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The Bohr-type inequalities for holomorphic
functions with lacunary series in
complex Banach space

S. Kumar, S. Ponnusamy and G. Brock Williams

ABSTRACT. In this paper, we study the Bohr inequality with lacunary series
to the single valued (resp. vector-valued) holomorphic function defined in
unit ball of finite dimensional Banach sequence space. Also, we extend the
Bohr inequality with an alternating series to the higher-dimensional space.
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1. Introduction and Preliminaries

1.1. The classical Bohr inequality for the class B. WedenotebyD :={z €
C : |z| < 1} the unit disk in the complex plane. Let HH be the class of all
holomorphic functions defined on D. We set B = {f € H : |f(z)|] < 1}. Let
us first recall a remarkable result of Bohr [8] that opens up a new avenue for
research in geometric function theory.

Theorem A. Let f € B be of the form f(z) = Z;:o a,z*. Then the Bohr sum
By (r) satisfies the inequality

W =

o0
By(r) := Z laglrk <1 for |z|=r<
k=0

and the constant 1/3 is best possible.
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Originally, Bohr obtained this inequality only for r < 1/6, but later M. Riesz,
I. Schur and F. W. Wiener independently proved that it holds in this form, and
the number 1/3 is called the Bohr radius. Several other proofs are also known in
the literature. Note that there is no extremal function such that the Bohr radius
is precisely 1/3. See [18, Corollary 8.26]. The Bohr inequality contemplates
many generalizations and applications. In 1995, Dixon [16] used the Bohr in-
equality in connection with the long-standing open problem of characterizing
Banach algebras satisfying the von Neumann inequality. In addition, Theo-
rem A was extended to alternating series Ap(r) = 3, (—1)¥|a;|rk, by Ali et
al. (cf. [3]). More precisely they have shown that |[A¢(r)| < 1forr < 1/ \/5
under the assumption of Theorem A. Another natural question was to discuss
the asymptotic behaviour of the Bohr sum B (r). This has led to the search for
the best constant C(r) > 1 such that B¢(r) < C(r). Bombieri [10] showed that
if f € B, then

3—4/8(1—1r?2) 1
r 3 \/5
For an alternate proof of this inequality, we refer to the recent paper [22]. More-

over, the question raised by Djakov and Ramanujan [17] about p-Bohr radius
was answered affirmatively in [22]. However, in the year 2004, Bombieri and

Bourgain [11] established that B¢(r) < 1/V1 —r2? holds forr > 1/ \/5 which in

turn implies that C(r) < (1 — r?)~'/2 asr — 1. In the same article, the authors
proved that for a given ¢ > 0 there exists a constant ¢ depending on ¢ such that

By(r) <

3/2+¢
) asr — 1.

—2y1/2 _
Bp(r) > (1 —r9) (clog T=7

Some recent results on this topic including refinements and generalizations
may be found from [4, 21, 22, 23, 25, 29, 30, 31].

1.2. Multi-dimensional Bohr’s inequality. In the recent years, many au-
thors paid attention to multidimensional generalizations of Bohr’s theorem and
drew many conclusions. For example, denote an n-variables power series by
>, a,z* with the standard multi-index notation; « = (ay,ay,...,a,), where
[e4

aj € Ny 1= NU{0}, N := {1,2,.} (1 < j < n), |af denotes the sum
a;+o,+---+a, ofits components, a! = a;la,! -+~ !, z = (24, 25, ..., 2,) € C,
and z% = z%z% ... z%_ The n-dimensional Bohr radius K,, is the largest num-
ber such that if )’ a,z% converges in the n-dimensional unit polydisk D" such

a
2, az®
a

that < 1in D", then Y |a,z%| < 1 for max¢j< |zj| £ K,. In 1997,
a
Boas and Khavinson [7] showed that for n > 1, the n—dimensional Bohr radius
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1 logn
Lk, <2/ 21
3\/n h

This article became a source of inspiration for many subsequent investigations
including connecting the asymptotic behaviour of K,, to problems in the geom-
etry of Banach spaces (cf. [14]). However determining the exact value of the
Bohr radius K,,, n > 1, remains an open problem. In 2006, Defant and Frerick
[12] improved the lower bound as K,, > cy/log n/(nloglog n) whereas Defant
et al. [13] used the hypercontractivity of the polynomial Bohnenblust-Hille in-
equality and showed that

1
K, = b/ 05" with %+o(1)§bnsz.

In 2014, Bayart et al. [5] established the asymptotic behaviour of K,, by showing
that

K, satisfies

lim —— =1
n—oo logn

n

We would like to mention that Djakov and Ramanujan [17], and Blasco [9]
have studied the asymptotic behavior of the holomorphic functions with p-
norm as r — 1 in D" and Banach spaces. Aizenberg [1, 2] mainly general-
ized Carathéodory’s inequality for functions holomorphic in C". In 2021, Liu
and Ponnusamy [26] have established several multidimensional analogues of
refined Bohr’s inequality for holomorphic functions on complete circular do-
main in C". Other aspects and promotion of Bohr inequality in higher dimen-
sions can be obtained from [6, 15, 19, 20, 28]. Moreover, research on Dirichlet
series in higher dimensions is also very popular recently (see [14]).

