2
a3 a′3 b3 b′3

⎞
⎟
⎟
⎠

,

which gives BE1 = Λ1 and BE2 = Λ2. Since Λ1 and Λ2 are skew, B is non-
singular. Next, we will give a projective change of coordinates C that �xes E1
and E2 and takes B−1Λ3 to E3. The composite change of coordinates CB−1 will
then be the desired change of coordinates A. Let

B−1Λ3 = V
( 3∑

i=0
cixi,

3∑

i=0
c′ixi

)
.

Since B is non-singular, the lines E1, E2, and B−1Λ3 are skew. Thus B−1Λ3 is
not a subspace of {x0 = 0} or {x3 = 0}, so B−1Λ3 is determined by the points
B−1Λ3∩{x0 = 0} = [0∶a∶b∶c] and B−1Λ3∩{x3 = 0} = [d∶e∶f∶0]. Moreover,
since B−1Λ3 does not meet E1 or E2, we may assume that B−1Λ3 ∩ {x0 = 0} =
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[0 ∶ 1 ∶ b ∶ c] and B−1Λ3 ∩ {x3 = 0} = [d ∶ e ∶ 1 ∶ 0]. In terms of the de�ning
equations for B−1Λ3, we have

b =
c′1c3 − c1c′3
c2c′3 − c′2c3

, c =
c1c′2 − c′1c2
c2c′3 − c′2c3

,

d =
c1c′2 − c′1c2
c0c′1 − c′0c1

, e =
c′0c2 − c0c′2
c0c′1 − c′0c1

.

Note that c and d are either both zero or both non-zero. If c, d are both zero,
then we instead construct a projective change of coordinates taking B−1Λ3 ∩
{x1 = 0} and B−1Λ3 ∩ {x2 = 0} to [1 ∶ 0 ∶ 1 ∶ 0] and [0 ∶ 1 ∶ 0 ∶ 1], respectively.
We omit these calculations and simply discuss the case when c, d are non-zero.
If c, d are non-zero, the projective change of coordinates given by

C =

⎛
⎜
⎜
⎜
⎜
⎝

1
d

0 0 0
− e
d

1 0 0
0 0 1 −b

c
0 0 0 1

c

⎞
⎟
⎟
⎟
⎟
⎠

gives usC([0∶1∶b∶c]) = [0∶1∶0∶1] andC([d∶e∶1∶0]) = [1∶0∶1∶0]. Thus
CB−1Λ3 = E3. Moreover, CE1 = E1 and CE2 = E2, so the projective change
of coordinates A = CB−1 takes Λ1,Λ2,Λ3 to E1, E2, E3, as desired. We may
thus apply the work done in previous sections to the surface CB−1S′, where the
�i,j,k,l will now be determined as functions of �i,j,k,l. For each line L ⊂ S, we
then get a line BC−1L ⊂ S′.

9. Smooth cubic surfaces over ℝ
Over the real numbers, Schlä�i showed that a smooth cubic surface contains

3, 7, 15, or 27 lines [Kol58]. Segre further classi�es these lines into two types,
namely hyperbolic lines and elliptic lines [Seg42]. Finashin–Kharlamov [FK13]
and Okonek–Teleman [OT11] note that Segre in fact proved that the di�erence
between the number ℎ of hyperbolic lines and the number e of elliptic lines on
a real smooth cubic surface is always 3. We note that if we are given three skew
lines on a real smooth cubic surface S, then we have at least one real root of
g(t) (see Proposition 3.1). Without loss of generality, we may assume that t4 is
a real root of g(t), and we thus have that the line C4 is de�ned over ℝ. In this
case, S contains more than three lines and therefore must contain elliptic lines.
As a result, we have proved the following proposition.

Proposition 9.1. If S is a real smooth cubic surface that contains no elliptic lines,
then the three lines contained in S are not skew.

In fact, we can prove that S contains three skew lines if and only if S contains
an elliptic line. First, we prove a basic graph theoretic fact that will simplify our
argument.
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Proposition 9.2. LetG be a graph of order at least seven, such that for any triple
of vertices v1, v2, v3, at least two of v1, v2, v3 are connected by an edge. Then G
contains two distinct 3-cycles that share an edge.

