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ABSTRACT. The purpose of this paper is to extend our previous work on the
variational formula for the Bismut-Cheeger eta form without the kernel bun-
dle assumption by allowing the spin® Dirac operators to be twisted by isomor-
phic vector bundles and to establish the Z,-graded additivity of the Bismut-
Cheeger eta form. Using these results, we give alternative proofs of the fact
that the analytic index in differential K-theory is a well defined group homo-
morphism and the Riemann-Roch-Grothendieck theorem in R/Z K-theory.
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1. Introduction

The Bismut-Cheeger eta form serves as a transgression form between the
Chern character of the index bundle and its Atiyah-Singer representative at the
differential form level [3, Theorems 4.35 and 4.95] and [ 5, Theorem 0.1]. In this
paper, we extend our previous work on the variational formula for the Bismut-
Cheeger eta form [8, Proposition 1] by allowing the spin® Dirac operators to
be twisted by isomorphic vector bundles. In addition, we prove the Z,-graded
additivity of the Bismut-Cheeger eta form. We then present some applications
of these results. All the Dirac operators in this paper are not assumed to satisfy
the kernel bundle assumption.

To put the paper into context, let 7 : X — B be a submersion with closed,
oriented and spin® fibers of even dimension, equipped with a Riemannian and
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differential spin¢ structure (THX, g7, g%, V*). Let (E, gF, VE) be a complex
vector bundle over X with a Hermitian metric and a unitary connection. Denote
by D®F the corresponding twisted spin¢ Dirac operator. Mis¢enko-Fomenko
show in [16] that there always exists a Z,-graded complex vector bundle L — B
such that it represents the analytic index of DS®F in K-theory, i.e. ind®([E]) =
[L*] — [L7] € K(B). The corresponding local family index theorem (FIT) for
DS®E by Freed-Lott [6, (7.26)] states that

di”(g¥, vE, THX, g7 %, g* VA, L) = f Todd(V""X) A ch(VF) — ch(VE),
'X/B

where V¥ is the projected Z,-graded unitary connection on L — B, and
#E(gE, VE, THX, gT"X g* V%, L)is the corresponding Bismut-Cheeger eta form.

The notation AE(gE, VE, THX, g7 X, g% VA, L) is to indicate the dependence
on the geometric structures. Given two sets of geometric structures, denoted
by subscripts 0 and 1, variational formula for the Bismut-Cheeger eta form is
an explicit expression of the difference

77, VI TIX, g1 %, g}, Vi.L) — 7%(g5, V5. THX, g *. g0, Vi, L)
in terms of the geometric structures involved.

In recent years, variational formulas for the Bismut-Cheeger eta form have
been established in various settings and have found numerous applications in
local index theory. For instance, Liu proves a variational formula for the Bismut-
Cheeger eta form in the equivariant setting [13, Theorem 1.4] (see also [11,
Theorem 1.2]) and uses it to prove its functoriality [13, Theorem 1.6] (see also
[11, Theorem 1.3]). On the other hand, we prove a variational formula for the
Bismut-Cheeger eta form without the kernel bundle assumption in the even
dimensional fiber case [8, Proposition 1] and use it to prove the Z,-graded ver-
sion of the real part of the Riemann-Roch-Grothendieck (RRG) theorem for
complex flat vector bundles in the same case at the differential form level [8,
Theorem 1].

The main result of this paper is an extension of [8, Proposition 1], in the
sense that the spin® Dirac operators are allowed to be twisted by isomorphic
vector bundles, i.e. an explicit expression for the difference

7 (g, VF, THX, 7' X, g4, VA, L) — 75 (g%, VE, THX, g%, g2, V2, L)
in terms of the geometric structures involved, where the complex vector bun-
dles E —» X and F — X are isomorphic. To establish the main result of this
paper, we first prove the following special case.

Proposition 1.1. (= Proposition 3.3) Let 1 : X — B be a submersion with
closed, oriented and spin® fibers of even dimension, equipped with a Riemann-
ian and differential spin® structure (THX, gT'X,g*, V). Let (E,gE) be a Her-
mitian bundle and (F, g%, VF) a Hermitian bundle with a unitary connection.
If there exists an isometric isomorphism a : (E,g*) — (F,g") and Ly, — B
is a Z,-graded complex vector bundle representing the analytic index of DS®F%
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(defined in terms of a* V) in K-theory, then there exist a unique Z,-graded com-
plex vector bundle Ly, — B and a unique Z,-graded isometric isomorphism
al : (Lg g, 8"+) = (Lpq, %) such that Ly ,, — B represents the analytic index
of DS®F (defined in terms of VF) in K-theory and

ﬁ\E(gE’ a* VF, THX: gTVX’ gﬂ" VA’ LE,O{) = }/7\F(gFa VF, THX’ gTVXa g/l’ V/la LF,O{)'
The main result of this paper is the following theorem.

Theorem 1.2. (= Theorem 3.4) Let 7 : X — B be a submersion with closed, ori-
ented and spin® fibers of even dimension, and (E, g%, VF) and (F, g¥', V') are Her-
mitian bundles with unitary connections. Denote by DS®F and D®F the twisted
spin® Dirac operators defined in terms of the following Riemannian and differen-
tial spin® structures
(Té{X, ggVX,gg, Vé) and (T{IX, ngVX,gf, V’ll)

onm . X — B, respectively, where the underlying topological spin® structures
coincide. Let Ly — B and Lp — B be Z,-graded complex vector bundles that
represent the analytic indexes of DS®F and DS®F in K-theory, respectively.

If there exists an isometric isomorphism « : (E,gF) — (F, g"), then there exist
balanced Z,-graded triples (W, g%, Vo) and (W, g%, V1) and a Z,-graded
isometric isomorphism h : (Lg @ W, gt @ g"0) = (Lp ® W1, glr @ g"1) such
that

14 |4
A7 (gF, VE, THX, g7 X, g1, Vi, Lp) — 7% (g8, VE, THX, g1 X, g3, Vi, L)
~ 1 1 ~ 1 A gl
= | (TAWVI™X,VI"X) A2V 4 A(VTX) A 2TV ¥D) A ch(VE)
X /B

+ f Todd(VI"X) A CS(VE, a*VEF) — CS(Vie @ VWo, i*(Vir @ V1))
X /B

QOdd(B)
"Imd)

Note that Theorem 1.2 is a special case of the variational formula of the equi-
variant Bismut-Cheeger eta form by Liu [12, Theorem 3.17], which is proved
in the setting of an equivariant version of Bunke-Schick’s model of differential
K-theory [4]. A notable difference is the appearance of the equivariant higher
spectral flow in [12, Theorem 3.17] and the Chern-Simons form in Theorem
1.2.

We present some applications of Proposition 1.1 and Theorem 1.2 in this pa-
per. We use Proposition 1.1 to establish the Z,-graded additivity of the Bismut-
Cheeger eta form.

Theorem 1.3. (= Theorem 4.5) Let 1 : X — B be a submersion with closed,
oriented and spin® fibers of even dimension, equipped with a Riemannian and
differential spin® structure (THX, gT"X g% V?). Let (E,gE, VE) be a Z,-graded
Hermitian bundle with a Z,-graded unitary connection. Denote by DS®E, DS®E"
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and DS®E” the spin® Dirac operators twisted by E — X, E* - X and E~ — X,
respectively. If L+ — B and Lp- — B are Z,-graded complex vector bundles
representing the analytic indexes of DS®E" and DS®E™ in K-theory, respectively,
then Lg+ @ Lzli — B represents the analytic index of DS®F in K-theory and
(g8, VE, THX, g, g4, VA, Ly @ L")
— 7/7\E+(gE,+’ vE+ THX, gTVX, gl’ V’I,LE+)
— 7% (P, VB, THX, g7, g%, VA, Ly-)
Qodd( B)

Im(d)
the opposite grading of Lp- — B.

in , Where Lgli — B denotes the Z,-graded complex vector bundle with

While the additivity of the Bismut-Cheeger eta form is well known for un-
graded direct sums (at least in the case when the Dirac operators satisfy the ker-
nel bundle assumption), its Z,-graded additivity is less well known. We could
not find a statement nor a proof of this result in the literature. For the sake of
completeness, we also give a proof of the additivity of the Bismut-Cheeger eta
form for ungraded direct sums without the kernel bundle assumption (Propo-
sition 4.1).

The first application of Theorem 1.2 concerns the analytic index in differ-
ential K-theory. Given a submersion 7 : X — B with closed, oriented and
spin® fibers of even dimension equipped with a Riemannian and differential
spin® structure (THX, g7 X, g%, V4), the analytic index in differential K-theory
[6, Definition 7.27] is defined to be

indg (& 1) = (L.gh, V%, f Todd(V" ) n e+ 75(6, V5, TX, g7, g, VA.I) ),
'X/B

where & is a generator of the Freed-Lott differential K-group K (X)and L — B

is a Z,-graded complex vector bundle representing the analytic index of DS®F

in K-theory. We use Theorem 1.2 and Proposition 4.1 to prove the following
result.

Proposition 1.4. Let 7 : X — B be a submersion with closed, oriented and
spin€ fibers of even dimension, equipped with a Riemannian and differential spin®
structure. The analytic index in differential K-theory

lnd% . KFL(X) — KFL(B)
is a well defined group homomorphism.
Proposition 1.4 is first derived by Freed-Lott [6, (2) of Corollary 7.36] as
a consequence of the fact that the topological index in differential K-theory
indj,2 : Rp(X) — Kp(B) is a well defined group homomorphism [6, (2) of
Proposition 4.18 and Lemma 5.30] and the FIT in differential K-theory [6, The-
orem 7.35], i.e. for every generator & of Kg (X),

ind(&) = ind,(€).
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Our proof of Proposition 1.4 does not rely on these results. It is worth noting
that the construction of the topological index in differential K-theory is compli-
cated, and the proofs of the well definedness of the topological index ind;? and
the FIT in differential K-theory are highly nontrivial.

