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On the orbits of plane automorphisms
and their stabilizers

Alvaro Rittatore and Iván Pan

Abstract. Let 𝕜 be a perfect field with algebraic closure 𝕜. If 𝐻 is a sub-

group of plane automorphisms over 𝕜 and 𝑝 ∈ 𝕜
2
is a point, we describe the

subgroup consisting of plane automorphisms which stabilize the orbit of 𝑝
under𝐻, when this orbit has irreducible closure in 𝕜

2
. As an application, we

treat the case where𝐻 is cyclic and the closure of the orbit of 𝑝 is an arbitrary
(non-necessarily irreducible) curve.
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1. Introduction
In [1], the authors study the group of automorphisms of the affine plane pre-

serving some given curve over an arbitrary field 𝕜; in particular, they describe
when thementioned group is algebraic. As an application of their main results,
they propose a classification of the group of automorphisms stabilizing an ar-

bitrary set ∆ ⊂ k
2
— here k denotes the algebraic closure of 𝕜. However, this

classification (see [1, Prop. 3.11]) is incomplete, since the authors assume im-

plicitly that ∆ is such that the Zariski closure of ∆ in k
2
coincides with the zero

locus of 𝐼k(∆), the ideal of the 𝕜–polynomials vanishing at∆. This classification
can be rephrased as the following problem:

Let ∆ ⊂ k
2
be a subset. Then ∆ and its closure ∆ are stabi-

lized by their respective groups of automorphisms Aut(A2,∆)

Received November 16, 2022.
2010Mathematics Subject Classification. 14R10,14R20.
Key words and phrases. Automorphism of the affine plane, stabilizaers of orbits.
Research of both authors was partially supported by CSIC (Udelar), ANII and PEDECIBA, of

Uruguay.

ISSN 1076-9803/2023

1373

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2023/Vol29.htm


1374 ALVARO RITTATORE AND IVÁN PAN

and Aut(A2,∆), with Aut(A2,∆) ⊂ Aut(A2,∆) (see Definition
2.3 below). Describe Aut(A2,∆); in particular, when the men-
tioned inclusion is proper.

Clearly, the problem above divides into three main cases: (1) ∆ is finite; (2)

∆ is a curve; and (3) ∆ = k
2
.

Case (1) has been solved (see [1, §3.1]), whereas case (3) is very difficult to
tackle. In this paper, we concentrate on the study of case (2). Notice that both
∆ and ∆ are stable under the action of Aut(A2,∆). Hence, a particular case of
(2) is when ∆ is aAut(A2,∆)-orbit — recall that ∆ is Aut(A2,∆)-stable. This led
us to consider the following problem, which is interesting in its own right.

If𝐻 is a subgroup of plane automorphisms over a fieldk and𝑝 ∈
k
2
, then describe the stabilizer of its orbit Aut

(
A2,O𝐻(𝑝)

)
, i.e.

the set of plane automorphisms which leave invariantO𝐻(𝑝) ={
ℎ(𝑝) ∶ ℎ ∈ 𝐻

}
.

More precisely, if we denote 𝐴 and 𝐺 the group of automorphisms of the
plane stabilizingO𝐻(𝑝) andO𝐻(𝑝) respectively, then it is clear that𝐻 ⊂ 𝐴 ⊂ 𝐺.
Moreover, it follows from [1, Theorem2] that the irreducible curves classify into
six disjoint families according to the stabilizer of the elements of each family
(see Theorem 2.8 below for a concrete description); if O𝐻(𝑝) is not irreducible,
then one can obtain partial information on 𝐺 (see [1, Theorem 1]). Taking into
account this classification, we want to describe the algebraic structure of the
inclusion𝐻 ⊂ 𝐴 in terms of𝐻, assuming that 𝐺 is known.
In Theorem3.4, assumingk perfect, we solve the above problemwhenO𝐻(𝑝)

is an irreducible curve: if we classify the curves O𝐻(𝑝) in families according to
the description of their group of automorphisms, then for all but one family
(when O𝐻(𝑝) is, up to an automorphism, a straight line) O𝐻(𝑝) is either 𝐻 or
an extension of 𝐻 by an element of 𝐺 — one must notice that since 𝐻 ⊂ 𝐴
and O𝐻(𝑝) is a curve, 𝐴 cannot be finite. In particular, in this way we obtain
infinite families of orbits of cyclic groups whose stabilizer is countable infinite,
and therefore it is not an algebraic group (see Corollary 3.7).
IfO𝐻(𝑝) is a non irreducible curve, or all the plane, then our problem ismore

difficult to tackle; in Section 4 we consider a particular case of this problem,
namely the case where 𝐻 is a cyclic group and the closure of O𝐻(𝑝) is a (non-
necessarily irreducible) curve, see Theorem 4.8: if O𝐻(𝑝) is not contained in
a fence, then again 𝐴 is either 𝐻 of an extension by an element, if O𝐻(𝑝) is
contained in a fence, a partial description is given.
Acknowledgments. We would like to thank the anonymous referee for his care-
ful reading and very useful suggestions, that helped us to improve the manu-
script.
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2. Preliminaries
In this section, we introduce the definition of the automorphisms group of

a subset of the affine plane A2 and recall the description of the automorphisms
group of a curve in A2.
Notation 2.1. The following notations will be kept through the paper.
(1) In what follows, 𝕜 is an arbitrary perfect field and k is an algebraic closure
of k.

(2) We let A2 = Spec
(
k[𝑥, 𝑦]

)
and denote the set of k-points and k-points in A2

by A2(k) and A2(k) respectively. Recall that A2(k) identifies with the k-points
of A2

k
= Spec(k) ×k A2.

(3) If ∆ ⊂ A2(k), we denote the vanishing ideals of ∆ by ℐ(∆) ⊂ k[𝑥, 𝑦] and
ℐk(∆) ⊂ k[𝑥, 𝑦]. If 𝐽 ⊂ 𝕜[𝑥, 𝑦] is an ideal, we denote 𝒱(𝐽) = Spec

(
k[𝑥, 𝑦]∕𝐽

)

viewed as a closed subscheme of A2, and 𝒱k(𝐽) = 𝒱(𝐽)(k) ⊂ A2
k
(k) ≅ A2(k)

the zero set of 𝐽.

(4) If ∆ ⊂ A2(k), we set ∆̂ = 𝒱k

(
𝐼(∆)

)
⊂ A2(k); the Zariski closure of ∆ in A2(k)

is denoted by ∆—hence, ∆ ⊂ ∆̂ ⊂ A2(k).

(5) The automorphisms group of A2 is denoted byAut(A2)—recall thatAut(A2)
is the (abstract) group of isomorphisms of k-schemes 𝑓 ∶ A2 → A2.
The following well known result, that gives further insight on the relation-

ship between ∆ and ∆̂, follows from Galois descent (see for example [5, Appen-
dix A.j]); we include its proof for the sake of completeness.

Lemma 2.2. Consider the canonical action of 𝐺 = Gal(k∕k) on A2(k). If ∆ ⊂
A2(k), then ∆̂ = 𝐺 ⋅∆. In particular, every irreducible component of ∆̂ is the image
of an irreducible component of ∆ under an element in 𝐺.
Proof. It is clear that ∆̂ ⊂ A2(k) is a 𝐺–stable closet subset containing ∆. So,
by Galois descent, there exists an unique closed subscheme 𝑋 ⊂ Spec

(
k[𝑥, 𝑦]

)

such that ∆̂ identifies with the set of k-points of Spec(k) ×Spec(k) 𝑋. Under the
identification A2(k) ⊂ A2(k), we have that 𝑋(k) is the set of k-points of ∆̂ fixed
by the Galois action and ∆̂ = 𝐺⋅

(
𝑋 ∩ A2(k)

)
. It follows that 𝑋(k) = ∆ ∩ A2(k)

and 𝐺 ⋅∆ = ∆̂. The last assertion is an easy consequence of Galois descent. □

We introduce now themain object of study of this work, namely the group of
automorphisms that stabilize an arbitrary subset of k-points of the affine plane.

Definition 2.3. Let 𝑎 ∶ Aut(A2) × A2
k
(k) → A2

k
(k), 𝑎(𝑓, 𝑝) = 𝑓(k)(𝑝), be the

canonical action of Aut(A2) on A2(k). If ∆ ⊂ A2(k), we denote the stabilizer of
∆ under 𝑎 by Aut(A2,∆).
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Remark 2.4. (1) Recall that an automorphism 𝜑 ∈ Aut(A2) is given by a pair
(𝑓, 𝑔) ∈ k[𝑥, 𝑦] × k[𝑥, 𝑦], such that the corresponding endomorphism of A2

k
is an automorphism, with inverse (𝑓, 𝑔)−1 = (ℎ, 𝑗) ∈ k[𝑥, 𝑦]×k[𝑥, 𝑦]. Under
this identification, 𝑎

(
(𝑓, 𝑔), 𝑝

)
=
(
𝑓(𝑝), 𝑔(𝑝)

)
.

(2) Let ∆ ⊂ A2(k) and 𝜑 ∈ Aut(A2,∆). If 𝜑∗ ∶ k[𝑥, 𝑦] → k[𝑥, 𝑦] denotes
the induced automorphism (which is defined over k), then 𝜑∗ stabilizes the
ideals ℐ(∆) and ℐk(∆). It follows that 𝜑 stabilizes ∆ and ∆̂; therefore 𝜑∗ also
stabilizes the ideals ℐ(∆̂) and and ℐk(∆̂).

In other words:

Aut(A2,∆) ⊂ Aut
(
A2,∆

)
⊂ Aut

(
A2, ∆̂

)
. (1)

Notation 2.5. If 𝐻 ⊂ Aut(A2) is a subgroup and 𝑝 ∈ A2(k), we denote the
𝐻-orbit of 𝑝 as O𝐻(𝑝).

Example 2.6. It is well known that the inclusions (1) may be strict. For ex-
ample if k = Q and ∆ =

{
(
√
2, 0)

}
, then ∆̂ =

{
(
√
2, 0), (−

√
2, 0)

}
and 𝜑 =

(−𝑥, 𝑦 + 𝑥2 − 2) ∈ Aut(A2, ∆̂) ⧵ Aut(A2,∆).
The fact that the first inclusionmay be strict is a key point in our study of the

stabilizers of orbits.

