New York Journal of Mathematics

New York J. Math. 29 (2023) 1273-1286.

A bound on the index of exponent-4 algebras in terms of the *u*-invariant

Karim Johannes Becher and Fatma Kader Bingöl

ABSTRACT. For a prime number p, an integer $e \ge 2$ and a field F containing a primitive p^e -th root of unity, the index of central simple F-algebras of exponent p^e is bounded in terms of the p-symbol length of F. For a nonreal field F of characteristic different from 2, the index of central simple algebras of exponent 4 is bounded in terms of the u-invariant of F. Finally, a new construction for nonreal fields of u-invariant 6 is presented.

CONTENTS

1.	Introduction	1273
2.	Multiplication by a power of <i>p</i> in the Brauer group	1275
3.	Multiplying by 2 in the Brauer group	1278
4.	Examples of fields with <i>u</i> -invariant 6	1283
Acknowledgments		1285
References		1285

1. Introduction

Let *F* be a field and *n* a positive integer. A central simple *F*-algebra of degree *n* containing a subfield which is a cyclic extension of degree *n* of *F* is called *cyclic* or a *cyclic F*-algebra. Given a cyclic field extension K/F of degree *n*, a generator σ of its Galois group and an element $b \in F^{\times}$, the rules

 $j^n = b$ and $xj = j\sigma(x)$ for all $x \in K$

determine a multiplication on the *K*-vector space $K \oplus jK \oplus ... \oplus j^{n-1}K$ turning it into a cyclic *F*-algebra of degree *n*, which is denoted by

 $[K/F, \sigma, b).$

Any cyclic *F*-algebra is isomorphic to an algebra of this form; see [3, Theorem 5.9]. Furthermore, any central *F*-division algebra of degree 2 or 3 is cyclic; see [3, Theorem 11.5] for the degree-3 case.

Received January 10, 2023.

²⁰²⁰ Mathematics Subject Classification. 12E15, 16K20, 16K50.

Key words and phrases. Brauer group, cyclic algebra, symbol length, index, exponent, *u*-invariant.

Central simple *F*-algebras of degree 2 are called *quaternion algebras*. We refer to [10, p. 25] for a discussion of quaternion algebras, including their standard presentation by symbols depending on two parameters from the base field. If char $F \neq 2$, $a \in F^{\times} \setminus F^{\times 2}$ and $b \in F^{\times}$, then the *F*-quaternion algebra $(a, b)_F$ is equal to $[K/F, \sigma, b)$ for $K = F(\sqrt{a})$ and the nontrivial automorphism σ of K/F.

We refer to [3] and [6] for the theory of central simple algebras, and to [4, Section 3] for a survey on the role of cyclic algebras in this context.

Before we approach the problem in the focus of our interest, we fix some notation. We set $\mathbb{N}^+ = \mathbb{N} \setminus \{0\}$. We denote by Br(F) the Brauer group of *F*, and for $n \in \mathbb{N}^+$, we denote by $Br_n(F)$ the *n*-torsion part of Br(F). Let *p* always denote a prime number.

The following question was asked by Albert in [1, p.126] and is still open in general.

Question 1.1. For $n \in \mathbb{N}^+$, is $Br_n(F)$ generated by classes of cyclic algebras of degree dividing *n*?

In view of the Primary Decomposition Theorem for central simple algebras (see e.g. [6, Corollary 9.11]), any such question can be reduced to the case where n is a prime power. Each of the following two famous results gives a positive answer to Question 1.1 under additional hypotheses on F in relation to n.

Theorem 1.2 (Albert). Let p be a prime number and assume that char F = p. Let $e \in \mathbb{N}^+$. Then $\operatorname{Br}_{p^e}(F)$ is generated by classes of cyclic F-algebras of degree dividing p^e .

Proof. See [3, Chapter VII, Section 9].

Theorem 1.3 (Merkurjev-Suslin). Let $n \in \mathbb{N}^+$ and assume that F contains a primitive *n*-th root of unity. Then $Br_n(F)$ is generated by the classes of cyclic F-algebras of degree dividing n.

Proof. See [13].

If *F* contains a primitive *n*-th root of unity then char *F* does not divide *n*. Hence, the hypotheses of Theorem 1.2 and Theorem 1.3 are mutually exclusive.

For n = 2, Theorem 1.3 was obtained by Merkurjev in [12]. Note that the hypothesis of Theorem 1.3 for n = 2 just means that char $F \neq 2$. Together with Theorem 1.2 this gives an unconditional positive answer to Question 1.1 for n = 2.

It was observed in [13, Proposition 16.6] that from the positive answer to Question 1.1 in the (highly nontrivial) case n = 2 one obtains (rather easily) an unconditional positive answer for n = 4. In Corollary 3.10, we obtain a different argument for this step.

Whenever we have a positive answer to Question 1.1, it is motivated to look at quantitative aspects of the problem. In the first place, this concerns the number of cyclic algebras needed for a tensor product representing a class in Br(F) of given exponent. This leads to the notion and the study of *symbol lengths*.

1274

 \square

For a central simple *F*-algebra *A*, the *n*-symbol length of *A*, denoted by $\lambda_n(A)$, is the smallest $m \in \mathbb{N}^+$ such that *A* is Brauer equivalent to a tensor product of *m* cyclic algebras of degree dividing *n*, if such an integer *m* exists, otherwise we set $\lambda_n(A) = \infty$. The *n*-symbol length of *F* is defined as

$$\lambda_n(F) = \sup\{\lambda_n(A) \mid [A] \in Br_n(F)\} \in \mathbb{N}^+ \cup \{\infty\}.$$

Note that the index of any central simple *F*-algebra of exponent *n* is at most $n^{\lambda_n(F)}$.

Let *p* be a prime number. It seems plausible to take the *p*-symbol length of *F* for a measure for the complexity of the whole *p*-primary part of the theory of central simple algebras over *F*. So in particular one might expect that $\lambda_{p^e}(F)$ can be bounded in terms of $\lambda_p(F)$ for all $e \in \mathbb{N}^+$. When *F* contains a primitive p^e -th root of unity, it follows from [17, Proposition 2.5] that $\lambda_{p^e}(F) \leq e\lambda_p(F)$, but in general, this problem is still open.

In this article, we consider the following question.

Question 1.4. Let $e \in \mathbb{N}^+$. Can one bound the index of a central simple *F*-algebra of exponent p^e in terms of *e* and $\lambda_p(F)$?

This is obviously true when e = 1. In the case where *F* contains a primitive p^e -th root of unity, one can distill from the proof of [17, Proposition 2.5] an argument showing that the index of any central simple *F*-algebra of exponent p^e is bounded by $p^{\frac{e(e+1)}{2}\lambda_p(F)}$. We retrieve this bound in Theorem 2.6 by means of a lifting argument formulated in Proposition 2.4.