Since the analytic index in differential K-theory indIa2 : Kp(X) = Kp(B)
restricts to the analytic index in R/Z K-theory [14, Definition 14]

indg iz P K{NX) = K{'(B), (1.1)

as an immediate consequence of Proposition 1.4, (1.1) is also a well defined
group homomorphism.

Finally, we use Theorems 1.2 and 1.3 to give an alternative proof of the RRG
theorem in R/Z K-theory.

Theorem 1.5. Let 7 . X — B be a submersion with closed, oriented and spin®
fibers of even dimension, equipped with a Riemannian and differential spin® struc-
ture. The following diagram commutes.

Ko(X) 228 godd(x; R /@)
ind} /Z\L \fo /5 Todd(TVX)U() 1.2)
K[ (B) oy HYB:R/Q)
That is, for every Z,-graded generator & of K| L),

chR/@(ind%/Z(S)) = f Todd(TVX) U chp /g(&). (1.3)
X/B

Here, chg /g is the Chern character in R/Z K-theory. We prove (1.3) at the
differential form level. Note that (1.3) implies the commutativity of diagram
(1.2) only if (1.1) is well defined.

The paper is organized as follows. In §2.1 we set and fix the notations and
conventions used throughout the paper, and in §2.2 we recall the definitions
and properties of some primary and secondary characteristic forms. In §3.1 we
review the local FIT for twisted spin® Dirac operators without the kernel bun-
dle assumption by the MiS¢enko-Fomenko-Freed-Lott approach, and in §3.2
we prove the extended variational formula for the Bismut-Cheeger eta form
(Theorem 1.2). In §4.1, we establish some intermediate results on the Bismut-
Cheeger eta form, which, together with Theorem 1.2, allow us to prove the Z,-
graded additivity of the Bismut-Cheeger eta form (Theorem 1.3). Furthermore,
we prove the analytic index in differential K-theory is a well defined group ho-
momorphism (Proposition 1.4) in §4.2 and the RRG theorem in R/Z K-theory
(Theorem 1.5) in §4.3.

Acknowledgements. The author would like to thank Steve Rosenberg for
his comments and suggestions for this paper, and Jonathan Kin-Yue Lee, where
the idea of Proposition 4.4 is due to him. The author would also like to thank
the referee for the helpful comments.
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2. Preliminaries

2.1. Notations and conventions. In this paper, X and B are closed manifolds
and I is the closed interval [0, 1]. Given a manifold X, define X = X x I. Given
t €1,defineamapiy, : X — X byix,(x) = (x,t). Denote by px : X — X the
standard projection map. For k > 0, denote by QZ(X ) the set of all real-valued
closed k-forms on X with periods in A, where A is a proper subgroup of R. For
any differential forms w and 7, we write w = 7 if w — 7 € Im(d).

Let 7 : M — B asmooth fiber bundle with compact fibers of dimension n
which satisfies certain orientability assumptions. Then

/A;/Bn*oc/\ﬁ’:oc/\(—L/BB)

forany @ € Q*(B) and 8 € Q*(M). If M has nonempty boundary, then Stokes’
theorem for integration along the fibers [7, Problem 4 of Chapter VII] states
that for any w € QX(M),

(—1)"_"”/ i*cuzf de—dBf w, (2.1)
M /B M /B M/B

where i : 0M < M is the inclusion map .

Let E — X be a complex vector bundle. If E — X is Z,-graded, denote by
E°? — X the Z,-graded complex vector bundle whose Z,-grading is the op-
posite to that of E — X. We will also use the notation op for other Z,-graded
objects. A triple (E, g%, VF) consisting of a complex vector bundle with a Her-
mitian metric and a unitary connection is said to be Z,-graded if E —» X is
Z,-graded and gf and V¥ preserve the Z,-grading (which are also said to be
Z,-graded). A Z,-graded triple (E, g, VF) is said to be balanced if E* = E~,
gb* = gf~ and VE+ = VB,

Remark 2.1. Let F — X be another complex vector bundle. Suppose there exists
a smooth bundle isomorphism o : E — F.

(1) We use the same symbol to denote the resulting C*(X)-module isomor-
phism (X, E) — I'(X, F) and some others, forexample, '(X, T*XQE) —
(X, T*X @ F).

(2) Let g¥ and g* be Hermitian metrics on E — X and F — X, respectively.
Since gF and a*gt are Hermitian metrics on E — X, it follows from [9,
Theorem 8.8 of Chapter I] that there exists a unique f € Aut(E) such
that g5 = f*(a*g") = (o f)*g".

Henceforth, once Hermitian metrics are puton E - X and F — X,
we always assume a given smooth bundle isomorphism o : E — F is
isometric.

(3) Let V¥ be a connection on F — X. Write a*V¥ for the connection on
E — X defined by

a*VF 1= a loVFoq. (2.2)
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If VF is compatible with g¥, it follows from our convention that a*V¥ is
compatible with gF.

2.2. Some primary and secondary characteristic forms. In this subsec-
tion we recall the definitions and properties of some primary and secondary
characteristic forms. We refer the readers to [15, §B.5] for the details.

Let (E, g%, VF) be a triple. Denote by RF the curvature of VE. The Chern
character form of V¥ is defined to be

__L1RE
ch(VF) = tr(e i ) € Q*"(X),
and the first Chern form of V¥ is defined to be

&(VF) = — 5 tr(RF) € 05 (X).

Let (gg, V) and (gF, V¥) be two pairs of Hermitian metrics and unitary con-
nections on E — X. By (2) of Remark 2.1, there exists a unique f € Aut(E)
such that g&¥ = f*gF. Thus f*V¥ is unitary with respect to g£. Foreach t € I,
let f; = (1 —t)idg +tf L. Then

g =frgl, VE = fi(A -0V +1f*VE) (2.3)

are smooth paths of Hermitian metrics and unitary connections from g to g7
and from V{ to V¥, respectively. Note that VI is unitary with respect to g’ for
each t € I. Define a complex vector bundle & — X by & = pxE. Then

0 0

‘ ;. 1 g
g’ :=pxg. V¢ -=th(—+§(gF) 158

3 f) + Vf (2.4)

are a Hermitian metric and a unitary connection on & — X, respectively, sat-
isfying i)*(jV"@ = Vf for j € {0,1}. The Chern-Simons form CS(VE,V’f) €

odd
le (g) is defined by

CS(VE,VE) := —f ch(V¥) mod Im(d).

X/X
Note that CS(VE, VE) does not depend on the choice of V¢ satisfying i} jV@@ =
Vf for j € {0, 1} and satisfies the following transgression formula
d CS(Vy, V) = ch(V}) — ch(V).

Equivalently, the Chern-Simons form can be defined as

1 E
E gEy_ __1 (th —%Rf>
CS(Vy, Vi) = 27 )| tr T e 2 dt. (2.5)

The choices of 0 and 1 are immaterial. If t < T are two fixed positive real
numbers, then one can replace 0 by t and 1 by T in (2.5).
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Q'(X)
Im(d)

One can also define a differential form Tc;(VE, Vf ) € that satisfies
the following transgression formula
dTe,(V5, VE) = ¢;(VE) — e (VD).

Let (E, gf, Vf) and (F,gf, sz ) be triples, where k € {0,1}. The Chern-
Simons form satisfies the following properties:

CS(VE, VE) = —CS(VE, vE), (2.6)
CS(VE, V) = CS(VE, VD) + CS(VE, VD), (2.7)
CS(VE @ VI, VE @ Vi) = CS(VE, VE) + CS(VE, vi). (2.8)

If (E, g¥) is a Z,-graded Hermitian bundle with two Z,-graded unitary connec-
tions VS and V¥, then

CS(VE,VE) = CS(Vy*, Vi) — CS(VE™, Vi), (2.9)

Let (H, g, Vi) be a Euclidean bundle with a Euclidean connection. Denote
by RH the curvature of V¥. The A-genus form of V¥ is defined to be

—LRH
A(VH) = det(“”—’1> € Qg(X).
sinh(——RH)
4ri
. . . . N H H Q4._1(X)
Similarly, one can define a differential form TA(V;, Vi ) e W that sat-

isfies the following transgression formula

dTA(VH, Vi) = A(vH) — A(vE).

3. An extended variational formula for the Bismut-Cheeger eta
form

3.1. Local index theory for twisted spin‘ Dirac operators: the Misc¢enko-
Fomenko-Freed-Lott approach. In thissubsection we review the statement
of the local FIT for twisted spin® Dirac operators without the kernel bundle
assumption by Freed-Lott. We refer the readers to [1, Chapter 10] and [6, §7]
for the details.

Let 7 : X — B be a submersion with closed, oriented and spin® fibers Z of
even dimension n. Denote by TVX — X the vertical tangent bundle. Recall
from [6, p.918] that a Riemannian structure on 7 : X — B consists of a hor-
izontal distribution THX — X, ie. TX = TVX & THX, and a metric g7 X on
TVX — X. Denote by PT"X : TX — TVX the projection map. Put a Riemann-
ian metric g’? on TB — B. Define a metric g'X on TX — X by

gTX = gT"X & *gTB.
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Denote by VX and V7 the Levi-Civita connections on TX — X and TB — X
associated to g7 and g7, respectively. Then VI X := PT'XVTX jga Euclidean
connection on TVX — X with respect to g7 X.

Define a connection VX on TX — X by

VIX — yI'x @ r*VTB,

Then S := VX — VX e QN(X,End(TX)). By [2, Theorem 1.9] the (3,0)
tensor g7X(S(-)-, -) depends only on the Riemannian structure (THX, g7 X). Let
{ej, ..., e,} be a local orthonormal frame for TVX — X. For any U € I'(B, TB),
denote by U € I'(X, THX) its horizontal lift. Define a horizontal one-form k
on X by

k(UM) = = g™ (S(ep)ex, UM). (3.1)
k=1

For any two U,V € I'(B, TB),
T(U,V) := —PT X[UH VH] (3.2)

is a horizontal two-form with values in TVX and is called the curvature of 7 :
X — B.