Proof. If G has at least three connected components, then three vertices com-
ing from distinct components do not share any edges, so G can have at most
two connected components. If G has two connected components (say G1 and
G2), then one component of G has at least four vertices. Without loss of gener-
ality, we may assume that G1 has at least four vertices. Taking a vertex from G2,
the component G1 must have diameter 1, which implies that G1 contains two
distinct 3-cycles that share an edge.

Finally, suppose that G is connected. Fixing a vertex v of G, the subgraph
G′ of vertices that are distance greater than 1 from v must have diameter 1. If
G′ has four or more vertices, then G contains two distinct 3-cycles that share
an edge. If G′ contains zero or one vertex, then v has at least �ve adjacent
vertices. Any triple of these v-adjacent vertices must have at least one edge be-
tween them, which forces G to contain two distinct 3-cycles that share an edge.
If G′ contains two vertices, then G contains the graph illustrated in Figure 1. If
G′ contains three vertices, then G contains the graph illustrated in Figure 2. In
either case, we select three vertices that are pairwise non-adjacent and add an
edge between two of them. Repeating this process will always yield two distinct
3-cycles that share an edge, as desired. �

v

Figure 1

v

Figure 2

Lemma 9.3. A real smooth cubic surface S contains three skew lines if and only
if S contains an elliptic line.

Proof. By Proposition 9.1 and Schlä�i’s count of lines on a real smooth cubic
surface, we may assume that S contains at least seven real lines, say Λ1, ...,Λ7.
We represent {Λi} and their intersections as a graph G. The vertices of G are
given by the lines Λi, and vertices are connected by an edge whenever the cor-
responding lines intersect each other. Note that a 3-cycle corresponds to three
coplanar lines. By Bézout’s Theorem, the plane containing these lines cannot
intersect S in another line, so we cannot have two distinct 3-cycles in G that
share an edge. The contrapositive of Proposition 9.2 implies that G has three
vertices with no shared edge among them, which means that S contains three
skew lines. �
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We are now prepared to give a proof of Theorem 1.1. If S is a real smooth
cubic surface that contains an elliptic line, then we can determine the number
of real lines contained in S by analyzing the formulas obtained in this paper.

Proof of Theorem 1.1. By Lemma 9.3, S contains three skew lines. Without
loss of generality, we may assume that S contains the lines E1 = V(x0, x1),
E2 = V(x2, x3), E3 = V(x0 − x2, x1 − x3) and that t4 is a real root of g(t). We
thus have that the lines C4, L1,4, L2,4, L3,4 are de�ned over ℝ.

If S contains exactly 7 real lines, then this accounts for all lines contained
in S, so g(t) can only have one real root. Moreover, Proposition 5.6 implies
that C3 and L1,2 are de�ned over ℝ(t4, s1) and ℝ(t4, s2) respectively, so s1 and
s2 cannot be real numbers in this case. Conversely, if g(t) only has one real
root, then C5, C6, Li,5, Li,6 are not real for 1 ≤ i ≤ 3, so S contains at most 19
lines. Furthermore, if s1, s2 ∉ ℝ, then C3 and L1,2 are not de�ned over ℝ. If
two coplanar lines are real, their residual line must also be real. It follows that
C1, C2, L1,3 are not de�ned over ℝ, as these are coplanar with E2, E1, E1 and
residual to L1,2, L1,2, C3 respectively. Thus S contains at most 14 real lines, so S
must contain exactly 7 lines. This proves (a).

If all roots of g(t) and s1, s2 are real, then all lines computed in Sections 3–6
are real. Moreover, Harris shows that the remaining lines on S are rationally
determined [Har79, p. 719], which gives us that all lines on S are real. Con-
versely, if a root of g(t) or s1, s2 were not real, then some of the lines in S would
not be de�ned over ℝ, proving (c).

