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Star clusters in the matching, Morse, and
generalized complex of discrete

Morse functions

Connor Donovan and Nicholas A. Scoville

Abstract. In this paper, we determine the homotopy type of the complex of
discrete Morse functions and matching complex of multiple families of com-
plexes by utilizing star cluster collapses and the Cluster Lemma. We compute
the homotopy type of the complex of discrete Morse functions of an extended
notion of a star graph, as well as the homotopy type of the matching complex
of a Dutch windmill graph. Additionally, we provide alternate computations
of the homotopy type of the complex of discreteMorse functions of paths, the
homotopy type of the matching complex of paths, and the homotopy type of
thematching complex of cycles. We then use this samemethod of computing
homotopy types to investigate the relationship between the homotopy type of
the matching complex and the generalized Morse complex.
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1. Introduction
Let𝐾 be a simplicial complex. In [1], J. Barmak introduced the star cluster of

a simplex in 𝐾 and proved that if 𝐾 is flag, then the star cluster is contractible.
This provided a tool for studying the topology of independence complexes of
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graphs. For example, he used star clusters to show that the independence com-
plex of any triangle-free graph has the homotopy type of a suspension and that
the independence complex of a forest is either contractible or homotopy equiv-
alent to a sphere. K. Iriye used star clusters to construct a matching tree for
the independence complex of square grids with cyclic identification [8], and S.
Goyal et al. used star clusters to compute the homotopy type of the indepen-
dence complexes of generalised Mycielskian of complete graphs [6]. Another
important tool in combinatorial topology is the Cluster lemma. This result was
arrived at independently by both Jonsson [9, Lemma 4.2] andHersh [7, Lemma
4.1], and it is an extremely convenient yet simple way to put a gradient vector
field on a complex by gluing together gradient vector fields on a decomposition
of the complex.
A goal of this paperwill be to utilize both star clusters and theCluster Lemma

to study the homotopy type of the complex of Morse functions, generalized
Morse functions, and matching complex. The complex of discrete Morse func-
tions of 𝐾, denotedℳ(𝐾), is the simplicial complex of all gradient vector fields
on 𝐾 (see Definition 3.2). Like the matching or independence complex of a
graph, the complex of discrete Morse functions of a simplicial complex 𝐾 is
a complex that stores certain combinatorial information about 𝐾, and deter-
mining its homotopy type is an interesting question. Although the complex of
discrete Morse functions of 𝐾 in general is not a flag complex, it is a flag com-
plex when 𝐾 = 𝑇 is a tree. In this special case, we use star clusters and the
Cluster lemma to show in Proposition 3.7 thatℳ(𝑇) has the homotopy type of
a suspension. We also compute the homotopy type of the complex of discrete
Morse functions on any number of paths of two different lengths joined at a
single point (Theorem 3.12) and provide an alternate computation of the ho-
motopy type of the complex of discrete Morse functions of a path (Proposition
3.8) originally computed by D. Kozlov in [10].
We next investigate the homotopy type of the generalized complex of discrete

Morse functions, first introduced in [14]. From the perspective of star clusters,
the generalized complex of discrete Morse functions has the advantage that it
includes cycles and hence is a flag complex. We compute the homotopy type of
the generalized complex of discrete Morse functions of a cycle (Theorem 4.3)
and show that the complex of discrete Morse functions and Generalized com-
plex of discrete Morse functions of a cycle with a single leaf have the same ho-
motopy type. There seems to be further connections between the complex of
discreteMorse functions and Generalized complex of discreteMorse functions,
andwe discuss some of these possibilities and open questions in the last section.
Another goal of this paper will be to utilize the idea of the star cluster and

the Cluster Lemma to compute the homotopy type of the matching complex of
certain complexes. If we consider a graph 𝐺, the matching complex, denoted
M(𝐺), is the complex constructed from all independent edge sets on𝐺. It is easy
to see that this is a flag complex. An interesting connection was made between
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the complex of discrete Morse functions and matching complex in [2]1, where
the authors provide a natural filtration on thematching complex of a finite sim-
plicial complex that allows us to relate the matching complex to the complex of
discrete Morse functions. The authors observe that there is a one-to-one cor-
respondence between elements in the generalized complex of discrete Morse
functions of a graph 𝐺 and matchings on the barycentric subdivision of 𝐺 so
that 𝒢ℳ(𝐺) ≅ M(sd(𝐺)). Combining this with the fact mentioned above that
the complex of discrete Morse functions of a tree is flag, we have the relation-
shipℳ(𝑇) ≅ 𝒢ℳ(𝑇) ≅ M(sd(𝑇)).
Additionally, the homotopy type of the matching complexes for paths and

cycles [10] and for forests [12] have been shown to be either contractible, a
sphere, or a wedge of spheres. We provide alternate proofs of the computation
of the homotopy type of thematching complex for paths and cycles (Proposition
5.3, Proposition 5.4) as well as provide a computation of the homotopy type of
Dutch windmill graphs (Theorem 5.8).

2. Preliminaries
In this section, we establish the notation, terminology, and background re-

sults that will be needed throughout this paper. All simplicial complexes are
assumed to be connected unless otherwise stated. We use ≃ to denote a homo-
topy equivalence and ≅ to denote an isomorphism.

2.1. Background. Becausewewill be taking constructions on graphs, we adopt
some graph theoretic language.

Definition 2.1. A simplicial complex 𝐺 such that dim(𝐺) = 1 is called a graph.
If 𝐺 is an acyclic graph, then we call 𝐺 a tree. The number of edges of a vertex is
the degree of the vertex. A leaf is any vertex of degree 1. The path 𝑃𝑛 on 𝑛 vertices
is the simplicial complex with facets

{𝑣0, 𝑣1}, {𝑣1, 𝑣2},⋯ {𝑣𝑛−2, 𝑣𝑛−1},

The length of the path 𝑃𝑛 is the number of edges (𝑛 − 1) in the path. A cycle of
length 𝑛 ≥ 3 is the simplicial complex 𝐶𝑛 with facets

{𝑣0, 𝑣1}, {𝑣1, 𝑣2},⋯ {𝑣𝑛−2, 𝑣𝑛−1}, {𝑣𝑛−1, 𝑣0}.

Definition 2.2. A simplicial complex𝐾 is a flag complex if for each non-empty
set of vertices 𝜎 such that {𝑣𝑖, 𝑣𝑗} ∈ 𝐾 for every 𝑣𝑖, 𝑣𝑗 ∈ 𝜎, we have that 𝜎 ∈ 𝐾.

The flag complex of a graph 𝐺 is the smallest flag complex that has 𝐺 as a
1-skeleton.

1Because they are defining a matching complex on all simplicial complexes, the authors de-
fine the matching complex of a graph 𝐺 to be comprised of elements of matchings on the order
poset of 𝐺, i.e., a matching on the barycentric subdivision of 𝐺
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Definition 2.3. Let𝐾 be a simplicial complex and 𝑣 ∈ 𝐾 be a vertex. The star of
𝑣 in𝐾, denoted by st(𝑣), is the simplicial complex induced by the set of all simplices
of 𝐾 containing 𝑣. More generally, the star of a simplex 𝑠 is the set of simplices
having 𝑠 as a face.

Definition 2.4. [1, Definition 3.1] Let 𝜎 be a simplex of a simplicial complex,𝐾.
We define the star cluster of 𝜎 in 𝐾 as the subcomplex

SC𝐾(𝜎) =
⋃

𝑣∈𝜎
st𝐾(𝑣) + lk𝐾(𝑣)

We denote the star cluster of 𝜎 by SC(𝜎) when the context is clear.

A simple but fundamental property of the star cluster of a simplex is that it
is collapsible if the complex is flag.

Proposition 2.5. [1, Lemma 3.2] The star cluster of a simplex in a flag complex
is collapsible.

Proposition 2.5 is one of the main tools we use in this paper. The other tool
is the following Lemma:

Lemma 2.6. ([9, Lemma 4.2] and [7, Lemma 4.1]) [Cluster Lemma] Let ∆ be a
simplicial complex which decomposes into collections ∆𝜎 of simplices, indexed by
the elements 𝜎 in a partial order 𝑃 which has a unique minimal element 𝜎0 = ∆0,
Furthermore, assume that this decomposition is as follows:

(1) Each simplex belongs to exactly one ∆𝜎.
(2) For each 𝜎 ∈ 𝑃,

⋃
𝜏≤𝜎 ∆𝜏 is a subsimplicial complex of ∆.

