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Graded C∗-algebras and twisted
groupoid C∗-algebras

Jonathan H. Brown, Adam H. Fuller,
David R. Pitts and Sarah A. Reznikoff

Abstract. Let A be a C∗-algebra that is acted upon by a compact
abelian group. We show that if the fixed-point algebra of the action
contains a Cartan subalgebra D satisfying an appropriate regularity
condition, then A is the reduced C∗-algebra of a groupoid twist. We
further show that the embedding D ↪→ A is uniquely determined by the
twist. These results generalize Renault’s results on Cartan subalgebras
of C∗-algebras.
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1. Introduction

Abelian operator algebras are well understood: abelian C∗-algebras are
all isomorphic to spaces of continuous functions on a locally compact Haus-
dorff space; abelian von Neumann algebras are all isomorphic to L∞-spaces.
The study of non-abelian operator algebras is often aided by the presence
of appropriate abelian subalgebras. This idea was exemplified by Feldman
and Moore’s characterization of von Neumann algebras containing Cartan
subalgebras in 1977 [17]. Cartan embeddings arise naturally in many exam-
ples, including finite dimensional von Neumann algebras and von Neumann
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algebras constructed from free actions of discrete groups on abelian von
Neumann algebras. Feldman and Moore [17] gave a complete classification
of Cartan subalgebras in terms of measured equivalence relations.

To transfer Feldman and Moore’s theory to the topological setting, Re-
nault [33] defined Cartan subalgebras for C∗-algebras.

Definition 1.1. [33, Definition 5.1] Let A be a C∗-algebra. A maximal
abelian C∗-algebra D ⊆ A is a Cartan subalgebra of A if

(1) there exists a faithful conditional expectation E : A→ D;
(2) D contains an approximate unit for A;
(3) the set of normalizers of D, i.e. the n ∈ A such that nDn∗ ⊆ D and

n∗Dn ⊆ D, generate A as a C∗-algebra.

When D is a Cartan subalgebra of A, we call (A,D) a Cartan pair.

Renault [33], building on work by Kumjian [18], showed that there is
a one-to-one correspondence between Cartan pairs of separable C∗-algebras
and C∗-algebras of second countable twisted groupoids; that is, between Car-
tan pairs and the reduced C∗-algebra generated by an extension of groupoids

T×G(0) → Σ→ G.

In Renault’s result, G must be topologically principal: Renault refers to G
as the Weyl groupoid of the Cartan pair. It is reasonable to seek a larger
class of inclusions D ⊆ A with D abelian that can be used to construct
twists.

This idea has recently been pursued successfully by several authors, and
larger classes of inclusions have been shown to arise as C∗-algebras of twists.
In particular, motivated by shift spaces and the work by Matsumoto and
Matui [24, 25, 23], Brownlowe, Carlsen, and Whittaker [7] were able to con-
struct a Weyl type groupoid from a general graph C∗-algebra and its canon-
ical diagonal and use this construction to show that diagonal-preserving
isomorphisms of these inclusions come precisely from isomorphisms of Weyl
type groupoids. This led to work proving similar results for Leavitt path
algebras [6] and Steinberg algebras [2].

The paper [2] in particular inspired this work. Steinberg algebras are alge-
braic analogues of groupoid C∗-algebras [37, 11]. In [2], the authors consider
Steinberg algebras associated to groupoids G equipped with a homomor-
phism c : G → Γ where Γ is an abelian group and c−1(0) is topologically
principal. The Steinberg algebra is then naturally graded by Γ; the authors
use this grading to reconstruct G. It is well known that algebras graded
by an abelian group Γ correspond in the C∗-algebraic theory to C∗-algebras
endowed with a Γ̂ action (for example see [39], [30]).

In this paper, we construct groupoids from inclusions of an abelian C∗-
algebra D into a C∗-algebra A endowed with the action of a compact abelian
group. In particular, the aim of our work is to generalize Renault’s charac-
terization of Cartan pairs by reduced C∗-algebras of twisted groupoids. Our
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results apply to examples appearing naturally in the study of higher-rank
graph and twisted higher-rank graph C∗-algebras (See Example 7.2 below).

We start with a C∗-algebra A and a discrete abelian countable group Γ
such that the dual group Γ̂ acts continuously on A by automorphisms. Let

AΓ̂ be the points in A fixed by the action of Γ̂: this is a subalgebra of A

called the fixed point algebra. Assume AΓ̂ contains a Cartan subalgebra D.
If in addition the normalizers of D in A densely span A we call (A,D) a

Γ-Cartan pair. We note that the normalizers of D in AΓ̂ are homogeneous of
degree 0. In particular, if the action by Γ̂ is trivial, then (A,D) is a Cartan
pair.

If (A,D) is a Γ-Cartan pair, then following Kumjian’s construction, we
show how to create a twisted groupoid (Σ;G) that is graded by Γ. This
yields the following commutative diagram

T×G(0) ι // Σ

c
Σ ��

q // G

c
G

��
Γ

(1.1)

where cΣ and cG are homomorphisms. We prove in Theorem 4.19 that there
is a natural isomorphism between (A,D) and the reduced crossed product

(C∗r (Σ;G), C0(G(0))).
Next, if Σ → G is a twist satisfying the commutative diagram (1.1), we

show that the inclusion C0(G(0)) ↪→ C∗r (Σ;G) satisfies our hypotheses, so
Theorem 4.19 allows us to construct a new twist from this inclusion. The
natural question is: does our construction in Theorem 4.19 recover Σ→ G?
We answer this affirmatively in Theorem 6.2. This second question is the
main focus of [7], [6] [2], and [10] in the case that the twist is trivial.

The paper [10] by Carlsen, Ruiz, Sims and Tomforde is similar in scope
to our present work. While [10] is also concerned with translating the re-
sults of [2] to a C∗-algebraic framework, their work avoids twists altogether,
instead focusing on showing rigidity results along the lines of our Theo-
rem 6.2. The results of [10] apply to C∗-algebras already known to arise
from groupoids, however it does contain some remarkable innovations which
allows the authors to address C∗-algebras endowed with co-actions of a pos-
sibly nonabelian group. Furthermore, Carlsen, Ruiz, Sims and Tomforde
relax the requirement that the abelian subalgebra D must be Cartan in the
fixed point algebra.

Whether or not a C∗-algebra satisfies the Universal Coefficient Theorem
(UCT) remains the main stumbling block in the classification program for
simple nuclear C∗-algebras. Indeed, Tikuisis, White and Winter [38] have
shown that all separable, unital, simple, nuclear C∗-algebras with finite
nuclear dimension satisfying the UCT are classifiable. Recent results of
Barlak and Li [4] show that if A is a nuclear C∗-algebra containing a Cartan
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subalgebra, then A satisfies the UCT. We discuss in Example 7.3 how their
results also apply to our setting.

This paper is organized as follows. We begin with preliminaries on twists
(Section 2). In Section 3 we define Γ-Cartan pairs and review the relation-
ship between topological grading and strong group actions.

In Section 4 we prove our main theorem, Theorem 4.19, which shows
that a Γ-Cartan pair is isomorphic to the reduced C∗-algebra of a twist. In
Section 5 we then provide a few basic results concerning a natural Γ-Cartan
pair that arises in the presence of a twist. In Section 6 we prove our rigidity
result, Theorem 6.2, which shows that if the inclusion in the previous section
comes from a twist then our construction recovers the twist.

Section 7 gives some examples to which our theorems apply. Notably,
in Example 7.2 we show that the twisted higher-rank graph C∗-algebras
introduced in [21] and [22] give examples of Γ-Cartan pairs. Moreover, the
groupoid description of twisted higher-rank graph C∗-algebras given in [22]
yields groupoids isomorphic to ours.

Finally, in an appendix, we describe how we can obtain the results of
Section 4 by using a coaction of a non-abelian group (instead of an action
of an abelian group); note that in this case the grading on the C∗-algebra is
by the group itself, rather than by its dual. The authors thank John Quigg
for pointing out this alternative construction.

Acknowledgments. Whilst conducting this research, JHB and AHF made
use of meeting space made available by the Columbus Metropolitan Library.
We would like to thank CML for their important work in the community.
AHF would like to thank Christopher Schafhauser for patiently answering
his questions on [4].

This work was partially supported by grants from the Simons Founda-
tion (#316952 to David Pitts and #360563 to Sarah Reznikoff) and by the
American Institute of Mathematics SQuaREs Program.

2. Preliminaries

2.1. Étale groupoids. A groupoid G is a small category in which every
morphism has an inverse. The unit space G(0) of G is the set of identity
morphisms. The maps s, r : G → G(0), given by s(γ) = γ−1γ and r(γ) =
γγ−1, are the source and range maps. For S, T ⊆ G we denote

ST := {γη : γ ∈ S, η ∈ T, r(η) = s(γ)}.

If either S or T is the singleton set {γ} we remove the set brackets from the
notation and write Sγ or γT .

A topological groupoid is a groupoid G endowed with a topology such
that inversion and composition are continuous. An open set B ⊆ G is a
bisection if r(B) and s(B) are open and r|B and s|B are homeomorphisms
onto their images. The groupoid G is étale if there is a basis for the topology
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on G consisting of bisections. When G is étale then G(0) is open and closed
in G.

For x ∈ G(0), the isotropy group at x is xGx := {γ ∈ G : r(γ) = s(γ) = x}
and the isotropy subgroupoid is the set G′ = {γ ∈ G : r(γ) = s(γ)}. A

topological groupoid G is topologically principal if {x ∈ G(0) : xGx = {x}}
is dense in G(0); it is effective if the interior of G′ is G(0). If G is second
countable these notions coincide [5, Lemma 3.1], but in the general (not
necessarily second countable) case, effective is the more useful notion.

Unless explicitly stated otherwise, for the remainder of this paper, we
make the following assumptions.

Standing Assumptions on Groupoids. Throughout, all groupoids are:

(1) locally compact and
(2) Hausdorff.

2.2. Twists. The main focus of this paper is on twists and their C∗-algebras.
We provide a brief account of the necessary background here. Much of this
background can also be found in [33]. We also encourage the reader to con-
sult the recent expository article by Sims [34]. We now expand on a few
details that are particularly relevant to our context.

A twist is the analog of a central extension of a discrete group by the
circle T. Here is the formal definition.

Definition 2.1 (see [34, Definition 5.1.1]). Let Σ and G be topological

groupoids with G étale, and let T × G(0) be the product groupoid. That is,
(z1, x1)(z2, x2) is defined if and only if x1 = x2, in which case the product
is given by (z1, x1)(z2, x2) = (z1z2, x1); inversion is (z, x)−1 = (z−1, x), and

the topology is the product topology. The unit space of T×G(0) is {1}×G(0).
The pair (Σ, G) is a twist if there is an exact sequence

T×G(0) ι→ Σ
q→ G

where

(1) ι and q are continuous groupoid homomorphisms with ι one-to-one
and q onto;

(2) ι|{1}×G(0) and q|Σ(0) are homeomorphisms onto Σ(0) and G(0), respec-

tively (identify Σ(0) and G(0) using q);

(3) q−1(G(0)) = ι(T×G(0));
(4) for every γ ∈ Σ and z ∈ T, ι(z, r(γ))γ = γι(z, s(γ)); and
(5) for every g ∈ G there is an open bisection U with g ∈ U and a

continuous function φU : U → Σ such that q ◦ φU = id |U and the
map T × U 3 (z × h) 7→ ι(z, r(h))φU (h) is a homeomorphism of
T× U onto q−1(U).

(Conditions (1–3) say the sequence is an extension, (4) says the extension
is central, and (5) says G is étale and the extension is locally trivial.) A
twist is often denoted simply by Σ→ G.
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For z ∈ T and γ ∈ Σ we will write

z · γ := ι(z, r(γ))γ and γ · z := γι(z, s(γ))

for the action of T on Σ arising from the embedding of T × G(0) into Σ.
Notice that this action of T on Σ is free.

Also, for γ ∈ Σ, we will often denote q(γ) by γ̇; indeed, we use the name
γ̇ for an arbitrary element of G.

Remark 2.2. By [41, Exercise 9K(3)] the map q : Σ → G is a quotient
map.

The C∗-algebra of the twist is constructed from the completion of an
appropriate function algebra Cc(Σ;G). This algebra can be constructed in
two different ways and both will be used in this note.

First description of Cc(Σ;G): Sections of a line bundle. The first
way to construct Cc(Σ;G) is by considering sections of a complex line bundle
L over G. Define L to be the quotient of C× Σ by the equivalence relation
on C × Σ given by (λ, γ) ∼ (λ1, γ1) if and only if there exists z ∈ T such
that (λ1, γ1) = (zλ, z · γ). We sometimes write L = (C × Σ)/T. Use [λ, γ]
to denote the equivalence class of (λ, γ). Observe that for any z ∈ T,

[λ, z · γ] = [zλ, γ]. (2.1)

With the quotient topology, L is Hausdorff. The (continuous) surjection
P : L→ G is given by

P : [λ, γ] 7→ γ̇.

For γ̇ ∈ G and γ0 ∈ q−1(γ̇), the map C 3 λ 7→ [λ, γ0] ∈ P−1(γ̇) is a
homeomorphism, so L is a complex line bundle over G. In general, there
is no canonical choice of γ0. However, when γ̇ ∈ G(0), Σ(0) ∩ q−1(γ̇) is
a singleton set, so there is a canonical choice: take γ0 to be the unique
element of Σ(0) ∩ q−1(γ̇). Thus, recalling that Σ(0) and G(0) have been

previously identified (using q|Σ(0)), when x ∈ G(0) = Σ(0), we sometimes
identify P−1(x) with C via the map λ 7→ [λ, x] = λ · [1, x].

Finally, there is a continuous map $ : L→ [0,∞) given by

$([λ, γ]) := |λ|.
When f : G → L is a section and γ̇ ∈ G, we will sometimes write |f(γ̇)|
instead of $(f(γ̇)).

Since Σ is locally trivial, L is locally trivial as well. Indeed, given ` ∈ L,
let B be an open bisection of G containing P (`). Let φB : B → Σ be a
continuous function satisfying the conditions of Definition 2.1(5). Then for
every element `1 ∈ P−1(B), there exist unique λ ∈ C and γ̇ ∈ B so that `1 =
[λ, φB(γ̇)]. It follows that the map [λ, φB(γ̇)] 7→ (λ, γ̇) is a homeomorphism
of P−1(B) onto C×B, so L is locally trivial.

There is a partially defined multiplication on L, given by

[λ, γ][λ′, γ′] = [λλ′, γγ′],
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whenever γ and γ′ are composable in Σ. When [λ, γ], [λ′, γ′] ∈ L satisfy
γ̇ = γ̇′, let

[λ, γ] + [λ′, γ′] := [λ+ zλ′, γ], (2.2)

where z is the unique element of T so that γ′ = z · γ. There is also an
involution on L given by

[λ, γ] = [λ, γ−1]. (2.3)

We use the symbol Cc(Σ;G) to denote the set of “compactly supported”
continuous sections of L, that is,

Cc(Σ;G) := {f : G→ L | f is continuous,

P ◦ f = id |G, and $ ◦ f has compact support}. (2.4)

Notation 2.3. For f ∈ Cc(Σ;G), we denote the support of $ ◦ f by
supp(f); we denote its open support by supp′(f). Further, let C(Σ;G)
and C0(Σ;G) be, respectively, the set of continuous sections and continuous
sections vanishing at infinity of the bundle L.