In Section 3, we consider the case where $p^e = 4$ and make no assumption on roots of unity. For a nonreal field *F*, we obtain in Corollary 3.12 an upper bound on the index of exponent-4 algebras in terms of the *u*-invariant of *F*.

Section 4 is devoted to the construction of examples of nonreal fields with given *u*-invariant admitting a central simple algebra of given 2-primary exponent and of comparatively large index; see Proposition 4.3. If *F* is nonreal and u(F) = 4, then by Corollary 3.12 the index of a central simple *F*-algebra of exponent 4 is at most 8, and we see in Example 4.4 that this is optimal. This example provides at the same time quadratic field extensions K/F with u(F) = 4 and u(K) = 6; see Example 4.5. Hence, Section 4 provides also an alternative construction of fields of *u*-invariant 6.

2. Multiplication by a power of p in the Brauer group

For a finite field extension K/F, let $N_{K/F}$: $K \rightarrow F$ denote the norm map.

Theorem 2.1. Let $\zeta \in F$ be a primitive *p*-th root of unity. Let *K*/*F* be a cyclic field extension of degree p^{e-1} . Then *K*/*F* embeds into a cyclic field extension of degree p^e of *F* if and only if $\zeta = N_{K/F}(x)$ for some $x \in K$.

Proof. See [2, Theorem 9.11].

Let *A* and *B* be central simple *F*-algebras. We write $A \sim B$ to indicate that *A* and *B* are Brauer equivalent. For $n \in \mathbb{N}^+$ we denote by $A^{\otimes n}$ the *n*-fold tensor product $A \otimes_F ... \otimes_F A$.

Theorem 2.2 (Albert). Let $n, m \in \mathbb{N}$ with $m \leq n$ and $b \in F^{\times}$. Let L/F be a cyclic field extension of degree p^n and let σ be a generator of its Galois group. Let K be the fixed field of $\sigma^{p^{n-m}}$ in L. Then

$$[L/F, \sigma, b)^{\otimes p^m} \sim [K/F, \sigma|_K, b).$$

Proof. See [3, Theorem 7.14].

Corollary 2.3. Let $\zeta \in F$ be a primitive *p*-th root of unity. Let $e \in \mathbb{N}^+$. For $\alpha \in Br(F)$, the following are equivalent:

- (i) α is the class of a cyclic *F*-algebra of degree p^{e-1} containing a cyclic field extension *K*/*F* of degree p^{e-1} such that $\zeta = N_{K/F}(x)$ for some $x \in K$.
- (ii) $\alpha = p\beta$ for the class $\beta \in Br(F)$ of a cyclic *F*-algebra of degree p^e .

Proof. $(i \Rightarrow ii)$ Assume that K/F is a cyclic field extension of degree p^{e-1} , σ a generator of its Galois group and $b \in F^{\times}$ is such that α is represented by $[K/F, \sigma, b)$. Assume further that $\zeta = N_{K/F}(x)$ for some $x \in K$. By Theorem 2.1, there exists a field extension L/K of degree p such that L/F is cyclic. Then σ extends to an F-automorphism σ' of L, and it follows that σ' generates the Galois group of L/F. Let β be the class of the cyclic F-algebra $[L/F, \sigma', b)$. Since [L : K] = p and $\sigma'|_K = \sigma$, we conclude by Theorem 2.2 that $p\beta = \alpha$.

 $(ii \Rightarrow i)$ Assume that $\alpha = p\beta$ where $\beta \in Br(F)$ is the class of a cyclic *F*algebra of degree p^e . Then β is given by $[L/F, \sigma, b)$ for some cyclic field extension L/F of degree p^e , a generator σ of its Galois group and some $b \in F^{\times}$. Let *K* denote the fixed field of $\sigma^{p^{e^{-1}}}$ in *L*. Then K/F is cyclic of degree p^{e-1} , and we obtain by Theorem 2.1 that $\zeta = N_{K/F}(x)$ for some $x \in K$. By Theorem 2.2, we have $[L/F, \sigma, b)^{\otimes p} \sim [K/F, \sigma|_K, b)$. Hence, α is given by $[K/F, \sigma|_K, b)$.

Given a central simple *F*-algebra *A*, we denote by deg *A*, ind *A* and exp *A*, the degree, index and exponent of *A*, respectively. For $\alpha \in Br(F)$, we write ind α and exp α for the index and the exponent of any central simple *F*-algebra representing α .

Given a field extension F'/F and $\alpha \in Br(F)$ we denote by $\alpha_{F'}$ the image of α under the natural map $Br(F) \rightarrow Br(F')$ induced by scalar extension.

Let $m \in \mathbb{N}^+$. We call $\alpha \in Br(F)$ an *m*-cycle if $\exp \alpha = m = [K : F]$ for some cyclic field extension K/F for which $\alpha_K = 0$. Hence, given a central *F*-division algebra *D*, the class of *D* in Br(*F*) is an *m*-cycle if and only if *D* is cyclic and $\exp D = \deg D = m$.

Proposition 2.4. Let $e, i \in \mathbb{N}^+$ with $i \leq e$ and such that every cyclic field extension of degree p^i of F embeds into a cyclic field extension of degree p^e of F. Then every p^i -cycle in Br(F) is of the form $p^{e-i}\beta$ for a p^e -cycle $\beta \in Br(F)$.

Proof. Let $\alpha \in Br(F)$ be a p^i -cycle. Hence, α is given by $D = [K/F, \sigma, b)$ for a cyclic field extension K/F of degree p^i , a generator σ of its Galois group and

some $b \in F^{\times}$. In particular deg $D = p^i = \exp \alpha = \exp D$, whereby D is a division algebra. By the hypothesis, K/F embeds into a cyclic field extension L/F of degree p^e . Then σ extends to an F-automorphism σ' of L. It follows that σ' is a generator of the Galois group of L/F. We set $\Delta = [L/F, \sigma', b)$ and denote by β the class of Δ in Br(F). We obtain by Theorem 2.2 that $\Delta^{\otimes p^{e^{-i}}} \sim D$, whereby $p^{e^{-i}}\beta = \alpha$. Since $\exp \alpha = p^i$, it follows that $\exp \beta = p^e = \deg \Delta$. Since $\beta_L = 0$, we conclude that β is a p^e -cycle.

An element $\alpha \in Br(F)$ is called a *cycle* if it is an *m*-cycle for some $m \in \mathbb{N}^+$ (given by $m = \exp \alpha$).