In [1], the authors study the stabilizer of a closed subset of the affine plane.
In particular, they give an explicit description of the geometrically irreducible
curves 𝒞 such that Aut

(
A2,𝒞(k)

)
is an algebraic group. We briefly recall now

these results — according to Remark 2.4, we present an element of Aut(A2) as
a pair of polynomials (𝑓, 𝑔) ∈ k[𝑥, 𝑦].

Remark 2.7. If ∆ ⊂ A2(k) is finite, then Aut(A2,∆) is not an algebraic group
(see [1, Proposition 3.11]) — notice that if ∆ =

{
(𝑎𝑖, 𝑏𝑖) ∈ A2(k); 𝑖 = 1,… ,𝓁

}

and 𝑚 ≫ 0, then there exists a polynomial 𝑃𝑚 ∈ k[𝑥] of degree 𝑚 such that
𝑃(𝑎𝑖) = 0 for any 𝑖 = 1,… ,𝓁. Therefore, Autk(A2,∆) contains the automor-
phisms

(
𝑥, 𝑦+𝑃𝑚(𝑥)

)
∈ 𝕜[𝑥, 𝑦] for all𝑚 ≫ 0, and it follows from [4, Theorem

1.3] that Autk(A2,∆) is not algebraic.

Theorem 2.8. Let 𝒞 ⊂ A2 be a geometrically irreducible and reduced curve.
Then, up to applying a plane automorphism,𝒞 is one of the curves of the following
list:

(1) 𝒞 = 𝒱
(
𝑥𝑏 − 𝜆𝑦𝑎

)
, where 𝑎, 𝑏 > 1 are coprime integers and 𝜆 ∈ k∗. If this is

the case, then

Aut
(
A2,𝒞(k)

)
=
{
(𝑡𝑎𝑥, 𝑡𝑏𝑦) ∶ 𝑡 ∈ k∗

}
≅ k∗.
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(2) 𝒞 = 𝒱
(
𝑥𝑏𝑦𝑎 − 𝜆

)
, where 𝑎, 𝑏 ≥ 1 are coprime integers, with 𝑎𝑏 ≠ 1, and

𝜆 ∈ k∗. If this is the case, then

Aut
(
A2,𝒞(k)

)
=
{
(𝑡𝑎𝑥, 𝑡−𝑏𝑦) ∶ 𝑡 ∈ k∗

}
≅ k∗.

(3) 𝒞 = 𝒱
(
𝑥𝑦 − 𝜆

)
, where 𝜆 ∈ k∗. If this is the case, then

Aut
(
A2,𝒞(k)

)
=
{
(𝑡𝑥, 𝑡−1𝑦) ∶ 𝑡 ∈ k∗

}
⋊ {id, 𝜎} ≅ k∗ ⋊ Z2,

where 𝜎(𝑥, 𝑦) = (𝑦, 𝑥) is the permutation of coordinates.

(4) 𝒞 = 𝒱
(
𝜆𝑥2 + 𝜈𝑦2 − 1

)
, where char(k) ≠ 2, and 𝜆, 𝜈 ∈ k∗ are such that −𝜆𝜈

is not a square in k. If this is the case, then Aut
(
A2,𝒞(k)

)
is the subgroup of

GL2(k) preserving the form 𝜆𝑥2 + 𝜈𝑦2 :

Aut
(
A2,𝒞(k)

)
=
{( 𝑎 −𝜈𝑏

𝜆𝑏 𝑎
)
∶ (𝑎, 𝑏) ∈ k×k , 𝑎2+𝜆𝜈𝑏2 = 1

}
⋊{id, 𝜏} = 𝑇𝜆,𝜈⋊Z2,

where 𝜏(𝑥, 𝑦) = (𝑥,−𝑦). Notice that 𝑇𝜆,𝜈 is a non-k-split torus.

(5) 𝒞 = 𝒱
(
𝑥2 + 𝜇𝑥𝑦 + 𝑦2 − 1

)
, where char(k) = 2 and 𝜇 ∈ 𝕜∗ is such that

𝑥2+𝜇𝑥+1has no root ink. If this is the case, thenAut
(
A2,𝒞(k)

)
is the subgroup

of GL2(k) preserving the form 𝑥2 + 𝜇𝑥𝑦 + 𝑦2:

Aut
(
A2,𝒞(k)

)
=
{( 𝑎 𝑏

𝑏 𝑎+𝜇𝑏
)
∶ 𝑎, 𝑏 ∈ k , 𝑎2 + 𝜇𝑎𝑏 + 𝑏2 = 1

}
⋊
{
id, 𝜎𝜇

}
= 𝑇𝜇⋊Z2,

where 𝜎𝜇(𝑥, 𝑦) = (𝑥 + 𝜇𝑦, 𝑦). Notice that 𝑇𝜇 is a non-k-split torus.

(6) 𝒞 is the line of equation 𝑥 = 0, in which case

Aut
(
A2,𝒞(k)

)
=
{(
𝑎𝑥, 𝑏𝑦 + 𝑃(𝑥)

)
∶ 𝑎, 𝑏 ∈ k∗ , 𝑃 ∈ k[𝑥]

}
.

In particular, if 𝑅 ∶ Aut
(
A2,𝒞(k)

)
→ Aut(A1) =

{
𝑦 ↦ 𝑏𝑦+𝑐 ∶ 𝑏 ∈ k∗ , 𝑐 ∈

k
}
denotes the restriction map, then Ker(𝑅) =

{
(𝑥, 𝑦) ↦

(
𝑎𝑥, 𝑦 + 𝑃(𝑥)

)
∶ 𝑎 ∈

k∗ , 𝑃 ∈ k[𝑥] , 𝑃(0) = 0
}
and

Aut
(
A2,𝒞(k)

)
= Ker(𝑅)⋊ Aut(A1).

(7) In any other case, the curve 𝒞 is such that Aut
(
A2,𝒞(k)

)
is finite.

Proof. See [1, Theorem 2]. □

Definition 2.9. We will abuse notations and say that 𝐷 ⊂ A2(k) is a curve of
type (1) – (7), if𝐷 = 𝒞(k), where 𝒞 verifies the respective condition in Theorem
2.8. The canonical form of a curve of type (1) – (6) is the curve of equations
given in the Theorem 2.8 for the corresponding type.
Following [1], we say that a curve 𝒞 is of fence type if up to applying an auto-

morphism of Aut(A2), 𝒞 has equation 𝑃(𝑥) = 0, with 𝑃 ∈ k[𝑥].
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Corollary 2.10. Assume that ∆ is a proper closed subset of A2(k). Then one of
the following assertions holds:
(𝑎) ∆ is contained in a curve of fence type, in which case Aut(A2,∆) is not an

algebraic group.
(𝑏)The groupAut(A2,∆) is conjugate to analgebraic subgroup of eitherAff (A2)

or 𝐽𝑛 for some 𝑛 ≥ 2 (notations as in [1]).

Proof. With the added hypothesis of the closedness of∆, the proof of [1, Propo-
sition 3.11] now applies without obstructions. □

3. The orbit of a group of automorphisms of the plane

Let𝐻 ⊂ Aut(A2) be a subgroup and 𝑝 ∈ A2(k). We are interested now in the
calculation of Aut

(
A2,O𝐻(𝑝)

)
. Notice that we have that

𝐻 ⊂ Aut
(
A2,O𝐻(𝑝)

)
⊂ Aut

(
A2,O𝐻(𝑝)

)
.

Lemma 3.1. Let 𝐻 ⊂ Aut(A2) be a subgroup and 𝑝 ∈ A2(k). Then O𝐻(𝑝) is
either:
(1) a finite set;

(2) a curve 𝒞 = 𝒞1 ∪⋯ ∪ 𝒞𝑠, with 𝒞𝑖 ≅ 𝒞𝑗 for all 𝑖, 𝑗, where 𝒞1 is a curve of type
(1) – (6);

(3) A2(k).

Proof. Assume thatO𝐻(𝑝) is neither finite nor all the plane; then dimO𝐻(𝑝) =
1 and therefore 𝐻 is necessarily infinite. Let O𝐻(𝑝) =

⋃𝑠
𝑖=1 𝒞𝑖 be the decom-

position in irreducible components, with dim𝒞1 = 1. By continuity and the
irreducibility of 𝒞1, it follows that there exists ℎ𝑖 ∈ 𝐻 such that ℎ𝑖 ⋅ 𝒞1 = 𝒞𝑖.
Hence, it remains to prove that 𝒞1 is a curve of type (1) – (6).
Let 𝐻𝑖 = {ℎ ∈ 𝐻 ∶ ℎ ⋅ 𝒞1 = 𝒞𝑖} ⊂ 𝐻, 𝑖 = 1,… 𝑠. Since 𝐻 is infinite, there

exists 𝑖 ∈ {1,… , 𝑠} such that #𝐻𝑖 = ∞. Let ℎ𝑖 ∈ 𝐻𝑖 be a fixed element. Then
ℎ−1𝑖 𝐻𝑖 ⊂ 𝐻1 ⊂ Aut

(
A2,𝒞1(k)

)
, and it follows that #Aut

(
A2,𝒞1(k)

)
= ∞. We

deduce from Theorem 2.8 that 𝒞1 is a curve of type (1) – (6). □

We collect now some technical remarks that we need in order to calculate
the stabilizers of an orbit.

Lemma 3.2. Let 𝒞 be a curve of type (1) – (6) given by its canonical form and
𝑝 = (𝑥𝑝, 𝑦𝑝) ∈ 𝒞(k). If we keep the notations of Theorem 2.8, then the isotropy
group Aut

(
A2,𝒞(k)

)
𝑝 is trivial unless

(i) 𝒞 = 𝒱
(
𝑥𝑏 − 𝜆𝑥𝑎), 𝑎, 𝑏 > 1 coprime integers, and 𝑝 = (0, 0), in which case

Aut
(
A2,𝒞(k)

)
(0,0) = Aut

(
A2,𝒞(k)

)
.