1.3. Generalizations and Refinements of Bohr’s inequality for the disk.
Recently, Kayumov and Ponnusamy [21], and Ponnusamy et al. [29] estab-
lished several refined versions and improved versions of Bohr’s inequality in
the planer case. See also [29, 30, 31].

Theorem B.([26,29]) For f € B, and f(z) = Z:’:O a,z*, we have

1 r r
k 2,2k 2
E a.|r* + + E a|‘r*<—0—-]a

forr € 0,1).

In the planar case, generalizations of Theorem B are abundant, but they are
still limited in the higher-dimensional space. In fact, the alternating series ver-
sion of this result is contained in the following result which is indeed itself a
special case of [23, Theorem 5(I)].
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Theorem C. Suppose thatm € No, p € Nand0 < m < p. Let f € B, and
f(2) = ¥ Qrprmz PH™. If pis odd, then

Z(—l)kp+m|akp+m|”kp+m + (=1)"+P Z |akp+m|2"2kp <1
k=1 1—r2P (=,

holds for |z| = r < r,, wherer, is the unique root in (0,1) of rP(rP +r™)—1 = 0.
This result is sharp.

1.4. Bohr radius in higher dimensional setting. In 2019, Liu and Liu [27]
used the Fréchet derivative to establish the Bohr inequality of norm type for
holomorphic mappings with lacunary series on the unit polydisk in C" under
some restricted conditions. The relevant properties of the Fréchet derivative
can be seen below (cf. [19]).

Let X and Y be two complex Banach spaces with respect to the norms || - ||;
and || - ||, respectively. For convenience, we denote both norms by || - ||, when
there is no possibility of confusion with the underlying Banach spaces. We set
Bx :={x € X : ||x|]| < 1}. Let Q* be a domain in X, and let H(Q*, Y) denote
the set of all holomorphic mappings from Q* into Y. It is well-known (cf. [19])
thatif f € H(Q*,Y), then

fG) = Y =D FO)6)
k=0 """

for all x in some neighborhood of 0 € Q*, where D¥f(x) is the k'"-Fréchet
derivative of f at x, and for k > 1, we have

DK f(0)(xk) = DEF(0)(x, x, ..., X).
k

Moreover, if k = 0, then D £(0)(x%) = f(0).

2. Key lemmas and their Proofs

In order to establish our main results, we need the following lemmas which
play a key role in proving the subsequent results in Section 3. Theorem B has
been generalized in [23, Lemma 4 |.

Lemma D. [23, Lemma 4 | Suppose that m € Ny, p € Nand0 < m < p. If
fe€Band f(z) = Z:;O Api4m2zP¥™, then we have

(&9 2 (&)

P rP
(2k—1)p r 2,.(2k—1)p
Arrn r + a r < (1)
Z la@i-1)p+ml T2 ,Zal kp+ml T
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forr € [0,1). This result is sharp. Moreover,

oo
1 er o
2k 2,2k
kz |a2kp+m|r P+ (1 + |am| + 1 _rzp) Zk:l |akp+m| r=p (2
=1

r2P

<A -lanl®

1-r2pP

holds for r € [0,1). This result is sharp for f(z) = z™ (la—_zpp) with a € [0, 1).
—az

Letn € N, t € [1, o), and B;n be the set defined as the collection of complex
vectors z = (zy, 2, ..., 2,) € C" satisfying 2?21 |z;|' < 1. This set constitutes
the open unit ball in the complex Banach space ¢} where the norm ||z||, of z is

given by (Z;Ll |z;|* )1/t. In the special case of Byn , the set represents the unit
polydisk in C" denoted as B,» := D", where |z;| < 1for1 <i < n. The norm
of z € €, is defined as ||z|| := max{|z;| : 1 <i < n}. Note that the unit disk D
is equivalent to B1.

Lemma 2.1. Supposethatm, p €N, 1<m<p,1<t< oo, f € H(Bf;z,ﬁn)
and
D"f(0)(z™) < D f(0)(ZkPHm)
f(2) = 28(2) = —— =~ T
! = (kp + m)!

where g € H(Byn, C). Then
[P O (IO
A Gprml | "

holds for all ||z||, = r € [0, 1).