Corollary 2.5. Let $e \in \mathbb{N}^+$ be such that F contains a primitive p^e -th root of unity. Then every cycle in Br_p(F) is a multiple of a p^e -cycle.

Proof. Let $\omega \in F$ be a primitive p^e -th root of unity and set $\zeta = \omega^{p^{e-1}}$. Then ζ is a primitive *p*-th root of unity. For any field extension K/F of degree p^i with $1 \leq i \leq e-1$, we have that $\zeta = (\omega^{p^{e-i-1}})^{p^i} = N_{K/F}(\omega^{p^{e-i-1}})$. Hence, it follows by induction on *i* from Theorem 2.1 that every cyclic field extension of degree p^i of *F* embeds into a cyclic field extension of degree p^e . Now the conclusion follows by Proposition 2.4.

The following bound can be easily derived from the proof of [17, Proposition 2.5]. To illustrate the general strategy, we include an argument.

Theorem 2.6. Let $e \in \mathbb{N}^+$ be such that F contains a primitive p^e -th root of unity. Then $\operatorname{Br}_{p^e}(F)$ is generated by the p^e -cycles. Furthermore, for every $\alpha \in \operatorname{Br}_{p^e}(F)$, we have ind $\alpha = p^n$ for some $n \in \mathbb{N}^+$ with

$$n \leq \frac{e(e+1)}{2} \lambda_p(F) \,.$$

Proof. Consider $\alpha \in Br_{p^e}(F)$. By induction on *e* we will show at the same time that α is a sum of p^e -cycles and that ind α is of the claimed form.

We have $p^{e-1}\alpha \in Br_p(F)$. It follows by Theorem 1.3 for n = p and by the definition of $\lambda_p(F)$ that $p^{e-1}\alpha = \sum_{i=1}^m \gamma_i$ for some natural number $m \leq \lambda_p(F)$ and classes $\gamma_1, \dots, \gamma_m \in Br(F)$ of cyclic *F*-division algebras of degree *p*. Then $\gamma_1, \dots, \gamma_m$ are *p*-cycles. By Corollary 2.5, for $1 \leq i \leq m$, we have $\gamma_i = p^{e-1}\beta_i$ for a p^e -cycle $\beta_i \in Br(F)$.

We set $\alpha' = \alpha - \sum_{i=1}^{m} \beta_i$. Then $\alpha' \in \operatorname{Br}_{p^{e-1}}(F)$. If e = 1, then $\alpha' = 0$ and $\alpha = \sum_{i=1}^{m} \beta_i$, and we obtain that $\operatorname{ind} \alpha = p^n$ for some positive integer $n \leq m \leq \lambda_p(F)$, confirming the claims about α . Assume now that e > 1. By the induction hypothesis, α' is equal to a sum of p^{e-1} -cycles and $\operatorname{ind} \alpha' = p^{n'}$ for a natural number $n' \leq \frac{(e-1)e}{2}\lambda_p(F)$. By Corollary 2.5, every cycle in $\operatorname{Br}_{p^e}(F)$ is a multiple of a p^e -cycle, hence in particular, a sum of p^e -cycles. We conclude that α' is a sum of p^e -cycles, whereby α is a sum of p^e -cycles. Furthermore ind α divides $\operatorname{ind} \alpha' \cdot \operatorname{ind} \beta_1 \cdots \operatorname{ind} \beta_m = p^{n'+em}$. Hence, $\operatorname{ind} \alpha = p^n$ for some positive integer

$$n \leq n' + em \leq \frac{(e-1)e}{2}\lambda_p(F) + e\lambda_p(F) = \frac{e(e+1)}{2}\lambda_p(F)$$

This proves the claims about α .

To obtain that $\text{Br}_{p^e}(F)$ is generated by cycles, one can also conclude inductively on the basis of a weaker hypothesis on roots of unity than in Theorem 2.6.

Proposition 2.7. Let $e \in \mathbb{N}^+$ be such that $p \operatorname{Br}(F) \cap \operatorname{Br}_{p^{e-1}}(F)$ is generated by elements $p\beta$ with cycles $\beta \in \operatorname{Br}_{p^e}(F)$. Then $\operatorname{Br}_{p^e}(F)$ is generated by cycles.

Proof. Consider $\alpha \in Br_{p^e}(F)$. Then $p\alpha \in p \operatorname{Br}(F) \cap Br_{p^{e-1}}(F)$, so the hypothesis implies that $p\alpha = \sum_{i=1}^{n} p\beta_i$ for some $n \in \mathbb{N}$ and cycles $\beta_1, \dots, \beta_n \in Br_{p^e}(F)$. Hence, $\alpha - \sum_{i=1}^{n} \beta_i \in Br_p(F)$. By Theorem 1.3, $\alpha - \sum_{i=1}^{n} \beta_i = \sum_{i=1}^{m} \gamma_i$ for some $m \in \mathbb{N}$ and *p*-cycles $\gamma_1, \dots, \gamma_m \in Br(F)$. Hence, α is a sum of cycles in $Br_{p^e}(F)$.

3. Multiplying by 2 in the Brauer group

From now on we assume that char $F \neq 2$. We show that the hypotheses of Proposition 2.7 for p = e = 2 are satisfied to retrieve the positive answer to Question 1.1 in the case where $p^e = 4$. The argument also yields bounds on the index of exponent-4 algebras in terms of the 2-symbol length, and hence an affirmative answer to Question 1.4 for these algebras.

We denote by $S_2(F)$ the set of nonzero sums of two squares in *F*. Note that $S_2(F)$ is a subgroup of *F*.

The following statement is essentially contained in [11, Corollary 5.14]. We include the argument for convenience.

Proposition 3.1. Let *Q* be an *F*-quaternion division algebra. The following are equivalent:

- (i) -1 is a norm in a quadratic field extension of F contained in Q.
- (*ii*) -1 *is a reduced norm of Q.*
- (iii) $Q \sim C^{\otimes 2}$ for some cyclic *F*-algebra *C* of degree 4.
- (iv) $Q \simeq (s, t)_F$ for certain $s \in S_2(F)$ and $t \in F^{\times}$.

Proof. Let $\operatorname{Nrd}_Q : Q \to F$ denote the reduced norm map. For any quadratic field extension K/F contained in Q and any $x \in K$ we have $\operatorname{Nrd}_Q(x) = \operatorname{N}_{K/F}(x)$. Therefore, the implication $(i \Rightarrow ii)$ is obvious, and for $(ii \Rightarrow i)$, it suffices to observe that, since Q is a division algebra, every maximal commutative subring of Q is a quadratic field extension of F.

The equivalence $(i \Leftrightarrow iii)$ corresponds to the equivalence formulated in Corollary 2.3 in the case where p = e = 2, taking for $\alpha \in Br(F)$ the class of Q.