ON THE ORBITS OF PLANE AUTOMORPHISMS AND THEIR STABILIZERS 1379

(ii) 𝒞 = 𝒱
(
𝑥𝑦 − 𝜆

)
, in which case Aut

(
A2,𝒞(k)

)
𝑝 =

{
Id, 𝑥𝑝

𝑦𝑝
𝜎
}
, where 𝜎 = (𝑦, 𝑥)

is the permutation of coordinates.

(iii) 𝒞 = 𝒱
(
𝜆𝑥2 + 𝜈𝑦2 − 1

)
, in which case

Aut
(
A2,𝒞(k)

)
𝑝 =

{
Id, 𝑡𝜆𝑥2𝑝−𝜈𝑦2𝑝 ,2𝑥𝑝𝑦𝑝𝜏

}
=
{
Id, 𝑡2𝜆𝑥2𝑝−1,2𝑥𝑝𝑦𝑝𝜏

}
,

where 𝑡𝑎,𝑏 =
( 𝑎 −𝜈𝑏
𝜆𝑏 𝑎

)
∈ 𝑇𝜆,𝜈 and 𝜏 =

( 1 0
0 −1

)
.

(iv) 𝒞 = 𝒱
(
𝑥2 + 𝜇𝑥𝑦 + 𝑦2 − 1

)
, in which case

Aut
(
A2,𝒞(k)

)
𝑝 =

{
Id, 𝑡𝜇𝑥𝑝𝑦𝑝+1,𝜇𝑦2𝑝𝜎𝜇

}
=
{
Id, 𝑡𝑥2𝑝+𝑦2𝑝 ,𝜇𝑦2𝑝𝜎𝜇

}
,

where 𝑡𝑎,𝑏 =
( 𝑎 𝑏
𝑏 𝑎+𝜇𝑏

)
∈ 𝑇𝜇 and 𝜎𝜇 =

( 1 𝜇
0 −1

)
.

(v) 𝒞 is the line of equation 𝑥 = 0, in which case

Aut
(
A2,𝒞(k)

)
𝑝 =

{(
𝑎𝑥, 𝑏𝑦 + 𝑃(𝑥)

)
∶ 𝑎, 𝑏 ∈ k∗ , 𝑃 ∈ k[𝑥], 𝑃(0) = −𝑏𝑦𝑝

}
≅

Ker(𝑅)⋊
{
(0, 𝑦)↦ (0, 𝑏𝑦 + (1 − 𝑏)𝑦𝑝) ∶ 𝑏 ∈ k∗

}
,

where 𝑅 ∶ Aut
(
A2,𝒞(k)

)
→ Aut(A1) is the restriction map (see Theorem 2.8).

Proof. Let 𝐺 = Aut
(
A2,𝒞(k)

)
. If 𝒞 is a curve of type (1) or (2), given by its

canonical form, then (0, 0) is the only fixed point of the action of 𝐺 on A2. It
follows that in these cases 𝐺𝑝 = {Id} unless 𝒞 = 𝒱(𝑥𝑏 − 𝜆𝑦𝑎) with 𝑏, 𝑎 > 1
coprimes and 𝑝 = (0, 0).
(i) If 𝒞 = 𝒱(𝑥𝑏 − 𝜆𝑦𝑎), then clearly 𝐺(0,0) = 𝐺.

(ii) Easy calculations show that if 𝑝 = (𝑥𝑝, 𝑦𝑝) is a k-point of 𝒱
(
𝑥𝑦 − 𝜆

)
, then

𝐺𝑝 =
{
Id, 𝑥𝑝

𝑦𝑝
𝜎
}
.

(iii) Consider 𝒞 = 𝒱
(
𝜆𝑥2 + 𝜈𝑦2 − 1

)
and let 𝑝 = (𝑥𝑝, 𝑦𝑝) ∈ 𝒞(k). Since the

closure of 𝒞 in P2(k) is a smooth conic, it follows that if 𝜓 ∈ 𝐺𝑝, then 𝜓 in-
duces an automorphism of Aut

(
P1(k)

)
= PGL2(k) that fixes 𝑝 and stabilizes

the set of (two) points at infinity. Since the subgroup of such automorphisms
has at most two elements, solving the equation

𝑡𝑎,𝑏𝜏(𝑝) = ( 𝑎 𝜈𝑏
𝜆𝑏 −𝑎) (

𝑥𝑝
𝑦𝑝
) = (𝑥𝑝𝑦𝑝

)

we deduce that𝐺𝑝 = {Id, 𝑡(𝑎,𝑏)𝜏}, with (𝑎, 𝑏) = (𝜆𝑥2𝑝−𝜈𝑦2𝑝, 2𝑥𝑝𝑦𝑝) = (2𝜆𝑥2𝑝−
1, 2𝑥𝑝𝑦𝑝).

(iv) If 𝒞 = 𝒱
(
𝑥2 + 𝜇𝑥𝑦 + 𝑦2 − 1

)
and 𝑝 = (𝑥𝑝, 𝑦𝑝) ∈ 𝒞(k), we proceed as in the

previous case and deduce that 𝐺𝑝 = {Id, 𝑡𝑎,𝑏𝜎𝜇}, where 𝑡(𝑎,𝑏)𝜎𝜇 =
( 𝑎 𝜇𝑎+𝑏
𝑏 𝑎

)
,

with (𝑎, 𝑏) = (𝜇𝑥𝑝𝑦𝑝 + 1, 𝜇𝑦2𝑝) = (𝑥2𝑝 + 𝑦2𝑝, 𝜇𝑦2𝑝).
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(v) For the case 𝒞 = 𝒱(𝑥), just recall thatAut
(
A2,𝒞(k)

)
is the semi-direct prod-

uct of Ker(𝑅) and Aut(A1).
□

Remark3.3. (1) Let𝒞 be a curve of type (3) – (5) and consider𝐺 = Aut
(
A2,𝒞(k)

)
.

Let 𝑝 ∈ 𝒞 be such that O𝐺(𝑝) = 𝒞— it is clear that such a 𝑝 exists. Then, it
follows from Theorem 2.8 and Lemma 3.2 that

𝐺 = 𝑇 ⋊ 𝐺𝑝 = 𝑇 ⋊ {Id, 𝜏𝑝} = 𝑇 ∪ 𝑇𝜏𝑝,
where 𝑇 is a possibly non-split torus and 𝜏𝑝 is the involution given in Lemma
3.2.
Notice that 𝑡𝜏𝑝 = 𝑡−1𝜏𝑝 for all 𝑡 ∈ 𝑇. In particular, any element of 𝑇𝜏𝑝 is also

an involution and Aut
(
A2,𝒞(k)

)
= 𝑇 ⋊ {Id, 𝑡𝜏𝑝} for all 𝑡 ∈ 𝑇.

(2) It follows that if 𝐻 ⊂ 𝐺 = Aut
(
A2,𝒞(k)

)
is a subgroup, then either 𝐻 ⊂ 𝑇

or
𝐻 = 𝐻0 ∪𝐻0𝛾 = 𝐻0 ⋊ {Id, 𝛾},

where 𝐻0 = 𝐻 ∩ 𝑇 and 𝛾 ∈ 𝐻 ∩ 𝑇𝜏𝑝 is a non trivial involution. Indeed, if
𝛾, 𝛾′ ∈ 𝐻 ∩ (𝑇𝛾), then 𝛾′ = ℎ𝛾, with ℎ ∈ 𝐻0.
(3) In particular, if a subgroup𝐻 ⊂ Aut(A2) and 𝑝 ∈ A2(k) are such thatO𝐻(𝑝)
is a curve of type (3) – (5), it follows that either 𝐻 is a subgroup of the corre-
sponding torus 𝑇 ⊂ 𝐺 = Aut

(
A2,O𝐻(𝑝)

)
or

𝐻 = 𝐻0 ⋊ {Id, 𝑡0𝜏𝑝} = 𝐻0 ∪𝐻0𝑡0𝜏𝑝,
where𝐻0 = 𝑇 ∩𝐻 and 𝑡0 ∈ 𝑇.
Analogously, we have that 𝐴 = Aut

(
A2,O𝐻(𝑝)

)
is either a subgroup of 𝑇 or

𝐴 = 𝐴0 ⋊ {Id, 𝑡1𝜏𝑝} = 𝐴0 ∪ 𝐴0𝑡1𝜏𝑝,
where 𝐴0 = 𝑇 ∩ 𝐴 and 𝑡1 ∈ 𝑇.
Notice in particular that 𝑇 ∩ 𝐺𝑝 = {Id}, and therefore 𝐻0 ∩ 𝐺𝑝 = 𝐴0 ∩ 𝐺𝑝 =

{Id}.

Theorem 3.4. Let𝐻 ⊂ Aut(A2) be a subgroup, 𝑝 ∈ A2(k) such that 𝒞 = O𝐻(𝑝)
is an irreducible curve. Let𝐺 = Aut

(
A2,𝒞(k)

)
,𝐴 = Aut

(
A2,O𝐻(𝑝)

)
,𝐴0 = 𝐴∩𝑇,

𝐻0 = 𝐻 ∩ 𝑇 and if #𝐺𝑝 = 2, let 𝜏𝑝 ∈ 𝐺𝑝 ⧵ {Id} (see Remark 3.3). Then:
(a) If 𝒞 is a curve of type (1) or (2) then 𝐴 = 𝐻.

(b) If 𝒞 is a curve of type (3), (4) or (5), then 𝐺𝑝 = {Id, 𝜏𝑝} ≅ Z2 and:

(i) If𝐻 = 𝐻0 ⊂ 𝑇 then 𝐴 = 𝐻0 ∪𝐻0𝜏𝑝 = 𝐻0 ⋊ 𝐺𝑝.

(ii) If𝐻 = 𝐻0 ⋊ 𝐺𝑝 = 𝐻0 ∪𝐻0𝜏𝑝, then 𝐴 = 𝐻.

(iii) If 𝐻 = 𝐻0 ⋊ {Id, 𝑡0𝜏𝑝} = 𝐻0 ∪ 𝐻0𝑡0𝜏𝑝, with 𝑡0 ∈ 𝑇 ⧵ 𝐻0, then 𝐴 = 𝐻
unless 𝑡20 ∈ 𝐻0, in which case

𝐴 =
⟨
𝐻0 ∪ {𝑡0}

⟩
∪
⟨
𝐻0 ∪ {𝑡0}

⟩
𝑡0𝜏𝑝 =

⟨
𝐻0 ∪ {𝑡0}

⟩
⋊ {Id, 𝑡0𝜏𝑝};
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in particular, 𝐴0 =
⟨
𝐻0 ∪ {𝑡0}

⟩
and 𝐴0∕𝐻0 ≅ Z2.