For each 𝜎 ∈ 𝑃, let𝑀𝜎 be an acyclic matching in∆𝜎. Then
⋃

𝜎∈𝑃𝑀𝜎 is an acyclic
matching on 𝐾.

Lemma 2.6 provides a way to put an acyclic matching on the entire complex
by patching together acyclic matchings on parts of the complex. The key in-
formation is what is left unmatched or the critical simplices. In some cases,
certain collections of critical simplices will uniquely determine the homotopy
type of the original complex. This is given in the classical result of Forman.

Theorem 2.7. [5, Corollary 3.5] Let𝐾 be a simplicial complex and𝑀 an acyclic
matching on𝐾with𝑚𝑖 critical simplices of dimension 𝑖. Then𝐾 has the homotopy
type of a CW complex with exactly𝑚𝑖 cells of dimension 𝑖. In particular, if𝑚0 =
1, 𝑚𝑛 = 𝑘, and𝑚𝑗 = 0 for all 𝑗 ≠ 0, 𝑛, then 𝐾 has the homotopy type of a 𝑘-fold
wedge of 𝑆𝑛.

All of our computations below will in fact satisfy the stated special case of
Theorem 2.7 and thus allow us to determine the homotopy type of the complex
in question.

Definition 2.8. Let 𝐾 be a simplicial complex. A vertex 𝑣 is said to dominate 𝑣′
if every maximal simplex (facet) of 𝑣′ also contains 𝑣.
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If 𝑣 dominates 𝑣′ in a simplicial complex𝐾, the removal of 𝑣′ from𝐾 is called
an elementary strong collapse and is denoted by𝐾 ↘↘ 𝐾−{𝑣′}. Conversely,
the addition of a dominated vertex is an elementary strong expansion and is
denoted by↗↗.

Definition 2.9. Let 𝐾 and 𝐿 be simplicial complexes. If there is a sequence of
strong collapses and expansions from 𝐾 to 𝐿, then 𝐾 and 𝐿 are said to have the
same strong homotopy type.
In the case where 𝐿 =∗, then 𝐾 is said to have the strong homotopy type of

a point. If there is a sequence of only strong collapses from 𝐾 to a point, 𝐾 is
strongly collapsible.

3. Homotopy type of the complex of discrete Morse functions
In order to describe the complex of discreteMorse functions andGeneralized

complex of discrete Morse functions, we will need the following.

Definition 3.1. Let 𝐾 be a simplicial complex. A discrete vector field 𝑉 on 𝐾
is defined by

𝑉 ∶= {(𝜎(𝑝), 𝜏(𝑝+1)) ∶ 𝜎 < 𝜏, each simplex of 𝐾 in at most one pair}.
Any pair in (𝜎, 𝜏) ∈ 𝑉 is called a regular pair, and 𝜎, 𝜏 are called regular sim-
plices or just regular. If (𝜎(𝑝), 𝜏(𝑝+1)) ∈ 𝑉, we say that 𝑝 + 1 is the index of the
regular pair. Any simplex in 𝐾 which is not in 𝑉 is called critical.

Definition 3.2. Let 𝑉 be a discrete vector field on a simplicial complex 𝐾. A
𝑉-path or gradient path is a sequence of simplices

𝛼(𝑝)0 , 𝛽(𝑝+1)0 , 𝛼(𝑝)1 , 𝛽(𝑝+1)1 , 𝛼(𝑝)2 … , 𝛽(𝑝+1)𝑘−1 , 𝛼(𝑝)𝑘

of 𝐾 such that (𝛼(𝑝)𝑖 , 𝛽(𝑝+1)𝑖 ) ∈ 𝑉 and 𝛽(𝑝+1)𝑖 > 𝛼(𝑝)𝑖+1 ≠ 𝛼(𝑝)𝑖 for 0 ≤ 𝑖 ≤ 𝑘 − 1.
If 𝑘 ≠ 0, then the 𝑉-path is called non-trivial. A 𝑉-path is said to be closed if
𝛼(𝑝)𝑘 = 𝛼(𝑝)0 . A discrete vector field𝑉 which contains no non-trivial closed𝑉-paths
is called a gradient vector field.

If the gradient vector field consists of only a single element, we say it is a
primitive gradient vector field. We often denote a primitive gradient vector
field {(𝑢, 𝑢𝑣)} with 𝑝 = 0 by (𝑢)𝑣.

Definition 3.3. The complex of discreteMorse functions of𝐾, denotedℳ(𝐾),
is the simplicial complexwhose vertices are given by primitive gradient vector fields
and whose 𝑛-simplices are given by gradient vector fields with 𝑛+1 regular pairs.
A gradient vector field 𝑓 is then associated with all primitive gradient vector fields
𝑓 ∶= {𝑓0,… , 𝑓𝑛} with 𝑓𝑖 ≤ 𝑓 for all 0 ≤ 𝑖 ≤ 𝑛.

One result about the complex of discrete Morse functions that we will utilize
is that it is well-behaved with respect to disjoint unions of complexes.

Proposition 3.4. [4]Let𝐾, 𝐿 be connected simplicial complexes eachwith at least
one edge. Thenℳ(𝐾 ⊔ 𝐿) =ℳ(𝐾) ∗ℳ(𝐿).
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Lemma 3.5. The complex of discrete Morse functionsℳ(𝐾) is a flag complex if
and only if 𝐾 is a tree.

Proof. Let 𝑇 be a tree and ℳ(𝑇) the complex of discrete Morse functions of
𝑇. Forℳ(𝑇) to be a flag complex, each non-empty set of mutually compatible
vertices needs to be all together compatible. In otherwords, for eachnon-empty
set of vertices 𝜎 such that {𝑣, 𝑤} ⊆ ℳ(𝑇) for every 𝑣, 𝑤 ∈ 𝜎, we have that 𝜎 ∈
ℳ(𝑇). Now the only case when a collection of pairwise compatible primitive
gradient vector fields may not be compatible is when they form a cycle. But
since trees are acyclic, a collection of pairwise compatible primitive gradient
vector fields can never form a cycle so thatℳ(𝑇) is a flag complex.
Now supposeℳ(𝐾) is a flag complex. Clearly neither𝐾 nor the 1-skeleton of

𝐾 can contain a cycle since otherwise there would exist a collection of mutually
compatible vertices onℳ(𝐾) that are not all together compatible. Thus𝐾must
be a tree. □

Although the flag condition greatly reduces the kind of complex of discrete
Morse functions that we can study directly using star clusters, the following
result of Barmak will allow us to say something general about the complex of
discrete Morse functions of all trees.

Lemma 3.6. [1, Lemma 3.4] Let 𝐾 be a simplicial complex and 𝐾1, 𝐾2 be two
collapsible subcomplexes such that 𝐾 = 𝐾1 ∪𝐾2. Then 𝐾 is homotopy equivalent
to Σ(𝐾1 ∩ 𝐾2).

We can now show that the complex of discrete Morse functions of all trees is
a suspension.

Proposition 3.7. Let 𝑇 be a tree. Thenℳ(𝑇) has the homotopy type of a suspen-
sion.

Proof. We apply Lemma 3.6 by constructing two collapsible subcomplexes of
ℳ(𝑇) whose union is all of ℳ(𝑇). Pick any leaf {𝑣0, 𝑣0𝑣1} of 𝑇 and consider
the maximum gradient vector field 𝜎0 rooted in 𝑣0 and the maximum gradi-
ent vector field rooted in 𝑣1 [13, Proposition 3.3]. These corresponds to sim-
plices 𝜎0, 𝜎1 ∈ ℳ(𝑇), respectfully. Defineℳ1(𝑇) = SCℳ(𝑇)(𝜎0) andℳ2(𝑇) =
SCℳ(𝑇)(𝜎1). Thenℳ1(𝑇) andℳ2(𝑇) are collapsible subcomplexes ofℳ(𝑇) by
Lemma 3.5. Furthermore, it is easy to see thatℳ(𝑇) = ℳ1(𝑇) ∪ℳ2(𝑇). Thus
ℳ(𝑇) ≃ Σ(ℳ1(𝑇) ∩ℳ2(𝑇)). □