2

Proof. The proof of this lemma follows if we adopt the same approach as [24,
Lemma 2.1]. To do this, we fix z € B¢»\{0}, and let z, = ﬁ Then z, € 0B¢n.

[l

Define j such that |z;| = ||z||, = max;<,{|z|}. Because f(z) = zg(z), a
simple calculation yields

D*f;(0)(z5) D*'g(0)zg™") z
k! (k=1 |zl
For A € D, let h;(1) = f;(Az,). Then h; € H(D, D) and

D700z | & D0 Akp]

for each k € N.

h,A) = A"
A m! = (kp + m)!

- i .
DMl 2z & DO 7
(m=Dt 2l & kp+tm-D all

=1 Amp(aP),

= M




264 S. KUMAR, S. PONNUSAMY AND G. BROCK WILLIAMS

where (1) = by + X, byt* with

D" g(0)(zp ™) z; DkP+m1(0)(z,P ") 2
S - el T T Gpemo L
Note that p € H (D, D) and so, |bg| < 1. By Wiener’s inequality, it follows
that |bi| <1 — |by|? forallk > 1. As 1Zj| = ||z]|lee = Max;<n{lz|}, we have
ID™ £1(0)(zg)] 1D 'g(0)(zg' )| |z] < ID™1g(0)(z5 M| Iz
m! (m=-1D!  |lzll, — (m=-1!  |lzll; —
foralll =1,2,...,n, so that % < 1. Moreover, we have
IDkPT1g(0)(zg PN |21 < ID™1g(0)(zg M| Iz ’ 3
Gp+m—1r  all, = ( (m—1), ||z||t) ®

forall k € Ny and z, € 0Bn.
On the other hand, if z, € 6Bfn then, foralll =1, 2, ..., n, we also have

IDkfz(O)(Z§)| |DF=1g(0)(zE™)] |zi|
k! B k-1 izl,
Combining (3) and (4), we find that

DA i)z (1P ’

(kp + m)! - m! ’

where z, € 5Btm, l1=1,2,..,nand k = 1,2, ..., n; that is,
2
1527 £ (0)(zg P ™o o1 (1P OEDe
(kp + m)! - m!

holds for z, € 6Bg7 and all k > 0.
Because z = z||z||, by routine calculations, we obtain that

for all k € N. (4)

o ||D2kp+mf(0)(z2kp+m)“°o o0 ||D2kp+mf(0)(z(2)kp+m)“oo rpim
“ kp + m)! = (2kp + m)! I=l;
D™ f (0)(Zm)||oo 2%k
< [1 ( Z [
2 2
Azl il am [ I1P" O]l
= zlf?" — —
1— |z '
for all ||z||, = r € [0,1). This completes the proof. O

For holomorphic mappings from Ben,1 <t < o0,t0 D, using the method of
proof as in Lemma 2.1, we can easily derive the following, so we omit its proof.
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Lemma 2.2. Supposethatm € No, p € NJO <m < p,and1l <t < o0. If
fe H(Bf:I, D) and

_ Do) | S DFPH £(0)(Z P+
=

1@ AT kptmy
then
S [P O]l T, (100G ’
P (ka + m)! - 1— ||Z||fp t m!

holds for all ||z||; = r € [0, 1).

3. Bohr inequality for holomorphic mappings with lacunary
series

In this section, we will use the Fréchet derivative to extend the Bohr inequal-
ity to higher dimensional spaces.

3.1. Extension of Theorem B to the holomorphic mappings from By to
D.

o DFf(0)(z")

Theorem 3.1. Suppose that f € H(Bx,ﬁ), f(@) =2 o and p > 0.
Then '
>, |DFF0)(Z")
FOIP+ 2, |k—,‘ (5)
k=1 :
1 21\ (1D
+ + > =1
L+1fOf 1=zl ) = k!
— _ 1-1/(0)P :
holds for all ||z|| = r < r), wherer, = ———————_ The number r, is best
2—-|fO1=IfO)1?
possible.
Moreover, when p = 1, (5) holds for ||z|| < z+|]1’(o)|’ and for p = 2, it holds for
Izl < 1/2.