Denote by d vol(Z) the Riemannian volume element of the fiber Z, which is
a section of AM(TVX)* — X.

Choose and fix a topological spin¢ structure on TV X — X. This fixes a com-
plex line bundle 1 — X satisfying w,(T"X) = ¢;(1) mod 2 [10, p.397]. The
spinor bundle S(TVX) — X associated to the chosen topological spin® struc-
ture of TVX — X is given by

1
S(TVX) = S(T"X) ® A2,
where Sy(TVX) is the spinor bundle for the locally existing spin structure of
1

TVX — X and A2 is the locally existing square root of 1 — X. Since n is
even, S(TVX) — X is Z,-graded. Recall from [6, p.918] that a differential spin®
structure on 7 : X — B consists of a topological spin¢ structure on TV X — X,
a Hermitian metric g* and a unitary connection V4 on 1 — X.

A Riemannian and differential spin¢ structure (THX, g7 X, g%, V}) on 7 :
X — B induce a Hermitian metric g57"X) and a unitary connection V57X on
S(TVX) — X. Define the Todd form of V7'X by

1
Todd(VT'X) = A(VT"X) p 29V, (3.3)
Let (E, g%, VF) be a triple. Define the twisted spin Dirac operator DS®F :
I'X,S(TVX)® E) - I'(X,S(TVX) ® E) by

n

14
DS®F = 37 c(e) Ve, (3.4)
k=1
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where ¢ is the Clifford multiplication and V57" X)®E g the tensor product of
VS(T"X) and VE. Note that DS®F is odd self-adjoint.

Define an infinite-rank Z,-graded complex vector bundle 7,E — B whose
fiber over b € B is given by

(7.E)p = T(Zp, (S(TX) ® E)|z,)-
The space of sections of 7,E — B is defined to be
I'(B,7.E) :=T(X,S(T"X) ® E).

Define an L?-metric on 7,E — B by

g"E(s1,5,)(b) = f gsT0BE(s), 5,)d vol(Z). (3.5)

Zy

Define a connection on 7.E — B by
Vs 1= vEETO0RE (3.6)

where s € I'(B,7,E) and U € I'(B,TB). Then the connection on 7,E — B
defined by

Vb= gk %k, (3.7)

where k is given by (3.1), is Z,-graded and unitary with respect to g"+F.
The Bismut superconnection on 7.E — B is defined to be

c(T)
4 b
where T is given by (3.2). The rescaled Bismut superconnection is given by

NG

BF = DS®F 4 ymbu (3.8)

By [1, Theorem 10.23],

lim ch(BF) = f Todd(V™"X) A ch(VF). (3.9)
t—0 X /B

Miscenko-Fomenko [16, p.96-97] (see also [6, Lemma 7.13]) prove that there
exist finite rank subbundles L* — B and complementary closed subbundles
K* - Bof (7 ,E)* — B such that

(r,E)* =K*®L*, (x.E) =K ®L", (3.10)

Di®E : (n,E)t — (7,.E)” is block diagonal as a map with respect to (3.10) and
Di®E| x+ . K* — K~ is an isomorphism.

Given L* — B satisfying the above conditions, we say the Z,-graded complex
vector bundle L — B, defined by L = L* @ L, satisfies the MF property for
DS®E If L — B satisfies the MF property for DS®E, then the analytic index of
[E] € K(X) is defined to be

ind*([E]) = [L*] - [L™] € K(B).



1506 MAN-HO HO

It is proved in [16, p.96-97] that ind“([E]) does not depend on the choice of
L — B satisfying the MF property for DS®F,

Let g© be the Z,-graded Hermitian metric on L — B inherited from g™+£.
Denote by P : n,E — L the Z,-graded projection map with respect to (3.10).
Define a connection on L — B by

VL := PoV7™:Euop, (3.11)
Note that V! is Z,-graded and compatible with gt. Henceforth, whenever
(L,g", VE)is a Z,-graded triple and L — B satisfies the MF property for DS®F
gl and V* are obtained as above unless otherwise specified.

Given an L — B satisfying the MF property for DS®F, consider the infinite
rank Z,-graded complex vector bundle 7 .E @ L°® — B. Leti~ : L™ — (w,E)~
be the inclusion map and z € C. Define a map 5‘1®E (z) : (m,.E @ LP)" —
(r.E & L°P)” by

SQE .
=S®E, \ _ | D Zi
Dy (Z)_(z}+ 0 ) (3.12)
Note that 5i®E (z) is invertible for all z # 0 [6, Lemma 7.20]. Define a map
DS®E(z) : 7, E@® L® — 7,.E @ L°P by
"DS@E(Z) = <g % (D+ (Z)) .
D3®(z) 0

Define a Bismut superconnection on 7.E @ L°°? — B by

c(T)
i
Choose and fix a € (0,1). Leta : [0,00) — I be a smooth function that

satisfies a(t) = Oforall t < a and a(t) = 1 for all t > 1. Define a rescaled
Bismut superconnection by

BE = DS®F(1) 4 V7B @ yLop — (3.13)

& = o(T)
BE = V(DS®E(a(1)) + V7EH @ VIoP — =2,

Wi
Since DS®E (a(t)) is invertible for ¢ > 1,

lim ch(BF) = 0. (3.14)

t—o0
On the other hand, for ¢t < a, @;E decouples, i.e.
~ c(T)
BtE — (\/;DS(X’E + V?‘L'*E,u _ ) @ VL,op — Bf @ VL,op.
i
By (3.9),
lim ch(BF) = lim ch(Bf) + ch(V"?)
t— t—

) (315)
= f Todd(VT X) A ch(VE) — ch(VE).
X /B
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The Bismut-Cheeger eta form associated to @;E is defined to be

© L dBF _1 g
#E(gE, VE, THX gT"X gh VA L) = \/L_-/‘ str(—d; e Zm(BW)dt- (3.16)
7 Jo

By (3.14) and (3.15), the local FIT for D5®F is

dAt(gE, VE, THX, gT"X g4 VA L) = f Todd(VT %) A ch(VE) — ch(VD).
X /B
(3.17)

3.2. Aproofofthe extended variational formula for the Bismut-Cheeger
eta form. In this subsection we prove an extended variational formula for the
Bismut-Cheeger eta form for spin® Dirac operators twisted by isomorphic Her-
mitian bundles without the kernel bundle assumption (Theorem 1.2).

The following proposition is the spin¢ analog of [8, Proposition 1].

Proposition 3.1. Let 7 : X — B bea submersion with closed, oriented and spin®
fibers of even dimension, equipped with two sets of Riemannian and differential
spin® structures

\%4 |4
(THX, gl %, g0, VE),  (THX, gl X, gt vh),

where the underlying topological spin® structures coincide. Let E — X be a com-
plexvector bundle, (gOE, Vg) and (gf, Vf) are two pairs of Hermitian metrics and

S®E for the twisted spin®

unitary connections on E — X. For j € {0, 1}, write DJ.

Dirac operator defined in terms of

E wE TH TVX A vi

If (L, gli, Vbi) is a Z,-graded triple so that L j — B satisfies the MF property
for D§®E, then there exist two balanced Z,-graded triples (W,,g"°, V%) and
(Wy,8g"1, VW"1) and a Z,-graded isometric isomorphism
h:(Lo®Wo, g @g") - (L & W18 @g") (3.18)
such that
ﬁf(gfa Vf: T{IXa g{VX’ g{L, Vi: Ll) - f)\E(gOE’ Vg, T(I)—IX’ ggVXa gg, Véa LO)
~ 1 7 ~ 1 1 ygi
= (TA(V?;VX, V’fVX) /\eZCl(VO) +A(V{VX)A62TC1(VO,V1)) A Ch(vg)
X/B
+ f Todd(VT"X) A CS(VE, VE) — CS(VEo @ VWo, (Vi @ V1)),
X/B
(3.19)

Proof. Since the space of splitting maps is affine, there exists a smooth path of
horizontal distributions {T f{X — X},er joining Té{X — X and T{{X — X. Let
(gﬁE , Vf ) be the smooth path of Hermitian metrics and unitary connections on
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E — X joining (g}, V§) and (g, V¥) defined by (2.3). Define a smooth path
g7"X of Euclidean metric joining g "X and ngVX in a similar way. Then

v
c(t) = (gtE’ VtE’T?Xa g; Xa g;'l, V?’),

where ¢ € I, is a smooth path joining ¢(0) = (gf, V&, THX, ggVX , gg, Vé) and
_ (oE wE TH TVX yl ~
c(1) = (g¥, VE, Tl X, g ¥, gt, V¥). Define a new path &(t) by

v [ 1

(g5, VE, THx, gT'X gh V), fort e »0,5]

a0 =1 @ VETX, 7" g VA ) forrel|l,2

C = 3 goj 0° 1 ’gl ,g3[_1, 3t—17° or -g, 5
E B Hy T'X A vl [ 2

(g3t—2’ V3t—2’ Tl X’gl » 871> Vl)’ fort € 5,1]

Consider the submersion 7 : X — B, where © = 7 X id;. Define complex
vector bundles & —» X and 1 — X by & = PxE and 1= PxA, respectively.
Define the pair of Hermitian metric and unitary connection (g%, V®) on & —
X and the Riemannian and differential spin® structure (T#X, 7" %X, g%, V4) on
7 : X — Bso that for each t € I, the restriction of