In addition to the general structure of the complex of discrete Morse func-
tions of a tree, we can use Proposition 2.5 and Lemma 2.6 to compute the ho-
motopy type of some specific classes of trees. Our first computation is the ho-
motopy type of the complex of discrete Morse functions of a path. This was
originally computed by Kozlov in [10]. Here we provide an alternate computa-
tion in a first illustration of our technique.
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Proposition 3.8. Let 𝑃𝑡 be the path on 𝑡 vertices, 𝑡 ≥ 3. Then

ℳ(𝑃𝑡) ≃
⎧

⎨
⎩

∗ if 𝑡 = 3𝑛
𝕊2𝑛−1 if 𝑡 = 3𝑛 + 1
𝕊2𝑛 if 𝑡 = 3𝑛 + 2

Proof. We apply the Cluster Lemma. In order to do so, we decomposeℳ(𝑃𝑡)
into collections ∆𝑘. First, we construct collections of sub-simplices 𝜎𝑖 for 𝑖 =
0,…𝑛. We construct collections as follows:

(1) Let 𝜎0 ∶= SC((𝑣0)𝑣1, (𝑣1)𝑣2,… , (𝑣𝑡−3)𝑣𝑡−2, (𝑣𝑡−2)𝑣𝑡−1)
(2) For 1 ≤ 𝑗 ≤ 𝑛, we define the following:

(a) When 𝑗 = 2𝑘 − 1, let 𝜎𝑗 ∶= st((𝑣𝑡−(3𝑘−1))𝑣𝑡−3𝑘)
(b) When 𝑗 = 2𝑘, let 𝜎𝑗 ∶= st((𝑣3𝑘)𝑣3𝑘−1)

(3) Let 𝜎𝑛+1 ∶=ℳ(𝑃𝑡) −
⋃𝑛

𝑖=0 𝜎𝑖
Now define ∆0 ∶= 𝜎0 and ∆𝑘 ∶= 𝜎𝑘 −

⋃𝑘−1
𝑗=0 𝜎𝑗, and observe that

⋃𝑛+1
𝑘=0 ∆𝑘 =

ℳ(𝑃𝑡). Define an acyclic matching on each ∆𝑗 as follows:
We know that ∆0 is collapsible by Proposition 2.5 and Lemma 3.5 so ∆0 has

an acylcic matching with a single unmatched 0-simplex.
Let 𝑗 = 2𝑘 − 1, 1 ≤ 𝑗 ≤ 𝑛. Any simplex 𝑉 ∈ ∆𝑗 by definition contains

(𝑣𝑡−(3𝑘−1))𝑣𝑡−1. Match𝑉with𝑉∪{(𝑣𝑡−(3𝑘−2))𝑣𝑡−(3𝑘−1)} (or𝑉−{(𝑣𝑡−(3𝑘−2))𝑣𝑡−(3𝑘−1)}
if𝑉 already contains this vector). In this way, all simplices in∆2𝑘−1 arematched
with no unmatched simplices. Furthermore, since this matching is a subset of
the matching on the cone on (𝑣𝑡−(3𝑘−1))𝑣𝑡−1, it is acyclic.
Let 𝑗 = 2𝑘, 2 ≤ 𝑗 ≤ 𝑛. Any simplex𝑉 ∈ ∆𝑗 by definition contains (𝑣3𝑘)𝑣3𝑘−1.

Match 𝑉 with 𝑉 ∪ {(𝑣3𝑘−1)𝑣3𝑘−2} (or 𝑉 with this vector removed, as above). In
this way, all simplices in∆2𝑘 arematchedwith no unmatched simplices. Again,
this matching is a subset of the matching on a cone so it is acyclic.
Now consider ∆𝑛+1. We have three cases:
(Note: When considering 𝑛 = 1 in cases 2 and 3, disregard matchings con-

taining vertices with negative indices e.g. 𝑣−1)
Case 1: Let 𝑡 = 3𝑛. Then ∆𝑛+1 = ∅, and thusℳ(𝑃𝑡) ≃∗.
Case 2: Let 𝑡 = 3𝑛 + 1. Then ∆𝑛+1 contains a single simplex 𝑉 of dimen-
sion (2𝑛 − 1) satisfying

(𝑣3⌊ 𝑛
2
⌋)𝑣3⌊ 𝑛

2
⌋−1, (𝑣3⌊ 𝑛

2
⌋+2)𝑣3⌊ 𝑛

2
⌋+1 ∉ 𝑉.

Thus by Theorem 2.7,ℳ(𝑃𝑡) ≃ 𝕊2𝑛−1.
Case 3: Let 𝑡 = 3𝑛 + 2. Then ∆𝑛+1 contains a single simplex 𝑉 of dimen-
sion 2𝑛 satisfying

(𝑣3⌊ 𝑛
2
⌋)𝑣3⌊ 𝑛

2
⌋−1, (𝑣3⌊ 𝑛

2
⌋+3)𝑣3⌊ 𝑛

2
⌋+2 ∉ 𝑉.

Thus by Theorem 2.7,ℳ(𝑃𝑡) ≃ 𝕊2𝑛. □

We can prove something a bit stronger in the case of a path on 3𝑡 vertices.
We first prove a lemma.
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𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6

Figure 1. For 𝑡 = 7 = 3(2)+1, Case 2 of the proof of Theorem
3.8 implies that 𝑉 ∈ ∆3 will result in the gradient vector field
(critical simplex) inℳ(𝑃7) pictured above.

Lemma 3.9. Let 𝐾 be a simplicial complex with leaf {𝑎, 𝑎𝑏} and 𝑐 a neighbor of
𝑏 not equal to 𝑎. Then (𝑏)𝑐 is dominated inℳ(𝐾) by (𝑎)𝑏.

Proof. Consider any facet of (𝑏)𝑐 inℳ(𝐾). A facet ofℳ(𝐾) is a maximal gra-
dient vector field on𝐾, and since (𝑏)𝑎 is not compatible with (𝑏)𝑐 and {𝑎, 𝑎𝑏} is
a leaf, (𝑎)𝑏must be in any maximal gradient vector field containing (𝑏)𝑐. Thus
(𝑎)𝑏 dominates (𝑏)𝑐 inℳ(𝐾). □

Proposition 3.10. Let 𝑃3𝑛 be the path on 3𝑛 vertices, 𝑛 ≥ 1. Thenℳ(𝑃𝑡)↘↘∗

Proof. By Lemma 3.9, (𝑣1)𝑣2 dominates (𝑣2)𝑣3. After removing (𝑣2)𝑣3, we see
that (𝑣3)𝑣2 dominates (𝑣4)𝑣3, and sowe remove (𝑣4)𝑣3. Continuing in thisman-
ner, we see that (𝑣3𝑘−2)𝑣3𝑘−1 dominates (𝑣3𝑘−1)𝑣3𝑘 for all 1 ≤ 𝑘 ≤ 𝑛, and
(𝑣3𝑘)𝑣3𝑘−1 dominates (𝑣3𝑘+1)𝑣3𝑘 for for all 1 ≤ 𝑘 < 𝑛. Hence we may remove
each of these primitive gradient vector fields.
Now the last primitive gradient vector field removed is (𝑣3𝑛−1)𝑣3𝑛 since it was

dominated by (𝑣3𝑛−2)𝑣3𝑛−1. We now claim that (𝑣3𝑛)𝑣3𝑛−1 dominates every re-
maining vertex. To see this, observe that because (𝑣3𝑛−1)𝑣3𝑛 has been removed,
(𝑣3𝑛)𝑣3𝑛−1 is compatible with all remaining vertices (𝑣𝑖)𝑣𝑗, and no (𝑣𝑖)𝑣𝑗 can
exist in a facet of the remainingMorse complex without (𝑣3𝑛)𝑣3𝑛−1. We remove
all (𝑣𝑖)𝑣𝑗 until we are only left with (𝑣3𝑛)𝑣3𝑛−1. Thusℳ(𝑃3𝑛−1) is strongly col-
lapsible. □

Recall that the star graph 𝑆𝑛 on 𝑛+1 vertices is the complete bipartite graph
𝐾1,𝑛. Alternatively, we may view 𝑆𝑛 as the result of taking 𝑛 paths of length 1
and gluing them to a common endpoint (the so-called wedge product). We
generalize 𝑆𝑛 in the following definition.

Definition 3.11. An extended star graph, denoted 𝑆𝑣1,𝑣2,𝑣3 , is the graph ob-
tained by starting with 𝑣1 paths of length 1, 𝑣2 paths of length 2, and 𝑣3 paths of
lengths 3 and identifying an endpoint of each path with a fixed vertex 𝑐 called the
center. By an extended leaf of length 𝑘, we mean a path of length 𝑘 from the
center vertex, 𝑐, to a vertex, 𝑣𝑘, of degree 1.