We endow Cc(Σ;G) with a ∗-algebra structure where addition is pointwise
(using (2.2)), multiplication is given by convolution:

f ∗ g(γ̇) =
∑

η̇1η̇2=γ̇

f(η̇1)g(η̇2) =
∑

r(η̇)=r(γ̇)

f(η̇)g(η̇−1γ̇), (2.5)

and the involution is from (2.3):

f∗(γ̇) = f(γ̇−1).

Note that if f, g are supported on bisections B1, B2 and η̇i ∈ Bi then
f ∗ g(η̇1η̇2) = f(η̇1)g(η̇2). We can identify C0(G(0)) with a subalgebra of
continuous sections of the line bundle L by

C0(G(0))→ C0(Σ;G) by φ 7→

(
γ̇ 7→

{
[φ(γ̇), ι(1, γ̇)] γ̇ ∈ G(0)

0 otherwise

)
.

Note that this identification takes pointwise multiplication on C0(G(0)) to
the convolution on Cc(Σ;G).

Second description of Cc(Σ;G): Covariant functions. A function f
on Σ is covariant if for every z ∈ T and γ ∈ Σ,

f(z · γ) = z f(γ).

The second way to describe Cc(Σ;G) is as the set of compactly supported
continuous covariant functions on Σ, that is,

Cc(Σ;G) := {f ∈ Cc(Σ) : ∀γ ∈ Σ ∀z ∈ T f(z · γ) = zf(γ)}. (2.6)
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Addition is pointwise, the involution is f∗(γ) = f(γ−1), and the convolution
multiplication is given by

f ∗ g(γ) =
∑
η̇∈G

r(η̇)=r(γ̇)

f(η)g(η−1γ), (2.7)

where for each η̇ with r(η̇) = r(γ̇), only one representative η of η̇ is chosen.
It is easy to verify that this is well-defined.

Equivalence of the descriptions. To proceed, we need to be more explicit
on how these two descriptions of Cc(Σ;G) are the same. Take f ∈ Cc(Σ)

such that f(z · γ) = zf(γ) for all γ ∈ Σ and z ∈ T. Let f̃ be the section of
the line bundle given by

f̃(γ̇) = [f(γ), γ].

Note that by the definition of the line bundle, this is well-defined.
On the other hand, consider a compactly supported continuous section

f̃ : G→ L. For γ ∈ Σ, the fact that P ◦ f̃ = id |G yields P
(

[1, γ]−1f̃(γ̇)
)

=

s(γ̇). Hence there exists λγ ∈ C such that [1, γ]−1f̃(γ̇) = λγ · [1, s(γ)], that
is,

f̃(γ̇) = λγ · [1, γ] = [λγ , γ].

Define f : Σ→ C by

f(γ) = λγ .

Then f is continuous and compactly supported since f̃ is and satisfies

f(z · γ) = zf(γ). (2.8)

We have thus described a linear isomorphism between the spaces defining
Cc(Σ;G) given in (2.4) and (2.6). It is a routine matter to show this lin-
ear map is a ∗-algebra isomorphism, so that the two descriptions coincide.
Notice that γ ∈ supp(f) if and only if γ̇ ∈ supp(f̃).

Remark 2.4. Technically, the support of a function f : Σ → C satisfying
the covariance condition (2.8) is a subset of Σ, but (2.8) allows us to regard
both supp(f) and supp′(f) as subsets of G. We shall do this. Thus the
notions of support are the same whether f is viewed as a covariant function
or as a section of the line bundle.

To define the reduced groupoid C∗-algebra, we need to define regular
representations. For x ∈ G(0), let Hx = `2(Σx,Gx) be the set of square
summable sections of the line bundle L|Gx; that is,

Hx = {χ : Gx→ P−1(Gx) | for γ̇ ∈ Gx, P (χ(γ̇)) = γ̇, and $◦χ ∈ `2(Gx)}.

Given χ1, χ2 ∈ Hx and γ̇ ∈ Gx, P
(
χ2(γ̇)χ1(γ̇)

)
= x ∈ G(0), so that we

obtain a unique λγ̇ ∈ C so that

χ2(γ̇)χ1(γ̇)) = λγ̇ · [1, x].
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We may therefore define an inner product on Hx: 〈χ1, χ2〉 is the unique
element of C such that∑

γ̇∈Gx
χ2(γ̇)χ1(γ̇) = 〈χ1, χ2〉 · [1, x] = [〈χ1, χ2〉 , x]. (2.9)

The regular representation of Cc(Σ;G) on Hx is then defined as follows.
For f ∈ Cc(Σ, G) and χ ∈ Hx,

(πx(f)χ) (γ̇) =
∑

η̇∈G,ζ̇∈Gx
η̇ζ̇=γ̇

f(η̇)χ(ζ̇) =
∑
η̇∈G

r(η̇)=r(γ̇)

f(η̇)χ(η̇−1γ̇) (γ̇ ∈ Gx).

The reduced C∗-algebra of (Σ;G), denoted C∗r (Σ;G), is the completion
of Cc(Σ;G) under the norm ‖f‖r = supx∈G(0) ‖πx(f)‖.
Remark 2.5. Viewing Cc(Σ, G) as the space of compactly supported sec-
tions of the line bundle affords us an alternative way to describe the regular
representations, as follows. Given x ∈ G(0), define a linear functional εx on
Cc(Σ, G) by defining εx(f) to be the unique scalar such that f(x) = [εx(f), x].
Note that for f ∈ Cc(Σ, G),

εx(f∗f) =
∑
s(γ̇)=x

$(f(γ̇))2 ≥ 0,

so εx is positive. Morever, if also g ∈ Cc(Σ, G), then [15, Proposition 3.10]
shows there exist a finite number of open bisections U1, . . . , Un for G such
that supp(g) ⊆

⋃n
j=1 Uj, from which it follows that

(εx(f∗g∗gf))1/2 ≤ n ‖g‖∞ εx(f∗f)1/2.

Thus the GNS construction may be applied to εx to produce a representa-
tion (πεx ,Hεx) of Cc(Σ;G). Letting Lεx be the left kernel of εx, the map
Cc(Σ;G)/Lεx 3 g+Lεx 7→ g|Gx is isometric and so determines an isometry
W : Hεx → Hx. As G is étale, for γ̇ ∈ Gx, there is an open bisection
U for G with γ̇ ∈ U , and hence we may find g ∈ Cc(Σ;G) supported in
U with g(γ̇) 6= 0. Thus, if h ∈ `2(Σx,Gx) has finite support, there exists
f ∈ Cc(Σ, G) with f |Gx = h. This implies that W is onto, and a calculation
shows that Wπεx = πxW . This shows πx and πεx are unitarily equivalent
representations of Cc(Σ;G). Of course, the same applies when Cc(Σ;G) is
viewed as compactly supported continuous covariant functions on Σ: in this
case εx(f) = f(x).

For x ∈ G(0), it will be useful to have a fixed orthonormal basis for Hx.
For η̇ ∈ Gx, we select δη̇ ∈ Hx such that

($ ◦ δη̇)(γ̇) =

{
1 if γ̇ = η̇

0 otherwise.

and insist in particular that δx(x) = [1, x]. Then

{δη̇ : η̇ ∈ Gx}



214 J.H. BROWN, A.H. FULLER, D.R. PITTS AND S.A. REZNIKOFF

is an orthonormal basis for Hx. In the sequel, we will have occasion to
consider the element δη̇(η̇) ∈ L. By choosing (and fixing) η ∈ q−1(η̇) there
exists a unique λη̇ ∈ T such that

δη̇(η̇) = [λη̇, η]. (2.10)

It is sometimes useful to informally regard
〈
πx(f)δη̇, δζ̇

〉
as a product of

elements of L, and we now give a formula which provides this description.
For f ∈ Cc(Σ;G), x ∈ G(0) and η̇, ζ̇ ∈ Gx, the definition of πx(f) and the
inner product on Hx yield[〈

πx(f)δη̇, δζ̇

〉
, x
]

= δζ̇(ζ̇)f(ζ̇ η̇−1)δη̇(η̇). (2.11)

In particular,
[〈
πx(f)δx, δζ̇

〉
, x
]

= δζ̇(ζ̇)f(ζ̇). Therefore,

f(ζ̇) =
〈
πx(f)δx, δζ̇

〉
· δζ̇(ζ̇) and

∣∣∣〈πx(f)δx, δζ̇

〉∣∣∣ = $(f(ζ̇)). (2.12)

Example 2.6. Suppose that σ is a normalized continuous 2-cocycle on the
étale groupoid G. This is a continuous function from the set of composable
pairs G(2) into T such that σ(γ, s(γ)) = 1 = σ(r(γ), γ) and for all composable
triples, (γ1, γ2, γ3),

σ(γ2, γ3)σ(γ1γ2, γ3)σ(γ1, γ2γ3)σ(γ1, γ2) = 1.

Define Σ := T ×σ G, where T ×σ G is the Cartesian product of T and
G with the product topology and multiplication defined by (z1, γ1)(z2, γ2) =
(z1z2σ(γ1, γ2), γ1γ2). In this case, L may be identified with C × G by φ :
[λ, (z, γ̇)] 7→ (λz, γ̇) and we identify sections of L with functions on G by

f̃ = p1 ◦ φ ◦ f where f ∈ Cc(G; Σ)

where p1 is the projection onto the first factor. Now for compactly supported
sections f, g of L,

f ∗ g(γ̇) =
∑

f(η̇)g(η̇−1γ̇) =
∑

(f̃(η̇), η̇)(g̃(η̇−1γ̇), η̇−1γ̇)

=
∑

[f̃(η̇), (1, η̇)][g̃(η̇−1γ̇), (1, η̇−1γ̇)]

=
∑

[f̃(η̇)g̃(η̇−1γ̇), (σ(η̇, η̇−1γ̇), γ̇)]

=
∑

[f̃(η̇)g̃(η̇−1γ̇)σ(η̇, η̇−1γ̇), (1, γ̇)]

=
(∑

f̃(η̇)g̃(η̇−1γ̇)σ(η̇, η̇−1γ̇), γ̇)
)
.

This last sum is the convolution formula for f̃ , g̃ in Cc(Σ;G) used by Renault
in [31]. In particular, if σ is trivial then we get the usual convolution formula
for étale groupoid C∗-algebras.

We will use the following proposition to find useful subalgebras of the
twisted groupoid C∗-algebra.
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Lemma 2.7. Let T×G(0) ι→ Σ
q→ G be a twist and H be an open subgroupoid

of G. Define ΣH := q−1(H). Then

T×H(0)
ι|
H(0)→ ΣH

q|ΣH→ H

is a twist. Moreover the map κ : Cc(ΣH ;H) ↪→ Cc(Σ;G) defined by extend-
ing functions by zero extends to an inclusion of C∗r (ΣH ;H) into C∗r (Σ;G).

Proof. That T×H(0)
ι|
H(0)→ ΣH

q|ΣH→ H is a twist comes from the facts that
q(ι(λ, x)) = x and γ ∈ ΣH if and only if γ̇ ∈ H.

View elements of Cc(Σ;G) and Cc(ΣH ;H) as sections of line bundles. By
definition, the respective line bundles are LΣH = (C × ΣH)/T and LΣ =
(C × Σ)/T. Therefore, LΣH = LΣ|H . Since H and ΣH are open, we may
define κ : Cc(ΣH ;H) ↪→ Cc(Σ;G) by extending functions by zero.

For each x ∈ X, let εx be defined as in Remark 2.5 and let εHx := εx ◦
κ. Then εx and εHx extend to states on C∗r (Σ;G) and C∗r (ΣH ;H). Let
(πx,Hx) and (πHx ,H

H
x ) be their associated GNS representations and let

Lx ⊆ C∗r (Σ;G) and LHx ⊆ C∗r (ΣH ;H) be the left kernels of εx and εHx
respectively. For h ∈ Cc(ΣH ;H), εHx (h∗ ∗ h) = εx(κ(h)∗ ∗ κ(h)), so the map
on Cc(ΣH ;H) defined by (h + LHx ) 7→ (κ(h) + Lx) extends to an isometry
Wx : HH

x → Hx. A calculation shows that for h ∈ Cc(ΣH ;H), Wxπ
H
x (h) =

πx(κ(h))Wx so that

Wxπ
H
x (h)W ∗x = πx(κ(h))(WxW

∗
x ).

Thus, for h ∈ Cc(ΣH ;H),

‖h‖C∗r (ΣH ;H) = sup
x∈X

∥∥πHx (h)
∥∥ = sup

x∈X
‖Wxπx(κ(h))W ∗x‖

≤ sup
x
‖πx(κ(h))‖ = ‖κ(h)‖C∗r (Σ;G) . (2.13)

Let B = κ(Cc(ΣH ;H)), so B is a C∗-subalgebra of C∗r (Σ;G). By (2.13),
the map κ(h) 7→ h extends to a ∗-epimorphism Θ : B � C∗r (ΣH ;H).

Now let ∆ : C∗r (Σ;G) → C0(X) be the faithful conditional expectation
determined by Cc(Σ;G) 3 f 7→ f |X ; likewise let ∆H : C∗r (ΣH ;H)→ C0(X)
be determined by C0(ΣH ;H) 3 h 7→ h|X . For h ∈ C0(ΣH ;H), ∆(κ(h)) =
∆H(h). Therefore, for b ∈ B, ∆(b) = ∆H(η(b)). So for b ∈ B, Θ(b∗b) = 0
implies b = 0 by the faithfulness of ∆. It follows that Θ is a ∗-isomorphism
of B onto C∗r (ΣH ;H). Therefore, Θ−1 is a ∗-isomorphism of C∗r (ΣH ;H)

onto κ(C0(ΣH ;H)), which is what we needed to show. �

The following proposition allows us to view elements of C∗r (Σ;G) as func-
tions in C0(Σ;G). This proposition was originally proved in the case of
Example 2.6 above by Renault in [31, Proposition II.4.2]. Renault uses it
without proof in the full generality of twists in [33]. As we know of no proof
of [31, Proposition II.4.2] for twists, we provide a proof here at the level of
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generality we will require. Note that C0(Σ, G) can be made into a Banach
space with ‖f‖ = supγ̇∈G$(f(γ̇)).

Proposition 2.8. Let (Σ;G) be a twist with G étale. Then the inclusion
map j : Cc(Σ;G) → C0(Σ;G) extends to a norm-decreasing injective lin-
ear map of C∗r (Σ;G) into C0(Σ;G). Moreover, the algebraic operations of
adjoint and convolution on Cc(Σ;G) extend to corresponding operations on
j(C∗r (Σ;G)): that is, for every a, b ∈ C∗r (Σ;G) and γ̇ ∈ G,

j(a∗)(γ̇) = j(a)(γ̇−1) and j(ab)(γ̇) =
∑

r(η̇)=r(γ̇)

j(a)(η̇) j(b)(η̇−1γ̇). (2.14)

Proof. The algebra Cc(Σ;G) may be regarded as a subalgebra of C∗r (Σ;G)
or as its image under j in C0(Σ;G). First we show that for f ∈ Cc(Σ;G) we
have ‖f‖r ≥ ‖f‖∞. To see this, for γ̇ ∈ G consider δs(γ̇). We have

‖f‖r ≥ ‖πs(γ̇)(f)‖ ≥ ‖πs(γ̇)(f)δs(γ̇)‖ = 〈πs(γ̇)(f)(δs(γ̇)), πs(γ̇)(f)(δs(γ̇))〉1/2

=

√ ∑
s(η̇)=s(γ̇)

|f(η)|2 ≥ |f(γ̇)|.