Proof. Fixz € By \{0} and set z, = ”Z—” For A € D, we define h(1) = f(1z).
z
Then h € H(D, D) and

h(A) = by + ), bak,
k=1
where
0 0 k k
D°f(0)(z,) ond be — D*f(0)(z;) k>

by = f(0) = ——— and b = ——

1).
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By Theorem B, we know that

LT
— 12l

3 1 1A]
bolP + ), |b /1k+< + ) b 21412 < |bg|P + (1 —
1bolP + 24 1ol A1 +{ 1_WZ|,¢||| Ibol? +(

Set A = ||z|| = r and note that z = zy||z|| and |by| = | f(0)| < 1. Then the last
relation gives

k k [+ k k 2
|f<o>|P+2| T )‘+( N )Z('D )z >|>
k=1

1+ 17O 1zl k!
kF0)(z)
= 1fO) + |k—||| I*
k 1
1 1zl IDkf(O)( ")I
+ Py [Elles
1+ [fO 11—zl ) i3

= 1bol? + 3 Iaeliaf+ (e )i b P11

=1 T+ibl " T-121) &
< IfOIP+A-1f0)

which is less than or equal to 1 provided ||z]| = r < rj,. Thus, (5) holds for

||lzl]| =r <r,, wherer, = __=vor
i 2-|f P~ F O
Finally, we prove that the inequality (5) does not hold true for x € ryBy,

where ry € (rp,1). We know that there exists a ¢ € (0,1) such that cry > r),.
Now, we consider a function f; on By defined by

f1(0) = Ll(cﬁ”T(lxl)),

where L(z) = (a — z)/(1 —az),z € D, a € [0,1), 3, is a bounded linear

functional on X with ¢,(v) = ||v|| and ||, || = 1. Choose x = ryv, v € 0By
and we obtain that
=, D £,(0)(xk) 1 HREYLIROCONN
fop+ 3 PO ) DS O0)]
= k! L+ [f1(0)] 1=l k!

o0
>aP + Z(l - az)ak‘lckr’g + (
k=1

) Z(l 2)2a2k—202kr3k

l1+a 1—cr0

Cr,
=a? +(1-a®)—>—>1
1—cry

and the proof is complete. [l

In the following theorem, we determine the Bohr inequality for holomorphic
functions, which fix the origin, with a lacunary series.
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Theorem 3.2. Supposethatp e N. If f € H(By, D) and

_ 5 DPF(0)(EP)
f(Z)_kZ=:1 (kp)t
Then
oo }kaf(())(zkp)1 1 ) o W 5
2 Gt P EA T T-]ap kzz (kp)! <1 (©
1D fO)zP)]

holds for all 0 < ||z|| = r < F), where A =
in (0,1) of G(r) = 0, where

o and 7, is the unique root
p)!

G(r) = (P +1)(5rP — 3)
and hence, F,, = {/3/5. For each p, the number 7, is best possible.
Proof. As with the proof of Theorem 3.1, we fix z € By \{0} and let z, =

For A € D, define h(4) = f(4z,). Then h € H(D, ID) and

00 k kp
iy = 3, 200D

= (kp)!

APk = Zbk(/lp)k D p(aP),

DkP £(0)(ztP)

oy P E H(D, D) with

where b, =

() = D bk =1 )] bW = 21D Bak,
k=1 k=1 k=0

and By = by,. Clearly, p(1P) = Z/?:o B, (AP)¥ € H(D, D). Then, according to
Theorem B, we have

- 1 |4|P |4[P
B /1P"+< +1 ) Bi|2|AP %k < |Bo|+(1— BZ)
kzzz)l Kl 14P] 15 By A ZI Kl ?1AP] [Bo|+(1—|By| A

which implies that

00 k
DO JOE T |1 e
k=0 ((k +1)p)! 14 IDPf(f))zé’I 1—|AlP
p:

2kp< _ 2 A
G| < 1Bl + (= 1B

e

2
k
[ DR ()2 7)) P
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Multiplying by |1|P on both sides of the above inequality yields

) (k+1)p (k+1)p 5 5
IDYFVP £(0)(zy I AP |A[2P LA
i=o ((k + 1)p)! Al + 2Oz, T AP
(p)!
2
(k+1)p
= [ ID*HOPF0)(z, ) 1120
> c [1]12kP < |By| |A1P + (1 — |By|?) i
k=1 ((k+1)p)! 1—|A|P
Taking |1| = ||z||, since z = z||z||, shows that
o | DEDP F(0)(z+DP)) 1 1
+
k=0 ((k + 1)p)! ||Z||p + |DP £(0)zP| 1— ||Z||p
p!
2
o [ IDEVPf0) ("D 1212
! , < Byl llzl|P + (1 = |Bo|*) —==-
k=1 ((k+1)p)! 1—||z||P

It is already obtained in [24, Theorem 3.2] that

Bl 2117 + 1 — 1By )
0 - 0 T s =
Tz

forall 0 < ||z|| = r < 7, = /3/5.

Finally, we prove that inequality (6) does not hold true for x € r,By, where
ro € (7p, 1). We know that there exists a ¢ € (0, 1) such that cry > 7,. Now, we
consider a function f on By defined by

cihy(X)
(x) =L <—>’
T =L
where
L (z)=zp<ﬂ> z€Danda €[0,1)
2 1—azpP)’ T
¥, is a bounded linear functional on X with ,(v) = ||v]|| and ||¢,]] = 1.