Clearly 𝑆𝑘 = 𝑆𝑘,0,0 recovers the star graph. It was shown in [4, Proposition
3.5] that not only isℳ(𝑆𝑛) (strongly) collapsible for 𝑛 ≥ 2, but that any complex
with at least two leaves sharing a common vertex is strongly collapsible. Hence,
we let 𝑣0 = 0 in our computation below.
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Figure 2. The extended star graph, 𝑆0,4,0. By corollary [3.14],
we see thatℳ(𝑆0,4) ≃ 𝕊4 ∨ 𝕊4 ∨ 𝕊4.

Theorem 3.12. Let 𝑆0,𝑛,𝑚 be an extended star graph. Then,

ℳ(𝑆0,𝑛,𝑚) ≃ ∨𝑛−1𝕊2𝑚+𝑛

Proof. Define a collection of subsimplices 𝜎𝑖 for 𝑖 = 0,…𝑛 on ℳ(𝑆0,𝑛,𝑚) as
follows:
Let 𝑐 be the center vertex of 𝑆0,𝑛,𝑚 and let {𝑣𝑎𝑖𝑣𝑏𝑖 , 𝑣𝑏𝑖 } be the leaf of each ex-

tended leaf of length 2, 𝑖 = 1, 2,… , 𝑛, and {𝑣𝛼𝑗𝑣𝛽𝑗 , 𝑣𝛽𝑗 } the leaf of each extended
leaf of length 3, 𝑗 = 1, 2,… , 𝑚 with 𝑣𝛾𝑗 ≠ 𝑣𝛽𝑗 the other neighbor of 𝑣𝛼𝑗 .

(1) Let 𝜎0 be the star cluster of the gradient vector field rooted in 𝑐. Such a
gradient vector field exists and is unique by [13, Proposition 3.3].

(2) Let 𝜎1 ∶= ∪𝑚𝑖=1st({(𝑐)𝑣𝛾𝑖 })
Now define ∆0 ∶= 𝜎0,∆1 ∶= 𝜎1 − 𝜎0, and ∆2 ∶= ℳ(𝑆0,𝑛,𝑚) − (𝜎0 ∪ 𝜎1).

Clearly ∆0 ∪ ∆1 ∪ ∆2 = ℳ(𝑆0,𝑛,𝑚) so we can apply the Cluster Lemma. We
define an acyclic matching on each ∆𝑗 as follows:
First,∆0 is collapsible by Proposition 2.5 and Lemma 3.5 so there is an acyclic

matching on ∆0 with a single critical 0-simplex.
To construct a matching on ∆1, we first observe that a typical element of

∆1 is of the form (𝑐)𝑣𝛾𝑖 along with other arrows pointing away from the center
vertex 𝑐. Furthermore, because 𝜎0 contains all gradient vector fields with any
arrow pointing towards 𝑐, all elements of ∆1 are not compatible with any arrow
pointing towards 𝑐. Upon inspection, there are exactly 2𝑚 such gradient vector
fields. Match the (2𝑚+ 𝑛− 1)-simplex of ∆1 containing (𝑐)𝑣𝛾𝑖 but not contain-
ing (𝑣𝛾𝑖 )𝑣𝛼𝑖 to the corresponding (2𝑚 + 𝑛)-simplex containing both (𝑐)𝑣𝛾𝑖 and
(𝑣𝛾𝑖 )𝑣𝛼𝑖 . This produces an acyclic matching on all elements in ∆1.
Lastly, observe that∆2 contains𝑛+1 elements. Wewill create a singlematch-

ing, leaving 𝑛 − 1 unmatched (2𝑚 + 𝑛)-simplices and hence critical. A typical
element of∆2 is of the form (

⋃𝑛
𝑖=1(𝑣𝑎𝑖 )𝑣𝑏𝑖 )∪(

⋃𝑚
𝑖=1(𝑣𝛾𝑖 )𝑣𝛼𝑖 )∪(

⋃𝑚
𝑖=1(𝑣𝛼𝑖 )𝑣𝛽1) along

with possibly one of (𝑐)𝑣𝑎𝑖 . Match the (2𝑚 + 𝑛 − 1)-simplex of ∆2 containing
none of the (𝑐)𝑣𝑎𝑖 with the (2𝑚 + 𝑛)-simplex containing (𝑐)𝑣𝑎1 .
If 𝑛 > 1 then, there are 𝑛 − 1 unmatched (2𝑚 + 𝑛)-simplices 𝜏𝑖, where each

𝜏𝑖 contains (𝑐)𝑣𝑎𝑖 for 𝑖 = 2, 3,… , 𝑛 − 1. Thusℳ(𝑆0,𝑛,𝑚) ≃ ∨𝑛−1𝕊2𝑚+𝑛. □
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We obtain several special cases which we list as corollaries below.
Corollary 3.13. Let 𝑆0,1,𝑛 be an extended star graph. Then,

ℳ(𝑆0,1,𝑛) ≃∗
Corollary 3.14. Let 𝑆0,𝑛 be an extended star graph. Then,

ℳ(𝑆0,𝑛) ≃ ∨𝑛−1𝕊𝑛

Corollary 3.15. Let 𝑆0,0,𝑛 be an extended star graph. Then,
ℳ(𝑆0,0,𝑛) ≃ 𝕊2𝑛−1

3.1. Strongly collapsing to suspensions. Although we showed earlier that
the complex of discrete Morse functions of all trees are suspensions (Proposi-
tion 3.7), in general, it is unknownwhen a complex of discrete Morse functions
is a suspension. Here we provide some convenient results for showing the com-
plex of discrete Morse functions of many simplicial complexes are suspensions.
Lemma 3.18 and Corollary 3.19 is for all simplicial complexes, while Proposi-
tion 3.21 is for cycles.
Definition 3.16. Let ℙ be the set of all (finite) posets, and 𝕂 be the set of all
simplicial complexes. Define a function 𝑓∶ ℙ → 𝕂 as follows: for each 𝑃 ∈ ℙ,
construct a simplicial complex 𝑓(𝑃) whose vertex set is the edge set of 𝑃. Then let
𝜎 = 𝑒1𝑒2⋯ 𝑒𝑘 be a simplex of 𝑓(𝑃) if and only if the edges 𝑒1, 𝑒2,⋯ 𝑒𝑘 oriented
upward and all other edges oriented downward form an acyclic matching of 𝑃.
Remark 3.17. For any simplicial complex 𝐾,ℳ(𝐾) ≃ 𝑓(ℋ(𝐾)). Our definition
3.16 generalizes the notion of taking the complex of discrete Morse functions to
degenerate Hasse diagrams. We will similarly call 𝑓(𝑃) the complex of discrete
Morse functions of the poset 𝑃.
Lemma 3.18. Let 𝐾 be a simplicial complex. Then,ℳ(𝐾 ∨𝑣 𝑃3𝑖+1) ≃ Σ2𝑖ℳ(𝐾)
Proof. Suppose 𝑣0, 𝑣1,… , 𝑣3𝑖 ∈ 𝑉(𝑃3𝑖+1) such that 𝑣0 is our leaf vertex and 𝑣3𝑖 is
wedged with some 𝑣 ∈ 𝑉(𝐾). Consider a sequence of strong collapses starting
with vertex (𝑣0)𝑣1 dominating vertex (𝑣1)𝑣2 in the complex of discrete Morse
functions. This can then be immediately followed by a strong collapse of (𝑣2)𝑣1
dominating (𝑣3)𝑣2 in the complex of discrete Morse functions. Upon inspec-
tion, each vertex (𝑣3𝑡)𝑣3𝑡+1 dominates (𝑣3𝑡+1)𝑣3𝑡+2 and each (𝑣3𝑡+2)𝑣3𝑡+1 domi-
nates (𝑣3(𝑡+1))𝑣3𝑡+2 along our wedged path. Note that this is the same sequence
of strong collapses seen in Proposition 3.10.
These strong collapses correspond to the removal of the edges between each

𝑣3𝑡+1 and 𝑣3𝑡+1𝑣3𝑡+2 on theHasse diagram, along with the edges between 𝑣3(𝑡+1)
and 𝑣3(𝑡+1)𝑣3𝑡+2. We can quickly notice that this yields two components on our
degenerate Hasse diagram per index 𝑖; all of which are Hasse diagrams of 𝑃2 =
𝓁, either "right-side-up" or "upside-down."
The 𝑣3𝑖 is wedged to 𝐾, and those 2𝑖 components are separated fromℋ(𝐾).