(2.15)

Thus j extends to a norm decreasing linear map j : C∗r (Σ;G)→ C0(Σ;G).
We turn to showing that j is injective. Since j is norm-decreasing, the

equalities in (2.12) extend to every element of C∗r (Σ;G). Therefore, for any
γ̇ ∈ Gx, and a ∈ C∗r (Σ;G),

‖πx(a)δγ̇‖2 =
∑
u̇∈Gx

| 〈πx(a)δγ̇ , δu̇〉 |2 =
∑
u̇∈Gx

|πx(a)δγ̇(u̇)|2

= |πx(a)δγ̇(γ̇)|2 = |j(a)(γ̇γ̇−1)|2.

So if j(a) = 0, then πx(a) = 0 for every x ∈ G(0). Thus a = 0, so j is
injective.

To verify the first equality in (2.14), observe that it holds for a ∈ Cc(Σ;G).
For general a ∈ C∗r (Σ;G), observe that for any f ∈ Cc(Σ;G), the fact that
j is contractive yields

$(j(a∗(η̇))− j(a)(η̇)) ≤ $(j(a∗− f∗)(η̇)) +$(j(f − a)(η̇−1)) ≤ 2 ‖a− f‖r .
As the right-most term in this inequality can be made as small as desired
by choosing f appropriately, we obtain the first equality.

Before establishing the second, for a ∈ C∗r (Σ;G) and x ∈ G(0), define

‖a‖2,x := ‖πx(a)δx‖ .

Then max{‖a‖2,x , ‖a∗‖2,x} ≤ ‖a‖r and

‖a‖22,x =
∑
η̇∈Gx

| 〈πx(a)δx, δη̇〉 |2 =
∑
η̇∈Gx

|j(a)(η̇)|2
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and, using the first equality in (2.14),

‖a∗‖22,x =
∑
η̇∈xG

|j(a)(η̇)|2.

To establish the second equality in (2.14), first note it holds when a, b ∈
Cc(Σ;G). Now let a, b ∈ C∗r (Σ;G) be arbitrary. Suppose (fi), (gi) are nets
in Cc(Σ;G) such that ‖fi − a‖r → 0 and ‖gi − b‖r → 0. Then

$

 ∑
r(η̇)=r(γ̇)

j(fi)(η̇) j(gi)(η̇
−1γ̇)−

∑
r(η̇)=r(γ̇)

j(a)(η̇) j(b)(η̇−1γ̇)


= $

 ∑
r(η̇)=r(γ̇)

j(fi)(η̇) j(gi − b)(η̇−1γ̇) +
∑

r(η̇)=r(γ̇)

j(fi − a)(η̇) j(b)(η̇−1γ̇)


≤ ‖f∗i ‖2,r(γ̇) ‖gi − b‖2,s(γ̇) + ‖f∗i − a∗‖2,r(γ̇) ‖b‖2,s(γ̇)

≤ ‖fi‖r ‖gi − g‖r + ‖fi − a‖r ‖b‖r ,

from which it follows that

lim
i→∞

∑
r(η̇)=r(γ̇)

j(fi)(η̇) j(gi)(η̇
−1γ̇) =

∑
r(η̇)=r(γ̇)

j(a)(η̇) j(b)(η̇−1γ̇).

Therefore, for every γ̇ ∈ G,

j(ab)(γ̇) =
〈
πs(γ̇)(ab)δs(γ̇), δγ̇

〉
δγ̇(γ̇) = lim j(figi)(γ̇)

= lim
∑

r(η̇)=r(γ̇)

fi(η̇)gi(η̇
−1γ̇) =

∑
r(η̇)=r(γ̇)

a(η̇)b(η̇−1γ̇),

as desired. �

Definition 2.9. Let G be an étale groupoid and Γ a discrete abelian group.
A twist graded by Γ is a twist T × G(0) ↪→ Σ � G over G together with
continuous groupoid homomorphisms cΣ : Σ→ Γ and cG : G→ Γ such that
the diagram,

T×G(0) // Σ

c
Σ ��

// G

c
G

��
Γ

(2.16)

commutes. We will sometimes abbreviate (2.16) and simply say Σ → G is
a Γ-graded twist.

For ω ∈ Γ̂ and t ∈ Γ we denote the natural pairing ω(t) by 〈ω, t〉. We will
use additive notation for the group Γ and multiplicative notation for the
group Γ̂. We now show that the grading maps cΣ and cG induce an action
of Γ̂ on C∗r (Σ;G). This fact is well known to experts but we include a proof
for completeness.
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Lemma 2.10. Suppose Σ→ G is a Γ-graded twist. There exists a continu-
ous action of Γ̂ on C∗r (Σ;G) characterized by

(ω · f)(γ̇) = 〈ω, cG(γ̇)〉f(γ̇)

where ω ∈ Γ̂ and f ∈ Cc(Σ;G).

Proof. First we check that the action is multiplicative. For this we compute

(ω · f) ∗ (ω · g)(γ̇) =
∑

r(η̇)=r(γ̇)

(ω · f)(η̇)(ω · g)(η̇−1γ̇)

=
∑

r(η̇)=r(γ̇)

〈ω, c(η̇)〉f(η̇)〈ω, c(η̇−1γ̇)〉g(η̇−1γ̇)

= 〈ω, c(γ̇)〉
∑

r(η̇)=r(γ̇)

f(η̇)g(η̇−1γ̇) = (ω · (f ∗ g))(γ̇).

Now let L be the line bundle over G associated to Σ and for x ∈ G(0) let
Lx := L|Gx. Consider the regular representation πx of C∗r (Σ;G) associated

to x ∈ G(0).
For χ ∈ Hx define χω ∈ Hx by χω(γ̇) := 〈ω, c(γ̇)〉χ(γ̇). Then ‖χω‖2 =

‖χ‖2, so the mapping χ 7→ χω is a unitary Wω ∈ B(Hx).
So for f ∈ Cc(Σ;G),

πx(ω · f)χ(γ̇) =
∑

r(η̇)=r(γ̇)

〈ω, c(η̇)〉f(η̇)χ(η̇−1γ̇)

=
∑

r(η̇)=r(γ̇)

〈ω, c(γ̇)〉〈ω, c(γ̇)〉〈ω, c(η̇−1)〉f(η̇)χ(η̇−1γ̇)

= 〈ω, c(γ̇)〉
∑

r(η̇)=r(γ̇)

f(η̇)χω(η̇−1γ̇) = 〈ω, c(γ̇)〉πx(f)χω(γ̇).

This then implies that ‖πx(ω · f)χ‖ = ‖πx(f)χω‖. So now

‖πx(ω·f)‖ = sup
‖χ‖=1

‖πx(ω·f)χ‖ = sup
‖χ‖=1

‖πx(f)χω‖ = sup
‖χ‖=1

‖πx(f)χ‖ = ‖πx(f)‖

and since this holds for all x we get

‖ω · f‖r = ‖f‖r

as desired.
Now suppose that we have nets ωi → ω and ai → a ∈ C∗r (G; Σ). Consider

ωi · ai − ω · a = ωi · ai − ωi · a+ ωi · a− ω · a. Since ‖ω · a‖r = ‖a‖r, to show
ωi · ai → ω · a it suffices to show ωi · a→ ω · a. For i sufficiently large we can
assume ‖a‖r sup |〈ωi − ω · c(η̇)〉| < ε. Now
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‖πx(ωi · a− ω · a)χ‖ = ‖
∑

r(η̇)=r(γ̇)

〈ωiω−1, c(η̇)〉a(η̇)χ(η̇−1γ̇)‖

= ‖〈ωiω−1, c(γ̇)〉
∑

r(η̇)=r(γ̇)

a(η̇)χωiω−1(η̇−1γ̇)‖

≤ |〈ωiω−1, c(γ̇)〉|‖a‖r < ε.

Since this holds for all x ∈ G(0) we get the result. �

Remark 2.11. When elements of Cc(Σ;G) are viewed as in (2.6), the action

of Γ̂ on C∗r (Σ;G) is characterized by

(ω · f)(γ) = 〈ω, cΣ(γ)〉 f(γ),

where ω ∈ Γ̂ and f ∈ Cc(Σ) is covariant.

3. Γ-Cartan pairs and abelian group actions

In this section we define the main objects of our study, Γ-Cartan pairs,
and explore the relationship between Γ-Cartan pairs and strongly continu-
ous actions of compact abelian groups on C∗-algebras. We first give some
preliminary results on topologically graded C∗-algebras.

Definition 3.1. A C∗-algebra A is topologically graded by a (discrete
abelian) group Γ if there exists a family of linearly independent closed linear
subspaces {At}t∈Γ of A such that

• AtAs ⊆ At+s,
• A∗t = A−t,
• A is densely spanned by {At}t∈Γ; and
• there is a faithful conditional expectation from A onto A0.

Definition 3.2. Let A be a C∗-algebra topologically graded by a group Γ.
We call an element a ∈ A homogeneous if a ∈ At for some t. Let D ⊆ A0

be an abelian subalgebra. We denote the set of normalizers of D in A by
N(A,D) or simply N . Also, n is a homogeneous normalizer if it is both
a normalizer and homogeneous: that is, n is a normalizer and n ∈ At for
some t ∈ Γ. We denote the set of homogeneous normalizers by Nh(A,D) or
simply Nh. Notice that for n ∈ Nh and d ∈ D we have nd, dn ∈ Nh.

The term topologically graded was introduced by Exel [14]; see also [16].
An action of a compact abelian group on a C∗-algebra produces a topo-

logical grading, which we now describe in some detail.
Let Γ be a discrete abelian group and A a C∗-algebra. As is customary,

we say Γ̂ acts strongly on A if there is a strongly continuous group of au-
tomorphisms on the C∗-algebra A indexed by Γ̂. That is, there is a map
Γ̂×A→ A, written (ω, a) 7→ ω · a such that:

(1) for every ω, a 7→ ω · a is an automorphism βω of A;
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(2) the map ω 7→ βω is a homomorphism of Γ̂ into Aut(A); and
(3) for each a ∈ A, the map ω 7→ ω · a is norm continuous.

Let AΓ̂ be the fixed point algebra under this action. For t in Γ and a ∈ A
define

Φt(a) :=

∫
Γ̂
(ω · a)〈ω−1, t〉dω, (3.1)

and let
At = Φt(A)

be the range of Φt. Then for each t ∈ Γ, Φt is a completely contractive and
idempotent linear map. The following simple fact is worth noting.

Lemma 3.3. The map Φ0 : A→ AΓ̂ = A0 is a faithful conditional expecta-
tion.

Sketch of Proof. That Φ0 is a conditional expectation is clear, so it re-
mains to show Φ0 is faithful. If Φ0(a∗a) = 0, then for every state ρ on A,∫

Γ̂ ρ(ω · (a∗a)) dω = 0. Thus ρ(ω · (a∗a)) = 0 for every state ρ and every

ω ∈ Γ̂. Taking ω to be the unit element gives ρ(a∗a) = 0 for every state, so
a∗a = 0. �

We now characterize the homogeneous elements of A. The following
lemma is a generalization of [1, Lemma 5.2.10]. where it is proved for Γ = Z.

Lemma 3.4. Suppose Γ̂ acts strongly on A. The following statements hold
for all t ∈ Γ, a, b ∈ A.

(1) a ∈ At iff for every σ ∈ Γ̂, ω · a = 〈ω, t〉a.
(2) a ∈ At iff a∗ ∈ A−t.
(3) If a ∈ At, b ∈ As then ab ∈ At+s.

(4) If a ∈ At and s ∈ Γ, then Φs(a) =

{
a if s = t;

0 otherwise.

Proof. Let a ∈ At and σ ∈ Γ̂. Then

σ · a = σ · Φt(a) =

∫
Γ̂
((σω) · a)

〈
ω−1, t

〉
dω =

∫
Γ̂
(ω · a)

〈
ω−1, tσ

〉
dω

= 〈σ, t〉Φt(a) = 〈σ, t〉a.

Conversely if σ · a = 〈σ, t〉a for every σ ∈ Γ̂, then

Φt(a) =

∫
Γ̂
(ω · a)〈ω−1, t〉dω =

∫
Γ̂
a〈ω, t〉〈ω−1, t〉dω = a.

Items (2) and (3) follow immediately since σ · (a∗) = (σ · a)∗ = 〈σ, t〉a∗ =
〈σ,−t〉a∗ and σ · (ab) = (σ · a)(σ · b) = 〈σ, t〉 a〈σ, s〉b = 〈σ, t+ s〉ab.

Lastly for (4),

Φs(a) =

∫
Γ̂
(ω · a)〈ω−1, s〉dω = a

∫
Γ̂
〈ω, t〉〈ω−1, s〉dω = δs,ta. �
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The following lemma and its corollary show the linear span of the homo-
geneous spaces {At}t∈Γ is dense in A. We thank Ruy Exel for showing us
the simple proof.

Lemma 3.5. Suppose the compact abelian group Γ̂ acts strongly on the C∗-
algebra A, and a ∈ A. Then a ∈ span{Φt(a) : t ∈ Γ}.

Proof. Let B := span{Φt(a) : t ∈ Γ}. Suppose ρ is a bounded linear

functional on A which annihilates B. Define ga : Γ̂→ C by ga(ω) = ρ(ω ·a).
Compute the Fourier transform of ga: for t ∈ Γ,

ĝa(t) =

∫
Γ̂
ga(ω)〈ω, t〉 dβ

= ρ

(∫
Γ̂
(ω · a)〈ω, t〉 dω

)
= ρ(Φt(a)) = 0.

Since the Fourier transform is one-to-one, ga = 0. Taking ω = 1, we get
ρ(a) = 0. As this does not depend on the choice of ρ, by the Hahn-Banach
theorem, a ∈ B �

As an immediate corollary we get that {At}t∈Γ has dense span in A.

Corollary 3.6. Suppose the compact abelian group Γ̂ acts on the C∗-algebra
A. For t ∈ Γ, let At := {a ∈ A : β · a = 〈β, t〉 a for every β ∈ Γ̂}. Then
A = span{At : t ∈ Γ}.

Remark 3.7. Lemmas 3.4 and 3.5 show that if Γ̂ acts strongly on A, then
A is topologically graded by Γ. In particular, when Σ → G is a Γ-graded
twist, Lemma 2.10 shows that C∗r (Σ;G) is topologically graded by Γ. In [30,
Theorem 3] the converse to Lemma 3.4 is proved: it is shown that if A is

topologically graded by Γ, then there is a strongly continuous action of Γ̂ on
A such that a ∈ At if and only if

a =

∫
Γ̂
(ω · a)〈ω−1, t〉 dω.

We now observe that the proof of Lemma 3.5 can be used to show that if
spanN(A,D) = A then spanNh(A,D) = A. Here are the details.

Proposition 3.8. Suppose Γ̂ acts on A and that D is a MASA in A0. If
n ∈ N , then for every t ∈ Γ, Φt(n) ∈ Nh and n ∈ span{Φt(n) : t ∈ Γ}.
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Proof. Fix n ∈ N . By Lemma 3.5 it suffices to show Φt(n) ∈ Nh. Let

d ∈ D. Then Φt(n)∗dΦt(n) ∈ A0. For e ∈ D, and ω ∈ Γ̂, ω · e = e. So

Φt(n)∗dΦt(nn
∗n)e = Φt(n)∗d

∫
Γ̂
ω · n(ω · (n∗ne))〈ω−1, t〉dω

= Φt(n)∗d

∫
Γ̂
ω · (nen∗n)〈ω−1, t〉dω

= Φt(n)∗dnen∗Φt(n) = Φt(n)∗nen∗dΦt(n)

=

∫
Γ̂
ω · (n∗nen∗)〈ω, t〉dωdΦt(n)

= n∗neΦt(n)∗dΦt(n) = en∗nΦt(n)∗dΦt(n)

= eΦt(nn
∗n)∗dΦt(n).