Choosing x = ryv, where v € dBy, we get

A [DPf g)')(xp)l _ a(ery)?
and, fork > 2,
|D*P f(0)(x*P)|

Wp) ak=2(1 — a®)(cry)kP.
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Thus, we have

N OGO I
| = ||x||

$ (1D21OG) ’
(kp)!

& p) X+ A" &
(cro)®P
= D 1 — 2 -
alcr))P+(1—a )1 ~alero)?

_o\2 4
+< 1 . 1rp)(1 a?)*(cro)*?

rd+aergp  1-ry ) (1 —(cro)P)

3
(cro)?P N < 1+ a(cry)P ) 1- 02)204p70p

= a(cro)? + (1 —a?)

1 —a(cry)P (1 + acP)(1 — rg) (1 —(cro)?)
Since - 1 1
a
Traer =1 ™ G0 2 T aery)w)’
we have
0 [ 2
3 DX F(0)(x*P)| .\ 1,1 5 |DKP £(0)(x*P)|
P (kp)! Ix|IP+A  1—|x]|P ) 2 (kp)!
— a2 (cro)®P 1-a\@- az)c4pr3p
= el 0= O e (1 = ) (@ —alery?)
(1= a®)(erp)® [, Pro-a)
> alery)? + rp— ll + 1o C2pl"§)
> a(ergp + LT ENCer0? (1 —ac?ry )
1-— aczpréJ 1-— czprg
PP

0

2p,.P _ 42
> acPry +(1 a)l—CZPI"p.
0

In the proof of [24, Theorem 3.2], it has been proved that

(x)*?
p -
AP + (1= > 1,
for x > 7p,. This completes the proof of the sharpness of the constant 7, O

The case p = 1 in Theorem 3.2, gives the following corollary.
— o Dk k
Corollary 3.3. Let f € H(Bx, D) and f(z) = %, _, m. Then
i IDX£(0)(z")] N 1 1 |Dk f QRN
P k! Izl + D7 O@] 1k k! b
holds for all 0 < ||z|| = r < 3/5. The constant 3/5 is bestpossible.
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3.2. Bohr type inequality for holomorphic functions with lacunary se-
ries from Ber to D". The proof of the following theorem uses the method of
proof of [24, Theorem 3.5], which will be also used to prove Theorems 4.1 and
4.4, respectively.

Theorem 3.4. Suppose thatm, p € N, 1 < m < p,and1l <t < oo. Let
—n
f EH(Bgf,[D ) and

L DMFO)E™) | & Dkm (o) (Zketm)
1@ = 250) = — 4 X
whereg € H (Bg:l, C). Then
00 ’1D(2k—1)p+mf(0)(z(2k—1)p+m)||
= ((2k—1)p + m)!
2" & (1D @@ ™l
L= Jlzlli? i< (kp +m)! )

holds forall ||z||; = r < rp ,, wherer,, ,, is the unique root in (0, 1) of the equation
rPm 4 y20 — 1 = 0. For each p and m, the number r'p,m 1S best possible.

(7)

Proof. Fix z € B,»\{0}, and set z, = —~_Thenz, e 0Bgn. Let j be such that

llzll;

1zj| = ||z]|lc = max;<<,{|Z|}. Because f(z) = zg(z), simple calculations yield
DEf;(0)(zE)  Dg(0)Ek) z;
= forallk € N.
k! (k=1 |zl

Let h;(1) = f;(1z,) for A € D. Then h; € H(D, D) and

oo & D o)E™
hj(/l) = 1 _T+k:1 p +m) ARP
_am _Dm—lg(o)(z(r)n—l) zj o0 ka+m—1g(0)(zgp+m—1) zj -
| m-Dr El & Gprm-Dr el