In other words, they are not effected the strong collapses. Thus,
ℳ(𝐾 ∨𝑣 𝑃3𝑖+1)↘↘ 𝑓((𝐻(𝐾) ⊔ 𝐻(𝓁1) ⊔ … ⊔ 𝐻(𝓁2𝑖))
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So, by Proposition 3.4 and Remark 3.17,

𝑓((𝐻(𝐾) ⊔ 𝐻(𝓁1) ⊔ … ⊔ 𝐻(𝓁2𝑖)) ≃ 𝑓((𝐻(𝐾)) ∗ 𝑓(𝐻(𝓁1)) ∗ … ∗ 𝑓(𝐻(𝓁2𝑖))
≃ℳ(𝐾) ∗ℳ(𝓁1) ∗ … ∗ℳ(𝓁2𝑖)
≃ Σ2𝑖ℳ(𝐾) □

The following corollaries are immediate.

Corollary 3.19. Let 𝐾 be a simplicial complex. Then, for 𝑣1, 𝑣2,… , 𝑣𝑚 ∈ 𝑉(𝐾),
ℳ(𝐾 ∨𝑣1 𝑃3𝑛1+1 ∨𝑣2 … ∨𝑣𝑚 𝑃3𝑛𝑚+1) ≃ Σ2(𝑛1+…+𝑛𝑚)ℳ(𝐾).

Corollary 3.20. Let𝐾 be a simplicial complex on𝑛 vertices. Then,ℳ(𝐿3𝑖+1(𝐾)) ≃
Σ2𝑖(𝑛)ℳ(𝐾).

Proposition 3.21. Let 𝐶𝑛 be a cycle on 𝑛 vertices. Then, ℳ(𝐶𝑛 ∨𝑣 𝑃3𝑖+2) ≃
Σ2𝑖+1ℳ(𝑃𝑛−1)

Proof. Firstly, it is clear to see that ℳ(𝐶𝑛 ∨𝑣 𝑃3𝑖+2) = ℳ(𝐶𝑛 ∨𝑣 𝓁 ∨𝑣′ 𝑃3𝑖+1)
when the path is wedged onto the leaf vertex, 𝑣′.
By [4, Lemma 5.4], we know that for any simplicial complex, 𝐾, and vertex

𝑣 ∈ 𝑉(𝐾), the complex of discreteMorse functionsℳ(𝐾∨𝑣𝓁) strongly collapses
to 𝑓((𝐻(𝐾)−𝑣⊔𝐻(𝓁)). It can be shown similarly, using the sequence of strong
collapses seen in the proof of Proposition 3.10, that

ℳ(𝐶𝑛 ∨𝑣 𝓁 ∨𝑣′ 𝑃3𝑖+1)↘↘ 𝑓((𝐻(𝐶𝑛) − 𝑣) ⊔ 𝐻(𝓁0) ⊔ 𝐻(𝓁1) ⊔ … ⊔ 𝐻(𝓁2𝑖))
Therefore, by Proposition 3.4 and Remark 3.17,

𝑓((𝐻(𝐶𝑛) − 𝑣) ⊔ 𝐻(𝓁0) ⊔ 𝐻(𝓁1) ⊔ … ⊔ 𝐻(𝓁2𝑖))
≃ 𝑓((𝐻(𝐶𝑛) − 𝑣) ∗ 𝑓(𝐻(𝓁0)) ∗ … ∗ 𝑓(𝐻(𝓁2𝑖))
≃ℳ(𝑃𝑛−1) ∗ℳ(𝓁0) ∗ … ∗ℳ(𝓁2𝑖)
≃ Σ2𝑖+1ℳ(𝑃𝑛−1). □

3.2. Sufficient condition for strong collapsibility. The following resultswere
proved in [4]:

Proposition 3.22. [4, Proposition 3.5] If a simplicial complex 𝐾 has two leaves
sharing a vertex, thenℳ(𝐾) is strongly collapsible.

The next theorem gives another condition under which the complex of dis-
crete Morse functions is strongly collapsible.

Theorem 3.23. Suppose a simplicial complex,𝐾, has two paths, of length 3𝑛+2
and 3𝑚 + 2 respectively, wedged at 𝑣 ∈ 𝑉(𝐾), thenℳ(𝐾) is strongly collapsible.

Proof. We proceed by induction. Consider the base case where both paths
wedged at 𝑣 ∈ 𝑉(𝐾) are of of length 2. Then two leaves are sharing a ver-
tex, and soℳ(𝐾) ↘↘∗ by Proposition 3.22. Suppose this holds true for paths
length 2 up to paths of length 3(𝑛−1)+2 and 3(𝑚−1)+2. Now, we will show
that this holds for paths of length 3𝑛 + 2 and 3𝑚 + 2 respectively:
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Consider the sequence of strong collapses used in Proposition 3.10 starting
at the leaf vertex, 𝑣1 of 𝑃3𝑛+2. Then, (𝑣1)𝑣2 dominates (𝑣2)𝑣3, (𝑣3)𝑣2 dominates
(𝑣4)𝑣3, and then we are on to considering the remaining path of length 3(𝑛 −
1)+2. Similarly, we can consider the remaining path of length 3(𝑚−1)+2 for
the other path. By assumption,ℳ(𝐾) ↘↘∗ for paths of lengths 3(𝑛 − 1) + 2
and 3(𝑚 − 1) + 2.
It is clear to see that the sequence of strong collapses for paths of lengths

3(𝑛−1)+2 and 3(𝑚−1)+2 is not hindered by the remaining primitive gradient
vector fields from 𝑣0 to 𝑣4, as each (𝑣3𝑘−2)𝑣3𝑘−1 dominates (𝑣3𝑘−1)𝑣3𝑘 for all
1 ≤ 𝑘 ≤ 𝑛,𝑚, and each (𝑣3𝑘)𝑣3𝑘−1 dominates (𝑣3𝑘+1)𝑣3𝑘 for all 1 ≤ 𝑘 ≤ 𝑛,𝑚.
So, using the same sequence of strong collapseswewould for paths of lengths

3(𝑛 − 1) + 2 and 3(𝑚 − 1) + 2,ℳ(𝐾) ↘↘∗ when paths of length 3𝑛 + 2 and
3𝑚 + 2 are both wedged at the same 𝑣 ∈ 𝑉(𝐾). □

4. Homotopy type of the generalized complex of discrete Morse
functions
The following was defined in [14] in order to estimate the connectivity of the

complex of discrete Morse functions.

Definition4.1. The generalized complexofdiscreteMorse functions𝒢ℳ(𝐾)
of a simplicial complex, 𝐾, is the simplicial complex whose vertices are the primi-
tive gradient vector fields on 𝐾, with a finite collection of vertices spanning a sim-
plex whenever the primitive gradient vector fields are pairwise compatible. Re-
worded, the simplices of 𝒢ℳ(𝐾) are the discrete vector fields on 𝐾, with face rela-
tion given by inclusion.

Note that 𝒢ℳ(𝐾) is a flag complex since it allows closed 𝑉-paths on 𝐾. We
now compute the homotopy type of the generalized complex of discrete Morse
functions for cycles. First, a definition.

Definition 4.2. Let 𝐶𝑡 be a cycle, 𝑡 ≥ 3, with vertices 𝑣0,… , 𝑣𝑡−1. Let 𝑉𝑘 ∶=
{(𝑣𝑖+1)𝑣𝑖 ∶ 𝑘 ≤ 𝑖 ≤ 𝑡 − 1}. We define stmod(𝑉𝑘) ∶= {𝜎 ∈ st(𝑉𝑘) ∶ (𝑣𝑘)𝑣𝑘−1 ∉ 𝜎}.