This relation holds if we replace n∗n by a polynomial in n∗n and by taking
limits we see that it holds if we replace n∗n by (n∗n)1/k for any k ∈ N.

Since limk n(n∗n)1/k = n, we find that Φt(n)∗dΦt(n) commutes with every
element of D. Since D is a MASA in A0, Φt(n)∗dΦt(n) ∈ D. A similar
argument shows that Φt(n)dΦt(n)∗ ∈ D. So Φt(n) ∈ Nh. �

We now define a main object of study.

Definition 3.9. Let A be C∗-algebra topologically graded by a discrete abelian
group Γ and D an abelian C∗-subalgebra of A0. We say the pair (A,D) is
Γ-Cartan if

(1) D is Cartan in A0,
(2) N(A,D) spans a dense subset of A.

The following observations are simple but important. In particular, for
Γ-Cartan pairs we may focus on homogeneous normalizers in place of more
general normalizers.

Lemma 3.10. Suppose (A,D) is a Γ-Cartan pair. The following statements
hold.

(1) The span of the homogeneous normalizers, Nh(A,D), is dense in A.
(2) If (ei) is an approximate unit for A0, then (ei) is an approximate

unit for A.
(3) For any n ∈ N(A,D), n∗n and nn∗ belong to D.
(4) Any approximate unit for D is an approximate unit for A.

Proof. As noted in Remark 3.7, a topological grading arises from an action
of a compact abelian group. By Proposition 3.8, Nh(A,D) spans a dense
subset of A.

Now suppose (ei) is an (not necessarily countable) approximate unit for
A0. Let n ∈ Nh. Then nn∗ and n∗n belong to A0. Since (ei) is an approxi-
mate unit for A0,

(ein− n)(ein− n)∗ = einn
∗ei − nn∗ei − einn∗ + nn∗ → 0, (3.2)
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whence ein → n. Similarly, nei → n. Hence for any a ∈ spanNh, eia → a
and aei → a. Since spanNh is dense in A, (ei) is an approximate unit for
A.

Since (A0, D) is a Cartan pair, D contains an approximate unit (ei) for
A0. By part (2), (ei) is also an approximate unit for A. Then for any
n ∈ N(A,D), D 3 n∗ein→ n∗n, so n∗n ∈ D. Likewise, nn∗ ∈ D.

Finally, if (ei) is an approximate unit for D and n ∈ N , (3.2) together
with the fact that nn∗ ∈ D, gives ein → n; likewise nei → n. As before,
spanN = A implies (ei) is an approximate unit for A. �

4. Twists from Γ-Cartan pairs

Throughout this section, we consider a fixed Γ-Cartan pair (A,D). The

purpose of this section is to define a twist D̂ × T → Σ → G from the pair
(A,D) so that A ∼= C∗r (Σ;G) and D ∼= C0(G(0)). This task is completed
in Theorem 4.19. Our methods follow those found in Kumjian [18] and
Renault [33], and also use techniques from Pitts [26]. (The methods in [26]
have been extended and updated in Pitts [28].)

Renault and Kumjian construct a twist from the Weyl groupoid associated
to a Cartan pair by first considering a groupoid G of germs and then using
the multiplicative structure of the normalizers to construct the twist as an
extension Σ of G by T×G(0). Finally, they recognize Σ as a family of linear
functionals on A.

To a certain extent, we follow the Kumjian-Renault approach. We will
define Σ and G in two ways. We first construct sets Σ and G using the
Weyl groupoid (the topologies and groupoid operations come later). After
doing so, we identify Σ as a family of linear functionals and G as as a
family of (non-linear) functions on A. The product on Σ and G is obtained
by translating the product on A to Σ utilizing the first approach, and the
second approach makes defining the topologies on Σ and G straightforward.
Viewing Σ and G as functions highlights the parallel between the Gelfand
theory for commutative C∗-algebras and relationship of the twist and the
pair (A,D) more transparent.

To begin, we fix some notation. Write

X := D̂.

We generally identify D with C0(X); thus for x ∈ X and d ∈ D, we write

d(x) instead of d̂(x).
Let E denote the faithful conditional expectation E : A0 → D. By [30]

there is a corresponding strong action of Γ̂ on A. We denote by Φt the
completely contractive map Φt : A→ At as defined in Equation (3.1). Set

∆ := E ◦ Φ0.

By Lemma 3.3, ∆ is a faithful conditional expectation of A onto D.
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For n ∈ N , Lemma 3.10 gives n∗n, nn∗ ∈ D; let

dom(n) := {x ∈ D̂ : n∗n(x) > 0} and ran(n) := {x ∈ D̂ : nn∗(x) > 0}.

By the definition of normalizer, ndn∗ ∈ D for all d ∈ D. So Nh acts on
D by conjugation. As D is abelian, this induces a partial action α on the
spectrum. The following result of Kumjian gives a precise description of this
action.

Proposition 4.1. [18, Proposition 1.6] Let n ∈ N . Then there exists a
unique partial homeomorphism αn : dom(n) → ran(n) such that for each
d ∈ D and x ∈ dom(n),

(n∗dn)(x) = d(αn(x)) (n∗n)(x).

When the action is clear from the context, we will sometimes write

n.x := αn(x).

By [33, Lemma 4.10] (or [18, Corollary 1.7]), for n,m ∈ N and d ∈ D we
have

αn ◦ αm = αmn, αn∗ = α−1
n , and αd = idsupp′(d) .

The collection {αn : n ∈ N} is an inverse semigroup, sometimes called the
Weyl semigroup of the inclusion (A,D).

Dual to the Weyl semigroup is a collection of partial automorphisms
{θn : n ∈ N} of D. Given n ∈ N , nn∗D and n∗nD are ideals of D
whose Gelfand spaces may be identified with ran(n) and dom(n) respectively.
By [27, Lemma 2.1], the map nn∗D 3 d 7→ n∗dn ∈ n∗Dn extends uniquely
to a ∗-isomorphism θn : nn∗D → n∗nD such that for every d ∈ nn∗D,

dn = nθn(d) (4.1)

and for every x ∈ dom(n),

θn(d)(x) = d(αn(x)). (4.2)

Lemma 4.2. Suppose n ∈ Nh(A,D) and x ∈ X such that ∆(n)(x) 6= 0.
Then x is in the interior of the set of fixed points of αn and there exists
h ∈ D such that h(x) = 1 and nh = hn ∈ D.

Proof. First note n ∈ A0 because 0 6= ∆(n)(x) = E(Φ0(n))(x), and thus
Φ0(n) 6= 0. Furthermore, x ∈ dom(n) and [27, Lemma 2.5] gives αn(x) = x.
We claim that x is actually in the interior of the set of fixed points of αn.
If not, then there exists a net (xi) in dom(n) such that αn(xi) 6= xi and
xi → x. Then ∆(n)(xi) → ∆(n)(x) 6= 0. However, by [27, Lemma 2.5]
again, ∆(n)(xi) = 0 for all i, a contradiction.

Now let F be the interior of the set of fixed points of αn and J := {d ∈
D : supp d ⊆ F}. For S ⊆ D let

S⊥ = {a ∈ D : ax = 0 for all x ∈ S}.
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Note that J⊥⊥ is the fixed point ideal K0 for n (see [27, Definition 2.13]).
Then by [27, Lemma 2.15] there exists h ∈ D with h(x) = 1 and nh = hn ∈
D′. But n ∈ A0 and h ∈ D, so nh ∈ A0 ∩ D′ = D because D is maximal
abelian in A0. Thus nh = hn ∈ D. This completes the proof. �

The following is an interesting structural fact about the relationship be-
tween ∆ and the action of Nh on D, which is used when defining the inverse
operation on Σ.

Proposition 4.3. For any n ∈ Nh and a ∈ A,

n∗∆(a)n = ∆(n∗an).

Proof. To begin, we claim that for m ∈ Nh,

n∗∆(nm)n = n∗n∆(mn). (4.3)

Since the terms on both sides of (4.3) belong to D, it suffices to show that
for every x ∈ X

(n∗∆(nm)n)(x) = (n∗n∆(mn))(x). (4.4)

As n = limk→∞ n(n∗n)1/k, both sides of (4.4) vanish if (n∗n)(x) = 0. Thus
to obtain (4.4) it suffices to prove that for x ∈ dom(n)

∆(nm)(αn(x)) = ∆(mn)(x), (4.5)

and this is what we shall do.
Suppose first that ∆(nm)(αn(x)) 6= 0. Lemma 4.2 shows there exists

k ∈ D with k(αn(x)) = 1 and nmk = knm ∈ D. Then

∆(nm)(αn(x)) = (k∆(nm))(αn(x)) = ∆(knm)(αn(x))

= (knm)(αn(x)) =
(n∗(knm)n)(x)

(n∗n)(x)
=

∆((n∗kn)mn)(x)

(n∗n)(x)

=
(n∗kn)(x)

(n∗n)(x)
∆(mn)(x) = k(αn(x))∆(mn)(x) = ∆(mn)(x).

Next, suppose ∆(mn)(x) 6= 0 and put y = αn(x). We do a similar
calculation. Another application of Lemma 4.2 produces h ∈ D with h(x) =
1 and mnh = hmn ∈ D. As x = αn∗(y),

∆(mn)(x) = (mnh)(αn∗(y)) =
(n(mnh)n∗)(y)

(nn∗)(y)
=

∆(nm(nhn∗))(y)

(nn∗)(y)

= ∆(nm)(y)
(nhn∗)(y)

(nn∗)(y)
= ∆(nm)(αn(x))h(αn∗(y))

= ∆(nm)(αn(x))h(x) = ∆(nm)(αn(x)).

We have shown that ∆(mn)(x) 6= 0 if and only if ∆(nm)(αn(x)) 6= 0, and,
when this occurs, ∆(mn)(x) = ∆(nm)(αn(x)). Thus (4.5) holds, completing
the proof of the claim.
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By varying m and using the facts that n∗n ∈ D (Lemma 3.10(3)) and
spanNh = A, (4.3) implies that for every a ∈ A, n∗∆(na)n = (n∗n)∆(an) =
∆(n∗(na)n). Therefore, for every a ∈ nA,

n∗∆(a)n = ∆(n∗an).

Given k ∈ N, there exists a sequence of polynomials {pj} each of which

vanish at the origin such that (nn∗)1/k = limj pj(nn
∗). Thus, for a ∈ A and

k ∈ N, (nn∗)1/ka(nn∗)1/k ∈ nA. Hence for each a ∈ A,

n∗∆(a)n = lim
k
n∗(nn∗)1/k∆(a)(nn∗)1/kn = lim

k
n∗
(

∆((nn∗)1/ka(nn∗)1/k)
)
n

= lim
k

∆(n∗(nn∗)1/ka(nn∗)1/kn) = ∆(n∗an).

This completes the proof. �

4.1. Local equivalence relations from homogeneous normalizers.
Let

G := {(n, x) ∈ Nh ×X : n∗n(x) 6= 0}.
We now define two equivalence relations on G arising as germs of the subsemi-
group of the Weyl semigroup arising from homogeneous normalizers. While
we shall define the groupoids Σ and G in the twist Σ → G as functions on
A, the equivalence relations below will enable us to define the multiplicative
structure on Σ and G.

Definition 4.4. For (n, x), (n′, x′) ∈ G, consider

(1) x = x′,
(2Σ) there exist d, d′ ∈ Cc(X) such that d(x) > 0, d′(x) > 0 and nd = n′d′,
(2G) there exist d, d′ ∈ Cc(X) such that d(x) 6= 0, d′(x) 6= 0 and nd = n′d′.

By (4.1) and (4.2), the latter two conditions may equivalently be replaced
with the following conditions.

(2Σ
′) There exist d, d′ ∈ Cc(X) such that d(αn(x))) > 0, d′(αn(x))) > 0

and dn = d′n′.
(2G
′) There exist b, b′ ∈ Cc(X) such that d(αn(x))) 6= 0, d′(αn(x))) 6= 0

and dn = d′n′.

Note that in conditions (2Σ) and (2G), we may assume that d, d′ ∈ n∗nD ∩
n′∗n′D; likewise we may assume d, d′ ∈ nn∗D ∩ n′n′∗D in conditions (2Σ

′)
and (2G

′).
Define ∼Σ as the relation given by (1) and (2Σ) and ∼G as the relation

given by (1) and (2G). We omit the proof that these are equivalence relations.
We denote the equivalence classes by [n, x]Σ, [n, x]G respectively. We shall
omit the subscript when the proof does not depend on which relation is used.
Following Renault [33], define

ΣA,D,Γ := G/ ∼Σ and GA,D,Γ := G/ ∼G .
We omit the A,D,Γ from the notation and write Σ and G respectively when
the inclusion and grading are clear from context.
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Essentially, G is a modification of the groupoid of germs of the α action
and Σ is a twist on this. The following is a useful observation.

Lemma 4.5. For i = 1, 2 suppose (ni, xi) ∈ G and [n1, x1] = [n2, x2]. Then
n∗1n2 ∈ A0.

Proof. We do this only for ∼G, leaving the obvious modifications for ∼Σ

to the reader. By definition of ∼G, x1 = x2 =: x and there exist d1, d2 ∈ D
with di(x) 6= 0 and n1d1 = n2d2. Then nidi ∈ Nh and d∗1n

∗
1n2d2 = d∗1n

∗
1n1d1

is a non-zero element of D. Since ni ∈ Nh, there exists t ∈ Γ̂ such that
n∗1n2 ∈ At. But At is a D-bimodule, so d∗1n

∗
1n2d2 ∈ A0 ∩ At, whence t =

0. �

It is useful to have an alternative description of the equivalence relations
∼Σ and ∼G before continuing.

Definition 4.6. For (n, x), (n′, x′) ∈ G, consider the properties

(i) x = x′,
(iiΣ) ∆(n∗n′)(x) > 0, and
(iiG) ∆(n∗n′)(x) 6= 0.

Define ≈Σ to be the relation on G given by (i) and (iiΣ), and define ≈G be
the relation on G given by (i) and (iiG).

Proposition 4.7. The relations ≈Σ and ∼Σ are the same. Likewise, the
relations ≈G and ∼G are the same.

Proof. We prove ≈Σ and ∼Σ are the same. The proof for ≈G and ∼G is
similar.

Suppose (n, x) ≈Σ (n′, x′). Then x = x′ and ∆(n∗n′)(x) > 0. Since
n, n′ are homogeneous normalizers, so is n∗n′. Lemma 4.2 implies there is
an h ∈ D such that hn∗n′ = n∗n′h ∈ D and h(x) > 0. Now consider the
equalities,

n(n∗n′h)((n′h)∗n′h) = nn∗[((n′h)(n′h)∗)n′h] = n′h(nn∗◦α(n′h)∗)(n
′h)∗(n′h).

Take d = (n∗n′h)((n′h)∗n′h) and d′ = h(nn∗ ◦ α(n′h)∗)(n
′h)∗(n′h), so that

nd = n′d′. Note

d(x) = n∗n′(x)h(x)((n′h)∗n′h)(x) > 0 and

d′(x) = h(x)(nn∗ ◦ α(n′h)∗)(x)((n′h)∗(n′h))(x) > 0.