To finish the proof, it suffices to show the equivalence $(i \Leftrightarrow iv)$. As char $F \neq 2$, any quadratic field extension of *F* is of the form $F(\sqrt{s})$ for some $s \in F^{\times} \setminus F^{\times 2}$, and for such *s*, we have that -1 is a norm in $F(\sqrt{s})/F$ if and only if the quadratic form $X^2 + Y^2 - sZ^2$ over *F* is isotropic, if and only if $s \in S_2(F)$. Finally, given a

1278

quadratic field extension K/F contained in Q and $s \in F^{\times}$ such that $K \simeq F(\sqrt{s})$, by [3, Theorem 5.9], we can find an element $t \in F^{\times}$ such that $Q \simeq (s, t)_F$. \Box

We denote by WF the Witt ring of F and by IF its fundamental ideal. For $n \in \mathbb{N}^+$, we set $I^n F = (IF)^n$, and we call a regular quadratic form over F whose Witt equivalence class belongs to $I^n F$ simply a *form in* $I^n F$. Given a regular quadratic form q over F, we denote by dim q its dimension (rank). By a *torsion form* we shall mean a regular quadratic form over F whose class in WF has finite additive order. A quadratic form q such that $2 \times q$ is hyperbolic is called a 2-*torsion form*. The following statement describes 2-torsion forms in $I^2 F$.

Lemma 3.2. Let q be a form in I^2F . Let $m \in \mathbb{N}^+$ be such that dim q = 2m + 2. Then $2 \times q$ is hyperbolic if and only if q is Witt equivalent to $\prod_{i=1}^m a_i \langle \langle s_i, t_i \rangle \rangle$ for some $s_1, \ldots, s_m \in S_2(F)$ and $a_1, t_1, \ldots, a_m, t_m \in F^{\times}$.

Proof. For $s \in S_2(F)$ and $t \in F^{\times}$, the form $2 \times \langle \! \langle s, t \rangle \! \rangle$ over *F* is hyperbolic. This proves the right-to-left implication.

We prove the opposite implication by induction on *m*. If m = 0, then *q* is a 2-dimensional quadratic form in I^2F and must therefore be hyperbolic. In particular, the statement holds in this case. Suppose now that $m \ge 1$. In view of the induction hypothesis, we may assume without loss of generality that *q* is anisotropic. As the quadratic form $2 \times q$ is hyperbolic and hence in particular isotropic, it follows by [7, Lemma 6.24] that $q \simeq q_1 \perp q_2$ for certain regular quadratic forms q_1 and q_2 over *F* such that dim $q_1 = 2$ and $2 \times q_1$ is hyperbolic. We fix an element $a_1 \in F^{\times}$ represented by q_1 . Then $q_1 \simeq \langle a_1, -a_1s_1 \rangle$ for some $s_1 \in F^{\times}$. As $2 \times q_1$ is hyperbolic, so is $2 \times \langle 1, -s_1 \rangle$, whereby $s_1 \in S_2(F)$. We write $q_2 \simeq \langle a \rangle \perp q'$ with $a \in F^{\times}$ and a (2m - 1)-dimensional regular quadratic form q' over *F*. We set $q'' = q' \perp \langle s_1a \rangle$ and $t_1 = -a_1a$. We obtain that $q \perp -q''$ is Witt equivalent to $a_1\langle\langle s_1, t_1 \rangle\rangle$. Since $s_1 \in S_2(F)$, we have that $2 \times \langle\langle s_1, t_1 \rangle\rangle$ is hyperbolic. Therefore, $2 \times q''$ is Witt equivalent to $2 \times q$, and hence equally hyperbolic. Furthermore, q'' is a form in I^2F . Since dim q'' = 2m and $2 \times q''$ is hyperbolic, the induction hypothesis yields that there exist $s_2, \ldots, s_m \in S_2(F)$ and $a_2, t_2, \ldots, a_m, t_m \in F^{\times}$ such that q'' is Witt equivalent to $\perp_{i=2}^m a_i \langle\langle s_i, t_i \rangle\rangle$. Then *q* is Witt equivalent to $\perp_{i=1}^m a_i \langle\langle s_i, t_i \rangle\rangle$. This concludes the proof. \Box

By [7, Theorem 14.3], associating to a quadratic form its Clifford algebra induces a homomorphism

$$e_2 : \mathbf{I}^2 F \to \mathsf{Br}_2(F)$$

By Merkurjev's Theorem [7, Theorem 44.1] together with [14, Theorem 4.1], the kernel of this homomorphism is precisely $I^{3}F$.

For a quadratic field extension K/F, we denote by $\operatorname{cor}_{K/F}$ the corestriction homomorphism $\operatorname{Br}(K) \to \operatorname{Br}(F)$ defined in [10, Section 3.B] (where it is denoted by $\operatorname{N}_{K/F}$).

Proposition 3.3. Let $\beta \in Br_2(F)$. The following are equivalent:

⁽i) $\beta \in 2 \operatorname{Br}(F)$.

- (ii) $\beta = e_2(q)$ for some 2-torsion form q in I^2F .
- (iii) β is given by $\bigotimes_{i=1}^{m} (s_i, t_i)_F$ for some $m \in \mathbb{N}$, $s_1, \dots, s_m \in S_2(F)$ and $t_1, \dots, t_m \in F^{\times}$.

Moreover, if these conditions are satisfied and ind $\beta \leq 4$, then one can choose m in (iii) such that ind $\beta = 2^m$.

Proof. The implication $(iii \Rightarrow i)$ follows by Proposition 3.1.

For $m \in \mathbb{N}$, $s_1, \ldots, s_m \in S_2(F)$ and $a_1, t_1, \ldots, a_m, t_m \in F^{\times}$, one has that $e_2(\coprod_{i=1}^m a_i \langle\!\langle s_i, t_i \rangle\!\rangle) \sim \bigotimes_{i=1}^m (s_i, t_i)_F$. Hence, the equivalence $(ii \Leftrightarrow iii)$ follows by Lemma 3.2.