Theorem 4.3. Let 𝐶𝑡 be the cycle on 𝑡 vertices, 𝑡 > 3. Then

𝒢ℳ(𝐶𝑡) ≃
⎧

⎨
⎩

𝕊2𝑛−1 ∨ 𝕊2𝑛−1 if 𝑡 = 3𝑛
𝕊2𝑛 if 𝑡 = 3𝑛 + 1
𝕊2𝑛 if 𝑡 = 3𝑛 + 2

Proof. We decompose 𝒢ℳ(𝐶𝑡) into collections ∆𝑘. We begin by constructing
the following collections:

(1) Let 𝜎0 ∶= SC({(𝑣0)𝑣1, (𝑣1)𝑣2,… , (𝑣𝑡−1)𝑣0})
(2) For 1 ≤ 𝑗 ≤ 𝑡 − 2, let 𝜎𝑗 ∶= stmod({(𝑣𝑗)𝑣𝑗−1(𝑣𝑗+2)𝑣𝑗+1})

Define ∆0 ∶= 𝜎0 and ∆𝑘 ∶= 𝜎𝑘 −
⋃𝑘−1

𝑗=0 𝜎𝑗. Then
⋃𝑡−2

𝑘=0 ∆𝑘 = 𝒢ℳ(𝐶𝑡). Clearly
∆0 is collapsible. Nowmatch 𝑘-simplex of the form {(𝑣𝑗)𝑣𝑗−1(𝑣𝑗+2)𝑣𝑗+1…}with
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the (𝑘 + 1)-simplex of the form {(𝑣𝑗)𝑣𝑗−1(𝑣𝑗+1)𝑣𝑗(𝑣𝑗+2)𝑣𝑗+1…}. There are three
cases to consider.

Case 1: Let 𝑡 = 3𝑛. Then there will be two critical (2𝑛 − 1)-simplices,
both of which were excluded from every 𝜎𝑗 by the definition of stmod.
However, all other simplices have been matched. Thus 𝒢ℳ(𝐶3𝑛) ≃
𝕊2𝑛−1 ∨ 𝕊2𝑛−1.

Case 2: Let 𝑡 = 3𝑛+1. Then there will be one critical (2𝑛)-simplex while
all other simplices have been matched. Thus 𝒢ℳ(𝐶3𝑛+1) ≃ 𝕊2𝑛.

Case 3: Let 𝑡 = 3𝑛 + 2. There is a single critical (2𝑛)-simplex which was
excluded fromevery𝜎𝑗 by the definition of stmodwith all other simplices
matched. Thus 𝒢ℳ(𝐶3𝑛+2) ≃ 𝕊2𝑛. □

Now we investigate the generalized complex of discrete Morse functions of
a cycle with a leaf attached. We use the notation 𝐶𝑡 ∨ 𝓁 to denote the cycle of
length 𝑡 with a leaf 𝓁 joined to some vertex of 𝐶𝑡.

Theorem 4.4. Let 𝐶𝑡 be the path on 𝑡 vertices, 𝑡 > 3. Then

𝒢ℳ(𝐶𝑡 ∨ 𝓁) ≃
⎧

⎨
⎩

∗ if 𝑡 = 3𝑛
𝕊2𝑛 if 𝑡 = 3𝑛 + 1
𝕊2𝑛+1 if 𝑡 = 3𝑛 + 2

Proof. Let {𝑣1, 𝑣0𝑣1} be the leaf attached to 𝑣1 ∈ 𝐶𝑡.
To apply the Cluster lemma, we first construct collections as follows:
(1) Let 𝜎0 ∶= SC({(𝑣0)𝑣1(𝑣1)𝑣2(𝑣2)𝑣3… (𝑣𝑛)𝑣1})
(2) For 1 ≤ 𝑗 ≤ 𝑛,

(a) Let 𝑗 = 2𝑘 − 1 and define
𝜎𝑗 ∶= st({(𝑣1+3(𝑘−1))𝑣0+3(𝑘−1)(𝑣3+3(𝑘−1))𝑣2+3(𝑘−1)})

(b) Let 𝑗 = 2𝑘 and define
𝜎𝑗 ∶= st({(𝑣𝑡−3(𝑘−1))𝑣(𝑡−1)−3(𝑘−1)(𝑣(𝑡−2)−3(𝑘−1))𝑣(𝑡−3)−3(𝑘−1)})

(3) For 𝑗 = 𝑛 + 1,
(a) if 𝑛 + 1 = 2𝑘 − 1, then
𝜎𝑛+1 ∶= st({(𝑣𝑡−3(𝑘−1))𝑣(𝑡−1)−3(𝑘−1)(𝑣(𝑡−1)−3(𝑘−1))𝑣(𝑡−2)−3(𝑘−1)})
(b) if 𝑛 + 1 = 2𝑘, then

𝜎𝑛+1 ∶= st({(𝑣1+3(𝑘−1))𝑣0+3(𝑘−1)(𝑣2+3(𝑘−1))𝑣1+3(𝑘−1)})

Let ∆0 ∶= 𝜎0 and ∆𝑘 ∶= 𝜎𝑘 −
⋃𝑘−1

𝑗=0 𝜎𝑗. Then
⋃𝑛+1

𝑘=0 ∆𝑘 = 𝒢ℳ(𝐶𝑡 ∨ 𝑙). Clearly
∆0 is collapsible. Now match each ∆𝑗 for 1 < 𝑗 < 𝑛 by the following:
If 𝑗 = 2𝑘 − 1, match each𝑚-simplex of the form

{(𝑣1+3(𝑘−1))𝑣0+3(𝑘−1)(𝑣3+3(𝑘−1))𝑣2+3(𝑘−1)…}
to the corresponding𝑚 + 1-simplex of the form

{(𝑣1+3(𝑘−1))𝑣0+3(𝑘−1)(𝑣2+3(𝑘−1))𝑣1+3(𝑘−1)(𝑣3+3(𝑘−1))𝑣2+3(𝑘−1)…}
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If 𝑗 = 2𝑘, match each𝑚-simplex of the form
{(𝑣𝑡−3(𝑘−1))𝑣(𝑡−1)−3(𝑘−1)(𝑣(𝑡−2)−3(𝑘−1))𝑣(𝑡−3)−3(𝑘−1)…}

to the corresponding𝑚 + 1-simplex of the form
{(𝑣𝑡−3(𝑘−1))𝑣(𝑡−1)−3(𝑘−1)(𝑣(𝑡−1)−3(𝑘−1))𝑣(𝑡−2)−3(𝑘−1)(𝑣(𝑡−2)−3(𝑘−1))𝑣(𝑡−3)−3(𝑘−1)…}
Thus all simplicies in ∆𝑗 for 1 < 𝑗 < 𝑛 have been matched.
Now we must match simplices in ∆𝑛+1. We consider three cases:
Case 1: Let 𝑡 = 3𝑛. Then ∆𝑛+1 = ∅, and thus 𝒢ℳ(𝐶𝑡 ∨ 𝑙) ≃∗.
Case 2: Let 𝑡 = 3𝑛 + 1. Then ∆𝑛+1 only contains one 2𝑛-simplex. Thus
𝒢ℳ(𝐶𝑡 ∨ 𝑙) ≃ 𝕊2𝑛.

Case 3: Let 𝑡 = 3𝑛+2. Then∆𝑛+1 only contains one 2𝑛+1-simplex. Thus
𝒢ℳ(𝐶𝑡 ∨ 𝑙) ≃ 𝕊2𝑛+1. □

The homotopy type of the complex of discrete Morse functions of 𝐶𝑡 ∨𝓁was
computed in [4, Proposition 5.6]. It turns out to be the same as the homotopy
type of the Generalized complex of discrete Morse functions of 𝐶𝑡 ∨𝓁. We thus
have

Corollary 4.5. Let 𝐶𝑡 ∨ 𝓁 be a cycle with a leaf. Then,
𝒢ℳ(𝐶𝑡 ∨ 𝓁) ≃ℳ(𝐶𝑡 ∨ 𝓁).

A collapse of 𝒢ℳ(𝐶𝑡 ∨ 𝓁) onto ℳ(𝐶𝑡 ∨ 𝓁) can be seen by considering the
closed V-paths in 𝒢ℳ(𝐶𝑡 ∨ 𝓁) that are added toℳ(𝐶𝑡 ∨ 𝓁). We see that there
are four such V-paths: a clockwise cycle, a counterclockwise cycle, a clockwise
cycle with an inward facing arrow on the leaf, and a counterclockwise cycle
with an inward facing arrow on the leaf. By matching the clockwise cycle with
the clockwise cycle with an inward facing arrow on the leaf and also matching
the counterclockwise cycle to the counterclockwise cycle with an inward facing
arrow on the leaf, we have collapsed 𝒢ℳ(𝐶𝑡 ∨𝓁) back intoℳ(𝐶𝑡 ∨𝓁), showing
a homotopy equivalence.