(c) If 𝒞 is a curve of type (6), then

𝐴 = 𝐻(𝐺𝑝 ∩ 𝐴).

In particular,𝐻 Ker(R) ⊂ 𝐴.

Proof. Inwhat follows, we keep the notations of Theorem2.8 and assume (with-
out loss of generality) that 𝒞 is given by its canonical form. It is clear that
𝐻 ⊂ 𝐴 ⊂ 𝐺 — the last inclusion follows by continuity of the action; then
𝒞 = O𝐻(𝑝) = O𝐴(𝑝) = O𝐺(𝑝).
(a) First, observe that if 𝒞 = O𝐻(𝑝) is of type (1), then 𝑝 ≠ (0, 0). Indeed, if
this were the case then 𝐺(0,0) = 𝐺, and therefore O𝐻

(
(0, 0)

)
⊂ O𝐺

(
(0, 0)

)
={

(0, 0)
}
and we obtain a contradiction.

It follows from Lemma 3.2 that if 𝒞 is of type (1) or (2), then 𝐺𝑝 = {Id}. If
𝜑 ∈ 𝐴 then 𝜑(𝑝) ∈ O𝐻(𝑝) as𝐴 = Aut

(
A2,O𝐻(𝑝)

)
, and therefore there exists

ℎ ∈ 𝐻 such that 𝜑(𝑝) = ℎ𝑝, so ℎ−1𝜑 ∈ 𝐺𝑝 = {Id}. It follows that 𝐴 = 𝐻.

(b) Assume now that𝒞 is of type (3) – (5) and given by its canonical form. Then,
it follows from Lemma 3.2 and Remark 3.3 that 𝐺 = 𝑇 ⋊ {Id, 𝜏𝑝}, where 𝜏𝑝
is a non trivial involution fixing 𝑝. Since 𝐻 ⊂ 𝐴 ⊂ 𝐺, it follows (again from
Remark 3.3) that both𝐻 and 𝐴 are determined by their intersections with 𝑇
(𝐻0 and 𝐴0 respectively), if they are not contained in 𝑇, an involution 𝑡0𝜏𝑝,
for some 𝑡0 belonging to 𝐻0 or 𝐴0 respectively — notice that if 𝐻 ≠ 𝐻0,
then 𝐴 ≠ 𝐴0 but it may happen that 𝐻 = 𝐻0 and 𝐴 ≠ 𝐴0. Hence, we may
distinguish three cases:

(i)𝐻 = 𝐻0. If 𝑠 ∈ 𝐴0 then 𝑠𝑝 ∈ O𝐻(𝑝) and therefore 𝑠𝑝 = ℎ𝑝 for some
ℎ ∈ 𝐻 = 𝐻0 ⊂ 𝐴0, so ℎ−1𝑠 ∈ 𝐴0 ∩ 𝐺𝑝 = {Id} (see Remark 3.3). Thus, 𝑠 =
ℎ ∈ 𝐻 ∩ 𝐴0 = 𝐻. On the other hand 𝜏𝑝(ℎ𝑝) = ℎ−1𝜏𝑝𝑝 = ℎ−1𝑝 ∈ O𝐻(𝑝)
for any ℎ ∈ 𝐻. It follows that 𝐴 = 𝐻 ⋊ {Id, 𝜏𝑝}.

(ii)𝐻 = 𝐻0 ∪ 𝐻0𝜏𝑝 = 𝐻0 ⋊ 𝐺𝑝. If 𝑠 ∈ 𝐴0 then 𝑠𝑝 = ℎ𝑝 for some ℎ ∈ 𝐻. If
ℎ ∈ 𝐻0 we deduce as in the previous case that 𝑠 = ℎ ∈ 𝐻0. If ℎ = ℎ0𝜏𝑝,
then ℎ𝑝 = ℎ0𝑝 and it follows that 𝑠 ∈ 𝐻0. Since 𝜏𝑝 ∈ 𝐻 ⊂ 𝐴, then
𝐴 = 𝐻0 ⋊ {Id, 𝜏𝑝} = 𝐻.

(iii)𝐻 = 𝐻0∪𝐻0𝑡0𝜏𝑝 = 𝐻0⋊{Id, 𝑡0𝜏𝑝}, where 𝑡0 ∈ 𝑇⧵𝐻0. As in the previous
cases, if 𝑠 ∈ 𝐴0, then 𝑠𝑝 = ℎ𝑝 for some ℎ ∈ 𝐻, and therefore ℎ−1𝑠 ∈ 𝐺𝑝.
If ℎ ∈ 𝐻0 we deduce as before that 𝑠 = ℎ ∈ 𝐻0.

If ℎ = ℎ0𝑡0𝜏𝑝, with ℎ0 ∈ 𝐻0, then ℎ𝑝 = ℎ0𝑡0𝑝 and, since ℎ0𝑡0 ∈ 𝐺0,
it follows that 𝑠 = ℎ0𝑡0 (see Remark 3.3). Hence, 𝑠 ∈ 𝐴0 if and only if
𝑡0 ∈ 𝐴0 (because ℎ0 ∈ 𝐻0 ⊂ 𝐴0), and it remains to determine under
which conditions we have that 𝑡0 ∈ 𝐴0.
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Consider an arbitrary ℎ1 ∈ 𝐻0; then 𝑡0(ℎ1𝑝) = ℎ1𝑡0𝑝 = ℎ1𝑡0𝜏𝑝(𝑝) ∈
O𝐻(𝑝) (since 𝑡0𝜏𝑝 ∈ 𝐻) and 𝑡0

(
ℎ1𝑡0𝜏𝑝(𝑝)

)
= ℎ1𝑡20𝜏𝑝(𝑝) = ℎ1𝑡20𝑝. Since

𝐻 = 𝐻0 ⋊ 𝐻0𝑡0𝜏𝑝, it follows that 𝑡0 ∈ 𝐴0 if and only if ℎ1𝑡20𝑝 ∈ O𝐻(𝑝),
if and only if 𝑡20𝑝 ∈ O𝐻(𝑝) (since ℎ1 ∈ 𝐻), and this happens if and only
if there exists ℎ2 ∈ 𝐻0 such that either 𝑡20𝑝 = ℎ2𝑝, or 𝑡20𝑝 = ℎ2𝑡0𝜏𝑝(𝑝) =
ℎ2𝑡0𝑝. In the first case it follows that 𝑡20 ∈ 𝐻0 (since ℎ−10 𝑡20 ∈ 𝐺0 ∩ 𝐺𝑝 =
{Id}), and in the last case the same argument shows that 𝑡20 = ℎ2𝑡0; there-
fore, 𝑡0 ∈ 𝐻0. We conclude that if 𝑡0 ∈ 𝐴0 then 𝑡20 ∈ 𝐻0. Conversely, it
𝑡20 ∈ 𝐻0, then 𝑡20𝑝 ∈ O𝐻(𝑝) and 𝑡0 ∈ 𝐴0.

(c) If 𝒞 is the line of equation 𝑥 = 0 and 𝜑 =
(
𝑎𝑥, 𝑏𝑦 + 𝑃(𝑥)

)
∈ 𝐴, then(

0, 𝑏𝑦𝑝 + 𝑃(0)
)
= ℎ ⋅ 𝑝 for some ℎ ∈ 𝐻. It follows that ℎ−1𝜑 ∈ 𝐺𝑝 and

therefore 𝜑 ∈ 𝐻𝐺𝑝; the result follows. □

If O𝐻(𝑝) is an irreducible curve of type (6), the inclusion𝐻 Ker(𝑅) ⊂ 𝐴may
be strict, as the following example shows.

Example 3.5. Assume that char(𝕜) = 0 and let 𝜑 = (𝑥, 𝑦 + 𝑐), 𝑐 ≠ 0. If
𝐻 = ⟨𝜑⟩ = {𝜑𝑛 ∶ 𝑛 ∈ Z}, then 𝜓 = (𝑎𝑥, 𝑛𝑦) belongs to Aut

(
A2,O𝐻(0, 0)

)
for

all 𝑛 ∈ Z – indeed 𝜑𝑛(0, 0) = (0, 𝑛𝑐) for all 𝑛 ∈ Z. Therefore, the inclusion
𝐻 ker(𝑅) in Theorem 3.4 (c) can be strict.

The following example gives a little insight on Theorem 3.4 (b-iii).

Example 3.6. Let 𝕜 be an infinite field, char(𝕜) = 0. Consider the automor-
phisms of the plane ℎ0, 𝑡0 ∈ Aut(A2), ℎ0(𝑥, 𝑦) = (4𝑥, 𝑦

4
), 𝑡0(𝑥, 𝑦) = (2𝑥, 𝑦

2
),

and let 𝐻 = ⟨ℎ0⟩ ⋊ {Id, 𝑡0𝜎} = ⟨ℎ0⟩
⋃⟨ℎ0⟩𝑡0𝜎, where 𝜎 is the transposition of

coordinates. Then 𝑡0 ∉ 𝐻0, 𝑡20 = ℎ0 ∈ 𝐻0 and

O𝐻
{
(1, 1)

}
=
{
(22𝑛, 2−2𝑛), (22𝑛−1, 2−2𝑛+1) ∶ 𝑛 ∈ Z

}

Clearly, O𝐻
(
(1, 1)

)
= 𝒱(𝑥𝑦 − 1) and, since 𝐴 ⊂ Aut

(
A2,𝒱(𝑥𝑦 − 1)

)
={

(𝑥, 𝑦)↦ (𝑡𝑥, 𝑡−1𝑦) ∶ 𝑡 ∈ 𝕜∗
}
⋊ {Id, 𝜎}, it follows that 𝐴 = ⟨𝑡0⟩⋊ ⟨𝑡0⟩𝜎.