Finally, if all roots of g(t) are real and s1, s2 are not real, then our process
gives us all the lines up until C3 and L1,2 (see Sections 3 and 4), yielding a total
of 15 lines on S. Moreover, the lines C3 and L1,2 are not real by Proposition 5.6,
so S contains fewer than 27 real lines and hence contains exactly 15 real lines.
Similarly, if g(t) has only one real root (which we label t4) and s1, s2 are real,
then precisely the lines L5,6, Ei, Cj, Li,j are real for 1 ≤ i, j ≤ 4. Conversely,
suppose S contains exactly 15 real lines. Then part (a) and part (c) imply that
either g(t) has one real root and s1, s2 are real, or all roots of g(t) are real and
s1, s2 are not real, which proves (b). �

Appendix A. Visualizations of real cubic surfaces
Using the formulas generated in this paper, we are able towrite down explicit

equations for real cubic surfaces with 27, 15, or 7 lines. Let

f1 = x20x2 − x0x22 + x20x3 − x0x1x2 +
17
39
x1x22 −

17
39
x0x2x3

+ 2x21x2 − 3x0x1x3 +
12
13
x0x23 +

1
13
x1x2x3,

f2 = x20x2 − x0x22 + x20x3 − x0x1x2 + x21x2 − 2x0x1x3 + x1x22
− x0x2x3 − x0x23 + 2x1x2x3,

f3 = x20x2 − x0x22 + 2x20x3 − 2x0x1x2 + x21x2 − x0x1x3 + x21x3 − x1x23 .
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Figure 3 shows the vanishing of f1 as a real cubic surface with its 27 lines.
Figure 4 shows the vanishing of f2 as a real cubic surface with its 15 lines.
Figure 5 shows the vanishing of f3 as a real cubic surface with its 7 lines. These
�gures were generated by Steve Trettel using the equations above.

Figure 3. Real cubic surface with 27 lines
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Figure 4. Real cubic surface with 15 lines

Figure 5. Real cubic surface with 7 lines
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Appendix B. Table of lines

In the following tables, we describe a line L = V
( 3∑

i=0
aixi,

3∑

i=0
bixi

)
by listing

its coe�cients a0, ..., a3, b0, ..., b3 as follows:

L a0 a1 a2 a3
b0 b1 b2 b3

We also provide references to the relevant notation from throughout the pa-
per.

�i,j,k,l Section 2.2

t4, t5, t6 Proposition 3.1

c1, c2, c3, d1, d2, d3 Notation 5.1

u1, u2, u3, v2, v3 Notation 5.3
s1, s2 Notation 5.5

m1, n1, p1, m2, n2, p2 Notation 6.2

ℎ1, j1, k1, ℎ2, j2, k2 Notation 6.5

i,j,k, �i,j,k, "i,j,k Equation 9
�i,j,k, �i,j,k, �i,j,k Equation 10

q±i,j,k Notation 7.2
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E1 1 0 0 0

0 1 0 0

E2 0 0 1 0

0 0 0 1

E3 1 0 −1 0

0 1 0 −1

E4 1 −t5 −�5,6,4q+5,6,4 t5�5,6,4q+5,6,4
t5−t4
t6−t4

− 5,6,4q+5,6,4 −t6(
t5−t4
t6−t4

− 5,6,4q+5,6,4) −"5,6,4q+5,6,4 t6"5,6,4q+5,6,4
E5 1 −t4 −�4,6,5q+4,6,5 t4�4,6,5q+4,6,5

t4−t5
t6−t5

− 4,6,5q+4,6,5 −t6(
t4−t5
t6−t5

− 4,6,5q+4,6,5) −"4,6,5q+4,6,5 t6"4,6,5q+4,6,5
E6 1 −t4 −�4,5,6q+4,5,6 t4�4,5,6q+4,5,6