Thus (n, x) ∼Σ (n′, x). The converse follows immediately from the defini-
tions. �

4.2. Viewing Σ as linear functionals. Our next goal is to show that Σ
may be identified as a family of linear functionals on A and G as a family of
functions on A. This highlights the role of the inclusion (A,D) in producing
Σ and G and will allow us to easily define Hausdorff topologies on Σ and G.
In addition, for a ∈ A we will define â : Σ→ C by â([n, x]) = [n, x](a). The
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main result of this section shows that the map A 3 a 7→ â ∈ C∗r (Σ;G) is an
isomorphism which in a natural sense extends the the Gelfand transform.

We write A# for the Banach space dual of A. For f ∈ A#, let f∗ ∈ A#

be defined by A 3 a 7→ f(a∗) and let |f | be the function on A defined by
|f |(a) = |f(a)|. For a non-empty subset K ⊆ A#, write |K| := {|f | : f ∈
K}. Equip K with the relative weak-∗ topology and |K| with the quotient
topology arising from the surjective map, K 3 f 7→ |f |. Then K and |K|
are Hausdorff.

Put

S := {x ◦∆ : x ∈ X},
so S consists of all states of the form A 3 a 7→ ∆(a)(x). Then S is a family
of state extensions of pure states on D to all of A. We make the following
observations.

Observations 4.8.

(1) With the relative weak-∗ topology (i.e. the σ(A#, A)-topology) on
S, the restriction map, S 3 ψ 7→ ψ|D is a homeomorphism of S
onto X.

(2) Lemma 4.2 implies that if ψ ∈ S, then for every n ∈ Nh,

|ψ(n)|2 ∈ {0, ψ(n∗n)}. (4.6)

This condition is a variant of the notion of compatible state intro-
duced in [27], the difference being that (4.6) is required to hold only
for elements of Nh rather than all of N as in [27].

By [27, Proposition 4.4(iii)] and the Cauchy-Schwartz inequality,
the compatibility condition (4.6) implies that in the GNS represen-
tation (πψ,Hψ) associated to ψ, the set of vectors V := {n+Lψ : n ∈
Nh} has the property that any two vectors in V are either orthogonal
or parallel; here Lψ is the left kernel of ψ, Lψ := {a ∈ A : ψ(a∗a) =
0}. Notice also that spanV is dense in Hψ.

For any (n, x) ∈ G, define an element of A# by

ψ(n,x)(a) :=
∆(n∗a)(x)

|n|(x)
. (4.7)

Simple calculations show that
∥∥ψ(n,x)

∥∥ = 1 and for d1, d2 ∈ D and a ∈ A,

ψ(n,x)(d1ad2) = d1(αn(x))ψ(n,x)(a)d2(x).

In other words, in the language of [12, Section 2], ψ(n,x) is a norm one
eigenfunctional with source s(ψ(n,x)) = x and range r(ψ(n,x)) = αn(x). Fur-
thermore, observe that (n, x) ∈ G⇔ (n∗, αn(x)) ∈ G and a calculation using
Proposition 4.3 shows that for (n, x) ∈ G,

ψ∗(n,x) = ψ(n∗,αn(x)). (4.8)
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For later use, notice that for d ∈ D with d(x) > 0 and z ∈ T,

ψ(nd,x) = ψ(n,x) and ψ(zn,x) = zψ(n,x). (4.9)

Let
E := {ψ(n,x) : (n, x) ∈ G}. (4.10)

Since a state ψ on a C∗-algebra B is uniquely determined by |ψ|, it also
makes sense to define source and range maps on |E| by s(|ψ(n,x)|) = x and
r(|ψ(n,x)|) = αn(x). Then the source and range maps carry E and |E| onto
X.

Given ψ ∈ E, write ψ = ψ(n,x) ∈ E, and choose m ∈ Nh such that
ψ(m) 6= 0. Notice that for any a ∈ A, we have

∆(a)(x) =
ψ(ma)

ψ(m)
and ∆(a)(m.x) =

ψ(am)

ψ(m)
. (4.11)

(Indeed, since ψ(m) 6= 0, Lemma 4.2 gives n ∼G m, and a computation
gives (4.11).) Setting

s(ψ) :=
ψ(ma)

ψ(m)
and r(ψ) =

ψ(am)

ψ(m)
, (4.12)

then s(ψ) = s(ψ) ◦ ∆ and r = r(ψ) ◦ ∆. Thus s(ψ) and r(ψ) are the
(necessarily unique) elements of S satisfying

s(ψ)|D = s(ψ) and r(ψ)|D = r(ψ).

Also, notice that S ⊆ E, for if ψ = x ◦ ∆ ∈ S, then ψ = ψ(d,x) for any
d ∈ D with d(x) > 0. Also, it follows easily (using Lemma 4.2) that

S = {ψ(n,x) : ∆(n)(x) > 0} = {ψ(d,x) : d ∈ D and d(x) > 0}. (4.13)

We list a few additional properties of E and |E|.

Lemma 4.9. The following statements hold.

(1) The map ψ(n,x) 7→ [n, x]Σ is a well-defined bijection of E onto Σ.
(2) If g ∈ E and m ∈ Nh satisfies g(m) > 0, then g = ψ(m,s(g)).
(3) E ∪ {0} is weak-∗ compact; in particular E is locally compact. Fur-

thermore, s, r are continuous mappings of E onto X.
(4) The map |ψ(n,x)| 7→ [n, x]G is a well-defined bijection of |E| onto G.
(5) If |φ| ∈ |E| and m ∈ Nh satisfies |φ|(m) 6= 0, then |φ| = |ψ(m,s(|φ|))|.
(6) |E| is locally compact and s, r are continuous mappings of |E| onto

X.

Proof. We prove statements (1), (2) and (3), leaving the others to the
reader. To establish the first, it suffices to show ψ(n1,x1) = ψ(n2,x2) if and
only if [n1, x1]Σ = [n2, x2]Σ and this is what we do.

Suppose ψ(n1,x1) = ψ(n2,x2). Applying the source map gives x1 = x2; write
x := x1 = x2. Now

0 < ψ(n2,x)(n2) = ψ(n1,x)(n2) =
∆(n∗1n2)(x)

|n1|(x)
,
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which implies ∆(n∗1n2)(x) > 0. Proposition 4.7 now gives [n1, x1]Σ =
[n2, x2]Σ. Conversely, if [n1, x1]Σ = [n2, x2]Σ, then x1 = x2 =: x and there
exists d1, d2 ∈ D with d1(x) > 0 and d2(x) > 0 such that n1d1 = n2d2. Then

ψ(n1,x1) = ψ(n1,x) = ψ(n1d1,x) = ψ(n2d2,x) = ψ(n2,x2).

This gives statement (1).
For statement (2), write φ = ψ(n,x) and apply Proposition 4.7 and part

(1).
Turning now to statement (3), s(ψ(n,x)) = x◦∆ and r(ψ(n,x)) = αn(x)◦∆,

so the maps s, r : E → S are surjective. They are continuous by (4.12), so
s, r : E→ X are also continuous surjections.

Next suppose that ψ(ni,xi) is a net in E converging weak-∗ to φ ∈ A#; write
ψi := ψ(ni,xi). If φ = 0, there is nothing to do. So suppose φ 6= 0. By [12,
Proposition 2.3], φ is an eigenfunctional. Thus if x := s(φ), continuity of s
yields xi → x.

Since spanNh is dense in A, there exists n ∈ Nh such that φ(n) > 0.

Since n(n∗n)1/k → n as k → ∞, we have 0 < φ(n) = limk φ(n(n∗n)1/k) =

φ(n) limk(n
∗n)1/k(x). Thus n∗n(x) 6= 0 and so (n, x) ∈ G. Since ψi → φ,

ψi(n) is eventually nonzero, so we may as well assume that ψi(n) 6= 0 for
every λ. Proposition 4.7 implies (ni, xi) ∼G (n, xi). Hence there exists
zi ∈ T such that ψi = ψ(zin,xi) = zi · ψ(n,xi). Therefore,

0 < φ(n) = lim zi
∆(n∗n)(xi)

|n|(xi)
= lim zi |n|(xi).

As |n|(xi) → |n|(x), we conclude zi → 1. It follows that φ = limψi =
lim zi · ψ(n,xi) = ψ(n,x), so φ ∈ E. Thus E∪ {0} is a closed subset of the unit

ball of A#, and hence is compact. �

Notation 4.10. We use the bijections of Lemma 4.9 to identify Σ with
E (respectively G with |E|) and will use E and Σ interchangeably (resp.
G and |E|) depending upon what is convenient for the context. Thus for
a ∈ A, we will often write [n, x]Σ(a) and [n, x]G(a) instead of ψ(n,x)(a) and
|ψ(n,x)|(a). Then Σ and G become Hausdorff topological spaces of functions
on A. When convenient, we will also identify S with X via the restriction
mapping from 4.8(1).

4.3. The twist associated to a Γ-Cartan pair. We are now prepared
to place groupoid structures on G and Σ. This is done exactly as in [26,
Definition 8.10 and Theorem 8.12] or [28, Definition 7.17 and Theorem 7.18];
for convenience, we provide sketches of the proofs using the present notation.

Lemma 4.11. Σ and G are Hausdorff topological groupoids under the fol-
lowing operations:

• Multiplication: [m,αn(x)][n, x] = [mn, x];
• Inversion: [n, x]−1 = [n∗, αn(x)].
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The map x 7→ [d, x] for d ∈ D with d(x) > 0 identifies X with the unit space
of Σ and G. Furthermore, under this identification r([n, x]) = αn(x) and
s([n, x]) = x.

Proof. We sketch the proof for Σ. The proof for G is left to the reader
(details may be found in [26] or [28]). That inversion is well-defined and
continuous follows from (4.7), (4.8), and Lemma 4.9. Also, it is clear that
inversion is involutive.

Next we show multiplication is well-defined. Suppose [m1, y]Σ = [m2, y]Σ
and [n1, x]Σ = [n2, x]Σ. Using the bijection in Lemma 4.9 we can identify
ψ and φ with [m1, y]Σ = [m2, y]Σ and [n1, x]Σ = [n2, x]Σ respectively. We
have y = αni(x). By the definition of ∼Σ we can assume m2 = m1d and
n2 = n1d

′ where d(y) > 0 and d′(x) > 0. So to show that multiplication
is well defined it suffices to show that ψ(m1n1,x) = ψ(m1dn1d′,x). But this
follows since m1dn1d

′ = m1n1θn1(d)d′ and we know from equation (4.9)
that ψ(νb,x) = ψ(ν,x) for all ν ∈ Nh, x ∈ dom(ν) and b ∈ D with b(x) > 0.

Multiplication is associative since multiplication in the C∗-algebra is.
Suppose [m,x], [n, y] ∈ Σ are such that the composition [m,x][n, y] is

defined. Then x = αn(y). We must show that

[m,x][n, y][n∗, αn(y)] = [m,x] and [m∗, αm(y)][m,x][n, y] = [n, y].

But these equalities follow from Lemma 4.9(2) because

[mnn∗, αn(y)](m) > 0 and [m∗mn, y](n) > 0.

This completes the proof that Σ is a groupoid when equipped with the
indicated operations.

Since Σ(0) = {[m,x]−1
Σ [m,x]Σ : (m,x) ∈ G} we obtain

Σ(0) = {[d, x]Σ ∈ Σ : d ∈ D and d(x) > 0} = S.

It follows that the map X 3 x 7→ [d, x]Σ where d ∈ D is chosen so that

d(x) > 0, is a bijection of X onto Σ(0). Similarly, the map X 3 x 7→ [d, x]G
where d ∈ D satisfies d(x) > 0 (or merely satisfies d(x) 6= 0)) is a bijection

of X onto G(0).
For (n, x) ∈ G, r([n, x]) = [nn∗, αn(x)] and s([n, x]) = [n∗n, x]). This

gives the desired identification of the range and source maps.
We have already observed that inversion is continuous and we now verify

that multiplication is continuous. Let E(2) be the set of composable pairs,
that is, the collection (ψ, φ) ∈ E × E with s(ψ) = r(φ). Suppose (φi)i∈I
and (ψi)i∈I are nets in E converging to φ, ψ ∈ E respectively, and such

that (φi, ψi) ∈ E(2) for all λ. Since s and r are continuous, we find that

s(φ) = limi s(φi) = limi r(ψi) = r(ψ), so (φ, ψ) ∈ E(2). Let n,m ∈ Nh be
such that φ(n) > 0 and ψ(m) > 0. There exists i0, so that i ≥ i0 implies
φi(n) and ψi(m) are non-zero. For each i ≥ i0, there exist scalars λi, λ

′
i ∈ T

such that φi = λi[n, s(φi)] and ψi = λ′i[m, s(ψi)]. Since

lim
i
φi(n) = φ(n) = lim

i
[n, s(φi)](n)
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and
lim
i
ψi(n) = ψ(n) = lim

i
[n, s(ψi)](n),

we conclude that limλi = 1 = limλ′i. So for any a ∈ A,

(φψ)(a) =
s(ψ)((nm)∗a)

(s(ψ)((nm)∗(nm)))1/2
= lim

i

s(ψi)((nm)∗a)

(s(ψi)((nm)∗(nm)))1/2

= lim
i

[n, s(φi)][m, s(ψi)] = lim
i

(φiψi)(a),

giving continuity of multiplication. �

Define q : Σ→ G and ι : T×G(0) → Σ by

q([n, x]Σ) := [n, x]G and ι(λ, [d, x]G) = [λ|d|, x]Σ.

Then q and ι are continuous groupoid homomorphisms with q surjective and
ι injective. Moreover,

q−1(G(0)) = {[d, x]Σ : d ∈ D and d(x) 6= 0} = ι(T×G(0)).

Furthermore, for (n, x) ∈ G, and λ ∈ T,

ι(λ, [nn∗, αn(x)]G) [n, x]Σ = [λn, x]Σ = [n, x]Σ ι(λ, [n
∗n, x]G).

We thus have a central extension of groupoids,

T×G(0) ι
↪→ Σ

q→ G.

Also, for λ ∈ T and (n, x) ∈ G,

λ · [n, x]Σ = [λn, x]Σ. (4.14)

As G(0) may be identified with X, we usually identify ι(T × G(0)) with
T×X by

[d, x]Σ 7→
(
d(x)

|d|(x)
, x

)
. (4.15)

Under this identification, the extension of groupoids above becomes

T×X ↪→ Σ
q→ G.

Remark 4.12. We have already seen an action of T on Σ: λ · [n, x]Σ =
[λn, x]Σ. When elements of Σ are identified with their corresponding ele-
ments of E via the map in Lemma 4.9, there is another action of T on Σ,
namely scalar multiplication of linear functionals. These actions differ: if
scalar multiplication of linear functionals is denoted by juxtaposition, then

λ[n, x]Σ = λ · [n, x]Σ.

For n ∈ Nh, let

Z(n) := {[n, x]G : x ∈ dom(n)}.

Lemma 4.13. For each n ∈ Nh, Z(n) is an open bisection for G and
{Z(n) : n ∈ Nh} is a base for the topology on G. Moreover, q−1(Z(n)) is
homeomorphic to T × Z(n). In particular, G is an étale groupoid and the
bundle Σ→ G is locally trivial.
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Proof. The relevant definitions and an application of Lemma 4.7 yield

q−1(Z(n)) = {[m, y]Σ ∈ Σ : [m, y](n) 6= 0},

which is an open subset of Σ. Thus Z(n) is an open subset of G. We claim
r|Z(n) and s|Z(n) are homeomorphisms of Z(n) onto ran(n) and dom(n)
respectively. As r is the composition of the source map with the inversion
map, it suffices to show this for s only. First note that s|Z(n) : Z(n) →
dom(n) is a bijection by definition. By Lemma 4.9(6), s, r : G → X are
continuous. Next we show (s|Z(n))

−1 is a continuous function from domn to
Z(n). If xi ∈ domn is a net and xi → x ∈ domn, then ψ(n,xi) → ψ(n,x) (by
definition of the weak-* topology), so [n, xi]G → [n, x]G by Lemma 4.9(4).
Thus the claim holds, and Z(n) is therefore an open bisection.