If we consider now ℎ1 = 𝑡30 , and 𝐿 = ⟨ℎ1⟩⋊ {Id, 𝑡0𝜎} then

O𝐿(1, 1) =
{
(23𝑛, 2−3𝑛), (23𝑛−1, 2−3𝑛+1) ∶ 𝑛 ∈ Z

}

and 𝐴 = 𝐻.

Corollary 3.7. Let 𝐻 ⊂ Aut(A2) be an infinite countable subgroup of plane au-
tomorphisms and 𝑝 ∈ A2(k) a point such that 𝒞 = O𝐻(𝑝) is an irreducible curve.
Then the stabilizer of O𝐻(𝑝) is not an algebraic group.

Proof. It follows from Theorem 3.4 that if 𝒞 is of type (1)–(5) then𝐴 is infinite
countable and therefore is not algebraic. If 𝒞 is of type (6) then 𝐴 contains
Ker(𝑅) and therefore 𝐴 contains automorphisms of arbitrary degree; it follows
from [4, Theorem 1.3] that 𝐴 is not algebraic. □
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4. The orbit of an automorphism of the plane

Let𝜑 ∈ Aut(A2) and 𝑝 ∈ A2(k). In this section, as an application of Theorem
3.4, we study the geometry of the orbit of 𝑝 by 𝜑. More precisely, we consider
𝐻 = ⟨𝜑⟩ and describe 𝒞 = O𝐻(𝑝), Aut

(
A2,𝒞(k)

)
and Aut

(
A2,O𝐻(𝑝)

)
. Along

this section, we keep the previous notations and set O𝜑(𝑝) = O𝐻(𝑝).
As Lemma 3.1 indicates, the closure of the orbitO𝜑(𝑝) is either finite, a curve

or thewhole plane. Webegin by showing that undermild conditions, there exist
pairs 𝑝 ∈ A2(k) and 𝜑 ∈ Aut(A2) such that O𝜑(𝑝) is infinite and 𝒞 = O𝜑(𝑝) is
of type (1)–(6) — in particular, Aut

(
A2,O𝐻(𝑝)

)
is not algebraic (see Corollary

3.7).

Example 4.1. (a) Assume that k is such that it contains a non zero element 𝑡0
that is not a root of unity. Then:

(i) If 𝑝 = (𝑥𝑝, 𝑦𝑝), 𝑥𝑝𝑦𝑝 ≠ 0 and 𝜑(𝑥, 𝑦) = (𝑡𝑎0𝑥, 𝑡
𝑏
0𝑦), with 𝑎, 𝑏 > 1 coprimes,

then 𝒞 = 𝒱(𝑥𝑏 − 𝑥𝑏𝑝
𝑦𝑎𝑝
𝑦𝑎).

(ii) If 𝑝 = (𝑥𝑝, 𝑦𝑝), 𝑥𝑝𝑦𝑝 ≠ 0 and 𝜑(𝑥, 𝑦) = (𝑡𝑎0𝑥, 𝑡
−𝑏
0 𝑦), with 𝑎, 𝑏 ≥ 1 co-

primes, then 𝒞 = 𝒱(𝑥𝑏𝑦𝑎 − 𝑥𝑏𝑝𝑦𝑎𝑝). Notice that if 𝑎𝑏 ≠ 1 then 𝒞 is of type
(2), whereas if 𝑎 = 𝑏 = 1, then 𝒞 is of type (3).

(iii) If 𝑝 = (𝑥𝑝, 𝑦𝑝) ≠ (0, 0), and 𝜑(𝑥, 𝑦) = 𝑡0 ⋅ (𝑥, 𝑦) = (𝑡0𝑥, 𝑡0𝑦), then 𝒞 is a
line.

(b) Wewant now to construct examples of orbits of automorphismswith curves
of types (4) and (5) as closures. We assume that 𝕜 is uncountable and keep
the notations of Theorem 2.8.

(i) If char(k) ≠ 2 and there exist 𝜆, 𝜈 ∈ k∗ are such that −𝜆𝜈 is not a square
in k, consider 𝑇𝜆,𝜈 =

{( 𝑎 −𝜈𝑏
𝜆𝑏 𝑎

)
∶ (𝑎, 𝑏) ∈ k × k , 𝑎2 + 𝜆𝜈𝑏2 = 1

}
. If

𝜑 =
( 𝑎 −𝜈𝑏
𝜆𝑏 𝑎

)
∈ 𝑇𝜆,𝜈, then 𝜑 has eigenvalues 𝑎 ±

√
−𝜆𝜇𝑏. Since 𝕜 is

uncountable, we can choose (𝑎, 𝑏) ∈ 𝕜2 such that 𝑎±
√
−𝜆𝜇𝑏 is not a root

of unity, and therefore (0, 0) is the unique periodic point of 𝜑. It follows
that if 𝑝 = (𝑥𝑝, 𝑦𝑝) ∈ 𝒞 = 𝒱(𝜆𝑥2 + 𝜈𝑦2 − 1), then O𝜑(𝑝) is infinite, with
O𝜑(𝑝) = 𝒞; in particular, O𝜑(𝑝) is of type (4).

(ii) If char(k) = 2 and 𝜇 ∈ 𝕜∗ is such that 𝑥2 + 𝜇𝑥 + 1 has no root in k, let 𝜁
be a root of 𝑥2 + 𝜇𝑥 + 1, and consider

𝑇𝜇 =
{( 𝑎 𝑏

𝑏 𝑎+𝜇𝑏
)
∶ 𝑎, 𝑏 ∈ k , 𝑎2 + 𝜇𝑎𝑏 + 𝑏2 = 1

}
.

Then 𝜑 =
( 𝑎 𝑏
𝑏 𝑎+𝜇𝑏

)
∈ 𝑇𝜇 has 𝑎 + 𝜁𝑏, 𝑎 + 𝜁−1𝑏 as eigenvalues and, since

𝕜 is uncountable, it follows as before that we can choose 𝑎, 𝑏 such that
(0, 0) is the unique periodic point of 𝜑. Thus, for such a 𝜑 if 𝑝 ∈ 𝒞 =
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𝒱(𝑥2+𝜇𝑥𝑦+𝑦2−1) thenO𝜑(𝑝) is infinite, withO𝜑(𝑝) = 𝒞; in particular,
O𝜑(𝑝) is of type (5).

If 𝜑 ∈ Aut(A2), let 𝒮 be the union of (not necessarily irreducible) stable
curves of 𝜑 and 𝒫 be the set of periodic points of 𝜑. Then it is clear that there
exists 𝑝 ∈ A2(k) such that O𝜑(𝑝) = A2 if and only if 𝒮⋃𝒫 ≠ A2. This sim-
ple remark allows us to show that there exist automorphisms of the plane with
orbits which closure is all the plane as follows.

Example 4.2. Let 𝜑 ∈ Aut(A2) be such that 𝜑𝑛 ≠ Id for all 𝑛; for 𝑛 ≥ 1, we
denote by 𝐹𝑛 the (closed) subset of fixed points of 𝜑𝑛. Clearly, 𝒫 = ⋃𝐹𝑛. We
affirm that 𝐹𝑛 is contained in a curve for each 𝑛. Indeed, otherwise 𝐹𝑛 = A2

and therefore 𝜑𝑛 = Id.
Recall that the (first) dynamical degree of 𝜑 is defined as

𝜆1(𝜑) = lim
𝑚→∞

𝑚
√
deg𝜑𝑚.

Notice that 𝜆1(𝜑) > 1 implies 𝜆1(𝜑𝑛) > 1 for any 𝑛 ≥ 1; for more details see [3],
where the complex case is treated. It follows from [2, Thm. B] and [6, Thm.
5.5] that if 𝜆1(𝜑) > 1, then 𝒮 is a curve. Therefore, 𝒮 ∪ 𝒫 is contained in a
countable union of curves. Hence, if k is uncountable and 𝜆1(𝜑) > 1, there
exists 𝑝 ∈ A2(k) such that O𝜑(𝑝) = A2.
One particular example of this situation concerns the so-calledHénonmaps,

that is morphisms of the form 𝜑 =
(
𝑦,−𝛿𝑥+𝑃(𝑦)

)
, where 𝛿 ∈ 𝕜∗ and 𝑃 ∈ 𝕜[𝑦]

is a polynomial of degree greater or equal that 2, since in this case 𝜆1(𝜑) = deg𝑃.
A priori, the closure of an orbitO𝜑(𝑝) is not necessarily an irreducible curve.

In what follows, we exploit Lemma 2.2 in order to describe Ô𝜑(𝑝). If O𝜑(𝑝) is
finite then Ô𝜑(𝑝) = Gal(k∕k) ⋅ O𝜑(𝑝). On the other hand, if O𝜑(𝑝) = A2(k),
then Ô𝜑(𝑝) is the whole plane. Next proposition deal with the case whenO𝜑(𝑝)
is a curve.

Proposition 4.3. Let𝜑 ∈ Aut(A2) and𝑝 ∈ A2
k
be such thatO𝜑(𝑝) = 𝒞 is a curve,

and let 𝒞 = ⋃𝓁
𝑖=1 𝒞𝑖 and Ô𝜑(𝑝) =

⋃𝑠
𝑖=1 𝒞𝑖 be the decomposition in irreducible

components of 𝒞 and Ô𝜑(𝑝) respectively (see Lemma 2.2). Then 𝑠 = 𝑘𝓁 and, up
to reordering the indexes, we have that:
(1) The morphism 𝜑 restricts to isomorphisms 𝜑|𝒞𝑖+𝑗𝓁 ∶ 𝒞𝑖+𝑗𝓁 → 𝒞𝑖+𝑗𝓁+1 and
𝜑|𝒞𝑗𝓁+𝓁 ∶ 𝒞𝑗𝓁+𝓁 → 𝒞𝑗𝓁+1, for 𝑖 = 1,… ,𝓁 − 1, 𝑗 = 0,… , 𝑘 − 1.

(2) 𝒞𝑖+𝑗𝓁 = O𝜑𝓁
(
𝜑𝑖+𝑗𝓁−1(𝑝)

)
for 𝑖 = 1,… ,𝓁, 𝑗 = 0,… , 𝑘 − 1.

(3) The curves 𝒞𝑖 are isomorphic — in particular, the curves have the same type.