(g%, V¢, THX, gT'X g V1) (3.20)

on X X {t} is given by &(t). Denote by DS®¢ the twisted spin® Dirac operator
defined in terms of (3.20). Let (£, g“, V*) be a Z,-graded triple so that £ — B
satisfies the MF property for DS®“ , i.e. there exists a Z,-graded complementary
closed subbundle X — B of 7#,& — B such that

FE=KDL, (3.21)

Di®£) : (E)t — (7,.&8)” is block diagonal as a map with respect to (3.21),
and Di®‘°p| g+ + KT — K~ is a smooth bundle isomorphism. Note that

iy o (Tu)E 2 iy (7. 6)* = (m,E)* (3.22)
and there exist smooth bundle isomorphisms
g oL* 2 ip, L%, ip o K* = iy, K= (3.23)

Let j € {0,1}. Write LT — B for iy /£* — Band Kj — B for i; X* —
B. Moreover, write ng for i;ng‘. Define a Z,-graded complex vector bundle

fj — B by fj = ZJTL ® fj?. By (3.23), we choose and fix a Z,-graded isometric
isomorphism

[ @o,g) — (T1, 8. (324)
By (3.21) and (3.22) we have

(m,E)t = Kj+ P Lj+, (m.E)” =K; ®L;. (3.25)
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Since

Ds®g|i;,jﬁ*(§ = DJS.®E,
it follows that DfEE : (m.E)t — (7,E)” is block diagonal as a map with re-
spect to (3.25) and the restriction fofE | K KJ+ - KJ‘ is an isomorphism.
Thus L j — B satisfies the MF property for DJS.®E . Since L; — B satisfies the
MF property for D§®E by assumption, there exist balanced Z,-graded triples

(H;, ng, VHi)and (W, gWJ‘ ,VWi)and a Z,-graded isometric isomorphism

fi: @ @oH, g ®gm) —» L ®W; " @g"). (3.26)
By (3.24) and (3.26), we have the following Z,-graded isometric isomorphisms:

Lo Wy HngO (&) gWO @ ng)

foteid
' 0 i

(Lo ® Hy, ® H,, gk & gho & gH)

f@®idy, ®idy, (3.27)
v

@, ® H, ® H,,g" & gho & gf)

f1®idy,
>

~

(L, ® W, ® Hy, g @ g™ @ gho)

Write W, - B for W, & H, - B,H — B for Hy® H, - B, W; — B for
W,@H, — Bandsimilarly for the corresponding Z,-graded Hermitian metrics
and Z,-graded unitary connections. Moreover, write f, for f, @ idy, and f,
for f; @ idy,. Then the following diagram commutes.

~ T ldH ~ T
To®H.gh & g") 2 (T, @ H.gh @ g")

i I

(Lo ® Wo, 8" ®8"0) —— (L ® Wy,g" & g™),

where h 1= fio(f ® idH)ofgl. Furthermore, by writing L — B for L, — B
and f, for fio(f @ idy), the above diagram becomes

(Lo H,g" g
fo/ \fl
(Lo ® Wy, gl & g"0) > (LW, gh &g
(3.28)

h

and h becomes h = f0f;1. Thus (3.18) holds.
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The connection on L @ H — B defined by

V§®H =iVl @ VYD) (3.29)

is Z,-graded and unitary. Define a complex vector bundle £ — Bby H = pzH.
Let (g°®7, V£®7() be a pair of Hermitian metric and unitary connection on
L @ H — B defined by (2.4), which satisfies

i* VLGB}[ — VLEBH
B.j Jor
Define a rescaled Bismut superconnection @fw{ on 7,& @ (L @ H)°® — Bby

@f’;&f — \/;(55®£(a(t)) ® a(t)sy) + (Vﬁ*é’,u @ V4<OItopy _ i(@ (=) 0>,

Vi

where s = (0 1d> e I'(B,End(#()~) and T is the curvature 2-form of 7 :

id 0
X — B. By the definition of «, @fa;% decouples for t < a, i.e.

@;5”;}( — de @ VLS,

By (3.9) we have
lim ch(B;"*") = lim ch(B) — ch(V<®7)
t— t—
o , (3.30)
= f Todd(VT %) A ch(V?) — ch(V4®70),
X/B

On the other hand, since (@f;ﬂ)[o] is invertible for every t > 1, it follows that

lim ch(B"7) = o. (3.31)

t—o0

Write 757((g¢, V€, THX, gT' X g%, V2, £) for the Bismut-Cheeger eta form as-
sociated to @f@;}[. We temporarily suppress the data defining the Bismut-Cheeger
eta form to shorten the notation. By (3.30) and (3.31) we have

dpet = f Todd(VT'X) A ch(V¥) — ch(V4®%). (3.32)
%/B

Denote by i : B — B the inclusion map. By (2.1) we have

_(i;’l;’?‘g;ﬂ_i;’oﬁg’;%) = _f i*,’?‘é”;}( =f dﬁf)\éb;}[_dB‘/‘ 1/7\&%. (3.33)
0B/B B/B B/B
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By (3.32), (3.33) becomes

sk ANEH sk AN — B8 H
ip 17 —ip o7 = __/~ dcn
B/B

- f ( / Todd(vTVX‘)Ach(vf)—ch(vﬁ@ﬂ))
B/B \J%/B

- f f Todd(VT"¥) A ch(V¥) — CS(VLOH vI®H),
B/B J%/B
(3.34)
Note that by (3.29) and the definition of h, we have
CS(Vo ", Vi®T) = CS (f(Vh @ VW0), f1 (Vi @ V')
= CS(Vio @ Vo, (fo1)* f1(VEr @ V")) (3.35)
= CS (VLo @ VWo, h*(VEr @ V")),

On the other hand, since / o / = f = f o f , it follows from
X/B JX/X X/B B/B JX/B
(3.20) and the definition of ¢(t) that

- f f Todd(VT"X) A ch(V¥)
B/B JX/B

=— f f Todd(VT"%) A ch(V¥)
X /B JX /X

~ 1 1 ~ 1 A gi
f (TA(VgVX’V{VX)AeZQ(VO) +A(V{VX)/\82TCI(VO’V1)) /\ch(Vg)
X /B

+ f Todd(VI"X) A CS(VE, V).
X /B
(3.36)
By (3.35) and (3.36), (3.34) becomes
i;,1ﬁ£;}[ - iz,oﬁg;ﬂ

~ Lo (vA ~ 1 A yh
Ef (TA(VgVX’ V{VX)Aezcl(Vo) +A(V{VX)/\€2TC1(VO’V1))/\Ch(vg)
X/B

+ f Todd(V{VX ) ACS(VE, VE) — CS (Vi @ Vo, h*(VEr @ V).
X/B
(3.37)
By (3.37), to prove (3.19) it remains to show that

P g £ £ =4 X 1 vl _ v
iy A77(g", V4, THR, g7 %, g4, VA, £) = 7 (gl VI, THX, g%, ¢}, V), L)
(3.38)
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for j € {0, 1}. First note that iy, J ’0 T = BEH where @;E[H is the rescaled Bismut

superconnection on 77.E @ (L & H )P — B given by

= \/?(BJS@E(oc(t)) ®a(t)sy)+(VEEr e V]L_GBH,OP) _ 1 (1)

—eao) (3.39)

7

Here, sy := (1(21 13) € T'(B,End(H)™). By (3.29) and the fact that the Z,-
graded triple (W ;, g%, V%i) is balanced, we have
VI = (FPy(VEor @ V). (3.40)

J
Consider the split quadruple (W;, g%, VWi, SWj) given in [8, Example 1]. De-

note by Ath the rescaled superconnection on W; — B given by [8, (3.2)]. Since
id, g EB(fj_l)OP : mEDL;®W ;)P —» 7, E®(LOH)® isa Z,-graded isometric
isomorphism, it follows from (3.39) and (3.40) that

(i, &) B

= \/;(Bfgm(“(t)) (&) OC(I)SWj) + (V”*E’“ @ (VEioP g VW,-)) c(T) )

LD g
Vit
_ME e
=B, ® A, ..
Since id, g EB(f.‘l)Op covers idg, forany t < T € (0, o) we have
EH)

cs@ix BS i B = cS(BE:

B]T ’B]t jT’

= CS((idy, 5z (f; SRy &7 T o (idz g &(f; _1)°p)*B )
= CS([EBﬁT DA, Wi Bﬁ[ ® A, -’).
By letting t - 0 and T — oo in above, it follows from [8, Lemma 1] that
>|< "6".7{(g Vé” THXgTX’g/l V/l L)_ (g VE THX gTX’g/l V/I’L)
— 7E E pHy oT'X oA vl 7.
Thus (3.19) holds. O

Remark 3.2. In Proposition 3.1, suppose there exists a Z,-graded isometric iso-
morphism 8 (Ly,g0) — (L,,g"). By taking h = B @ idy, and f; = hof,,
diagram (3.28) still commutes, and (3.35) becomes

CS(fo(VR @ VW), f1 (VI @ V) = CS(f (Vo @ VW), fi(h* (VL @ V7))
= CS (Vo @ VW, h* (V@ VW)
= CS(Vh @ V¥, g*Vl1 @ idy, VV)
= CS(Vh, g*vh),

where the last equality follows from (2.8) and the fact that CS(VY ,idy, VW) = 0.
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Thus if Ly = L, as Z,-graded complex vector bundles in Proposition 3.1, with-
out loss of generality we can take W — B and W — B to be the zero bundle.