boA™ + D b Akptm,

k=1
where
_ DM leOET D*Pm=1g(0)(zgP*" Y 2 .
‘ m-1! izl « (kp+m—-10 |z, -
By equation (1) in Lemma D, and
P S p _ AP <
I il b /‘l(Zk Dp — " b ZAZkP,
1_M|2pk2=%|k|| | l_wzpkgolm |
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we have
3 @k-1p , AP 2kp < 4P
k§|b2k_1| AP + - 2 Z| k2121 e ®
As |zj| = ||z]| = max;<<nilz |}, substituting the expression of by (k > 0) into
(8), we have
o |1y(2k—1)p+m—1 (2k=1)p+m—1 )
S0 g(0)(z 1121 ey
] (2k—Dp+m—1)! Izl
0 kp+m—1 kp+m—1 ?
|A|P |D 8(0)(z, | 1z Ak
I VAR (kp+m—1)! Izl
|4]1P
T 1-—|A)%P ©)
forallk € Ngand z, € aBg:l.
Moreover, if z, € 6Bfln, we also have
|D¥ f1(0)(z9)| _ ID¥"1g(0)(zf ™M) |z (10)
k! (k=1 izl
DF=1g(0)(zF V)] |z;
sl g(0)(z, )II,I’ —12n
(k —1)! 1zl
Combining (9) and (10), for z, € 635;1, we have
k—1p+m (2k-1)p+m
S0 RO AT )
P (2k - 1)p +m)!
2
o k
a1r_ 5 [1P S O DI g 1A
1-|A1?P & (kp + m)! 1—|A|2%P

for all k € Ny and where [, = 1,2,...,nand j, = 1,2,...,n
Multiplying both sides of (11) by |4|™ and setting |A| = ||z||; so that z =
Zo||z]|;, we have

>

= (2k —1)p + m)! 1—||z)17P i
[

|D(2k 1)p+mf (0)(Z(Zk 1)p+m)| . Hzllf—m 0 |ka+mfjk(0)(zkp+m)| 2
(kp + m)!

S ——
1—|lzll;
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forz € B_f;’l, and [, =1,2,...,nand j, =1,2,...,n. In other words,

2k—1 2k—1 - 2
o [PETOGEETI L e S (IID""”"f(O)(Z"P*m)IIoo)

=1 ((2k —1)p + m)! 1—1z)17? <o (kp + m)!
l|z|[P"
- 2
1—||z)*

which is less than or equal to 1 provided rP*™ + r2P — 1 < 0, where r = ||z||,.
Finally, the desired conclusion (7) follows for ||z||; = r < 1 ,,, Where r,, ,, is as
in the statement.

To prove the sharpness, we just consider the functions g and f = zg €

—n
H (Bf:l, D ) given by

p
-z
_ m-1 1
g(Z) - Z1 D
1-— az;
and
/
a—zt la—zf 1a—zfJ
flz)= zf‘ p,zzzm_ o e , ZpZ 5|
l—az1 1—az1 l—az1

where ’ represent the transpose of the vector, z = (z4, 2, ..., 2,)’ and a € [0, 1).
In this case, let z = (z,,0,...,0)’, which implies that ||z|; = |z;] = r, and
according to the definition of Fréchet derivative, we have

d
DfO)2) = ( {;IZ(O)) 210220020
b Ji<lj<n

Because z = (z;,0,...,0)', we have Df(0)(z) = (aglz(o)zl, o,.., 0), and there-
1
fore,
af,(0)
Ips@) = |21z |
2

With the help of the proof of [24, Theorem 3.5], we obtain

kp+m
_|gmao 2

az’fp”” (kp + m)!

||ka+mf(0)(zkp+m)”°o
(kp + m)!

fork > 0.
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Therefore, we compute that
00 "D(2k—1)p+mf(0)(z(2k—1)p+m)||
=1 (2k-1)p+m)!

2P & (ke FO)(P ), |
1—|zI1”? =0 (kp + m)!

rp—m

a2r2m

o0
— Z(l _ az)az(k—l)r(zk—l)p+m +
= 1—r2p

rP~

+

m o0

1—a?)? q2(k=1),.2kp+2m
—5 2 (
1—r4P =1

= (1 — a?)rptm [(1 —r?P) —(1—a??)+(1 - az)rzpl pp+m

(1 —r?pP)(1 — a?r?p) 1—r2p
pp+m

1—r2p’

which is clearly bigger than 1 whenever r > r, ,,,. This completes the proof. []

Using the method of proof Theorems 3.1 and 3.4, we may verify the proof of
the following, and so we omit its proof.

Theorem 3.5. Suppose thatm € No, p € N0 <m < p,and1 <t < o0. If
fe H(Bf;l, D) and

(2) = DMf(0)(z™)  — DFPHMf(0)(ZkPm)
J@&=—0 4 (kp + m)!

’

then
00 ’D(zk—1)p+mf(0)(z(2k—l)p+m)|

~ (Ck — Dp + m)!

|z||P~™ i (| Dkp+m f(O)(sz+m)|)2
1—|z)I”? =0 (kp +m)!

(12)

<1

holds for all ||z||; = r < r,m,, Wherer, ,, is the same as in Theorem 3.4. The
constant r,, , is best possible for each p and m.