5. Homotopy type of the matching complex
A well-known complex associated to a graph is the matching complex.

Definition 5.1. Let the matching complex of a graph, 𝐺, denoted M(𝐺), is a
simplicial complexwith vertices given by edges of𝐺 and faces given bymatchings of
𝐺, where amatching is a subset of edges𝐻 ⊆ 𝐸(𝐺) such that any vertex 𝑣 ∈ 𝑉(𝐻)
has degree at most 1.

The homotopy types of the matching complexes of the path and cycle were
computed in [10]. As in the case of the complex of discreteMorse functions for a
path, we provide an alternate proof of these computations using discrete Morse
theory, the cluster lemma, and star clusters. Thenweprovide a new result, com-
puting the homotopy type of thematching complex for Dutch windmill graphs.
We first make the following simple but useful observation. As observed in [2],
𝒢ℳ(𝐺) ≅ M(sd(𝐺)) for 𝐺 any graph. Thus the results in section 4 hold for the
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matching complex on the barycentric subdivision of the graph in question. It
was furthermore proved in [4, Proposition 3.5] that if a graph 𝐺 has two leaves
sharing a common vertex, then the complex of discrete Morse functions is con-
tractible. The same result holds for the generalized complex of discrete Morse
functions. We thus have the following:

Corollary 5.2. If a graph𝐺 has two leaves sharing a commonvertex, thenM(sd(𝐺))
is contractible.

Proposition 5.3. Let 𝑃𝑡 be a path on 𝑡 ≥ 3 vertices. Then

M(𝑃𝑡) ≃
⎧

⎨
⎩

𝕊𝑛−1 if 𝑡 = 3𝑛
𝕊𝑛−1 if 𝑡 = 3𝑛 + 1
∗ if 𝑡 = 3𝑛 + 2

Proof. We apply the Cluster Lemma. In order to do so, we decompose M(𝑃𝑡)
into collections ∆𝑘. First, we construct collections of sub-simplices 𝜎𝑖. We con-
struct collections as follows:

(1) Let 𝜎0 ∶= SC({
⋃𝑘

𝑖=0(𝑣3𝑖𝑣3𝑖+1)}), 𝑘 ≤ 𝑛
(2) Let 𝜎1 ∶= st{(𝑣1𝑣2)}
Let ∆0 ∶= 𝜎0 and ∆1 ∶= 𝜎1 − 𝜎0. Now any maximal matching of 𝑃𝑡 contains

either 𝑣0𝑣1 or 𝑣1𝑣2. If it contains 𝑣0, then it is in ∆0. If it contains 𝑣1𝑣2, then it is
in ∆1. Hence ∆0 ∪ ∆1 = M(𝑃𝑡) so that we define an acyclic matching on ∆0,∆1
and apply the Cluster Lemma.
Now ∆0 is flag so it is collapsible by Proposition 2.5 and Lemma 3.5. To con-

struct a matching on ∆1, we consider three cases:
Case 1: Let 𝑡 = 3𝑛. Then∆1 is a single simplex given by {

⋃𝑛−1
𝑖=0 (𝑣3𝑖+1𝑣3𝑖+2)}.

Hence this corresponds to an (𝑛−1)-simplex in the complex of discrete
Morse functions and thus is critical so thatM(𝑃3𝑛) ≃ 𝕊𝑛−1.

Case 2: Let 𝑡 = 3𝑛 + 1. As in Case 1, ∆1 is a single matching given by
{
⋃𝑛−1

𝑖=0 (𝑣3𝑖+1𝑣3𝑖+2)}. This matching corresponds to a critical (𝑛 − 1)-
simplex in the complex of discreteMorse functions and thusM(𝑃3𝑛+1) ≃
𝕊𝑛−1.

Case 3: Let 𝑡 = 3𝑛 + 2. Then ∆1 = ∅. ThusM(𝑃3𝑛+2) ≃∗. □

We also provide an alternate proof for computing the homotopy type of the
matching complex of the cycle using the same technique and a similar match-
ing.

Proposition 5.4. Let 𝐶𝑡 be a cycle on 𝑡 ≥ 3 vertices. Then

M(𝐶𝑡) ≃
⎧

⎨
⎩

𝕊𝑛−1 ∨ 𝕊𝑛−1 if 𝑡 = 3𝑛
𝕊𝑛−1 if 𝑡 = 3𝑛 + 1
𝕊𝑛 if 𝑡 = 3𝑛 + 2

Proof. As usual, we apply the Cluster Lemma by first constructing collections
of subsimplices 𝜎𝑖.
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(1) Let 𝜎0 ∶= SC({
⋃𝑘

𝑖=0(𝑣3𝑖𝑣3𝑖+1)}), 𝑘 ≤ 𝑛 (𝑘 ≤ 𝑛 − 1 when 𝑡 = 3𝑛 + 1)
(2) Let 𝜎1 ∶= st{(𝑣(𝑡−1)𝑣0)}
(3) Let 𝜎2 ∶= st{(𝑣1𝑣2)}
Define ∆0 ∶= 𝜎0,∆1 ∶= 𝜎1 − 𝜎0, and ∆2 ∶= 𝜎2 − (𝜎0 ∪ 𝜎1). Since every

matching of 𝐶𝑡 is in one of the 𝜎𝑖, it follows that ∆0 ∪ ∆1 ∪ ∆2 = M(𝐶𝑡). To
define an acyclic matching on the ∆𝑖, we first observe that ∆0 is collapsible.
The matchings on both ∆1 and ∆2 are considered in three cases:
Case 1: Let 𝑡 = 3𝑛. In∆1, there exists one (𝑛−1)-simplex, {

⋃𝑘
𝑖=0(𝑣2+3𝑖𝑣3+3𝑖)}.

Thus it cannot bematched so it it critical. In∆2, there exists one (𝑛−1)-
simplex of the form {

⋃𝑘
𝑖=0(𝑣1+3𝑖𝑣2+3𝑖)} which also cannot be matched.

ThusM(𝐶3𝑛) ≃ 𝕊𝑛−1 ∨ 𝕊𝑛−1.
Case 2: Let 𝑡 = 3𝑛 + 1. Any (𝑛 − 1)-simplex 𝑉 in ∆1 does not contain
{(𝑣𝑡−3𝑣𝑡−2)} so we match 𝑉 with 𝑉 ∪ {(𝑣𝑡−3𝑣𝑡−2)}. This yields a perfect
acyclic matching on ∆1. Now there is only one simplex in ∆2; namely,
the (𝑛 − 1)-simplex {

⋃𝑛−1
𝑖=0 (𝑣3𝑖+1𝑣3𝑖+2)}. This (𝑛 − 1)-simplex is critical,

henceM(𝐶3𝑛+1) ≃ 𝕊𝑛−1.
Case 3: Let 𝑡 = 3𝑛 + 2. For each (𝑛 − 1)-simplex 𝑉 of ∆1, there is exactly
one 𝑘, 0 ≤ 𝑘 ≤ 𝑛 − 1, such that both 𝑣3𝑘+1𝑣3𝑘+2 and 𝑣3𝑘+2𝑣3𝑘+3 are not
in 𝑉. Match this 𝑉 with 𝑉 ∪ {𝑣3𝑘+2𝑣3𝑘+3}. Then there is one 𝑛-simplex
left unmatched, namely, {

⋃𝑛
𝑖=0(𝑣3𝑖+1𝑣3𝑖+2)}. Observe that ∆2 is empty,

and thusM(𝐶3𝑛+2) ≃ 𝕊𝑛. □

Definition 5.5. A centipede graph, C𝑡 is a graph obtained by adding a leaf to
each vertex on a path 𝑃𝑡. If 𝑣0,… , 𝑣𝑡−1 are the vertices of 𝑃𝑡, denote the vertex of
the leaf added to 𝑣𝑖 by 𝑣′𝑖 .
Proposition 5.6. Let C𝑡 be a centipede graph. Then

M(C𝑡) ≃ {
𝕊𝑛−1 if 𝑡 = 2𝑛
∗ if 𝑡 = 2𝑛 + 1

Proof. LetC𝑡 be a centipede graph. We apply theCluster Lemma and construct
collections as follows:

(1) Let 𝜎0 ∶= SC({
⋃𝑡−1

𝑖=0(𝑣𝑖𝑣
′
𝑖 )})