We show now the implication $(i \Rightarrow iii)$. If $-1 \in F^{\times 2}$, then $F^{\times} = S_2(F)$, so (*iii*) holds by Theorem 1.3. Assume now that $-1 \in F^{\times} \setminus F^{\times 2}$ and that (*i*) holds. We set $K = F(\sqrt{-1})$. As $\beta \in Br_2(F)$, it follows by Theorem 1.3 together with [11, Corollary A4] that $\beta \cup (-1) = 0$ in $H^3(F, \mu_2)$. By [7, Theorem 99.13], we obtain that $\beta = \operatorname{cor}_{K/F}\beta'$ for some $\beta' \in Br_2(K)$. By Theorem 1.3 and [7, Proposition 100.2], $Br_2(K)$ is generated by the classes of *K*-quaternion algebras $(x, t)_K$ with $x \in K^{\times}$ and $t \in F^{\times}$, and the corestriction with respect to K/Fof such a class is given by $(N_{K/F}(x), t)_F$. Since $N_{K/F}(K^{\times}) \subseteq S_2(F)$ and $\beta = \operatorname{cor}_{K/F}\beta'$, we obtain that β is given by $\bigotimes_{i=1}^m (s_i, t_i)_F$ for some $m \in \mathbb{N}, s_1, \dots, s_m \in S_2(F)$ and $t_1, \dots, t_m \in F^{\times}$.

Hence, the equivalence of (i)-(iii) is established and it remains to prove the supplementary statement under the assumption that $ind \beta \leq 4$. In this case β is the class of an *F*-biquaternion algebra. It follows by [10, Section 16.A] that $\beta = e_2(q')$ for a 6-dimensional form q' in I^2F . By (ii), there also exists a 2-torsion form q in I^2F with $\beta = e_2(q)$. Then $q' \perp -q$ is a form in I^2F with $e_2(q' \perp -q) = 0$. As mentioned above, this implies that $q' \perp -q$ is a form in I^3F . Since $2 \times q$ is hyperbolic, the Witt class of $2 \times q'$ lies in I^4F . Note that dim $2 \times q' < 16$. Thus, $2 \times q'$ is hyperbolic, by [7, Theorem 23.7], and hence Lemma 3.2 yields the result.

By Proposition 3.3, for p = e = 2, the hypotheses of Proposition 2.7 on $2 \operatorname{Br}(F) \cap \operatorname{Br}_2(F)$ are satisfied unconditionally. Hence, one gets a positive answer to Question 1.1 for $p^e = 4$. We will formulate this result together with a bound on the index of exponent-4 algebras in terms of the 2-symbol length.

For $\alpha \in Br_4(F)$, we denote by $\mu(\alpha)$ the smallest $m \in \mathbb{N}$ for which there exist $s_1, \dots, s_m \in S_2(F)$ and $t_1, \dots, t_m \in F^{\times}$ with $2\alpha = \sum_{i=1}^m [(s_i, t_i)_F]$, noticing that such a representation does exist in view of Proposition 3.3. We set further

$$\mu(F) = \sup \{ \mu(\alpha) \mid \alpha \in Br_4(F) \} \in \mathbb{N} \cup \{ \infty \}.$$

Remark 3.4. If $S_2(F) = F^{\times}$, then $\mu(F) = \lambda_2(F)$.

The invariants $\lambda_2(F)$ and $\mu(F)$ are related to the existence of anisotropic torsion (respectively 2-torsion) forms over *F* in certain dimensions. Recall that the *u*-invariant of *F* is defined as

 $u(F) = \sup\{\dim q \mid q \text{ anisotropic torsion form over } F\} \in \mathbb{N} \cup \{\infty\}.$

We refer to [15, Chapter 8] for a general discussion of this invariant.

Proposition 3.5. If *F* is nonreal, then $\lambda_2(F) \leq \max\left\{0, \frac{1}{2}u(F) - 1\right\}$.

Proof. See [9, Théorème 2].

In [15, Section 8.2], the following relative of the *u*-invariant is studied.

 $u'(F) = \sup \{ \dim q \mid q \text{ anisotropic 2-torsion form over } F \} \in \mathbb{N} \cup \{ \infty \}.$ Note that clearly $u'(F) \leq u(F)$.

Proposition 3.6. We have $\mu(F) \leq \max\left\{0, \frac{1}{2}u'(F) - 1\right\}$.

Proof. We need to show that $\mu(\alpha) \leq m$ holds for any $\alpha \in Br_4(F)$ and any $m \in \mathbb{N}^+$ with $u'(F) \leq 2m + 2$. Let $m \in \mathbb{N}^+$ be such that $u'(F) \leq 2m + 2$. Let $\alpha \in Br_4(F)$. By Proposition 3.3, we have $2\alpha = e_2(q)$ for some 2-torsion form q in I^2F . Then dim $q \leq u'(F) \leq 2m + 2$. Hence, q is even-dimensional and we obtain that q is Witt equivalent to a quadratic form of dimension 2m + 2. It follows by Lemma 3.2 that q is Witt equivalent to $\prod_{i=1}^m a_i \langle \langle s_i, t_i \rangle \rangle$ for some $s_1, \ldots, s_m \in S_2(F)$ and $a_1, t_1, \ldots, a_m, t_m \in F^{\times}$. Then

$$2\alpha = e_2(q) = e_2\left(\prod_{i=1}^m a_i \langle\!\langle s_i, t_i \rangle\!\rangle\right) = \sum_{i=1}^m [(s_i, t_i)],$$

whereby $\mu(\alpha) \leq m$.

The last statements motivate the following question.

Question 3.7. Is $\mu(F) \leq \lambda_2(F)$?

If $\lambda_2(F) \leq 2$, then a positive answer to Question 3.7 is obtained by Proposition 3.3. In the following example, the inequality in Proposition 3.6 is strict.

Example 3.8. Consider the iterated power series field $F = \mathbb{C}((x))((y))((z))$. The 8-dimensional quadratic form $\varphi = \langle 1, x, y, z, xy, xz, yz, xyz \rangle$ over F is anisotropic. Since -1 is square in F and $F^{\times}/F^{\times 2}$ is generated by the square-classes of x, y and z, it is easy to see that every anisotropic quadratic form over F is a subform of φ . This implies on the one hand that u(F) = 8, on the other hand that $\lambda_2(F) = 1$, because there is no anisotropic 6-dimensional form in I^2F . Furthermore $-1 \in F^{\times 2}$, so u'(F) = u(F) = 8 and $\mu(F) = \lambda_2(F) = 1$.

Proposition 3.9. Let $\alpha \in Br_4(F)$. There exist a natural number $m \leq \mu(F)$ and 4-cycles $\alpha_1, \dots, \alpha_m \in Br(F)$ such that $\alpha \equiv \sum_{i=1}^m \alpha_i \mod Br_2(F)$.

Proof. By Proposition 3.3 and the definition of $\mu(F)$, there exist a natural number $m \leq \mu(F)$ and $s_1, \ldots, s_m \in S_2(F)$ and $t_1, \ldots, t_m \in F^{\times}$ such that $2\alpha = \sum_{i=1}^{m} [(s_i, t_i)_F]$. By Proposition 3.1, for $1 \leq i \leq m$, we can find a 4-cycle $\alpha_i \in Br_4(F)$ such that $2\alpha_i = [(s_i, t_i)_F]$. We obtain that $2\alpha - \sum_{i=1}^{m} 2\alpha_i = 0$, whereby $\alpha - \sum_{i=1}^{m} \alpha_i \in Br_2(F)$. Therefore, $\alpha \equiv \sum_{i=1}^{m} \alpha_i \mod Br_2(F)$.