4. Bohr inequality for holomorphic mappings with alternating
series

In this section, we will use the Fréchet derivative to extend the Bohr in-
equality with alternating series to the higher-dimensional space, and obtain
the higher-dimensional generalizations of Theorem C.
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Theorem 4.1. Suppose thatm, p € N, pisodd,1 <m < p,and1 <t < oco0. If
—n
fe H(Bg;l, D )and

D"f(0)(2™) <~ DFPTF(0)(2FPH™)
|

f(2) = zg(2) = 2 Gp+ m)]

whereg € H (Bg:l, C), then

“ka+mf(0)(zkp+m)“oo

= _1\kp+m
k§=)1( Dk G0 T (13)
2P & ||ka+mf(0)(zkp+m)lloo)2
—1)m+p <1
D 1— ||z k%( (kp + m)! -

holds for all ||z||; = r < r,m,, Wherer, ,, is the same as in Theorem 3.4. The
constant ry, , is best possible for each p and m.

Proof. (i) Assume first that p is odd and m is even. Then (—1)"*P = —1, and

||ka+mf(0)(zkp+m)||oo

S _1)kptm

1<Z=:1( R (kp + m)! (14)
_ i “Dzkp+mf(0)(22kp+m)||oo i ’*D(Zk_l)p-l—mf(O)(z(Zk—l)PHn)||°o
= k=1 (ka + m)' = ((zk — 1)p n m)'

Now, to find the lower bound, by Theorem 3.4 and (14), we see that
[pEe X,
(kp + m)!
Izl " & (IID"P””f(O)(sz””)IIoo)Z
1— |27 =0 (kp + m)!
o0 ||D(2k—1)p+mf(o)(z(zk—1)p+m)”oo

i(_l)kpwn

k=1

>—
k=1

Il ™ & (1D @@ ™l \
1=zl i (kp +m)t )

2k —=1p +m)!

holds for all ||z||, = r < r,,,, Where rj, ,, is the unique root in (0,1) of the
equation rP*" + 2 — 1 = 0.
To find the upper bound, according to Lemma 2.1 and the method of proof

of Lemma 2.1, we see that

ID™ f(0)(Z5 loo <1
m!
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and
00 ||ka+mf(0)(zkp+m)||
_1)kp+m o
g:jl( 1) o) (15)
I (||ka+'"f<o><zkp+m)||m>2
1— 1201 i=o (kp +m)!

<i HDzkp+mf(0)(Zka+m)||oo

=] (2kp + m)!
ol HZ”M_(HDMf(oxz’")noo)z
T m!

2 2

[ (IIDmf(O)(z(T)IIoo)
2 |

1—|lall,? "

2p+m
[E1lrsd rptm

= 2p = _ 2p’
1—|lz)” 1=

p+m
which is less than or equal to 1 whenever 1r—2 < 1, that is, whenever rP*” +

r?’ — 1 < 0. Thus, combining with the Valucre of the upper and lower bounds,
(13) holds for all ||z||; = r < rp ,, Where 1, is the unique root in (0, 1) of the
equation rP*" + 2 —1 = 0.

To prove the sharpness, we just consider the functions g(z) = z

fe H(Bba?,ﬁn) given by

m+p—1

1 , and

m+ m+p—1 m+p—1
f(2)=280z)=(""P, 22" P Lz, 2l T,
1 1 1

where z = (z;, 25, ..., 2,) .
Letz = (z;,0,...,0)". Then ||z||, = |z;| = r. In this case, just like the method
of proof of Theorem 3.4, we have

kp+m
R RONEN

az’lfPer (kp + m)!

‘|ka+mf(0)(zkp+m)||oo

forall k > 0.

(kp + m)!

Since f(z) = z;n+p , we have,

Hka+mf(0)(ka+m)“oo
(kp + m)! -
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(when k # 1), and m + p is odd. Therefore,

||ka+mf(0)(zkp+m)||oo

Z (_1)kp+m
k=1

(kp + m)!
_ 2
sy P S (||DkP+V"f(0)(sz+M>||m)
1—lzl1? 2o (kp +m)!
— —pmtp _ rb” r2(p+m) — rprm
1—r2p 1—r2p’

which shows that the left hand of (13) is bigger than 1 whenever r > r, ,,,. This
completes the proof of Case (i).

(ii) Next, suppose that both p and m are odd. Then we see that (—=1)"*?P =1
and

i( 1)kp+m “ka+mf(0)(zkp+m)‘|oo ~ 0 ||D2kp+mf(0)(zzkp+m)”w
k=1 (kp + m)! - & kp + m)!
L S [P o)
k=1 (2k = 1)p + m)!

Therefore, combined with Lemma 2.1 and Theorem 3.4, the rest of the proof
is similar to the first part above, except that the corresponding formula has the
opposite sign. This completes the proof. OJ

In the following case, since f((0,0,...,0)") = (0,0,...,0)" g((0,0,...,0)) =
(0,0,...,0), Corollary 4.2 is an extension of Theorem B and Corollary 3.3.