Proof. Without loss of generality we assume that 𝑝 ∈ 𝒞1. We reorder𝒞1,… ,𝒞𝓁
in such a way that 𝒞𝑖 = 𝜑𝑖−1(𝒞1) for 𝑖 = 1,… ,𝓁 (see Lemma 3.1); then 𝒞1 =
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𝜑(𝒞𝓁). It follows from Galois descent that

Ô𝜑(𝑝) = Gal(k∕k) ⋅ 𝒞 =
𝓁⋃

𝑖=1
Gal(k∕k) ⋅ 𝒞𝑖,

where if 𝑖 ≠ 𝑗, thenGal(k∕k)⋅𝒞𝑖∩Gal(k∕k)⋅𝒞𝑗 does not contain a curve. Since𝜑
is fixed by the Galois action, it follows fromGalois descent that if 𝑖 = 1,… ,𝓁−1,
then 𝜑|𝒞𝑖 ∶ 𝒞𝑖 → 𝒞𝑖+1 induces an k-isomorphism Gal(k∕k) ⋅ 𝒞𝑖 → Gal(k∕k) ⋅
𝒞𝑖+1. Assertion (1) follows; assertion (2) is clear.
In order to prove assertion (3), we first observe that 𝒞𝑗𝓁+1,… ,𝒞𝑗𝓁+𝓁 being

isomorphic for 𝑗 = 0,… 𝑘−1, they have the same type. Up to reordering, we can
assume that there exists 𝑔𝑗 ∈ Gal(k∕k), 𝑗 = 1,… , 𝑘−1, such that𝒞𝑖+𝑗𝓁 = 𝑔𝑗 ⋅𝒞𝑖.
Since 𝜓 ∈ Aut

(
A2, 𝑔𝑗𝒞1(k)

)
if only if 𝜓 = 𝑔−1𝜓𝑔 ∈ Aut

(
A2,𝒞1(k)

)
, the result

follows. □

Example 4.4. Suppose that ∆ ⊂ A2(k) is such that ∆̂ is a fence of equation
𝐹(𝑥) = 0, with 𝐹 ∈ k[𝑥]— then it follows from [1, Theorem 1] that

Aut
(
A2, ∆̂

)
=
{(
𝛼𝑥+𝛽, 𝛾𝑦+𝑃(𝑥)

)
∶ 𝛼, 𝛽, 𝛾 ∈ k , 𝐹(𝛼𝑥+𝛽)∕𝐹(𝑥) ∈ k∗ , 𝑃 ∈ k[𝑥]

}
.

(a) If 𝐹 = 𝑥 − 1, choose 𝛾 ∈ k∗ which is not a root of the unity and let 𝑃 ∈
k[𝑥] be such that 𝑃(1) = 0. Then 𝜑 =

(
𝑥, 𝛾𝑦 + 𝑃(𝑥)

)
∈ Aut

(
A2, ∆̂) and if

𝑝 = (1, 1), we have that O𝜑(𝑝) =
{
(1, 𝛾𝑛) 𝑛∈ Z

}
⊂ ∆ is infinite. It follows

that O𝜑(𝑝) = Ô𝜑(𝑝)k = ∆̂. Thus, in this case Ô𝜑(𝑝)k is an irreducible curve,
stable by 𝜑— in the notations of Proposition 4.3, 𝓁 = 𝑠 = 1. Recall that in
this case the group Aut

(
A2,O𝜑(𝑝)

)
is not algebraic.

(b) If 𝐹 = 𝑥2 − 1 , then 𝜑 =
(
𝛼𝑥 + 𝛽, 𝛾𝑦 + 𝑃(𝑥)

)
∈ Aut

(
A2, ∆̂

)
if and only if

𝛼 = ±1 and 𝛽 = 0. Choose 𝛾 ∈ k∗ which is not a root of the unity, 𝑑 ≥ 1,
and consider the automorphism 𝜑𝑑 =

(
−𝑥, 𝛾𝑦 + (𝑥2 − 1)𝑑

)
. If 𝑝 = (1, 𝑦0),

with 𝑦0 ≠ 0, then O𝜑𝑑(𝑝) =
{(
(−1)𝑛, 𝛾𝑛𝑦0

)
;𝑛 ∈ Z

}
is dense in the fence

𝐹(𝑥) = 0. It follows that Ô𝜑(𝑝)k = O𝜑(𝑝) = ∆̂, and therefore it is a curve
with two irreducible components. Moreover, in the notations of Proposition
4.3, 𝓁 = 𝑠 = 2 and once again Aut

(
A2,O𝜑(𝑝)

)
is not algebraic because the

orbit does not depend on 𝑑 = deg𝜑𝑑.
The following example, very similar to the ones given above shows that is

not sufficient for ∆ to be an orbit in order to guarantee ∆ and ∆̂ to be equals.

Example 4.5. Assume that 𝕜 ≠ k and let 𝜉 ∈ k ⧵ 𝕜. Denote by 𝑃 ∈ 𝕜[𝑥] the
minimal polynomial of 𝜉 over 𝕜 and consider 𝜑 =

(
𝑥, 𝛾𝑦 + 𝑃(𝑥)

)
∈ Aut(A2),

where 𝛾 ∈ k∗ is not a root of unity. If 𝑝 = (𝜉, 1) , then∆ = O𝜑(𝑝) =
{
(𝜉, 𝛾𝑛);𝑛 ∈

Z
}
is infinite. Clearly ∆ = 𝒱k(𝑥 − 𝜉) and ∆̂ = 𝒱k(𝑃) so ∆ ⊊ ∆ ⊊ ∆̂.
Notice that the automorphisms (𝑥, 𝑦)↦

(
𝑥, 𝑦+𝑃(𝑥)𝑑

)
, 𝑑 ≥ 1, fix every point

in ∆ and therefore they belong to Aut(A2,∆).
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Remark 4.6. Let 𝜑 ∈ Aut(A2) and 𝑝 = (𝑥𝑝, 𝑦𝑝) ∈ A2
(
k
)
be such that O𝜑(𝑝) =

𝒞1∪⋯∪𝒞𝓁 is a curve. Then, by Proposition 4.3, up to reorderingwe can assume
that 𝒞𝑖 = 𝜑𝑖−1𝒞1, for 𝑖 = 0,… ,𝓁 − 1, with 𝜑𝓁(𝒞1) = 𝒞1. Therefore

𝒞1 = O𝜑𝓁(𝑝).

Moreover, each curve 𝒞𝑖 is of the same type and, up to conjugation by an
automorphism of A2, we can assume that 𝒞1 is one of the list given in Theorem
2.8.
Since any automorphism 𝜓 ∈ Aut

(
A2,O𝜑(𝑝)

)
induces a permutation of the

irreducible curves 𝒞𝑖, we have the following exact sequence of abstract groups:

1 // ⋂𝓁
𝑖=1Aut

(
A2,𝒞𝑖(k)

)
// Aut

(
A2,O𝜑(𝑝)

)
// 𝔖𝓁

where𝔖𝓁 is the group of permutations of 𝓁 elements. Since

𝜑𝑛𝓁 ∈ Aut
(
A2,O𝜑𝓁(𝜑𝑖(𝑝))

)
,

if follows that
⋂Aut

(
A2,𝒞𝑖(k)

)
is an infinite subgroup of Aut

(
A2,𝒞1(k)

)
.

Moreover, we have

Aut
(
A2,𝒞𝑖(k)

)
= 𝜑𝑖−1Aut

(
A2,𝒞1(k)

)
𝜑1−𝑖

and if 𝜓 ∈ Aut
(
A2,O𝜑(𝑝)

)
, then there exists 𝑖 ∈ {0,…𝓁 − 1} such that 𝜑𝑖𝜓 ∈

Aut
(
A2,𝒞1(k)

)
. It follows that 𝜓 ∈ 𝜑−𝑖Aut

(
A2,𝒞1(k)

)
.

Notation 4.7. If 𝐺 is a group and 𝐴, 𝐵 ⊂ 𝐺 arbitrary subsets, we denote 𝐴𝐵 =
{𝑎𝑏 ∶ 𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵}.

Theorem 4.8. Let 𝜑 ∈ Aut(A2) and 𝑝 = (𝑥𝑝, 𝑦𝑝) ∈ A2
(
k
)
be such thatO𝜑(𝑝) =

𝒞1 ∪⋯ ∪ 𝒞𝓁 is a curve. Then up to applying an automorphism of A2 one of the
following assertions holds:

(a) 𝒞1 is of type (1) or (2) and 𝑝 ≠ (0, 0). In this case, Aut
(
A2,O𝜑(𝑝)

)
= ⟨𝜑⟩.

(b) 𝒞1 is of type (3), (4) or (5). If we denoteAut
(
A2,𝒞1(k)

)
𝑝 = {Id, 𝜏𝑝} (see Lemma

3.2), we have two possibilities:

(i) If 𝜏𝑝𝜑 = 𝜑𝑖𝜏𝑝 for some 𝑖 ∈ Z, then

Aut
(
A2,O𝜑(𝑝)

)
= ⟨𝜑⟩⋊ {Id, 𝜏𝑝} = ⟨𝜑⟩ ∪ ⟨𝜑⟩𝜏𝑝

(ii) In other case, Aut
(
A2,O𝜑(𝑝)

)
= ⟨𝜑⟩.
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(c) 𝒞1 is of type (6). In this case

Aut
(
A2,O𝜑(𝑝)

)
=

𝓁−1⋂

𝑖=0
⟨𝜑⟩

(
𝜑𝑖
(
𝐺𝑝 ∩ Aut

(
A2,O𝜑𝓁(𝑝)

))
𝜑−𝑖

)

=
𝓁−1⋂

𝑖=0
⟨𝜑⟩

((
𝐺𝑝 ∩ Aut

(
A2,O𝜑𝓁(𝑝)

))
𝜑−𝑖

)

=
𝓁−1⋂

𝑖=0
⟨𝜑⟩

(
Aut

(
A2,O𝜑𝓁(𝑝)

)
𝜑−𝑖

)
,

where 𝐺 = Aut
(
A2,𝒞1(k)

)
.