(2) Let 𝜎1 ∶= st((𝑣0𝑣1))
Define ∆0 ∶= 𝜎0 and ∆1 ∶= 𝜎1 − 𝜎0 so that ∆0 ∪∆1 = M(C𝑡). Define an acyclic
matching on each ∆𝑖 as follows:
We know ∆0 is collapsible by Proposition 2.5 and Lemma 3.5.
For ∆1, we have two cases:
Case 1: Let 𝑡 = 2𝑛. Then the only element in ∆1 is {

⋃𝑛−1
𝑗=0 (𝑣2𝑗𝑣2𝑗+1)}, an

(𝑛 − 1)-simplex. HenceM(C𝑡) ≃ 𝕊𝑛−1.
Case 2: Let 𝑡 = 2𝑛 + 1. Then ∆1 = ∅. ThusM(C𝑡) ≃∗. □

Definition 5.7. Let 𝐷𝑛
𝑚 be a Dutch windmill graph. 𝐷𝑛

𝑚 is obtained by taking
𝑛 copies of the cycle 𝐶𝑚 and joining them at a common vertex.
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Theorem 5.8. Let 𝐷𝑛
𝑚 be a Dutch windmill graph. Then

M(𝐷𝑛
𝑚) ≃

⎧

⎨
⎩

∗ if𝑚 = 3𝑘
𝕊𝑛𝑘−1 if𝑚 = 3𝑘 + 1
∨2𝑛−1𝕊𝑛𝑘 if𝑚 = 3𝑘 + 2

Proof. Let 𝐷𝑛
𝑚 be the Dutch windmill graph with center vertex 𝑣0 and for each

of the 𝑛 cycles𝐶𝑚, let 𝑣(𝑗)𝑖 denote vertex 𝑗 of cycle 𝑖, 0 ≤ 𝑗 ≤ 𝑚−1 and 1 ≤ 𝑖 ≤ 𝑛.
We apply the Cluster lemma by defining the following collections:

(1) Let 𝜎0 ∶= SC{
⋃𝑛

𝑖=1(
⋃𝑘−1

𝑗=0 (𝑣(3𝑗+1)𝑖𝑣(3𝑗+2)𝑖 ))}

(2) For 1 ≤ 𝜈 ≤ 𝑘 − 1, let 𝜎𝜈 ∶=
⋃𝑛

𝑖=1(st(
⋃𝑘−𝜈

𝑗=1 (𝑣(3𝑗)𝑖𝑣(3𝑗+1)𝑖 )))

(3) Let 𝜎𝑘 ∶=
⋃𝑛

𝑖=1(st(
⋃𝑘−1

𝑗=0 (𝑣(3𝑗+2)𝑖𝑣(3𝑗+3)𝑖 )))

Define ∆0 ∶= 𝜎0 and ∆𝛽 ∶= 𝜎𝛽 −
⋃𝛽−1

𝛼=0 𝜎𝛼. Then
⋃𝑘

𝛽=0 ∆𝛽 = M(𝐷𝑛
𝑚). We now

define an acyclic matching on each ∆𝛽 as follows:
We know ∆0 is collapsible by Proposition 2.5 and Lemma 3.5. Observe that

∆1,… ,∆𝑘 = ∅ for𝑚 = 3𝑘, which implies thatM(𝐷𝑛
𝑚) ≃∗.

Hence, suppose𝑚 ≠ 3𝑘. Let 1 ≤ 𝜈 ≤ 𝑘−1 and consider∆𝜈. For each 1 ≤ 𝑖 ≤
𝑛, wematch

⋃𝑘−𝜈
𝑗=1 (𝑣(3𝑗)𝑖𝑣(3𝑗+1)𝑖 )with (𝑣(3(𝑘−𝜈)+2)𝑖𝑣(3(𝑘−𝜈)+3)𝑖 )∪

⋃𝑘−𝜈
𝑗=1 (𝑣(3𝑗)𝑖𝑣(3𝑗+1)𝑖 ).

This produces an acyclicmatching for all gradient vector fields in∆𝜈. It remains
to put a matching on to ∆𝑘.
For ∆𝑘, we consider cases:

Case 1: Let𝑚 = 3𝑘 + 1. Then ∆𝑘 has one element, namely,

𝑛⋃

𝑖=1

𝑘−1⋃

𝑗=0
(𝑣(2+3𝑗)𝑖𝑣(3+3𝑗)𝑖 ).

This is an (𝑛𝑘−1)-unmatched simplex, so it is critical, and thusM(𝐷𝑛
𝑚) ≃

𝕊𝑛𝑘−1.
Case 2: Let𝑚 = 3𝑘+2. Then ∆𝑘 has 2𝑛+1 elements which are given by

𝑛⋃

𝑖=1

𝑘−1⋃

𝑗=0
(𝑣(2+3𝑗)𝑖𝑣(3+3𝑗)𝑖 )

For each 1 ≤ 𝓁 ≤ 𝑛, (𝑣(0)𝓁𝑣(1)𝓁) ∪
𝑛⋃

𝑖=1

𝑘−1⋃

𝑗=0
(𝑣(2+3𝑗)𝑖𝑣(3+3𝑗)𝑖 )

For each 1 ≤ 𝓁 ≤ 𝑛, (𝑣(0)𝓁𝑣(𝑚−1)𝓁) ∪
𝑛⋃

𝑖=1

𝑘−1⋃

𝑗=0
(𝑣(2+3𝑗)𝑖𝑣(3+3𝑗)𝑖 )
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We can only create one matching, namely, we match
𝑛⋃

𝑖=1

𝑘−1⋃

𝑗=0
(𝑣(2+3𝑗)𝑖𝑣(3+3𝑗)𝑖 ) with (𝑣(0)1𝑣(1)1) ∪

𝑛⋃

𝑖=1

𝑘−1⋃

𝑗=0
(𝑣(2+3𝑗)𝑖𝑣(3+3𝑗)𝑖 ).

This leaves 2𝑛−1 (𝑛𝑘)-simplices unmatched. Thus,M(𝐷𝑛
𝑚) ≃ ∨2𝑛−1𝕊𝑛𝑘.

□

6. Future directions and potential pursuits
Open Question 1. One direction that seems to hold great potential for comput-
ing the homotopy type of the complex of discrete Morse functions concerns the re-
lationship between the homotopy type of the complex of discrete Morse functions
and the generalized complex of discrete Morse functions. We argued using two el-
ementary collapses that 𝒢ℳ(𝐶𝑡 ∨ 𝑙) ≃ ℳ(𝐶𝑡 ∨ 𝑙). Because the former is a flag
complex, its homotopy type should theoretically be easier to compute. Consider
another example

Using the Cluster Lemma starting with a star collapse, we can apply a match-
ing toℳ(𝐷2

3), finding that its homotopy type is collapsible. Additionally, using
the Cluster Lemma starting with a star cluster collapse, we can apply a matching
to 𝒢ℳ(𝐷2

3) to compute the homotopy type of a point. We would like to question
whether there is a way to use the generalized complex of discrete Morse functions
as a tool for computing the homotopy type of the complex of discrete Morse func-
tions for certain complexes.

Open Question 2. One way to use the homotopy type of the generalized complex
of discrete Morse functions to determine the homotopy type of the complex of dis-
crete Morse functions is to show that the former collapses to the later. This is in
general not always possible since, the homotopy type of the Generalized complex
of discrete Morse functions of a cycle computed in Theorem 4.3, does not agree
with the homotopy type of the cycle of the complex of discrete Morse functions.
However, one can use the matching found in the proof of Theorem 4.3, throw out
the closed V-paths in the matching, and obtain a matching on the complex of dis-
crete Morse functions. In this case, the critical cells occur in different dimensions
so the homotopy type is not uniquely determined. However, there may be special
cases where the homotopy type can be recovered fromknowledge of the critical cells
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and some other information. See, for example, [11, Theorem 2.2]. In particular,
the homotopy type of the complex of discrete Morse functions of the 3−simplex
remains unknown. Chari and Joswig [3] showed that the 3−simplex satisfies
{𝑏0 = 1, 𝑏5 = 99} using software. While we cannot use star clusters to collapse
the complex of discrete Morse functions of the 𝑛-simplex, can we create a match-
ing on the generalized complex of discrete Morse functions and then remove the
cyclic gradient vector fields from the matching? Or, can a similar matching strat-
egy provide further insight on how to apply a matching to the complex of discrete
Morse functions of the 𝑛−simplex?
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