Corollary 4.2. Let f € H (Bg:l,ﬁn) and

© k k
f@) =252 = y, PLOE),

k=1
where g € H(B¢r,C), and the subscript j is chosen such that |z;| = ||z]l =
max,q<,{lz|}. Then
& ||Dk F(0)(Z* oo 1 1
D ID*f O N (16)
k=1 k! lzll: +IDfO)2Nle 1= Ilzll;

5 (IO
= k! -

holds for all 0 < ||z||; = r < 3/5. This result is sharp.
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Proof. Fixz € Bf:l\{O}, and set z, = ﬁ S aB,g:z. Because f(z) = zg(z),
through simple calculations, we have l
DfI(0)(zK)  DFg0)(zY)
k! k=Dr =,

foralll =1,2,..,nand k € N. Since |z;| = ||z|| = max;<,{|z}, it follows
that

|D £1(0)(z8)] - |DK=1g(0)(zE )] |z B BEROES]
k! = k=1 a2l k!
foralll =1,2,..,nand k € N,. Therefore,
ID*f(0)(z)lle  ID*f;(0)(20)]

T = e for all k € N,,.

Multiplying both sides of the above equation by ||z¥||, gives

k k “fi ‘
D5 O e _ DT/ O0EDN ke e

k! k!
Therefore,
§||Dkf<oxzk>||oo+ ] L\ (PO ’
& ki Izl + IDFO@)l  1-1I2ll ) & ki
D"fJ(O)(Z")I 1 1 )°° IDE£(0)Z)] |’
—Z + + .
Izl + IDf;0@)]  1-12ll ) &, Kl

Since f; € H (Bg:l,ﬁ), by Corollary 3.3, we find that (16) holds for all 0 <
lzll; =1 <3/5.
To prove the sharpness, we just consider the function g(z) =

H (Bf:l, [D ) given by

/

@) = 2g(z) = (z1

-z a—z a—zl>
» 2 A e
l—az;” “1—-az 1—-az

In this case, let z = (2,0, ..., 0)’. The rest of the proof is similar as in Theorem

3.4. O

Corollary 4.3. Supposethatm peN,pisodd 1 <m<pandl <t < .
Letf e H (Bgn [D ) be given by

D"f(0)(z™) < DL f(0)(ZP)
= (kp + m)!

f(2) =z8(z) =
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whereg € H (Bg:l, C). Then

2p—m
1 12ll;

2l +T 1 -z

Ay, () + (D"

<1

<3 (||DkP+Mf<o><sz+M)||m )2

=0 (kp + m)!

holds for 0 < ||z||; = r < R, where

[DEP+™ £(0)(25PH™)]| o re [ID™ f(0)(z™)|| oo
(kp + m)! ’ - m!

A, ()= Y (=D :
k=1

and R, ,, is the unique root in (0,1) of the equation r*P*™ 4+ 2r? —1 = 0. For
each p, m, the constant Ep,m is best possible.

Proof. First, we use the methods of proofs of Lemma 2.1 and Theorem 3.4 to
obtain the upper bounds of odd and even terms respectively, and then use (2)
of Lemma D. Finally, one can combine the methods of proofs Corollary 4.2 and
Theorem 4.1 to get quickly the proof of Corollary 4.3, so we skip the details. ]

Remark 1. When f € H(B,g;l,ﬁ), m,p € Ny, pisodd, 0 < m < p, and
1 £t £ oo, then the same conclusion as Corollary 4.3 can be obtained. In the

caseof m = 0, we have ||z||, =r <1/ 2\'/5 and thus this case can be regarded as
an extension of Theorem 1.2 in [3].

Combining Lemma 2.2 and Theorem 3.5, and using the method of proof of
Theorem 4.1, we can easily obtain the proof of the following theorem.

Theorem 4.4. Supposethatm € Ny, p € N, pisodd,0 < m < pand1 <t < oo.
If f € H(B¢r, D) and

_D"f(0)(z™) | < DFPHR ()Pt
=

1@ A7 kp+m)
then
00 ke |ka+mf(0)(zkp+m)|
k;( Dt (kp + m)!
||z||f)_m o0 |ka+mf(o)(zkp+m)| )2
—1)m+p <1
FEVTT 12117 1;)( (kp +m)! -

holds for all ||z||; = r < rp ,, Wherer, , is the same as in Theorem 3.4. For each
p and m the number r, , is best possible.

Remark 2. When n = 1 (thatis f € H(D, D)), through comparison, it can
be easily found that the results of Theorems 4.1 and 4.4 are the same as that of
Theorem C.
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