Let U ⊆ G be open and choose [n, x]G ∈ U . Then V := U∩Z(n) is an open
bisection, so s(V ) is an open subset of X containing x. Let d ∈ D be such
that supp d ⊆ s(V ) and d(x) = 1. Since dom(nd) = dom(n) ∩ supp′(d) ⊆
s(V ), we find

[n, x]G ∈ Z(nd) = s−1(dom(nd)) ⊆ V ⊆ U.

Thus, {Z(n) : n ∈ Nh} is a base for the topology on G. As {Z(n) : n ∈ Nh}
covers G, G is étale.

Consider the map τ : T × dom(n) → q−1(Z(n)) defined by (z, x) 7→
[zn, x]Σ. This map is a homeomorphism, and as s|Z(n) : Z(n) → dom(n) is
a homeomorphism, we see Σ→ G is locally trivial. �

The following summarizes our discussion so far.

Proposition 4.14. Both Σ and G are locally compact Hausdorff topological

groupoids, G is étale, and T×X ↪→ Σ
q
� G is a twist.

Define a map gr : Nh → Γ by by taking n ∈ At to t. This induces maps
cΣ : Σ→ Γ and cG : G→ Γ given by

cΣ([n, x]Σ) = gr(n) and cG([n, x]G) = gr(n). (4.16)

Notice that the definition of the topologies and the groupoid multiplications
imply that cΣ and cG are continuous homomorphisms. We therefore have
produced the graded twist,

T×G(0) // Σ

c
Σ ��

// G

c
G

��
Γ.

4.4. Every Γ-Cartan pair is a twisted groupoid C∗-algebra. For
a ∈ A, define a function â : Σ→ C by

[n, x]Σ 7→
∆(n∗a)(x)

(n∗n)1/2(x)
, that is, â([n, x]Σ) = ψ(n,x) (a).
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By construction, â is a continuous function on Σ, and for z ∈ T,

â(z · [n, x]Σ) = zâ([n, x]Σ),

so â may be regarded as a continuous section of the line bundle over the
twist Σ→ G. Thus we may regard the open support of â as a subset of G,
as in Remark 2.4.

Lemma 4.15. Suppose n ∈ Nh, then the open support of n̂, supp′(n̂), is
the set Z(n)

Proof. Consider n̂ for n ∈ Nh. Then

n̂[m, y] =
∆(m∗n)(y)

(m∗m)1/2(y)
.

This is zero unless ∆(m∗n) 6= 0. Now Proposition 4.7 gives [m, y]G = [n, y]G,
that is [m, y]G ∈ Z(n). �

Lemma 4.16. The map Ψ : A → C(Σ;G) given by a 7→ â is linear and
injective.

Proof. This map is linear since ∆ is. Injectivity will follow since spanNh

is dense in A. Indeed, suppose â ≡ 0. Then for all n ∈ Nh,

∆(n∗a)(y) = 0

for all y ∈ Dom(n). Thus ∆(n∗a) = 0 for all n ∈ Nh. By assumption
a ∈ span(Nh); take a net νi ∈ span(Nh) such that νi → a. By linearity,

∀i∆(ν∗i a) = 0.

Thus by continuity ∆(a∗a) = 0. Since ∆ is faithful, a = 0. �

Now let

Nh,c := {n ∈ Nh : supp n̂ is compact} and Ac := spanNh,c (no closure).

Note that Ac is a ∗-algebra and by Lemma 4.15, for a ∈ Ac, â ∈ Cc(Σ;G).

Lemma 4.17. Let (A,D) be a Γ-Cartan pair. Then

(1) Nh,c is dense in Nh.
(2) Ac is dense in A.
(3) Ψ : a 7→ â sends Ac bijectively onto Cc(Σ;G) and Dc = D ∩ Ac

bijectively onto Cc(X).
(4) Ψ is a ∗-algebra homomorphism.

Proof. For (1), let (ei) be an approximate unit for D with ei ∈ Cc(X) for
every i. By Lemma 3.10(4), (ei) is also an approximate unit for A. Thus
n = limnei. So to prove Nh,c is dense it suffices to show that nd ∈ Nh,c for
all d ∈ Cc(X). Given d ∈ Cc(X), let d1 ∈ Cc(X) be such that supp′(d1) ⊇
supp(d). By Lemma 4.15, supp′(n̂d1) = Z(nd1). Recalling that s|Z(nd1) is

a homeomorphism of Z(nd1) onto dom(nd1), we see that Z(nd) is compact
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because Z(nd) ⊆ Z(nd1) and dom(nd) = supp′(n∗n)∩supp′(d) has compact
closure in dom(nd1).

Now (2) follows immediately from (1).
Lemma 4.16 shows that Ψ is injective and Ψ(Dc) = Cc(S) ' Cc(X), so

to obtain (3), we must show Ψ(Ac) = Cc(Σ, G). Now Cc(Σ;G) is the span of
sections of the line bundle supported on sets of the form Z(n), as the Z(n)
form a basis for G and we can use a partition of unity argument. Thus it
suffices to show that for n ∈ Nh, every f ∈ Cc(Σ;G) with support in Z(n)
is in the image of Ψ. To proceed note the following.

i. The line bundle is trivial over Z(n): this is true because q−1(Z(n)) =
{z · [n, x]Σ : x ∈ dom(n), z ∈ T} and the map T× Z(n) 3 (z, [n, x]G) 7→
[zn, x]Σ is a homeomorphism of T× Z(n) onto q−1(Z(n)).

ii. The source map of G sends Z(n) homeomorphically to {x : n∗n(x) 6= 0}
because Z(n) is an open bisection.

Now let f be a section of the line bundle supported on Z(n). By the first
item above we can view f as a function. By item (ii), f = d ◦ (s|Z(n)) for

some d ∈ D. Now take a = nd
(n∗n)1/2 . We show â = f . Indeed,

â[m,x] =
∆(dn∗m)(x)

(n∗n)1/2(x)(m∗m)1/2(x)
,

which is 0 unless the germ of m is the same as n. So we can assume that
n = m. Hence the above becomes

d(x)n∗n(x)

n∗n(x)
= d(x) = f([n, x])

Thus â = f and the claim holds.
Part (3) now follows.
It remains to show (4). By linearity it is enough to check that m̂n = m̂∗ n̂

and m̂∗ = (m̂)∗ for m,n ∈ Nh,c. Using (2.7) we compute:

m̂ ∗ n̂([ν, x]Σ) =
∑

[v,y]Σ[w,x]Σ=[ν,x]Σ

m̂([v, y]Σ) n̂([w, x]Σ)

(again, for each factorization [v, y]G[w, x]G = [ν, x]G only one factoriza-
tion [v, y]Σ[w, x]Σ = [ν, x]Σ is chosen). But m̂([v, y]Σ) n̂([w, x]Σ) = 0 un-
less [v, y]G = [m, y]G and [w, x]G = [n, x]G. When this occurs, there ex-
ist zv, zw ∈ T so that [v, y]Σ = [zvm, y]Σ and [w, x]Σ = [zwn, x]Σ. As
[v, y]Σ[w, x]Σ = [ν, x]Σ, we have y = αn(x) and [ν, x]Σ = [zvzwmn, x]Σ.
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So

m̂ ∗ n̂([ν, x]Σ) = m̂([zvm, y]Σ)n̂([zwn, x]Σ)

= zvzw
√

(m∗m)(y)(n∗n)(x)

= zvzw

(
(n∗m∗mn)(x)

(n∗n)(x)
(n∗n)(x)

)1/2

= m̂n([zvzwmn, x]Σ) = m̂n([ν, x]Σ),

as desired.
To see m̂∗ = (m̂)∗, use Lemma 4.9 and (4.8):

m̂∗([n, x]Σ) = ψ(n,x)(m
∗) = ψ∗(n,x)(m) = ψ(n∗,αn(x))(m)

= m̂([n, x]−1
Σ ) = (m̂)∗([n, x]Σ). �

Lemma 4.18. When Cc(Σ;G) is equipped with the reduced norm, Ψ|Ac :
Ac → Cc(Σ;G) is an isometric ∗-isomorphism.

Proof. Lemma 4.17 gives Ψ|Ac is a ∗-isomorphism of Ac onto Cc(Σ;G).
Fix x ∈ X. Using Remark 2.5, we may regard πx as the GNS represen-

tation of Cc(Σ;G) arising from the functional εx. On the other hand, the
state ρx := x ◦∆ determines the GNS representation (πρx ,Hρx) of A. Let
Lx ⊆ C∗r (Σ;G) and Lρx ⊆ A be the left kernels of εx and ρx respectively.

We claim that for n,m ∈ Nh,c,

ρx(mn) = εx(m̂ ∗ n̂). (4.17)

To see this, choose d ∈ D with d(x) = 1, so that [d, x]Σ ∈ Σ(0). For [n, x]Σ
with [n, x]−1

Σ [n, x]Σ = [d, x]Σ, a computation similar to that used in the proof
of Lemma 4.17(4) gives

εx(m̂ ∗ n̂) = m̂ ∗ n̂([d, x]Σ) = m̂([n∗, αn(x)])n̂([n, x]Σ)

=
∆(nm)(αn(x))√

(nn∗)(αn(x))
(n∗n)(x)1/2 = ∆(nm)(αn(x))

(4.5)
= ∆(mn)(x) = ρx(mn).

For a ∈ Ac, (4.17) gives

ρx(a∗a) = εx(â∗ ∗ â).

Thus for a ∈ Ac, the map a + Lρx 7→ â + Lx extends to an isometry Wx :
Hρx → Hx. Lemma 4.17(3) implies that Wx is onto. For m,n ∈ Nh,

Wxπρx(m)(n+ Lρx) = Wx(mn+ Lρx) = m̂ ∗ n̂+ Lx = πx(m̂)Wx(n+ Lρx).

It follows that Wxπρx(m)W ∗x = πx(m̂). Hence for a ∈ Ac,

Wxπρx(a)W ∗x = πx(Ψ(a)).



GRADED C∗-ALGEBRAS AND TWISTS 237

Finally, for a ∈ Ac,

‖Ψ(a)‖C∗r (Σ;G) = sup
x
‖πx(Ψ(a))‖ = sup

x
‖πρx(a)‖ = ‖a‖A ,

with the last equality following from the fact that ∆ is faithful (as in the
proof of Lemma 4.16). �

We now come to the main result of this section.

Theorem 4.19. Let (A,D) be a Γ-Cartan pair. Then there exists a graded
twist

T×G(0) // Σ

c
Σ ��

// G

c
G

��
Γ

and a Γ̂-covariant ∗-isomorphism Ψ : A → C∗r (Σ;G) such that Ψ(D) =

C0(G(0)).

Proof. Lemmas 4.17 and 4.18 show that Ψ determines a ∗-isomorphism
of A onto C∗r (Σ;G) and the construction of the graded twist shows Ψ is

Γ̂-covariant. It remains to show that Ψ(D) = C0(X).
For d ∈ D and [n, x]Σ ∈ Σ,

d̂([n, x]Σ) =
∆(n∗)(x)

|n|(x)
d(x).

Changing perspective to viewing d̂ as a section of the line bundle instead
of as a covariant function and recalling that [n, x]G ∈ G(0) if and only if
∆(n)(x) 6= 0, we get

d̂([n, x]G) =

[
∆(n∗)(x)

|n|(x)
d(x), [n, x]Σ

]
(2.1), (4.14)

=

{
0 if [n, x]G /∈ G(0)[
d(x), [∆(n∗)(x)

|n|(x) n, x]Σ

]
if [n, x]G ∈ G(0).

As [∆(n∗)(x)
|n|(x) n, x]Σ ∈ Σ(0), under the identification of X with Σ(0),[

d(x), [
∆(n∗)(x)

|n|(x)
n, x]Σ

]
and [d(x), x] represent the same element of the line bundle L. Thus

d̂([n, x]G) =

{
0 if [n, x]G /∈ G(0)

[d(x), x]] if [n, x]G ∈ G(0),

showing that Ψ(d) ∈ C0(X). On the other hand, if f ∈ Cc(Σ;G) vanishes

off G(0), define d ∈ D as follows. For x ∈ X, choose n ∈ Nh so that
(n∗n)(x) 6= 0; then let d(x) be the unique scalar satisfying f([n∗n, x]G) =
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[d(x), x] ∈ L. Then d̂(x) = f . It follows that C0(X) = Ψ(D) and the proof
is complete. �

5. Γ-Cartan pairs from Γ-graded twists

In the previous section, we associated a graded twist (Σ, G,Γ) to a Γ-
Cartan pair (A,D) and showed that (A,D) can be recovered from (Σ, G,Γ).
The purpose of this section is to produce a Γ-Cartan pair from any suitable
twist graded by the abelian group Γ.

Throughout this section we assume the following:

Assumptions 5.1. We fix a Γ-graded twist

T×G(0) // Σ

c
Σ ��

q // G

c
G

��
Γ,

(5.1)

with G étale (and Hausdorff) where the diagram commutes and

(1) Γ is a discrete abelian group;
(2) cG and cΣ are (continuous) groupoid homomorphisms; and
(3) c−1

G
(0) is effective.

The homomorphisms cG and cΣ are often called cocycles in the literature
as they are elements of the first groupoid cohomology group with coefficients.
We will persist in referring to cΣ and cG as cocycles here.

For notational convenience, let

P := c−1
Σ (0) and R := c−1

G (0).

The commutativity of (5.1) yields

P = q−1(R) and G(0) = R(0).

Also, the continuity of cG ensures R is a clopen subgroupoid of G. Thus we
obtain the twist

T×G(0) ↪→ P
q|P
� R. (5.2)

Since R is étale and effective, it follows from Renault’s work in [33, Section

4] that C0(G(0)) is a Cartan MASA in C∗r (P;R). (Renault makes the as-

sumption that R(0) is second countable, but that assumption is not required
to show that (C∗r (P;R), C0(R(0))) is a Cartan pair. A close inspection of
[33] shows that he uses R effective instead of R topologically principal, but

these notions coincide when R(0) is second countable.)
By Lemma 2.7, the inclusion Cc(P;R) ↪→ Cc(Σ;G) given by extension by

zero extends to a ∗-monomorphism

i : C∗r (P;R) ↪→ C∗r (Σ;G).
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Proposition 5.2. The image of C∗r (P;R) under i is the fixed point algebra

of the action of Γ̂ on C∗r (Σ;G), that is, i(C∗r (P;R)) = C∗r (Σ;G)Γ̂.

Proof. First notice that i(C∗r (P;R)) ⊆ C∗r (Σ;G)Γ̂: indeed, if f ∈ Cc(P;R)
and γ̇ ∈ G,

ω · i(f)(γ̇) = 〈ω, cG(γ̇)〉i(f)(γ̇) =

{
0 if γ̇ /∈ R
〈ω, 0〉i(f)(γ̇) = i(f)(γ̇) if γ̇ ∈ R

= i(f)(γ̇).