Moreover, ifk is uncountable, there exist infinitelymanyautomorphisms𝜑 ∈
𝐺 such that

Aut
(
A2,O𝜑(𝑝)

)
=

𝓁−1⋂

𝑖=0
⟨𝜑⟩

(
𝜑𝑖 Ker(𝑅)𝜑−𝑖

)
=

𝓁−1⋂

𝑖=0
⟨𝜑⟩

(
Ker(𝑅)𝜑−𝑖

)
,

where 𝑅 ∶ Aut
(
A2,𝒞1(k)

)
→ Aut

(
𝒞1(k)

)
is the restriction morphism (see 2.8).

Proof. We use the notations of Remark 3.3 and Theorem 3.4. By Proposition
4.3, we have that {𝜑𝑛}𝑛∈Z is infinite and 𝒞1 is of type (1) – (6). Hence, it remains
to describe Aut

(
A2,O𝜑(𝑝)

)
in each case. We assume that 𝒞𝑖 = 𝜑𝑖−1(𝒞1), and

𝜑𝓁 ∈ Aut
(
A2,𝒞1(k)

)
(see Remark 4.6). Since 𝜑𝓁 cannot be an involution we

know it belongs to the torus 𝑇 ⊂ Aut
(
A2,𝒞1(k)

)
.

(a) If 𝒞1 = 𝒱(𝑥𝑏 − 𝑦𝑎) then, since 𝜑𝓁 ∈ Aut
(
A2,𝒞1(k)

)
, we have that 𝜑𝓁(0, 0) =

(0, 0) and therefore 𝑝 ≠ (0, 0). If 𝜓 ∈ Aut
(
A2,O𝜑(𝑝)

)
, then by Remark

4.6 𝜓 = 𝜑𝑗𝑡 for some 𝑡 ∈ Aut
(
A2,𝒞1(k)

)
and some 𝑗 ∈ Z. But if 𝑛 ∈ Z,

then there exists 𝑠𝑛 such that 𝜑𝑗𝑡𝜑𝑛𝓁(𝑝) = 𝜑𝑠𝑛(𝑝). It follows that 𝜑𝑠𝑛−𝑗(𝑝) =
𝑡𝜑𝑛𝓁(𝑝) ∈ 𝒞1, and therefore 𝑠𝑛−𝑗 is a multiple of 𝓁 and 𝑡 ∈ Aut(A2,O𝜑𝓁(𝑝)).
By Theorem 3.4, Aut

(
A2,O𝜑𝓁(𝑝)

)
= ⟨𝜑𝓁⟩ and therefore Aut

(
A2,O𝜑(𝑝)

)
=

⟨𝜑⟩.

If 𝒞1 is of type (2) an analogous argument applies.

(b) We proceed as in the previous case and we apply Theorem 3.4 to𝐻 = ⟨𝜑𝓁⟩;
it follows that Aut

(
A2,O𝜑𝓁(𝑝)

)
= ⟨𝜑𝓁⟩⋊ {Id, 𝜏𝑝}.

If 𝜓 ∈ Aut
(
A2,O𝜑(𝑝)

)
then there exist 𝑗 ∈ Z and 𝑡 ∈ ⟨𝜑𝓁⟩ ⋊ {Id, 𝜏𝑝}

such that 𝜓 = 𝜑𝑖𝑡. Now, if 𝜓 ∈ Aut
(
A2,O𝜑(𝑝)

)
⧵ ⟨𝜑⟩, then there exists

𝑛 ∈ Z such that 𝑡 = 𝜑𝑛𝓁𝜏𝑝, so 𝜏𝑝 ∈ Aut
(
A2,O𝜑(𝑝)

)
⊂ Aut

(
A2,O𝜑(𝑝)

)
. Since

an automorphism of O𝜑(𝑝) sends irreducible components into irreducible
components, then 𝜏𝑝(𝒞1) = 𝒞𝑗 for some 𝑗 ∈ 𝑍. It follows that there exists 𝑖 ∈
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Z such that 𝜏𝑝
(
𝜑(𝑝)

)
= 𝜑𝑖𝓁(𝑝), and therefore 𝜑−𝑖𝓁𝜏𝑝𝜑 ∈ Aut

(
A2,𝒞1(k)

)
𝑝 =

{Id, 𝜏𝑝} (see Lemma 3.2). But if 𝜑−𝑖𝓁𝜏𝑝𝜑 = Id then 𝜑 is an involution, so the
assertion is proved.

(c) Assume now that 𝒞1 = 𝒱(𝑥). Since 𝒞1 ∩ 𝒞𝑖 is finite and 𝜑𝓁-stable for all
𝑖 = 2,… ,𝓁, it follows that 𝑝 ∉ 𝒞1 ∩ 𝒞𝑖, because O𝜑𝓁(𝑝) is infinite —more in
general, 𝒞𝑖 ∩ 𝒞𝑗 ∩ O𝜑(𝑝) = ∅. Moreover, we deduce from Theorem 2.8 that
𝜑𝓁 =

(
𝑎𝑥, 𝑏𝑦 + 𝑃(𝑥)

)
, where 𝑎, 𝑏 ∈ 𝕜∗ and 𝑃 ∈ 𝕜[𝑥]—notice that 𝑏 is not a

root of unity different from 1, since 𝜑𝑛𝓁(𝑝) =
(
0, 𝑏𝑛𝑦𝑝 +(1+⋯+ 𝑏𝑛−1)𝑃(0)

)
,

and that if char(𝕜) ≠ 0, then also 𝑏 ≠ 1.

If 𝜓 ∈ Aut
(
A2,O𝜑(𝑝)

)
, then 𝜓(𝑝) = 𝜑𝑟(𝑝) for some 𝑟, and therefore

𝜑−𝑟𝜓(𝑝) = 𝑝 ∈ 𝒞1. Since 𝜑−𝑟𝜓(𝒞) = 𝒞, it follows that 𝜑−𝑟𝜓(𝒞1) = 𝒞1.
Hence, in the notations of Theorem 2.8 and Lemma 3.2,

𝜑−𝑟𝜓 ∈ 𝐺𝑝 =
{(
𝑎′𝑥, 𝑐𝑦 + 𝑆(𝑥)

)
∶ 𝑎′, 𝑐 ∈ k∗ , 𝑆 ∈ k[𝑥], 𝑆(0) = −𝑐𝑦𝑝

}
≅

Ker(𝑅)⋊
{
(0, 𝑦)↦ (0, 𝑐𝑦 + (1 − 𝑐)𝑦𝑝) ∶ 𝑐 ∈ 𝕜∗

}

Moreover, since O𝜑𝓁(𝑝) = O𝜑(𝑝) ∩ 𝒞1, we have 𝜑−𝑟𝜓 ∈ Aut
(
A2,O𝜑𝓁(𝑝)

)

and therefore

𝜓 ∈ ⟨𝜑⟩
(
𝐺𝑝 ∩ Aut

(
A2,O𝜑𝓁(𝑝)

))
=
{
𝜑𝑗𝛾 ∶ 𝑗 ∈ Z , 𝛾 ∈ 𝐺𝑝 ∩ Aut

(
A2,O𝜑𝓁(𝑝)

)}
.

Analogously, since 𝜓 stabilizes O𝜑(𝑝), given 𝑖 = 1,… ,𝓁 − 1, there exists
𝑗𝑖 ∈ Z such that 𝜓

(
𝜑𝑖(𝑝)

)
= 𝜑𝑗𝑖 (𝑝). Hence, 𝜑𝑖−𝑗𝑖𝜓 ∈ Aut

(
A2,𝒞𝑖(k)

)
𝜑𝑖(𝑝), and

𝜓 ∈⟨𝜑⟩
(
Aut

(
A2,𝒞𝑖+1(k)

)
𝜑𝑖(𝑝) ∩ Aut

(
A2,O𝜑𝓁(𝜑𝑖(𝑝))

))
=

⟨𝜑⟩
((
𝜑𝑖𝐺𝜑−𝑖

)
𝜑𝑖(𝑝)∩

(
𝜑𝑖Aut

(
A2,O𝜑𝓁(𝑝)

)
𝜑−𝑖

))
=

⟨𝜑⟩
(
𝜑𝑖𝐺𝑝𝜑−𝑖 ∩

(
𝜑𝑖Aut

(
A2,O𝜑𝓁(𝑝)

)
𝜑−𝑖

))
=

⟨𝜑⟩
(
𝜑𝑖
(
𝐺𝑝 ∩ Aut

(
A2,O𝜑𝓁(𝑝)

))
𝜑−𝑖

)
.

All in all, we have that

𝜓 ∈
𝓁−1⋂

𝑖=0
⟨𝜑⟩

(
𝜑𝑖
(
𝐺𝑝 ∩ Aut

(
A2,O𝜑𝓁(𝑝)

))
𝜑−𝑖

)

=
𝓁−1⋂

𝑖=0
⟨𝜑⟩

((
𝐺𝑝 ∩ Aut

(
A2,O𝜑𝓁(𝑝)

))
𝜑−𝑖

)
.

Let 𝜓 ∈ ⋂𝓁−1
𝑖=0 ⟨𝜑⟩

(
𝜑𝑖
(
𝐺𝑝 ∩ Aut

(
A2,O𝜑𝓁(𝑝)

))
𝜑−𝑖

)
; in order to prove the

first assertion of (c) we need to prove that 𝜓 ∈ Aut
(
A2,O𝜑(𝑝)

)
. If 𝑗 ∈ Z, let
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𝑗 = 𝑞𝓁+ 𝑟 with 0 ≤ 𝑟 < 𝓁 and consider the decomposition 𝜓 = 𝜑𝑟𝛾𝜑−𝑟, with
𝛾 ∈ 𝐺𝑝 ∩ Aut

(
A2,O𝜑𝓁(𝑝)

)
. Then

𝜓(𝜑𝑗(𝑝)) = 𝜑𝑟𝛾𝜑−𝑟+𝑗(𝑝) = 𝜑𝑟𝛾𝜑𝑞𝓁(𝑝).

Since 𝛾 ∈ Aut
(
A2,O𝜑𝓁(𝑝)

)
, the assertion follows.