Proposition 3.3. Let 7 : X — B be a submersion with closed, oriented and
spin‘ fibers of even dimension, equipped with a Riemannian and differential spin®
structure (THX, g7 X, g*, V). Let (E, gF) and (F, g"") be Hermitian bundles and
V' a unitary connection on F — X. If there exists an isometric isomorphism
a: (E,gF) - (F,g") and (Lg 4, gle=, VEea) is a Z,-graded triple so that Lg . —
B satisfies the MF property for DS®E% which is defined in terms of a*V¥, then
there exist a unique Z,-graded triple (Lg 4, glra, Vra) and a unique Z,-graded
isometric isomorphism @ : (Lggq,g"<) — (Lpq,8"F=) such that Lp, — B
satisfies the MF property for DS®F, which is defined in terms of V¥, and

ﬁﬂ(gE, a*VF, THX’ gTVX’gA’ VA,LE,O:) — ﬁF(gF’ VF’ THX, gTVX’g/l’ VA,LF,oc)-
(3.41)

One can think of Proposition 3.3 as the “variational” formula for the Bismut-
Cheeger eta form for the triples (E, g€, a*V¥) and (F, g&', V).

Proof. Note that a*V? is a unitary connection on E — X. By (a) of Remark
2.1,

VSITOBE = vI'X @ id +id ®a* VF

= a*(VI'X @ id +id ®VF)
= VST"X)®E _ o*xySTVX)®F (3.42)
Thus
DS®F = qoDS®Ea g1, (3.43)

Write« : n,E — 7m,.F for the Z,-graded bundle isomorphism induced by «.
Since g¥ = a*gf, it follows from (3.5) that

gﬂ*E - a*gﬂ*F' (3.44)
That is, @ is isometric. By (3.6) and (3.42), V™ = @*V7F and therefore
VEEU = gy, (3.45)

Let K, — B be a Z,-graded closed subbundle of 7r,,E — B that is comple-
mentary to Lg , — B, i.e.

(ﬂ*E)+ = Kg,oc S Lg,(x’ (m.E)” = KE,O{ S Lg,oc’ (3.46)
Di®E “: (w,E)t = (7,E)” isblock diagonal as a map with respect to (3.46) and
D3®| K, Ky, — Kj, is an isomorphism. Write D3®H* = (af)’“ dgo)'

Define complex vector bundles L | — Band K  — Bby

+ = + + = +
Ly, = oci(LE,a), Kp, = oci(KE’a).
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Denote by @ : Ly, — Ly, and @ : K;_, — Kj_ the corresponding re-
striction maps. These are isomorphisms. Note that Llfa — B have finite ranks
and

(m,F)* = K+ f2>) LF . (7.F)” =Kp, ® Ly, (3.47)
With respect to (3.46) and (3.47), @, and @_ are given by
~K ~K
~ _[ay O ~ _faz 0
a, = ( 0 55’;)’ a_ = ( 0o @) (3.48)

Define Z,-graded complex vector bundles Lp , — B and Kp, — B by
Lpg=Li,®L;, and  Kpo=Ki @®Kp
Then the map & : L, — Lg 4 given by
@ =a @a

is a Z,-graded smooth bundle isomorphism. Since the Hermitian metric g'=
on Lg, — B is inherited from g™, it follows from (3.44) that the Hermitian
metric gl¥« on Ly, — B, inherited from g™, satisfies gls« = (&@)*glr«. Thus
al is isometric.

By (3.43) and (3.48),
DS®F . DS®E0¢ &_1
< ak )(anc ) @t o
0 atJ\ 0 dgg 0o (@H!
&Ifanao(ﬁf)_l 0
= ’ =L ~Ly\-1
0 azodgqo(ay)

Thus Di®F is block diagonal as a map with respect to (3.47) and
DS®F| - = = aXoag ao(ocK) ! K;: - K

is an isomorphism. Therefore Lr, — B satisfies the MF property for DS®F'.

Denoteby Pg, : m,E — Lg,and P . 7 F — L, the Z,-graded projection
maps with respect to (3.46) and (3.47), respectively. Note that the following
diagram commutes.

n.E _a> . F

wl  |n

L, 7) Lp g

That is,
aloPg, = Proa. (3.49)
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Let s € T(B, Lg o). By (3.11), (3.45) and (3.49),
Vizas = (Pp oo VTP 0Py o )(s)
= (Pg o V&H4)(s)
= (Pgqoa oV o)(s)
= (@) oPpo V™M) (@l (s))
= (@) 'oPpoV - oPp)(@(s))
= (@) toVire)(@(s))
= (@) ToViraogl)(s).
Thus
Viea = (Gl)*Vira, (3.50)
Since @ : n,E —» m,F and @’ : Ly, — Lpq are Z,-graded isometric iso-
morphisms, the same is true for @ := @ @ &P : 7,.E @ L](;f’a -, F Ly,
By the definition of 5i®E’“(z), it follows from (3.43) that

DS®Ea(z) = @~ 1oDS®F (2)oq (3.51)
for every z € C. On the other hand, by (3.45) and (3.50),
VEEU @ VisaoP = G(VFu g Viraop), (3.52)

By the definition of BE<, it follows from (3.51) and (3.52) that
B = a*BF.
Since
(@f,ayk — (a—lc,@foa)yc = a_lo(@f)”‘oa,
dB’"  d@B) | dBf

t a_lo

dt dt dt
for any nonnegative integer k, it follows that

SEa R nF =
dBt _ 1.([8[5,06)2 _ ~_1 dB[ _ 1.(|Bf)2 ~
str Te 2 =str|a owe 2ri oo

Thus (3.41) holds. O
We now prove Theorem 1.2.

Theorem 3.4. Let 7 . X — B be a submersion with closed, oriented and spin®
fibers of even dimension, equipped with two sets of Riemannian and differential
spin€ structures

14 %4
(THX, gl *,g0,Ve),  (THX, gl X gt VD),



1516 MAN-HO HO

where the underlying topological spin® structures coincide. Let (E, g, VF) and
(F, g, VI) be triples. Denote by DS®F and DS®F the twisted spin® Dirac operators
defined in terms of

|4 14
(gf,VE, THX, gg X,gg, Vé) and (gf,VF, TfX, ng X,gf, V’ll).

Let (Lg, g%, VIE) and (Lg, g'r, V¥) be Z,-graded triples so that Ly — B and
Ly — B satisfy the MF property for D®F and DS®F, respectively.

If there exists an isometric isomorphism a : (E,gF) — (F,g"), then there
exist balanced Z,-graded triples (Wg, gV, VWE) and (W, g¥r, VVr) and a Z,-
graded isometric isomorphism

h: (L ®We, g @ ") — (Lp ® Wi, g™ @ g"7),
which depends on a, such that

4 4
7", VI TIX, g ¥, g1, V. Le) — 7°(g", VE, T X, g7 *. 5. V5. Lp)

~ 1 2 ~ 1 A yh
= f (TANVIX, V%) A e 4 AVTX) A e2™ VoY) A ch(VE)
X /B

+ f Todd(VT"X) A CS(VE, a*VE) — CS(VEe @ VWe, i*(Vir @ V7).
X/B
(3.53)
Proof. Write DS®F% for the twisted spin® Dirac operator defined in terms of

14
(g%, a*VE, THX, gl X gt V).

Let (Lg o, gk=«, VI2<) be a Z,-graded triple so that Ly, — B satisfies the MF
property for DS®E:%, By Proposition 3.1, there exist balanced Z,-graded triples
(W, g%, V¥0) and (W, g"1, V1) and a Z,-graded isometric isomorphism

h:(Lg® Wy gs @g") - (Lg, ® Wy, gle« @ g™) (3.54)
such that
|4 14
ﬁ\E(gEa a*VFa T{{X’ gf Xa gf’ ViaLE,(x) - ﬁ\E(gE’ VE’ T(I){X’ gg; X: gé, VéaLE)

~ 1 2 ~ 1 A yh
= f (TAVIX, V%) A &2 4 ZVTX) A e2" 1TV A ch(VE)
X /B

+ f Todd(V{VX ) A CS(VE, a*VE) — CS(VEE @ VWo, *(VEiea @ VW1)).
X /B
(3.55)

By applying Proposition 3.3 to the isometric isomorphism «, there exist a
unique Z,-graded triple (Lg 4, g"F«, VIr«) and a unique Z,-graded isometric
isomorphism

EEL . (LE,oc’ gLE’a) g (LF,oc’ gLF'a) (3~56)
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such that Ly, — B satisfies the MF property for DS® and

|4 14
APl a*VE, THX, gT" X, g4 V1, Ly ) = 77 (g8, VE, THX, g7 X, g4, Vi, Ly o).
(3.57)
Since (Lg, g&%, VI¥) and (Lp o, gk#=, Vr«) are Z,-graded triples so that both
Ly — Band Ly, — B satisfy the MF property for D5®F, it follows from [8,
Corollary 1] that there exist balanced Z,-graded triples (W, g"ro, VWro) and
(Wg1, Ve, VWEL) and a Z,-graded isometric isomorphism

hp @ (Lpg @ Wi, 847« @ gVF0) - (Lp @ Wiy, ghr @ g"r) (3.58)
such that

%4 1%
A (g, VE, TEX, g7 X, gt V1, Lp) — 77 (g5, VE, THX, g1 X, g1, V1, Lp )

= — CS(VEre @ VWro, b (Vir @ Vi),
(3.59)

By (3.54), (3.56) and (3.58), the map
W (Lg@Wo@Wro, g @g"o@gWro) = (L, @W,@Wr,, g dg”1 dghrr)

given by the composition

L@ Wy ® Wry

h®idy,
v ’

Lpa ®@ W1 @ Wgy
al®idy, ®idyy,
g ’

Lp, ®W, ® Wk

h.F@idWl
/

~N

L@ W, ®Wp,

is a Z,-graded isometric isomorphism. On the other hand, (3.57) and (3.59)
imply

14
ﬁE(gE, a*VF, T{IX’ g’{ X’ gﬂ.’ Vi.’ LE,a)

14
= 7/7\F(gF5 VF’ T{_IX’ g{ Xa gfa Via LF,o{)

= 7% (gF, VF, THX, g1"%, g%, V4, L) + CS(VEre @ VWro, h5(VEr @ VWra)),
(3.60)
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By (3.60), (3.55) becomes
\4
7" VE TX, gf ¥, gt

v
’gl’ Vi’LF) - ﬁE(gE’ VE’ T(I)_IX’ gz; X’ gé’ V{)lsLE)