We retrieve [13, Proposition 6.16]:

Corollary 3.10. $Br_4(F)$ is generated by cycles.

Proof. By Theorem 1.3, $Br_2(F)$ is generated by classes of *F*-quaternion division algebras and thus by 2-cycles. The statement now follows by combining this fact with Proposition 3.9.

Theorem 3.11. We have $\lambda_4(F) \leq \lambda_2(F) + \mu(F)$. Furthermore, for $\alpha \in Br_4(F)$, there exist $\beta \in Br_4(F)$ with $\lambda_4(\beta) \leq \mu(\alpha)$ and $\gamma \in Br_2(F)$ such that $\alpha = \beta + \gamma$, and in particular ind $\alpha = 2^n$ for some natural number $n \leq \lambda_2(F) + 2\mu(F)$.

Proof. Let $\alpha \in Br_4(F)$ and set $m = \mu(\alpha)$. By Proposition 3.9, we obtain that $\alpha = \sum_{i=1}^m \alpha_i + \gamma$ for some 4-cycles $\alpha_1, \dots, \alpha_m \in Br_4(F)$ and some $\gamma \in Br_2(F)$. Set $\beta = \sum_{i=1}^m \alpha_i$. Then $\beta \in Br_4(F)$ and

$$\lambda_4(\alpha) \leq \lambda_4(\gamma) + \lambda_4(\beta) \leq \lambda_2(\gamma) + m \leq \lambda_2(F) + \mu(F).$$

Note that ind β divides $\prod_{i=1}^{m}$ ind $\alpha_i = 2^{2m}$. Since ind γ divides $2^{\lambda_2(\gamma)}$ and ind α divides ind $\beta \cdot \text{ind } \gamma$, we obtain that ind $\alpha = 2^n$ for some $n \in \mathbb{N}$ with $n \leq \lambda_2(F) + 2\mu(F)$.

Note that when *F* contains a primitive 4-th root of unity, the bounds in Theorem 3.11 coincide with those in Theorem 2.6.

Corollary 3.12. Assume that *F* is nonreal. Let $\alpha \in Br_4(F)$. Then ind $\alpha = 2^n$ for some natural number $n \leq \max\left\{0, 3\left(\frac{1}{2}u(F) - 1\right)\right\}$.

Proof. Since $u'(F) \leq u(F)$, this follows by Theorem 3.11 together with Proposition 3.5 and Proposition 3.6.

Proposition 3.13. Let $l = \lambda_2(F)$ and $m = \mu(F)$ and assume that $l + m < \infty$. Let D be a central F-division algebra of degree 2^{l+2m} for which $D^{\otimes 4}$ is split. There exist F-quaternion algebras Q_1, \ldots, Q_l and cyclic F-algebras C_1, \ldots, C_m of degree 4 such that

$$D \simeq \left(\bigotimes_{i=1}^{l} Q_i\right) \otimes \left(\bigotimes_{i=1}^{m} C_i\right).$$

Proof. By Theorem 3.11, the class of *D* in Br(F) is represented by such a tensor product, and since the degrees coincide, the statement follows.

Corollary 3.14. Assume that F is nonreal and let $m \in \mathbb{N}$ be such that u(F) = 2m + 2. Let D be a central F-division algebra such that $D^{\otimes 4}$ is split and deg $D = 2^{3m}$. Then D is decomposable into a tensor product of m F-quaternion algebras and m cyclic F-algebras of degree 4.

Proof. Since u(F) = 2m+2, we have $\lambda_2(F) \le m$, by Proposition 3.5, and further $\mu(F) \le m$, by Proposition 3.6. The statement follows by Proposition 3.13.

Theorem 3.15. Assume that F is nonreal with u(F) = 4. Let D be a central F-division algebra of degree 8 such that $D^{\otimes 4}$ is split. Then D decomposes into a tensor product of a cyclic F-algebra of degree 4 and an F-quaternion algebra. Furthermore, ind $D^{\otimes 2} = 2$, and u(K) = 6 holds for every quadratic field extension K/F such that $(D^{\otimes 2})_K$ is split.

Proof. The first part follows by Corollary 3.14 applied with m = 1.

Since u(F) = 4, we have $\lambda_2(F) \leq 1$, by Proposition 3.5. Hence, $\operatorname{ind} C \leq 2$ for every central simple *F*-algebra *C* such that $C^{\otimes 2}$ is split. Since $\operatorname{ind} D > 2$ and $D^{\otimes 4}$ is split, we conclude that $\operatorname{ind} D^{\otimes 2} = 2$.

Consider now a quadratic field extension K/F such that $(D^{\otimes 2})_K$ is split. Note that $(D^{\otimes 2})_K \simeq (D_K)^{\otimes 2}$ and $\operatorname{ind} D_K \ge \frac{1}{2} \operatorname{ind} D = 4$. Hence, D_K represents an element of $\operatorname{Br}_2(K)$ which is not given by any K-quaternion algebra. This shows that $\lambda_2(K) \ge 2$. It follows by Proposition 3.5 that $u(K) \ge 6$. On the other hand, since u(F) = 4 and [K : F] = 2, it follows by [8, Theorem 4.3] that $u(K) \le \frac{3}{2}u(F) \le 6$. Therefore, u(K) = 6.

4. Examples of fields with *u*-invariant 6

In this section, we provide a construction leading to an example which shows that the bound in Corollary 3.12 is optimal for fields of *u*-invariant 4. In particular this construction provides examples of nonreal fields of *u*-invariant 6.

Let *q* be a regular quadratic form over *F* of dimension $n \ge 2$. If n = 2, then assume that *q* is not hyperbolic. Then as a polynomial in $F[X_1, ..., X_n]$, the quadratic form $q(X_1, ..., X_n)$ is irreducible. Thus, the ideal generated by $q(X_1, ..., X_n)$ in the polynomial ring $F[X_1, ..., X_n]$ is a prime ideal, and hence the quotient ring $F[X_1, ..., X_n]/(q(X_1, ..., X_n))$ is a domain. Its fraction field is denoted by F(q) and called the *function field of q over F*.

Lemma 4.1. Let $m, n \in \mathbb{N}^+$. Let $\alpha \in Br(F)$ be such that $\operatorname{ind} \alpha = 2^n$. Let q be a regular (2m + 1)-dimensional quadratic form over F such that $\operatorname{ind} \alpha_{F(q)} < \operatorname{ind} \alpha$. Then $n \ge m$. Moreover, if n > m, then $\operatorname{ind} 2\alpha \le 2^{n-m-1}$.