We now turn to showing C∗r (Σ;G)Γ̂ ⊆ i(C∗r (P;R)). First suppose a ∈
C∗r (Σ;G)Γ̂ ∩ Cc(Σ;G). Then for γ̇ ∈ G,

a(γ̇) =

∫
Γ̂
(ω · a)(γ̇) dω

(2.10)
=

∫
Γ̂
〈ω, cG(γ̇)〉 a(γ̇) dω = a(γ̇)

∫
Γ̂
〈ω, cG(γ̇)〉 dω,

which vanishes unless γ̇ ∈ R. Thus a ∈ i(Cc(P, R)).

For general a ∈ C∗r (Γ;G)Γ̂, choose a net fi ∈ Cc(Σ;G) so that fi → a.
Then Φ0(fi) → Φ0(a) = a. Also note that Φ0(Cc(Σ;G)) ⊆ Cc(Σ;G), so
Φ0(fi) ∈ i(Cc(P;R)). It follows that a ∈ i(C∗r (P;R)). �

Here is the main result of this section.

Proposition 5.3. The pair (C∗r (Σ;G), C0(G(0))) is a Γ-Cartan pair.

Proof. It is well known that C0(G(0)) is an abelian subalgebra of C∗r (Σ;G)
that contains an approximate unit for C∗r (Σ;G) [32, Lemma 3.2]. Lemma 2.10

gives an action of Γ̂ on C∗r (Σ;G). We have already observed that C0(G(0)) is

a Cartan MASA in C∗r (P;R), so Lemma 5.2 shows that C0(G(0)) is a Cartan

MASA in C∗r (Σ;G)Γ̂. Since G is étale, spanN is dense in C∗r (Σ;G). Thus

(C∗r (Σ;G), C0(G(0))) is Γ-Cartan. �

We close this section with a result describing the supports of homogeneous
normalizers. This is necessary for the proof of Lemma 6.1 below.

Lemma 5.4. Let a ∈ C∗r (Σ;G) and Sa be the open support of a. Then a is
a homogeneous normalizer if and only if Sa is a bisection in c−1(t) for some
t in Γ.

Proof. An element a ∈ C∗r (Σ;G) is homogeneous of degree t if and only if

a =

∫
Γ̂
ω · a〈ω, t〉dω

⇔ a(γ) =

∫
Γ̂
〈ω, c(γ)〉a(γ)〈ω, t〉dω = a(γ)

∫
Γ̂
〈ω, c(γ)〉〈ω, t〉dω

⇔ t = c(γ) for all γ ∈ Sa.

Thus a ∈ At if and only if Sa ⊆ c−1(t).
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By the argument in [33, Proposition 4.7], if a is a normalizer, then
S−1
a Sa ⊆ Iso(G). Thus, when a is a homogeneous normalizer, Sa ⊆ c−1(t)

for some t, whence S−1
a Sa ⊆ Iso(G) ∩ R. As R is effective and S−1

a Sa is

open, we obtain S−1
a Sa ⊆ G(0). This implies that Sa is a bisection. �

6. Analysis of C∗
r (Σ;G)

Throughout this section we fix a Γ-graded twist (Σ, G,Γ) satisfying As-
sumptions 5.1. Let (A,D) be the Γ-Cartan pair constructed from (Σ, G,Γ)
in Proposition 5.3. An application of Theorem 4.19 to (A,D) yields another
Γ-graded twist (Σ1, G1,Γ) also satisfying Assumptions 5.1. Our goal is to
show that (Σ1, G1,Γ) and (Σ, G,Γ) are isomorphic in the sense that there
are topological groupoid isomorphisms ΥΣ : Σ→ Σ1 and ΥG : G→ G1 such
that the diagram,

T×G(0) ι //

id×Υ|
G(0)

��

Σ

ΥΣ

��

q //

cΣ ��

G

cG��
ΥG

��

Γ

T×G(0)
1 ι1

// Σ1 q1
//

cΣ1

@@

G1

cG1

__

(6.1)

commutes.
Throughout, we will use the notation established in Section 4 for (A,D):

thus X = G(0), D = C(X), ∆ = E ◦ Φ0, etc. Further, notice that for a ∈
Cc(Σ;G), ∆(a) is nothing more than a|X . Thus, for every a ∈ A, ∆(a)(x) =
εx(a). Lastly, recall from Section 4 that E = {ψ(n,x) : (n, x) ∈ G} is a
family of linear functionals on A which becomes a topological groupoid when
equipped with the weak-∗ topology, product ψ(m,αn(x))ψ(n,x) = ψ(mn,x), and

inverse ψ−1
(n,x) = ψ(n∗,αn(x)). From Section 4 we have Σ1 = E and G1 = |E|.

To begin, for γ ∈ Σ, consider the linear functional εγ on A determined
by Proposition 2.8, described as follows. For a ∈ A, there is a unique scalar
εγ(a) such that j(a)(γ̇) ∈ L is represented by (εγ(a), γ) ∈ T× Σ, that is,

j(a)(γ̇) = [εγ(a), γ].

Alternatively, if a is viewed as a covariant function on Σ,

εγ(a) = a(γ).

Note that εγ is a norm one linear functional on A.

Lemma 6.1. The map ΥΣ : Σ→ A# given by γ 7→ εγ is a homeomorphism
of Σ onto E. Furthermore, ΥΣ is an isomorphism of topological groupoids.

Proof. Fix γ ∈ Σ, put x := s(γ) and choose n ∈ Nh such that εγ(n) >
0. By Lemma 5.4, n is supported on a homogeneous bisection, whence
γ̇ is the unique element of suppn whose source is x. Thus (n∗n)(x) =
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σ1σ2=x n(σ2)n(σ2) = n(γ)n(γ) > 0, so (n, x) ∈ G. To show εγ = ψ(n,x), it

suffices to show εγ(m) = ψ(n,x)(m) for every m ∈ Nh. Choosing m ∈ Nh,

we have ∆(n∗m)(x) = (n∗m)(x) =
∑

σ̇∈Gx n(σ)m(σ). As the terms in this
sum are zero unless σ ∈ suppn, and suppn ∩Gx = {γ̇}, we have

ψ(n,x)(m) =
∆(n∗m)(x)

|n|(x)
=
n(γ)m(γ)

|n(γ)|
= εγ(m)

because n(γ) > 0. Thus εγ = ψ(n,x), as desired.
Now suppose (n, x) ∈ G. Since n is supported on an open bisection by

Lemma 5.4, there is a unique element of suppn whose source is x. Therefore,
there is a unique element γ ∈ Σ satisfying s(γ) = x and εγ(n) > 0. The
argument of the previous paragraph shows ψ(n,x) = εγ . We have thus shown
that ΥΣ(Σ) = E. Notice that our work also shows that ΥΣ is bijective.

Recall that G is étale, Cc(Σ;G) is dense in A, and elements of E are norm
one linear functionals on A. So if (γi) is a net in Σ and γ ∈ Σ,

γi → γ ⇔ for every a ∈ Cc(Σ;G), εγi(a)→ εγ(a)

⇔ for every a ∈ A, εγi(a)→ εγ(a)

⇔ (εγi) converges weak-∗ to εγ .

Thus ΥΣ is a homeomorphism.
We now observe that ΥΣ preserves the groupoid operations. First, sup-

pose γ ∈ Γ and n ∈ Nh is such that εγ(n) > 0. Then εγ = ψ(n,s(γ)). For
d ∈ D, we have εγ(dn) = d(r(γ))n(γ). On the other hand, ψ(n,s(γ))(dn) =

d(αn(s(γ)))
√

(n∗n)(s(γ)) = d(αn(s(γ)))|n(γ)|. But as this holds for every
d ∈ D and n(γ) > 0, we conclude that

r(γ) = αn(s(γ)). (6.2)

Suppose the product of γ1, γ2 ∈ Σ is defined. For i = 1, 2, choose ni ∈ Nh

so that εγi(ni) > 0. As ni are supported in open bisections ofG (Lemma 5.4),

εγ1γ2(n1n2) = (n1n2)(γ1γ2) = n1(γ1)n2(γ2) = εγ1(n1)εγ2(n2) > 0.

We therefore obtain

ΥΣ(γ1γ2) = ψ(n1n2,s(γ2))
(6.2)
= ψ(n1,r(γ2))ψ(n2,s(γ2)) = ΥΣ(γ1)ΥΣ(γ2).

For γ ∈ Σ and n ∈ Nh such that εγ(n) > 0, we have εγ−1(n∗) = n∗(γ−1) =

n(γ) > 0, so εγ−1 = ψ(n∗,r(γ)). As r(ψ(n,s(γ))) = αn(s(γ)) = r(γ) = αn(s(γ)),
we obtain

ΥΣ(γ−1) = (ΥΣ(γ))−1.

Finally, suppose z ∈ T and γ ∈ Σ. Choose n ∈ N so that εγ(n) > 0.
Then εz·γ(zn) = (zn)(z · γ) = z(zn)(γ) = n(γ) > 0. Thus, εz·γ = ψ(zn,s(γ)).
So by Remark 4.12,

ΥΣ(z · γ) = z ·ΥΣ(γ). �
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Writing Σ1 := E and G1 := |E|, we thus have defined the two left ver-
tical arrows in (6.1). It follows that if γ̇ ∈ G, then for σ1, σ2 ∈ q−1(γ̇),
q2(ΥΣ(σ1)) = q2(ΥΣ(σ2)). Therefore the map ΥG : G→ G1 given by

ΥG(γ̇) := q1(ΥΣ(γ))

is a well-defined isomorphism of groupoids. That ΥG is a homeomorphism
follows from the fact that Σ → G and Σ1 → G1 are locally trivial and ΥΣ

is a homeomorphism (or use the fact that q, q1 are quotient maps and ΥΣ

is a homeomorphism).
Now suppose γ̇ ∈ G and cG(γ̇) = t. Then for γ ∈ q−1(γ̇), cΣ(γ) = t.

Choosing n ∈ Nh with εγ(n) > 0, we obtain suppn ⊆ c−1(t). So by (4.16) we
obtain cΣ1(ψ(n,s(γ))) = cG1(|ψ(n,s(γ))|) = t. It follows that (6.1) commutes.
Thus we have proved the following theorem.

Theorem 6.2. Let Σ→ G be a Γ-graded twist satisfying Assumptions 5.1.
Let Σ1 → G1 be the twist constructed from (C∗r (Σ;G), C0(G(0))). For each
γ ∈ Σ, choose a homogeneous normalizer n ∈ C∗r (Σ, G) such that n(γ) > 0.
Then the map

ΥΣ : Σ→ Σ1 given by γ 7→ [n, s(γ)]Σ1

descends to a well-defined isomorphism of twists such that the diagram (6.1)
commutes.

Corollary 6.3. Suppose Σ→ G and Σ′ → G′ are Γ-graded twists satisfying
Assumptions 5.1. Suppose further that

Ξ : C∗r (Σ;G)→ C∗r (Σ′;G′)

is an isomorphism of C∗-algebras such that

(1) Ξ is equivariant for the induced Γ̂ actions; and

(2) Ξ|C0(G(0)) : C0(G(0))→ C0(G′(0)) is an isomorphism.

Then there exists groupoid isomorphisms υΣ, υG such that the following di-
agram commutes.

T×G(0) ι //

id×vG|G(0)

��

Σ
q //

c
Σ

��
υΣ

��

G
c
G

��
υG

��

Γ

T×G′(0)

ι′
// Σ′

c′Σ

??

q′
// G′

c′G

__

Proof. By Theorem 6.2, there are isomorphisms ΥΣ : Σ → Σ1, ΥG : G →
G1, ΥΣ′ : Σ′ → Σ′1, ΥG′ : G′ → G′1. Since Ξ is an equivariant isomorphism

it takes C∗r (Σ;G)Γ̂ isomorphically onto C∗r (Σ′;G′)Γ̂. Thus by construction,
Σ1
∼= Σ′1, G1

∼= G′1. The result then follows from composition of isomor-
phisms. �
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7. Examples

Example 7.1. Let G be a finite discrete abelian group. Take A = C∗(G).
Then

C∗(G) = span{δg : g ∈ G}.
As pointed out in [10], if |G| = |H|, then C∗(G) ∼= C∗(H). So it is surprising
that we would be able to recover G using Theorem 6.2. However, as this
example illustrates, the induced action of Γ̂ required in Theorem 6.2 plays a
crucial role.

Suppose c : G→ Γ is a homomorphism of G into a discrete abelian group,
with c−1(0) topologically principal. Then c−1(0) = {0}, so c is injective and
c(G) is isomorphic to G as a subgroup of Γ. So A0 = Cδ0 and we consider
the inclusion D = A0 ⊆ A.

Notice that for ω ∈ Ĝ, ω·δg(h) = 〈ω, c(h)〉 δg(h) so that ω·δg = 〈ω, c(g)〉δg.
Thus, by Lemma 3.4, δg ∈ Ac(g) and furthermore δg /∈ At for t 6= c(g). Since
C∗(G) = span{δg : g ∈ G} we have

At =

{
Cδg t = c(g)

0 otherwise.

Thus the homogeneous normalizers of A0 are all of the form λδg for some

λ ∈ C. Take X = {∗} = Â0. Now

[λδg, ∗]Σ = [λ′δg′ , ∗]Σ ⇔ g = g′ and λλ′ > 0,

[λδg, ∗]G = [λ′δg′ , ∗]G ⇔ g = g′.

So here ΥG : g 7→ [δg, ∗]G and ΥΣ(z, g) 7→ [zδg, ∗]Σ where ΥΣ : T×G→ ΣW

are the desired isomorphisms from Theorem 6.2.

Example 7.2. Let Λ be a k-graph. That is, Λ is a small category endowed
with a functor, the degree map, d : Λ → Nk, that satisfies the following
unique factorization property: if λ ∈ Λ and d(λ) = m+n there exists unique
µ, ν ∈ Λ such that d(µ) = m, d(ν) = n and λ = µν. We assume Λ has no
sources in that for all objects v and all m ∈ Nk there exists µ with r(µ) = v
and d(µ) = m.

In [22], Kumjian, Pask, and Sims introduce categorical cohomology on a
k-graph Λ. In particular, they define a 2-cocycle with coefficients in T to be
a function φ : Λ ∗ Λ→ T such that

φ(λ1, λ2) + φ(λ1λ2, λ3) = φ(λ2, λ3) + φ(λ1, λ2λ3)

where Λ ∗ Λ := {(µ, ν) : s(µ) = r(ν)} and λi are defined so that all of
the compositions above make sense. Denote the set of these 2-cocycles by
Z2(Λ,T). They prove in [22, Theorem 4.15], that there is an isomorphism
from the second cubical cohomology group they defined in [21] to this cate-
gorical cohomology group.
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They define in [22, Definition 5.2] the twisted k-graph C∗-algebra by φ ∈
Z2(Λ,T) to be the universal C∗-algebra C∗(Λ, φ) generated by elements tµ,
µ ∈ Λ of a C∗-algebra satisfying the following.

(1) The tv for v ∈ d−1(0) are mutually orthogonal projections,
(2) tµtν = φ(µ, ν)tµν whenever s(µ) = r(ν),
(3) t∗λtλ = ts(λ), and

(4) for all v ∈ d−1(0) and n ∈ Nk, tv =
∑
r(λ)=v
d(λ)=n

tλt
∗
λ.

By the universal property of C∗(Λ, φ), d : Λ → Nk induces an action of

Tk on C∗(Λ, φ) characterized by z · tµt∗ν = zd(µ)−d(ν)tµt
∗
ν .