+ AVT"X) A e3Ta(Y5:
1

2

= (TAVIX, VI ne

ey(Vh)
X /B

: DY A ch(VE)
+ / Todd(v{VX ) A CS(VE, a*VF) — CS(VIE @ VWo, h*(VEiea @ V1))
X/B

— CS(Vira @ VWro, p5(Vir @ V1)),

(3.61)
Since Viz« = (aF)*VIr« by (3.50), it follows that

Viee @ VW1 @ VWro = (@ @ idy, ®idy, )" (Vir« @ V1 @ VWro),
Thus

CS(Vire @ VY1 @ VVro, (hp @ idy ) )*(Vir @ VW1 @ VWra))
= CS((h @ idy, )*@" @ idy, Didy, )" (Vire @ VW1 @ VWro),

(h @ idy, )@ @ idw, ®idw, )*(hy @ idy, )" (VEF & V1 @ VWea))
= CS((h @ idy, )" (ViE= @ VW1 @ VWro), h*(VEr @ VW1 @ V7)),
(3.62)
Since CS(VWro, id*WR0 VWro) = 0 and CS(V™1,idy,, V1) = 0, it follows from
(3.62) and (2.7) that the sum of the last two terms of the right-hand side of (3.61)
is equal to

CS(Vie @ VWo, h*(Viea @ VW1)) + CS(VEre @ VWro, hi(VEF @ VWrL))
= CS(VlzE @ VWo @ VWro, (h @ idWF,o)*(VLE‘“ ® VW1 @ VWro))
+ CS(VEre @ VW1 @ VWro, (hp @ idy, )*(Vir @ VW1 @ VWrr))
= CS(Vie @ VWo @ VWro (h & idWF’O)*(VLE,a ® VW1 @ VWro))
+ CS((h @ idyy, ) (VEe= @ VW1 @ VWro), h*(Vir @ VW1 @ VWr))
= CS(VLE @ VWo @ VWro, p*(VLr @ VW1 @ VWr)).

(3.63)
By taking Wi = W, @ Wy and Wp = W, @ W, and similarly for gz, g"r
and VW&, VWr (3.61) and (3.63) show that (3.53) holds.

0
Note that Remark 3.2 applies to Theorem 3.4 as well.

4. Applications of the extended variational formula for the
Bismut-Cheeger eta form

In this section we present some applications of Proposition 1.1 and Theo-
rem 1.2. All the results in this subsection are under the following setup. Let

7 . X — B be a submersion with closed, oriented and spin® fibers of even
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dimension, equipped with a fixed Riemannian and differential spin® structure
(THX, gT"X, g%, V*). In this section, we suppress the dependence of the Bismut-
Cheeger eta form on (X, g7' X, g*, V) when no confusion arises.

4.1. Z,-graded additivity of the Bismut-Cheeger eta form. In thissubsec-
tion, we establish some intermediate results for the Bismut-Cheeger eta form.
These results, along with Proposition 3.3, are used to prove the Z,-graded ad-
ditivity of the Bismut-Cheeger eta form (Theorem 1.3).

The following proposition says the Bismut-Cheeger eta form is additive with
respect to direct sums.

Proposition 4.1. Let (E,g", VE) and (F,g", V) be two Z,-graded triples over
X. If (Lg, g%, ViE) and (L, g'r, VI¥) are Z,-graded triples so that Ly — B and
Ly — B satisfy the MF property for DS®F and DS®F, respectively, then there exists
a Z,-graded triple
(LEGBF’ gLEeaF’ VLEeaF)
such that Lggyr — B satisfies the MF property for DS®E®F) gnd
7O (g" @ 8", VP ® V', Lpgr) = 7°(%, VE, L) + 77 (8", VI, Lp).

Proof. Let Kz — B and Ky — B be Z,-graded closed subbundles of 7 ,F — B
and 7. F — B that are complementary to Ly — B and Lr — B, respectively, i.e.

(ﬂ*E)-l_ ZKE ®L+, (ﬂ*E)_ :KE @L_a (4 )

1

(P =Kf®Lf, (n.F)” =K, ®L,

Di®E and Dfr@F are block diagonal as maps with respect to (4.1), say
3= (0 a) 2= a) @2
and ap : K} — K and af : K} — K are isomorphisms.
Define a Z,-graded triple (Lggy, g#er, Vizer) by
Lggr = Lg @ Ly, gleer = gle @ glr, Vieer = Vie @ VIir,  (4.3)
By (4.1),
(m(E ® F))* = (,E)* & (r,F)* = K} ® KD & (L} ® LY),
(. (E®F))” = (m.E)” & (m.F)” = (K; ®K,)® (Ly & Lp).

Thus K @ Kr — B is complementary to Lggr — B. With respect to (4.4),
DS®(E€BF)
+

4.4)

is given by

ag 0 0 0

pseEer) _[ 0 ar 0 0
+ 0 0 dg OF

0 0 0 dp

which is block diagonal as a map with respect to (4.4), and shows that

SQ(E®F) _
D, lkteox: = ap @ ar
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is an isomorphism. Thus Lggr — B satisfies the MF property for DS®E®H),
We show that the Bismut superconnection BZ®F is additive in the following

sense:
BEOF = BF @ BF. (4.5)
With respect to the decomposition
TE®F)® Ly, = (MESL))® (T.FOLY),
we have

SQ(E®F) _ ~SQE SQF i i— + o+ +
D+ _D+ ®D+ ) lE@F_lE®lF’ PE®F—PE®PF.

Thus 5i®(E€BF)(z) = 5i®E(z) ) 5i®F(z) for any z € C, and therefore
DS®E®E)(7) = DS®E(Z) @ DS®F (). (4.6)
Since V7:E®Nu = ymEu g y7.Fu it follows that
Vn*(EeaF),u fo) VLE@F’OP — (VTI*E,M o) VLE,op) o) (V?T*F,u o) VLF,op). (4‘7)

By (4.6) and (4.7), (4.5) holds.
Lett,T € (0, 0) satisfy t < T. By (4.5) and (2.8),

CS(B;®",BL®") = CS(BF @ B, BE @ BL) = CS(BE, BY) + CS(BF, BL). (4.8)
By lettingt - 0 and T — oo in (4.8), the result follows. (]

Proposition 4.1 is also valid if not all of the triples (E, g%, VF) and (F, gF', VF)
are Z,-graded.

The following lemma says for any given Z,-graded triple (E, g%, VF), the Z,-
graded complex vector bundle satisfying the MF property for DS®F can be ex-
pressed in terms of those for DS®E" and DS®E",

Lemma4.2. Let (E, g%, VF) bea Z,-graded triple over X. If L+ — Band Lg- —
B are Z,-graded complexvector bundles satisfying the MF property for D®E" and
DS®E™, respectively, then Lg+ @ Lgli — B is a Z,-graded complex vector bundle
satisfying the MF property for DS®E,

Proof. Let Kz« — Band Kz- — Bbe Z,-graded closed subbundles of 7, Et —
B and n.E~ — B that are complementary to L+ — B and Ly~ — B, respec-
tively, i.e.

(m.E*)* =K/, ® L}, (m.E*)” =K, ®Lg,, @9)
(m,E)* =K ®L}, (m.E7)" =K; ®L,, '

Di®E " and Dfr@E ~ are block diagonal as maps with respect to (4.9), say

DS®E+= ag+ 0 DS®E—= ag- 0
+ 0 dg:)’ + 0 dg-)’

.t - .t - : ;
and ag+ : Kz, — K, and ag- : K;_ — K_ are isomorphisms.
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By (4.9),
(m.E)* = (7. E*)* @ (m . E)~
=K. ®L;, @K, DL, (4.10)
= (Kg+ @K't @ (Lp+ ®LY)T
and

(m.E)” = (ﬂ'*E+)_ @D (ﬁ*E_)-'-
=K, ®L, ®K] ®L} (4.11)
=Kp+ ®K)) @ L+ ® LY )™

By (4.10) and (4.11), 7.E = (Kg+ ® Kglf) @ (Lg+ Lz}i). With respect to (4.10)
and (4.11), Di®E is given by

ag+ 0 0 0
DS®E _ 0 a;_ 0 0 ,
+ 0 0 dg O
0 0 0 di
here DS® = (0%® )+ = (%~ %) Note that DS®" =

where D2 =Dy )y = 0 a: ) ote that D7, |(KE+@KgE)+ =ag+ P
ar_, which is an isomorphism. Thus Lg+ & L,‘j}i — B satisfies the MF property
for DS®F, O

Let E — X be a Z,-graded complex vector bundle. Since
End(E)* = End(E*) @ End(E™),
it follows that
End(E°P)* = End(E°"*") @ End(E°P~) = End(E~) @ End(E™) = End(E)™.

Thus T € End(E°P)" if and only if T € End(E)*. Moreover, strgop(T) exists if
and only if strg(T') exists. If either one of them exists, then

Strgop(T) = tr(T | gop.+ ) — tr(T|gop.-) = tr(T|g-) — tr(T | g+ ) = —strg(T). (4.12)

The following lemma says switching the Z,-grading of a Z,-graded triple
induces a minus sign in the corresponding Bismut-Cheeger eta form.

Lemma 4.3. Suppose (E,gf, VE) is a Z,-graded triple over X. If (L,g", V%)
is a Z,-graded triple so that L — B satisfies the MF property for DS®E, then
(LoP, gl-op VL-OP) s q 7Z,-graded triple so that L°° — B satisfies the MF property
for DS®E” and

75 (ghop, vEop [oP) = —7(gF, VE L). (4.13)

Proof. Let K — B be a Z,-graded closed subbundle of 7,E — B that is com-
plementary to L — B, i.e.