Proof. Let *D* be the central *F*-division algebra representing α in Br(*F*). Then deg $D = \operatorname{ind} \alpha = 2^n$. Let $C_0(q)$ denote the even Clifford algebra of *q*. By [7, Proposition 11.6], the *F*-algebra $C_0(q)$ is central simple. As dim_{*F*} $C_0(q) = 2^{2m}$, we have deg $C_0(q) = 2^m$. By [7, Example 11.3 and Proposition 11.4 (*b*)], $C_0(q)$ carries an *F*-linear involution. Therefore, $(C_0(q))^{\otimes 2}$ is split.

Since ind $D_{F(q)} = \operatorname{ind} \alpha_{F(q)} < \operatorname{ind} \alpha = \operatorname{deg} D$, it follows by [7, Proposition 30.5], that there exists an *F*-algebra homomorphism $C_0(q) \to D$. As $C_0(q)$ and *D* are central simple *F*-algebras, it follows that $D \simeq C_0(q) \otimes_F B$ for a central *F*-division algebra *B*. Hence, $2^n = \operatorname{deg} D = 2^m \cdot \operatorname{deg} B$, so in particular $n \ge m$.

Assume now that n > m. Then $\operatorname{ind} B = \deg B = 2^{n-m} \ge 2$. Since $(C_0(q))^{\otimes 2}$ is split, the class $2\alpha \in \operatorname{Br}_2(F)$ is given by $B^{\otimes 2}$. Hence, $\operatorname{ind} 2\alpha = \operatorname{ind} B^{\otimes 2}$. By [3, Lemma 5.7], we have $\operatorname{ind} B^{\otimes 2} \le \frac{1}{2}$ ind *B*. Therefore, $\operatorname{ind} 2\alpha \le 2^{n-m-1}$.

Theorem 4.2. Let C be a class of field extensions of F with the following properties:

- (*i*) *C* is closed under direct limits,
- (ii) if $L/F \in C$ and K/F is a subextension of L/F then $K/F \in C$,
- (*iii*) $F/F \in \mathcal{C}$.

1284

Then there exists a field extension $K/F \in C$ such that $K(\varphi)/F \notin C$ for any anisotropic quadratic form φ over K of dimension at least 2.

Proof. See [5, Theorem 6.1].

The following statement and its hypotheses are motivated by an application which we obtain in Example 4.4.

Proposition 4.3. Let $m, e \in \mathbb{N}^+$ with $m \ge 2$. Let $\alpha \in Br(F)$ be such that $\exp \alpha = 2^e$, $\operatorname{ind} \alpha = 2^{me-1}$ and $\operatorname{ind} 2^i \alpha = 2^{me-1-i}$ for $0 \le i \le e-1$. There exists a field extension K/F such that $u(K) \le 2m$, $\exp \alpha_K = 2^e$ and $\operatorname{ind} \alpha_K = 2^{me-1}$.

Proof. Let *C* be the class of field extensions K/F such that $\operatorname{ind} 2^i \alpha_K \ge 2^{me-mi-1}$ for $0 \le i \le e-1$. Then *C* satisfies the conditions of Theorem 4.2. Hence, there exists a field extension $K/F \in C$ such that $K(\varphi)/F \notin C$ for any anisotropic quadratic form φ over *K* of dimension at least 2. As $\operatorname{ind} 2^{e-1} \alpha_K \ge 2^{m-1}$, $m \ge 2$ and $\exp \alpha = 2^e$, we get that $\exp \alpha_K = 2^e$. Since $\operatorname{ind} \alpha_K \ge 2^{me-1}$ and $\operatorname{ind} \alpha = 2^{me-1}$, we have that $\operatorname{ind} \alpha_K = 2^{me-1}$.

Let φ be an arbitrary (2m + 1)-dimensional quadratic form over K. We claim that φ is isotropic. Let $\alpha_i = 2^i \alpha_K$ for $0 \le i \le e-1$. We will check for $0 \le i \le e-1$ that the inequality ind $\alpha_i \ge 2^{me-mi-1}$ is preserved under scalar extension from K to $K(\varphi)$. Consider first the case where i = e - 1. If ind $\alpha_{e-1} = 2^{m-1}$, then $\operatorname{ind}(\alpha_{e-1})_{K(\varphi)} = 2^{m-1}$, by Lemma 4.1. Otherwise, ind $\alpha_{e-1} \ge 2^m$, and therefore $\operatorname{ind}(\alpha_{e-1})_{K(\varphi)} \ge 2^{m-1}$. Consider now the case where $0 \le i \le e - 2$. Note that $me - mi - 1 \ge m + 1$, because $m \ge 2$. If ind $\alpha_i = 2^{me-mi-1}$, then since $\operatorname{ind} 2\alpha_i =$ $\operatorname{ind} \alpha_{i+1} \ge 2^{me-mi-1-m}$, we conclude by Lemma 4.1 that $\operatorname{ind}(\alpha_i)_{K(\varphi)} = \operatorname{ind} \alpha_i$. Otherwise, $\operatorname{ind} \alpha_i \ge 2^{me-mi}$, and hence $\operatorname{ind}(\alpha_i)_{K(\varphi)} \ge 2^{me-mi-1}$. Therefore, we have $\operatorname{ind}(\alpha_i)_{K(\varphi)} \ge 2^{me-mi-1}$ for $0 \le i \le e - 1$. This shows that $K(\varphi)/F \in C$. In view of the choice of K, this implies that φ is isotropic. This argument shows that $u(K) \le 2m$.

We can now show that the bound in Corollary 3.12 is optimal when $u(F) \leq 4$.

Example 4.4. Let $m, e \in \mathbb{N}^+$ with $m \ge 2$. By [16, Construction 2.8], there exist a nonreal field F of characteristic different from 2 and a central F-division algebra D such that $\exp D = 2^e$, $\deg D = 2^{me-1}$ and $\operatorname{ind} D^{\otimes 2^i} = 2^{me-1-i}$ for $1 \le i \le e-1$. Then Proposition 4.3 (applied to the Brauer equivalence class of D) yields a field extension F'/F such that $u(F') \le 2m$, $\exp D_{F'} = 2^e$ and $\operatorname{ind} D_{F'} = 2^{me-1}$. In the case where m = 2, it follows that u(F') = 4.