Let

C = span{tµt∗ν : d(µ) = d(ν)},
and let

D = span{tµt∗µ}.

By [22, Lemma 7.4] C is the fixed point algebra C∗(Λ, φ)T
k
, for this action.

Moreover, as elements of the generating set {tµt∗ν : d(µ) = d(ν)} are all
normalizers for D, to show D is Cartan in C it suffices to show D is maximal
abelian and that there is a conditional expectation from C onto D.

The conditional expectation P from C onto D is given by, for µ, ν ∈ Λ
with d(µ) = d(ν)

P (tµt
∗
ν) = δµ,νtµt

∗
ν .

The C∗-algebra C is an AF-algebra. This is shown in [22, Proposition
7.6]. We recap and reframe some of those details to show D is Cartan in C.

For each n ∈ Nk let

Cn = span{tµt∗ν : µ, ν ∈ Λn},

and let

Dn = span{tµt∗µ : µ ∈ Λn}.
When m ≤ n we embed Cm in Cn using condition (4) in the definition of
C∗(Λ, φ) above: if µ, ν ∈ Λm then

tµt
∗
ν =

∑
λ∈Λn−ms(µ)

tµtλt
∗
λt
∗
ν ∈ Cn.

Note that this embedding also gives Dm ⊆ Dn. We have then that

C =
⋃
n∈Nk

Cn,

and

D =
⋃
n∈Nk

Dn.
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For each v ∈ Λ0 and n ∈ Nk denote by K(Λnv) the compact operators on
the Hilbert space `2(Λnv). Using a matrix unit argument, it is observed in
[22, Proposition 7.6(1)] that

Cn =
⊕
v∈Λ0

K(Λnv).

As Dn is formed by the self-adjoint matrix units, Dn is a maximal abelian
subalgebra of Cn. Further, there is a faithful conditional expectation Pn on
Cn. We can describe this conditional expectation by

Pn(a) =
∑
µ∈Λn

(tµt
∗
µ)a(tµt

∗
µ),

where the series converges in the strong operator topology. Using this for-
mula we can extend Pn to all of B(H). A simple calculation shows that
Pn(B(H)) = D′n, i.e., Pn is a conditional expectation onto D′n.

We further note that the embeddings of Cm into Cn for m ≤ n, give
Pn|Cm = Pm. The conditional expectation P : C → D can then be described
as the direct limit of the maps {Pn} (see e.g. [29, Proposition A.8]).

To show that D is maximal abelian in C we use an argument similar to
that found in [36, Chapter 1]. Suppose a ∈ D′ ∩ C. Since a ∈ C there is a
net (an) with an ∈ Cn such that

lim
n
‖an − a‖ = 0.

Further, since a ∈ D′, we have that a ∈ D′n for each n ∈ Nk, and thus
Pn(a) = a for each n ∈ Nk. Hence

‖Pn(an)− a‖ = ‖Pn(an − a)‖ ≤ ‖an − a‖.

And thus the net (Pn(an))n converges to a. Since Pn(an) ∈ Dn it follows
that a ∈ D, and therefore D is maximal abelian in C.

Thus (C∗(Λ, φ), D) is a Zk-Cartan pair. Hence by Theorem 4.19 there
exists a twist ΣW → GW such that C∗(Λ, φ) ∼= C∗r (ΣW ;GW ). Notice that
here ΣW and GW consist of elements of the form [sµs

∗
ν , x] with µ, ν ∈ Λ and

x ∈ Λ∞.
In [22], the authors construct a groupoid GΛ and a continuous cocycle ς

such that C∗(Λ, φ) ∼= C∗r (GΛ, ς) [22, Theorem 6.7]. By Theorem 6.2, ΣW
∼=

T ×ς GΛ and GW ∼= GΛ, that is Theorem 4.19 recovers the construction in
[22]. We provide some details of the isomorphisms of twists given above, but
to proceed we need to provide a few details of the construction in [22].

The groupoid construction in [22] is standard and goes back to [19, 31, 20].
We say Λ∞ := {x : N × N → Λ, x is a degree preserving functor} and σp :
Λ∞ → Λ∞ by σp(x)(m,n) = x(m+ p, n+ p).

GΛ := {(x, `−m, y) ∈ Λ∞ × Zk × Λ∞ : `,m ∈ Nk, σ`x = σmy}
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with the topology on GΛ given by basic open sets

Z(µ, ν) := {(µx, d(µ)− d(ν), νx) : x ∈ Λ∞, r(x) = s(µ) = s(ν)}.
It turns out that under our hypotheses each Z(µ, ν) is compact and open

and so there exists a subset P ⊆ Λ×Λ such that {Z(µ, ν) : (µ, ν) ∈ P} is a
partition of GΛ. Thus for each γ ∈ GΛ there exists (µγ , νγ) ∈ P such that
γ ∈ Z(µγ , νγ).

Now by [22, Lemma 6.3] for γ, η ∈ GΛ composable we can find y ∈ Λ∞,
α, β, ζ ∈ Λ such that

γ = (µγαy,d(µγ)− d(νγ), νγαy), η = (µηβy, d(µη)− d(νη), νηβy),

γη = (µγηζy, d(µγη)− d(νγη), νγηζy)

and

ςφ(γ, η) := (φ(µγ , α)− φ(νγ , α))+(φ(µη, β)− φ(νη, β))−(φ(µγη, ζ)− φ(νγη, ζ))

is a well-defined continuous groupoid cocycle (see [31] for the definition).
We can then define

ΣΛ,φ = T×ς GΛ.

and then the twist is
T×G(0)

Λ → ΣΛ,φ → GΛ.

Now the isomorphisms in Theorem 6.2 are given by

ΥΣ :(z, (µγx, d(µγ)− d(νγ), νγx)) 7→ [sµγs
∗
νγ , νγx]Σ

ΥG :(µγx, d(µγ)− d(νγ), νγx) 7→ [sµγs
∗
νγ , νγx]G.

Example 7.3. A main result in [4] is that any separable, unital, nuclear
C∗-algebra which contains a Cartan subalgebra satisfies the UCT. In fact,
more is shown. It is shown in [4, Theorem 3.1] that if Σ → G is a twist,
where G is an étale Hausdorff locally compact second countable groupoid
where the reduced C∗-algebra C∗r (Σ;G) is nuclear, then C∗r (Σ;G) satisfies
the UCT. Hence we have the following corollary to Theorem 4.19 and [4,
Theorem 3.1].

Corollary 7.4. Let A be a separable and nuclear C∗-algebra. If A contains
an abelian subalgebra D such that (A,D) is a Γ-Cartan pair for a some
discrete abelian group Γ, then A satisfies the UCT.

Appendix A. Nonabelian groups

In the previous sections we assumed we had gradings by discrete abelian
groups and actions by the dual group, as this case is familiar and doesn’t
involve the introduction of coactions. However all of the results of the paper
can be extended to gradings by nonabelian groups, by replacing actions with
coactions: in this short appendix we outline how to extend our results to
the nonabelian case for those readers already familiar with coactions. For
those readers interested in more information on coactions we recommend
[13, Appendix A].
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Throughout this appendix, all tensor products of C∗-algebras are spatial
tensor products.

(A.1) Uses of Commutativity. The alert reader will no doubt have noticed
that we used the commutativity of Γ in a few key places:

(1) to define a Γ grading on a C∗-algebra A when an action of Γ̂ on A
is given;

(2) to define maps Φt : A → At, including the faithful conditional ex-
pectation Φ0 onto A0, the fixed point algebra (Lemma 3.4);

(3) to define an action of Γ̂ on C∗r (Σ;G) where c : G; Σ 7→ Γ (Lemma 2.10);
and

(4) to show the fixed point algebra of the action above contains C0(G(0))
as a Cartan subalgebra (Proposition 5.2).

Now suppose that Γ is a not necessarily abelian discrete group whose
identity we denote by e. For s, t ∈ Γ, we will use δs to denote the indicator
function of the set {s} and δs,t for the Kronecker δ (so δs,t = 1 if s = t and 0
if s 6= t). Let Λ : C∗r (Γ)→ B(`2(Γ)) be the left regular representation of Γ.
Also, the map δs 7→ δs ⊗ δs ∈ C∗r (Γ)⊗C∗r (Γ) extends to a ∗-homomorphism
νΓ : C∗r (Γ)→ C∗r (Γ)⊗ C∗r (Γ).

Let ν : A → M(A ⊗ C∗r (Γ)) be a (reduced) coaction. This means that ν
is a non-degenerate ∗-homomorphism of A into M(A⊗ C∗r (Γ)) such that

(i) ν(A)(I ⊗ C∗r (Γ)) ⊆ A⊗ C∗r (Γ); and
(ii) (ν ⊗ idΓ) ◦ ν = (idA ⊗ νΓ) ◦ ν (these maps belong to B(A,M(A ⊗

C∗r (Γ)⊗ C∗r (Γ)))).

Notice that since Γ is discrete, I⊗ δe is the identity of M(A⊗C∗r (Γ)). Thus
condition (i) implies that actually,

ν : A→ A⊗ C∗r (Γ).

Furthermore, the fact that Γ is discrete implies that ν is non-degenerate
in the sense that ν(A)(I ⊗ C∗r (Γ)) is dense in A ⊗ C∗r (Γ); see [3] or [13,
Remark A.22(3)].

For t ∈ Γ, there is a slice map St : A⊗ C∗r (Γ)→ A characterized by

a⊗ b 7→ a〈Λ(b)δe, δt〉,

(see [40] or [13, §A.4]). Further, it follows from the second statement of [13,
Lemma A.30] that for x ∈ A⊗ C∗r (Γ),

x = 0⇔ for all t ∈ Γ, St(x) = 0.

Thus, every element x ∈ A ⊗ C∗r (Γ) has a uniquely determined “Fourier
series”,

x ∼
∑
t∈Γ

St(x)⊗ δt.

Define continuous maps Φt : A→ A by

Φt := St ◦ ν.
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Then for every a ∈ A,

ν(a) ∼
∑
t∈Γ

Φt(a)⊗ δt. (A.2)

While we will not need this fact here, the ∗-homomorphism property of ν and
the series representation (A.2) implies that the “coefficient maps” {Φt}t∈Γ

behave much as Fourier coefficients do under convolution multiplication and
adjoints: for every t ∈ Γ and a, b ∈ A,

Φt(ab) =
∑
s∈Γ

Φts−1(a)Φs(b) and Φt(a
∗) = Φt−1(a)∗.

What we do require is that condition (ii) in the definition of coaction
given above implies that for every s, t ∈ Γ and a ∈ A,

Φs(Φt(a)) =

{
0 if s 6= t,

Φt(a) when s = t.

Define
At := Φt(A).

Note that as Se arises from the (faithful) trace on C∗r (Γ), Φe : A→ Ae is a
faithful conditional expectation.

We will call an element a ∈ A homogeneous if a ∈ At for some t ∈ Γ.
This gives us the Γ-grading and an analog of Lemma 3.4, which addresses
the first two points of Paragraph A.1.

We now address the third and fourth items of Paragraph A.1. Assume
we have a twist with a cocycle as in Section 5 but with Γ not necessarily
abelian:

T×G(0) // Σ

c
Σ ��

// G

c
G

��
Γ.

(A.3)

The proof of [10, Lemma 6.1] goes through without change to show there
exists a coaction

ν : C∗r (Σ;G)→ C∗r (Σ;G)⊗ C∗r (Γ)

characterized by

ν(f) = f ⊗ δt where f ∈ Cc(G) and supp(f) ⊆ c−1
G (t).

Note that for f ∈ Cc(G) and supp(f) ⊆ c−1
G (t),

Φs(f) = Ss(f ⊗ δt) = f〈Λ(δt)δe, δs〉 = f〈δt, δs〉 = fδs,t.

Now for f ∈ Cc(G), f =
∑

t∈Γ f |c−1
G (t) so that the above computation

shows that
Φs(f) = f |c−1

G (s).

By continuity of Φs and j : C∗r (Σ;G) → C0(Σ;G), we get that j(Φs(a)) =
j(a)|c−1

G (s). As in Section 5, let R = c−1
G (e) and P = c−1

Σ (e). Then Lemma 2.7
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goes through without change, and if a ∈ C∗r (Σ;G)e and fi ∈ C∗r (Σ;G) is a
net converging to a, by the above we have Φe(fi) → a and Φe(fi) = fi|R ∈
Cc(R;P), so that a ∈ C∗(R;P), giving Proposition 5.2.

Theorem A.1. Let A be a C∗-algebra and let D be an abelian C∗-algebra
of A such that:

• there is a coaction ν of a discrete group Γ on A;
• D is Cartan in the algebra Ae; and
• span Nh(A,D) = A.

Let Ac be the algebraic span of Nh. Then there exists a Γ-graded twist
T × X ↪→ Σ → G and a ∗-isomorphism Ψ : Ac → C∗r (Σ;G) which induces

an isomorphism A→ C∗(Σ;G) taking D to C0(G(0)).

Proof. The arguments of Section 4 go through without change. �

Remark A.2. Compare the conditions of Theorem A.1 to the definition of
Γ-Cartan ( 3.9), noting that by Lemma 3.10(1), the conditions on the nor-
malizers coincide when Γ is abelian. While we have not checked details, we
expect that if Γ is a (not necessarily abelian) discrete group, and the hypothe-

ses of Theorem A.1 are weakened so that the condition spanNh(A,D) = A

is replaced with spanN(A,D) = A, then it is still true that Nh(A,D) = A.
If this is the case, a Γ-Cartan pair could then be defined to be an inclusion
of C∗-algebras D ⊆ A satisfying the weakened hypotheses of Theorem A.1.
All the results of this paper would be valid for this notion of Γ-Cartan pairs.

The arguments of Sections 5 and 6 yield the following result for (possibly
non-commutative) discrete groups Γ.

Theorem A.3. Let Σ → G be a locally trivial twist, with a cocycle c into
a discrete group Γ. Then (C∗r (Σ;G), C0(G(0))) is a Γ-Cartan pair. Let

Σ1 → G1 be the Γ-graded twist constructed from (C∗r (Σ;G), C0(G(0))). For
each γ ∈ Σ, choose a homogeneous normalizer n ∈ C∗r (Σ, G) such that
n(γ) > 0. Then the map

ΥΣ : Σ→ Σ1 given by γ 7→ [n, s(γ)]Σ1

descends to a well-defined isomorphism of twists such that the following di-
agram commutes.

Σ
q //

c
Σ

  
ΥΣ

��

G
c
G

~~
ΥG

��

T×X

ι

;;

ι1 ##

Γ

Σ1

cΣ1

??

q1
// G1

cG1

``



250 J.H. BROWN, A.H. FULLER, D.R. PITTS AND S.A. REZNIKOFF

References

[1] Abrams, Gene; Ara, Pere; Siles Molina, Mercedes. Leavitt path algebras.
Lecture Notes in Mathematics, 2191. Springer, London, 2017. xiii+287 pp. ISBN:
978-1-4471-7343-4. MR3729290, Zbl 1393.16001, doi: 10.1007/978-1-4471-7344-1. 220

[2] Ara, Pere; Bosa, Joan; Hazrat, Roozbeh; Sims, Aidan. Reconstruction of
graded groupoids from graded Steinberg algebras. Forum Math. 29 (2017), no. 5,
1023–1037. MR3692025, Zbl 1373.22007, arXiv:1601.02872, doi: 10.1515/forum-2016-
0072. 206, 207

[3] Baaj, Saad; Skandalis, Georges. C∗-algèbres de Hopf et théorie de Kasparov
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