(r,E)* =K*®L*, (. E) =K ®L", (4.14)
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Di®E is block diagonal as a map with respect to (4.14) and DS®F |, is an iso-
morphism. Since
(S(TVX) ® EP)* = (S(TVX)* ® ED) @ (S(T"X)” @ E") = (S(T"X) ® E)",
(S(TVX) ® EP)” = (S(TVX)* ® EN) @ (S(T"X)” ® E7) = (S(T"X) ® E)*,
it follows that
(m(EP)T =(m,E)” =K~ @®L",

4.15
(7. (EP)" = (m,B)* = K* ®L*. (19
That is, 77, (E%) = K° @ L. Moreover, D®*" = D5®F = (D$®F)* Thus
Di®E0p is also block diagonal as a map with respect to (4.15), and Di®Eop | gop+

is the inverse of Di®E |g+, which is an isomorphism. Thus L°P — B satisfies the
MF property for DS®E*,

Note that gi°P is inherited from g™«E™) and VIoP = PoPoV7:(E®)uopop,
where PP : 7,(E°P) — L°P is the obvious Z,-graded projection map. By ap-

A 170
E°P 1

plying (4.12) to d—tte_ﬁ

Proposition 4.4. Suppose (V,g", V") is a balanced Z,-graded triple over X. If
(L, gk, VI+) is a Z,-graded triple so that L, — B satisfies the MF property for
DS®V" | then there exists a balanced Z,-graded triple (L, g¥, VX) such that L — B
satisfies the MF property for DS® and

7", VV,L) = 0.

Proof. Since the Z,-graded triple (V,g", V") is balanced, (V*+,g"-*, VV:+) =
(V=,g"~,VV"7). Thus L, — B also satisfies the MF property for DS®V". Define
a Z,-graded triple (L, g%, V1) by

L = L+ ®L?|-p’ gL — gLJr ®gL+,op’ VL — VL+ o) VL+,op.
By Lemma 4.2, L — B satisfies the MF property for DS®V . Since
L*=L'®L; and L =L;®L,

o
@Y (4.13) holds. 0

and similarly for g© and V%, the Z,-graded triple (L, g, V*) is balanced. Since
(Vop gVop yVopy = (V,g",VV), it follows from Lemma 4.3 and the fact
(Lop’ gL,op’ VL,op) — (L, gL’ VL) that

77(8". V. L) =~ (877, VVr, L) = —5¥(g", V¥, L).
Thus #¥(g",VV,L) = 0. O
We now prove Theorem 1.3.

Theorem 4.5. Let (E, g%, VE) be a Z,-graded triple over X. If (Lg+, g5+, VLE+)
and (Lg-, g"¥~, VEe~) are Z,-graded triples so that Lg+ — B and Lg- — B satisfy
the MF property for D®E" and DS®E” | respectively, then

ﬁE(gE’ VE’LE*' S Lg}i) = 7/7\E+(gE’+’ VE’-'-’LE*') - ﬁEi(g i VE’_’LE—) (4~16)
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Proof. By Lemma 4.2, L+ @ L, — B satisfies the MF property for D®E. Thus
the left-hand side of (4.16) makes sense.

Consider the (ungraded) triple (E®E~, gf @gF~, VE@ V¥ 7). By Proposition
4.1,

((Lpr ®LY) @ L-, (ghe* @ ghe—P) @ ghe~, (Vie+ @ VEe—oP) @ Vi)
is a Z,-graded triple so that (Lp+ @ Lz}i) @ Lp- — B satisfies the MF property
for DS®ESET) which is defined in terms of VZ @ V.
On the other hand, define a balanced Z,-graded triple (H, g, VH) by H* : =

E~, and similarly for g/ and V. Consider the (ungraded) triple (E*®H, g¥*&®
gt ,vE+ @ VH), The map

a: (E®E,gfdgh) > (EY®H, gt gl
defined by
a((a,b),c) = (a,(c,b))

is obviously an isometric isomorphism and satisfies
a*(VE+ @ VH) = VE @ VB~ (4.17)

By applying Proposition 3.3 to the isometric isomorphism a and noting that
(Lg+ ®L," )®L- — B satisfies the MF property for DS®E®E™) which is defined
in terms of VF @ V&~ = a*(VE+ @ VH) by (4.17), there exists a unique Z,-
graded triple (L, gt=, V*«) and a unique Z,-graded isometric isomorphism

al : ((Lgr ®LY) @ Li-, (g8 @ glv ) @ gl ) — (Ly, gh)

such that L, — B satisfies the MF property for DS®E"®H) which is defined in
terms of VE+ @ VH, and

PO (g @ g5, a" (VA @ VI, (Lg+ ® L)) @ Lg-) (4.18)
=77 (R @ g, VI @ VI, Ly). '
By the definition of «, the Z,-graded triple (L, gl=, V1<) is given by
(Lp+ ® (Lp- ® Ly2), g @ (ghe~ @ ghe~°P), Visr @ (Vis- @ VEs—P)). (4.19)
By (4.17) and (4.19), (4.18) becomes
7o (g @ 8", VF @ VP, (Lp+ ® L) @ Lg-)
_ f)f+®H(gE’+ fo) gH, VE+ @ VH,LE+ ® (Lp- ® L;li))
By Propositions 4.1 and 4.4, (4.20) becomes
78(gE, VE, Lge @ L2) + 7% (857, VA, Lp-)
= 7O (P @ g, VE@ VI, (L ® LY ) D L)
_ ﬁE’fEBH(gE"" Fo) gH’ VE+ @ VH,LE+ D (Lp- ® Lgli))
=77 (g5, VB L) + 77 (g, VI, Lp- @ LYY)
=77 (g5, VE, L),

(4.20)
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Thus (4.16) holds. ([

4.2. The analytic index in differential and R/Z K-theory. In this subsec-
tion we prove that the analytic index in differential K-theory ind% : R (X) —

Ry (B) is a well defined group homomorphism (Proposition 1.4).

Remark 4.6. Here is a remark on representing elements in the topological K-
group K(X) using Z,-graded complex vector bundles. First note that every Z,-
graded complex vector bundle E — X represents the element [ET|—[E~] in K(X).
Conversely, given an element in K(X) written as a formal difference [E] — [F], by
defining a Z,-graded complex vector bundle H - X by Ht := Eand H™ :=F,
we see that H — X represents [E] — [F].

By [1, p.289], two Z,-graded complex vector bundles E - X and F — X
represent the same element in K(X) if there exist complex vector bundles G — X
and H — X such that

E*®G>Ft®H, EE®Gx~F @H.

In other words, E — X and F — X represent the same element in K(X) if there
exist Z,-graded complex vector bundles G — X and H — X of the form Gt = G~
and B* = A= such that E® G =~ F & H as Z,-graded complex vector bundles.

The Freed-Lott differential K-group Kg; (X) [6, Definition 2.16] can be de-
scribed in terms of Z,-graded generators of the form & = (E, gE , VE, w), where
QOdd(X)

Im(d)
& and F are equal in Ky (X) if and if only there exist balanced Z,-graded triples
(Vg,gVE,VVE) and (V, g"F, VVF) and a Z,-graded isometric isomorphism « :
(E@VE g8 ®g"s) - (F® Vg, gl ®g"r)such that

wp —wp = CS(VE @ VVE, a*(VE @ VVF)). (4.21)
The analytic index of a Z,-graded generator & of Kg (X) is defined to be

indg(&;L) = (L,gL, VL, f
'X/B

(E,gF, VE)is a Z,-graded triple and w €

. Two Z,-graded generators

Todd(VT X) A w + 7E(gF, VE, THX, gT' X, g%, V4, L)>,

(4.22)
where (L, gt, VI) is a Z,-graded triple so that L — B satisfies the MF prop-
erty for DS®E. By [8, Corollary 1], ind%(€; L) does not depend on the choice of

(L,g", VE) so that L — B satisfies the MF property for DS®F. Henceforth we
write ind%(&) for ind%(é‘ ;L).

Let € and F be Z,-graded generators of K (X). By [8, Corollary 1] and
Proposition 4.1, the analytic index of indIa?(E + F) is given by

ind%(& +F)= <LE€BF,gLE@F, VLEeaF,/ Todd(VT'X) A (wg + wp),
X/B (4.23)
PO (g" @ ¢,V @ VI, TX, g%, 8,V L) )
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where (Lggr, gb#er, VErer) is the Z,-graded triple given by (4.3). Thus the an-
alytic index in differential K-theory is additive, i.e.
ind3(& + F) = ind3(€) + indp(F). (4.24)
‘We now prove Proposition 1.4.

Proof of Proposition 1.4. We first show that ind% passes to a well defined

map Kp (X) — Kp(B), ie. if € and F are Z,-graded generators of Kpy (X)
satisfying & = &, then

ind3(&) = ind2(F). (4.25)
Once (4.25) is established, (4.24) immediately implies that indl‘% D R (X) —

Rp1.(B) is a group homomorphism.