t4−t6
t5−t6

− 4,5,6q+4,5,6 −t5(
t4−t6
t5−t6

− 4,5,6q+4,5,6) −"4,5,6q+4,5,6 t5"4,5,6q+4,5,6
C1 ℎ2 j2

(s2c3−t4)k2
|1+s2c2|2+|s2c3−t4|2

− (1+s2c2)k2
|1+s2c2|2+|s2c3−t4|2

0 0 1 + s2c2 s2c3 − t4
C2 1 −s2c1 − t4 0 0

0 m2 n2 p2
C3 1 −s1c1 − t4 0 0

0 0 1 + s1c2 s1c3 − t4
C4 1 −t4 0 0

0 0 1 −t4
C5 1 −t5 0 0

0 0 1 −t5
C6 1 −t6 0 0

0 0 1 −t6
L1,2 1 −s2c1 − t4 0 0

0 0 1 + s2c2 s2c3 − t4
L1,3 1 −s1c1 − t4 0 0

0 m1 n1 p1
L1,4 1 −t4 0 0

0 t24�2,0,1,0 + t4�1,1,1,0 + �0,2,1,0 t4�1,0,2,0 + �0,1,2,0 t24�1,0,2,0 + t4(�0,1,2,0 + �1,0,1,1) + �0,1,1,1
L1,5 1 −t5 0 0

0 t25�2,0,1,0 + t5�1,1,1,0 + �0,2,1,0 t5�1,0,2,0 + �0,1,2,0 t25�1,0,2,0 + t5(�0,1,2,0 + �1,0,1,1) + �0,1,1,1
L1,6 1 −t6 0 0

0 t26�2,0,1,0 + t6�1,1,1,0 + �0,2,1,0 t6�1,0,2,0 + �0,1,2,0 t26�1,0,2,0 + t6(�0,1,2,0 + �1,0,1,1) + �0,1,1,1
L2,3 ℎ1 j1

(s1c3−t4)k1
|1+s1c2|2+|s1c3−t4|2

− (1+s1c2)k1
|1+s1c2|2+|s1c3−t4|2

0 0 1 + s1c2 s1c3 − t4
L2,4 0 0 1 −t4

t4�2,0,1,0 + �2,0,0,1 t24�2,0,1,0 + t4(�2,0,0,1 + �1,1,1,0) + �1,1,0,1 0 t24�1,0,2,0 + t4�1,0,1,1 + �1,0,0,2
L2,5 0 0 1 −t5

t5�2,0,1,0 + �2,0,0,1 t25�2,0,1,0 + t5(�2,0,0,1 + �1,1,1,0) + �1,1,0,1 0 t25�1,0,2,0 + t5�1,0,1,1 + �1,0,0,2
L2,6 0 0 1 −t6

t6�2,0,1,0 + �2,0,0,1 t26�2,0,1,0 + t6(�2,0,0,1 + �1,1,1,0) + �1,1,0,1 0 t26�1,0,2,0 + t6�1,0,1,1 + �1,0,0,2
L3,4 1 −t4 −1 t4

0 t24�2,0,1,0 + t4�1,1,1,0 + �0,2,1,0 t4�2,0,1,0 + �0,1,2,0 + �1,1,1,0 t4�2,0,0,1 − �1,0,0,2
L3,5 1 −t5 −1 t5

0 t25�2,0,1,0 + t5�1,1,1,0 + �0,2,1,0 t5�2,0,1,0 + �0,1,2,0 + �1,1,1,0 t5�2,0,0,1 − �1,0,0,2
L3,6 1 −t6 −1 t6

0 t26�2,0,1,0 + t6�1,1,1,0 + �0,2,1,0 t6�2,0,1,0 + �0,1,2,0 + �1,1,1,0 t6�2,0,0,1 − �1,0,0,2
L4,5 1 −t4 −�4,5,6q−4,5,6 t4�4,5,6q−4,5,6

t4−t6
t5−t6

− 4,5,6q−4,5,6 −t5(
t4−t6
t5−t6

− 4,5,6q−4,5,6) −"4,5,6q−4,5,6 t5"4,5,6q−4,5,6
L4,6 1 −t4 −�4,6,5q−4,6,5 t4�4,6,5q−4,6,5

t4−t5
t6−t5

− 4,6,5q−4,6,5 −t6(
t4−t5
t6−t5

− 4,6,5q−4,6,5) −"4,6,5q−4,6,5 t6"4,6,5q−4,6,5
L5,6 1 −t5 −�5,6,4q−5,6,4 t5�5,6,4q−5,6,4

t5−t4
t6−t4

− 5,6,4q−5,6,4 −t6(
t5−t4
t6−t4

− 5,6,4q−5,6,4) −"5,6,4q−5,6,4 t6"5,6,4q−5,6,4
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