Example 4.5. By Example 4.4, there exist a nonreal field *F* with char $F \neq 2$ together with an *F*-division algebra *D* of degree 8 such that u(F) = 4 and $D^{\otimes 4}$

is split. By Theorem 3.15, it follows that ind $D^{\otimes 2} = 2$ and that u(K) = 6 for every quadratic field extension K/F such that $(D^{\otimes 2})_K$ is split.

Acknowledgments

We like to thank the referee for their comments. This work was supported by the *Fonds Wetenschappelijk Onderzoek – Vlaanderen (FWO)* in the FWO Odysseus Programme (project G0E6114N 'Explicit Methods in Quadratic Form Theory'), the *Fondazione Cariverona* in the programme Ricerca Scientifica di Eccellenza 2018 (project 'Reducing complexity in algebra, logic, combinatorics - REDCOM'), and by the *FWO-Tournesol programme* (project VS05018N).

References

- [1] ALBERT, A. ADRIAN. Simple algebras of degree p^e over a centrum of characteristic *p. Trans. Amer. Math. Soc.* **40** (1936), no. 1, 112–126. MR1501866, Zbl 0014.29102, doi: 10.2307/1989665. 1274
- [2] ALBERT, A. ADRIAN. Modern higher algebra. The University of Chicago Press, Chicago Illinois, 1937. Zbl 64.0071.01. 1275
- [3] ALBERT, A. ADRIAN. Structure of algebras. American Mathematical Society Colloquium Publications, 24. American Mathematical Society, New York, 1939. xi+210 pp. MR0000595, Zbl 0023.19901, doi: 10.1090/coll/024. 1273, 1274, 1276, 1279, 1283
- [4] AUEL, ASHER; BRUSSEL, ERIC; GARIBALDI, SKIP; VISHNE, UZI. Open problems on central simple algebras. *Transform. Groups* 16 (2011), no.1, 219–264. MR2785502, Zbl 1230.16016, arXiv:1006.3304, doi: 10.1007/s00031-011-9119-8. 1274
- [5] BECHER, KARIM JOHANNES. Supreme Pfister forms. Comm. Algebra 32 (2004), no. 1, 217– 241. MR2036232, Zbl 1055.11025, doi: 10.1081/AGB-120027862. 1284
- [6] DRAXL, PETER K. Skew fields. London Math. Soc. Lect. Note Series, 81. Cambridge University Press, Cambridge, 1983. ix+182 pp. ISBN:0-521-27274-2. MR0696937, Zbl 0498.16015, doi: 10.1017/CBO9780511661907. 1274
- [7] ELMAN, RICHARD; KARPENKO, NIKITA; MERKURJEV, ALEXANDER. The algebraic and geometric theory of quadratic forms. American Mathematical Society Colloquium Publications, 56. American Mathematical Society, Providence, RI, 2008. viii+435 pp. ISBN: 978-0-8218-4329-1. MR2427530, Zbl 1165.11042, doi: 0.1090/coll/056. 1279, 1280, 1283
- [8] ELMAN, RICHARD; LAM, TSIT YUEN. Quadratic forms and the *u*-invariant. I. Math. Z. 131 (1973), 283–304. MR0323716, Zbl 0244.10020, doi: 10.1007/BF01174904. 1283
- [9] KAHN, BRUNO. Quelques remarques sur le u-invariant. Sém. Théor. Nombres Bordeaux (2)
 2 (1990), no.1, 155–161. MR1061764, Zbl 0712.12002, doi: 10.5802/jtnb.24. 1281
- [10] KNUS, MAX-ALBERT.; MERKURJEV, ALEXANDER; ROST, MARKUS; TIGNOL, JEAN-PIERRE. The book of involutions. American Mathematical Society Colloquium Publications, 44. *American Mathematical Society, Providence, RI*, 1998. xxii+593 pp. ISBN:0-8218-0904-0. MR1632779, Zbl 0955.16001, doi: 10.1090/coll/044. 1274, 1279, 1280
- [11] LAM, TSIT YUEN; LEEP, DAVID B.; TIGNOL, JEAN-PIERRE. Biquaternion algebras and quartic extensions. *Inst. Hautes Études Sci. Publ. Math.* (1993), no.77, 63–102. MR1249170, Zbl 0801.11048, doi: 10.1007/BF02699188. 1278, 1280
- [12] MERKURJEV, ALEXANDER S. On the norm residue symbol of degree 2. (Russian) Dokl. Akad. Nauk SSSR 261 (1981), no.3, 542–547. MR0638926, Zbl 0496.16020. 1274
- [13] MERKURJEV, ALEXANDER S.; SUSLIN, ANDREI A. K-cohomology of Severi–Brauer varieties and the norm residue homomorphism. (Russian) *Izv. Akad. Nauk SSSR Ser. Mat.* 46 (1982), no.5, 1011–1046, 1135–1136. English translation: *Math. USSR-Izv.* 21 (1983), 307–340. MR0675529, Zbl 0525.18008. 1274, 1282

KARIM JOHANNES BECHER AND FATMA KADER BİNGÖL

- MILNOR, JOHN. Algebraic K-theory and quadratic forms. *Invent. Math.* 9 (1969/70/1970), 318–344. MR0260844, Zbl 0199.55501, doi: 10.1007/BF01425486. 1279
- [15] PFISTER, ALBRECHT. Quadratic forms with applications to algebraic geometry and topology. London Mathematical Society Lecture Note Series, 217. *Cambridge University Press, Cambridge*, 1995. viii+179 pp. ISBN: 0-521-46755-1. MR1366652, Zbl 0847.11014, doi: 10.1017/CBO9780511526077. 1281
- [16] SCHOFIELD, AIDAN.; VAN DEN BERGH, MICHEL. The index of a Brauer class on a Brauer–Severi variety. *Trans. Amer. Math. Soc.* 333 (1992), no.2, 729–739. MR1061778, Zbl 0778.12004, doi: 10.1090/S0002-9947-1992-1061778-X. 1284
- [17] TIGNOL, JEAN-PIERRE. On the length of decompositions of central simple algebras in tensor products of symbols. *Methods in ring theory* (Antwerp, 1983), 505–516. NATO Adv. Sci. Inst. Ser. C: Math Phys. Sci., 129, *Reidel Dordrecht*, 1984. MR0770614, Zbl 0558.16010. 1275, 1277

(K. J. Becher) University of Antwerp, Department of Mathematics, Middelheimlaan 1, 2020 Antwerpen, Belgium

KarimJohannes.Becher@uantwerpen.be

(F. K. Bingöl) UNIVERSITY OF ANTWERP, DEPARTMENT OF MATHEMATICS, MIDDELHEIMLAAN 1, 2020 ANTWERPEN, BELGIUM FatmaKader.Bingol@uantwerpen.be

This paper is available via http://nyjm.albany.edu/j/2023/29-48.html.