In order to prove the last assertion, we first observe that, up to conjugate
with the translation of vector (0, 𝑦𝑝), we can assume that 𝑝 = (0, 0). Let
𝜓 =

(
𝑎′𝑥, 𝑏′𝑦 + 𝑄(𝑥)

)
∈ ⋂𝓁−1

𝑖=0 𝜑
𝑖𝐺𝑝𝜑−𝑖 ⧵ Ker(𝑅). Then 𝑄(0) = 0 and, since

𝜓 ∈ Aut(A2,O𝜑𝓁(𝑝)
)
, there exists 𝑗 ∈ Z such that

(
0, 𝑏′𝑃(0)

)
= 𝜓

(
0, 𝑃(0)

)
= 𝜓

(
𝜑𝓁(𝑝)

)
= 𝜑𝑗𝓁(𝑝).

If 𝑗 = 1, then 𝜓 =
(
𝑎′𝑥, 𝑦+𝑄(𝑥)

)
∈ Ker(𝑅). Thus, up to work with 𝜓−1 if

necessary, we can assume that 𝑗 > 1. We deduce that 𝑏′ = 1 +⋯ + 𝑏𝑗−1; in
particular 𝜑 is such that 1 ≠ 1+⋯+𝑏𝑗−1—that is, 𝑏 ≠ 0 is not a (𝑗−1)-root
of unity.

Analogously, we have that 𝜓
(
0, (1 + 𝑏)𝑃(0)

)
= 𝜓

(
𝜑2𝓁(𝑝)

)
= 𝜑𝑚𝓁(𝑝), with

𝑚 ≠ 2. Since 𝜑−𝓁 =
(
𝑎−1𝑥, 𝑏−1𝑦 − 𝑏−1𝑃(𝑥)

)
, we deduce that

(
0, (1 +⋯ + 𝑏𝑗−1)(1 + 𝑏)𝑃(0)

)
= 𝜓

(
𝜑2𝓁(𝑝)

)

=

⎧
⎪
⎨
⎪
⎩

(
0, (1 +⋯ + 𝑏𝑚−1)𝑃(0)

)
, if𝑚 > 2(

0, 𝑃(0)
)
, if𝑚 = 1

(0, 0), if𝑚 = 0
(0,−𝑏−𝑚(1 +⋯ + 𝑏𝑚)𝑃(0)), if𝑚 < 0

For all four cases above we deduce a polynomial condition on 𝑏. Since
there are countablymany such conditions, each of themwithfinite solutions,
we deduce that if 𝕜 is uncountable there exist infinite values of 𝑏 for which
no such a 𝜓 can be found. □

Remark 4.9. Notice that in the proof of the last assertion of Theorem 4.8(c), we
omitted additional conditions on 𝑏 that must be satisfied in order to allow the
existence of 𝜓 ∈ ⋂𝓁−1

𝑖=0 𝜑
𝑖𝐺𝑝𝜑−1 ⧵ Ker(𝑅); namely, the conditions arising from

the equations 𝜓
(
𝜑𝑗𝓁(𝑝)

)
∈ O𝜑𝓁(𝑝), for 𝑗 = 3,… ,𝓁 − 1. However, Example

3.5 shows that there exists an automorphism 𝜑 ∈ Aut
(
A2, {𝑥 = 0}

)
such that

Aut
(
A2,O𝜑(𝑝)

)
≠ ⟨𝜑⟩

(⋂𝓁−1
𝑖=0 𝜑

𝑖 Ker(𝑅)𝜑−𝑖
)
, therefore, these conditions may be

satisfied in particular examples.

We finish by giving some examples that illustrate Theorem 4.8(c), and by
proving that in this case Aut

(
O𝜑(𝑝)

)
is not algebraic when k is uncountable —

the countable case remains open.
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Example 4.10. (1) If 𝜑 and 𝑝 are such that 𝒞 = O𝜑(𝑝) is a fence, then we can
assume that 𝑝 = (0, 0) and 𝒞 is contained in the curve 𝐹(𝑥) = 0 for some
𝐹 ∈ k[𝑥]. Therefore,

{(
𝑎𝑥, 𝑦 + 𝑄(𝑥)𝐹(𝑥)

)
, 𝑎 ∈ k∗, 𝑄 ∈ k[𝑥]

}
⊂ Aut

(
A2,O𝜑(𝑝)

)

and we deduce that 𝐴 is not algebraic.

(2) Let k be an infinite field and 𝑎 ∈ k such that 𝑎 is not a root of unity. Consider
𝜑 = (𝑎𝑦, 𝑎𝑥) and let 𝑝 = (0, 1). Then

O𝜑(𝑝) =
{
(𝑎2𝑛+1, 0), (0, 𝑎2𝑛) ∶ 𝑛 ∈ Z

}
, and O𝜑(𝑝) = {𝑥𝑦 = 0}.

Notice that 𝒞 = {𝑥𝑦 = 0} is a union of curves of type (6) but it is not a
fence. It is easy to see thatAut

(
A2,𝒞(k)

)
=
{
(𝑎𝑥, 𝑏𝑦), (𝑎𝑦, 𝑏𝑥) ∶ 𝑎, 𝑏 ∈ k∗

}
≅

(k∗)2 ⋊ Z2 and that

Aut
(
O𝜑(0, 1)

)
=
{
(𝑎2𝑛𝑥, 𝑎2𝑚𝑦), (𝑎2𝑛𝑦, 𝑎2𝑚𝑥) ∶ 𝑛,𝑚 ∈ Z

}

≅ Z2 ⋊ Z2 ⊊ Aut
(
A2,𝒞(k)

)
.

Hence, Aut
(
O𝜑(0, 1)

)
strictly contains ⟨𝜑⟩ and clearly is not an algebraic

group.

(3) Let k = C and consider 𝜑 = 𝑎
√
2

( 1 −1
1 1

) ( 𝑥
𝑦
)
, the rotation of angle 𝜋∕4 fol-

lowed by a homothety of ratio 𝑎, where 𝑎 is not a root of unity.

If 𝑝 = (0, 1), then

O𝜑(𝑝) =
⎧

⎨
⎩

𝑎8𝑛(0, 1), 1
√
2
𝑎8𝑛+1(−1, 1), 𝑎8𝑛+2(−1, 0), 𝑎8𝑛+3 1

√
2
(−1,−1),

𝑎8𝑛+4(0,−1), 𝑎8𝑛+5 1
√
2
(1,−1), 𝑎8𝑛+6(1, 0), 𝑎8𝑛+7 1

√
2
(1, 1)

∶ 𝑛 ∈ Z
⎫

⎬
⎭

,

and 𝒞 = O𝜑(𝑝) = {𝑥𝑦(𝑥 + 𝑦)(𝑥 − 𝑦) = 0}. An easy calculation shows that

Aut
(
A2,𝒞(k)

)
=
⟨
(𝑎 0
0 𝑏) ,

1
√
2
(1 1
1 −1) ∶ 𝑎, 𝑏 ∈ 𝕜∗

⟩
.

We deduce that if 𝜓 ∈ Aut
(
A2,O𝜑(0, 1)

)
, then 𝜓 is a power of 𝜑 and

Aut
(
O𝜑(𝑝)

)
= ⟨𝜑⟩.

Proposition 4.11. Assume that k is uncountable and let 𝜑 ∈ Aut(A2) and 𝑝 =
(𝑥𝑝, 𝑦𝑝) ∈ A2

(
k
)
be such thatO𝜑(𝑝) = 𝒞1 ∪⋯∪ 𝒞𝓁 is a curve, with 𝒞𝑖 of type (6)

(that is 𝜑 and 𝑝 verify assertion (c) of Theorem 4.8). Then Aut
(
A2,O𝜑(𝑝)

)
is not

algebraic.

Proof. If 𝒞 is, up to an automorphism, a fence, the result is proved in Example
4.10(1).
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Hence, we may assume that 𝒞 is not a fence, and therefore Aut
(
A1,𝒞(k)

)
is

algebraic by [1, Theorem 1]. Up to conjugation, we may assume that 𝒞1 = {𝑥 =
0} and 𝑝 = (0, 1). Then 𝜑𝓁 =

(
𝛼𝑥, 𝛽𝑦+𝑄(𝑥)

)
for some 𝑄 ∈ k[𝑥], and it follows

from Theorem 3.4 that

𝐴 ..= Aut
(
A2,O𝜑𝓁(𝑝)

)
= ⟨𝜑𝓁⟩(𝐺𝑝 ∩ 𝐴) ⊂ ⟨𝜑𝓁⟩

(
𝐺𝑝 ∩ Aut

(
A2,𝒞1(k)

))
.

Since 𝜑𝓁 does not fix 𝑝, we deduce that
(
𝐺𝑝 ∩ Aut

(
A2,𝒞1(k)

))⋂𝜑𝓁
(
𝐺𝑝 ∩

Aut
(
A2,𝒞1(k)

))
= ∅. Analogously, we deduce that if 1 < 𝑖 < 𝓁, then 𝜑𝑖

(
𝐺𝑝 ∩

Aut
(
A2,𝒞1(k)

))
∩ ⟨𝜑𝓁⟩

(
𝐺𝑝 ∩ Aut

(
A2,𝒞1(k)

))
= ∅.

Since𝐺𝑝∩Aut
(
A2,𝒞1(k)

)
is closed inAut(A2) andAut

(
A2,𝒞(k)

)
is algebraic,

we have that

𝐾 ..= ⟨𝜑⟩
(
𝐺𝑝 ∩ Aut

(
A2,𝒞1(k)

))
∩ Aut

(
A2,𝒞(k)

)

=
⋃

𝑗∈Z

𝜑𝑗
(
𝐺𝑝 ∩ Aut

(
A2,𝒞1(k)

)
∩ Aut

(
A2,𝒞(k)

))

is a countable disjoint union of closed subsets of the algebraic groupAut
(
A⁇,𝒞(k)

)
.

On the other hand, we deduce from Theorem 4.8 thatAut
(
A2,O𝜑(𝑝)

)
is con-

tained in𝐾 and, since𝜑𝑗 ∈ Aut
(
A2,O𝜑(𝑝)

)
∩𝜑𝑗

(
𝐺𝑝∩Aut

(
A2,𝒞1(k)

)
∩Aut

(
A2,𝒞(k)

))

for any 𝑗, we conclude that Aut
(
A2,O𝜑(𝑝)

)
has at least a countable number of

irreducible components, and therefore it is not algebraic. □
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