Since & = 7, there exist two balanced Z,-graded triples (V, g"%, VVE) and
(Vg,g"F,VVF) and a Z,-graded isometric isomorphism

a: (E®Vg"®g") > FOVrg @©g"")
such that (4.21) holds. By Proposition 4.4 there exist balanced Z,-graded triples
(Ly,,g"e, Vve) and (Ly,, g"vr, V*7r) such that Ly, — B and Ly, — B satisfy
the MF property for DS®= and DS®"F, respectively, and
V(g s, Ve, Ly,) = 0= 77 (g", V'F, Ly,). (4.26)

Let (Lg+, gle, VEe+) and (Lg-, gle~, VEE) be Z,-graded triples so that Lg+ —
Band Ly~ — B satisfy the MF property for D®E" and DS®E™ | respectively. By
Lemma 4.2, (Lg+ @ L, , ghe+ @ gle—P, VLt @ VLe—P) is a Z,-graded triple so
that L+ @ L;” — B satisfies the MF property for DS®E. By Proposition 4.1,

(Lg+ ®LY) @ Ly,, (gl @ gle—P) @ ghve, (Vie+ @ Vi) @ Vive)

is a Z,-graded triple so that (Lg+ @ L;Ii) ® Ly, — B satisfies the MF property
for DS®ESVE),

Let (Lg+, gkr*, V) and (Lp-, gbr~, VEF~) be Z,-graded triples so that Lp+ —
Band Lp- — B satisfy the MF property for D® " and DS®F" | respectively.
Similarly,

(Lp+ ®LY) @ Ly, (gl @ ghr—) @ ghvr, (Vir+ @ Vi) @ Vi)
is a Z,-graded triple so that (Lp+ @ L;Ii) ® Ly, — B satisfies the MF property
for DS®F®VF),

By applying Theorem 3.4 to the Z,-graded isometric isomorphism «, there
exist balanced Z,-graded triples (W, g%, VWE) and (W, g¥r, VWr) and a Z,-
graded isometric isomorphism

(Lp+ ® L) @ Ly, @ Wi, (gl @ gle=P) @ ghve @ g"'r))
\Lh (4.27)
(Lp+ ®LY) ® Ly, ® W, (gl @ glv—P) @ ghvr @ gF))
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such that
ArOVr(gl @ g  VE @ VY, (Lp+ ® LY ) D Ly,)
—EOVe(gE @ gVr, VE @ VVE, (Lg+ @ LY ) ® Ly,)

= f Todd(VT'X) A CS(VE @ VVE, a*(VF @ VVF))
X /B

— CS((Vie+ @ Vie—oP) @ VIve @ VWE, h*((VEir+ @ VEF—P) @ VIvr @ VWr)).
(4.28)

By Proposition 4.1 and (4.26),

7OVe(g" @g"r, VE@VYE, (Lps ®L )@ Ly,) = 7°(8", VF, Lps ®Ly), (4.29)
and similarly,

7oVr(g" @g"r, VF@ V", (Lps ®L2)®Ly,) =7 (8", VF, Lps ® L), (4.30)
By (4.21), (4.29) and (4.30), (4.28) becomes

A VI Lps @ L) — 7 (g, VE L+ @ L)) = / Todd(VT"X) A (wp — wp)
X /B

— CS((VEe+ @ Vie—oP) @ VIve @ VWE, h*((VEirt @ VEF—P) @ VIve @ VWr)).
(4.31)

Since the Z,-graded triples (L, ® W, g™ @g"*, Vv @ VVr) and (Ly, @
Wg,gbvr @ g"r, Vive @ VWr) are balanced, it follows from (4.27) and (4.31)
that (4.25) holds. O

4.3. The RRG theorem in R/Z K-theory for the twisted spin® Dirac op-
erators. In this subsection we give an alternative proof of the RRG theorem
in R/Z K-theory for twisted spin® Dirac operators without the kernel bundle
assumption (Theorem 1.5).

Defineamap chp : Rp(X) — Qg’en(X) by chp(€) = ch(VE)+dw. The R/Z
K-group K (X) [14, Definition 7] (cf. [6, (2.20)]) can be defined as K;'(X) =
ker(chg). Thus a Z,-graded generator € of K 1(X) is a Z,-graded generator of
K (X) satisfying

ch(VE+) — ch(VET) = —dw. (4.32)
Note that (4.32) implies that rank(E™) = rank(E ™).

The R/Q Chern character chg,q : K;'(X) — H*¥(X;R/Q) is defined as
follows. Let & be a Z,-graded generator of K~ 1(X). By (4.32), there exist a
k € N and an isometric isomorphism « : (kE*, kgf*) — (kE~, kgt™) (see [8,
Remark 1] for a proof). Define chg q(€) by

chg o(&) = %CS(a*(kVE’_), kVEH) + | mod Q. (4.33)

It is easy to check that the odd form of the right-hand side of (4.33) is closed.
Note that chg (&) is independent of the choices of k and a [14, p.289].
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The analytic index indg sz N R /Z K-theory of a Z,-graded generator & of
KL 1(X)is defined by the same formula (4.22). Itis easy to check that ind;{ /Z(S ) e
K- 1(B). As an immediate consequence of Proposition 1.4, the analytic index in
R/Z K-theory

indg , : K{'(X) = K[ '(B)
is a well-defined group homomorphism.

We now prove Theorem 1.5.

Proof of Theorem 1.5. As mentioned in §1, we prove (1.3) at the differential
form level. Let € be a Z,-graded generator of K 1(X). By (4.32), there exists a
k, € Nsuch that kyE* ~ k,E~.

Let (Lg+, gher, VEet) and (Lg-, gle—, VEE) be Z,-graded triples so that L+ —
Band Lg- — B satisfy the MF property for D®E" and DS®E™ | respectively. By
Lemma 4.2,

(LE+ o) L;Ii’gLE+ o) gLE— 0P, vie+ o) vie- ,Op)
isa Z,-graded triple so that Lg+ & L;Ii — B satisfies the MF property for DS®F.
By [8, Corollary 1], indg /(&) is given by

ind&/z(é’) = (IJEJr o) LZE,gLE* o) gLE—,op, Viet @ vie--op,
v (4.34)
0
f Todd(VT" *) Aw + 7%(gF, VE, L+ @ LEE)>.
X /B

On the other hand, by (3.17), (4.32) and Theorem 4.5,

ch(Viet) — ch(Vie) = f Todd(VT X) A (ch(VE+) — ch(VE™))
X /B

- df?\E+ (gE’+’ VE’-'-’LE‘") + df)\E_(gE’_9 VE,_s LE‘)

= f Todd(VT"X) A (=dw) — dFE(gE, VE, L+ @ L)
X/B

= —d< / Todd(VT'"X) A w + #E(gE, VE, L+ & LEB)).
X /B

Thus there exists a k, € N such that k,Lg+ = k,Lg-.

Let k be the least common multiple of k; and k,. Leta : (kE*, kgt*) —
(kE~,kg®™) be an isometric isomorphism. By Theorem 3.4, there exist bal-
anced Z,-graded triples (W, g%+, VW+) and (W_, g%, V¥-) and a Z,-graded
isometric isomorphism & : (Lyg+ ® W, gt @ gW+) » (Lyp- @ W_, gle~ @
¢"-) such that

FE (kegB = kVE=, Lyp-) — ¥ (kgE+, kVE, Lips)
= f Todd(VT'¥) A CS(kVE+, a*(kVE™)) (4.35)
X /B

— CS(VEe+ @ VW« p*(Vie- @ VV-)).
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Recall from (4.3) that
Lyg: = kLg=, ghees = kgles, Vikes = vies, (4.36)

By applying Remark 3.2 to kLg+ = kLg-, we take W, — Band W_ — B to be
the zero bundle. By (4.36), (4.35) becomes

A*E" (kgP~, kVE~, kLg-) — 7¥F" (kgP+, kVE+, kL)

4.37
= f Todd(VTVX) A CS(kVE*, a*(kVE ™)) — CS(kVEE+ h* (kVEie-)). (4.37)
X /B

By Proposition 4.1 and Theorem 4.5,
7 (kg kVE™, kLg-) — ¥ (kgh*, kVE+ KL+
= k(f)\E_(gE)_’ VE’_5 LE_) - 77)\E-'—(gE)-i_’ VE’+7 LE+)) (4'38)
= -kt (g8, VE, Lps @ LY)).

On the other hand, denote by h, : (KL}, kg'#+*) — (kLj_,kg#—*) and

h_:(kLg,, kglet=) — (kLg_, kgl==~) the even and the odd part of h, respec-
tively. Then

he@h=' : (kLy, @KLy, kg's+ @kg"~") — (KL} @kLy. . kg"~* @kgh)
is an isometric isomorphism. By (2.9), (2.6) and (2.8),

CS (kVEe+, h*(kVEe))

= CS (kVEer+ @ kVLe—, b (kVEE-+) @ hE (VL))

= CS (kVEeet, iy (kv ) — CS (ke hZ(k Vi)

= CS (kVEet+ bt (kVie-+)) — CS ((hZV)*(k Vi), kVEe=~)

= CS (kVEre*, Ry (kVE=1)) + CS (k Vi, (hZ1)*(k Ve 7))

= CS (kVier* @ kVie ™ hy (k) @ (h2!) (kVEee)

= CS (k(VEe+ @ VEo), (hy @ h2)) (k(VE—* @ Vi), (4.39)
By (4.38) and (4.39), (4.37) becomes

— kA" (gF, VE, Ly ® LyY)

+ CS (k(vLE+,+ ® Vi), (hy, @ h=H)*(k(Vi+ @ VLE’“")))

= f Todd(VT"¥) A CS(kVE*, a*(kVE™)).
X/B

By (2.6) it becomes

+CS ((h+ ® h=V)*(k(VEie—+ @ Veier)), k(VEet+ @ VLE_’_)) (4.40)

Ef Todd(VTVX)/\CS(oc*(kVE"),kVE’*).
X/B
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By first dividing both sides of (4.40) by k, and adding f Todd(VT'X¥) A w to
X/B
both sides of (4.40), (4.40) becomes

% CS ((hy & h=)*(k(Vie=+ @ VEs+)), k(VEer+ @ VEie-7))

+ f Todd(VT'X) A w + AE(GE, VE, L+ & L)
X /B

(4.41)
= f Todd(VT"¥) A (l CS(a*(kVE™), kVE+) + cu).
X/B k
Since the left-hand side of (4.41) is a differential form representative of
ChR/@(lnd?R/Z(E))
and the right-hand side of (4.41) is that of
f TOdd(TVX) U ChR/@(E),
X/B
we see that (1.3) holds. O

Note that (4.41) is a refinement of (1.3) at the differential form level.
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