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Overfare of harmonic functions on
Riemann surfaces
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Abstract. This is the first in a series of four papers developing a scattering
theory for harmonic functions/one-forms onRiemann surfaces. In this paper
we prove the following. Let R be a compact Riemann surface split into two
surfaces Σ1 and Σ2 by a complex of quasicircles. Given a harmonic function
with 𝐿2 derivatives on one of the pieces Σ1, there is a unique harmonic func-
tion with 𝐿2 derivatives on the other piece Σ2 with the same boundary val-
ues as the original function in a certain conformally invariant non-tangential
sense. We call the new harmonic function the overfare of the original func-
tion. This overfaremap is well-defined and boundedwith respect to Dirichlet
semi-norm provided that Σ1 is connected. For Weil-Petersson quasicircles, it
is bounded with respect to the Sobolev𝐻1-norm.
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1. Introduction
1.1. Statement of results and literature.
This paper is the first part of a longer work [29] establishing a scattering the-
ory of one-forms on Riemann surfaces, which we have divided into four parts.
A non-technical exposition of some aspects of this scattering theory can be
found in [33]. The scattering process starts by dividing a Riemann surface into
two pieces (which themselves may not be connected) by a collection of Jordan
curves. Alternatively, we can think of a compact surface obtained by sewing
together several surfaces, and the Jordan curves are the seams. Then one con-
siders functions or one-formswhich are separately harmonic on the pieces, and
share boundary values on the seams. The function (or one-form) on one side
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of the surface is obtained from the function (or one-form) on the other side us-
ing a mapping which we refer to as "overfare", which is the backbone of this
particular kind of scattering theory. In order that the results be applicable to
Teichmüller theory and conformal field theory, it is necessary that these seams
can be quasicircles. Furthermore, much evidence exists that quasicircles are
analytically natural for the scattering theory [28].
This first paper develops the analytic theory of harmonic functions which

share boundary values on the seams. In the second paper [30], we develop
the theory of shared boundary values for one-forms, dealing with analytic and
cohomological issues which arise. These results are in turn applied in two pa-
pers developing the global analysis and geometry of the scattering process in
terms of integral operators of Schiffer [31, 32]. We prove index theorems for
these operators and it is shown that this scattering process is unitary. Also, deep
connections with both classical period matrices in geometry, and the Plemelj-
Sokhotski jump formula in function theory are illustrated.
Returning to the paper at hand, let R be a Riemann surface split into two

pieces Σ1 and Σ2 by a Jordan curve or complex of curves. Given a harmonic
function with 𝐿2 derivatives on one of the pieces Σ1 (a Dirichlet harmonic func-
tion), we find its boundary values. The “overfare” is the harmonic function on
the other piece Σ2 with the same boundary values as the original function. This
is well-defined and bounded provided that the curves in the complex are qua-
sicircles. Because the seams are quasicircles, which in general can be highly
irregular, there are many obstacles to overcome, even in the formulation of the
statement. Nevertheless, in the end one obtains a clear and clean picture.
The main results are that the overfare process is well-defined (Theorem

3.11) and is bounded with respect to the Dirichlet semi-norm (Theorem 3.43)
— that is, with respect to the 𝐿2 norm on derivatives. We also establish bound-
edness with control of constants in the case of Weil-Petersson class quasicircles
(Theorem 3.42).
The results of this paper extend those in the case of the plane and Riemann

surfaces split by a single curve. These results have had applications to approxi-
mation theory in the plane [24] and on Riemann surfaces [35], conformal field
theory [22, 21], and global analysis of integral operators on Riemann surfaces
[27]. For a survey in the plane see [28].
For further applications to Teichmüller theory and conformal field theory, it

was necessary to extend the overfare results to more general configurations of
sewn surfaces which arise there – one requires for example surfaces with many
boundary curves and disks sewn on; self-sewn surfaces; and surfaces sewn
along many curves. The purpose of this paper is to prove overfare results suffi-
cient to apply to these general cases. In [31, 32], the results of the present paper
together with [30] are applied to derive a unitary scattering theory; character-
ize solutions to the holomorphic boundary value problems for one-forms; gen-
eralize the Grunsky inequalities to collections of maps into compact Riemann
surfaces of genus 𝑔; and derive a generalized periodmap for bordered Riemann
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surfaces which unifies the classical period map for compact surfaces with the
Kirillov–Yuri’ev–Nag–Sullivan period mapping of universal Teichmüller space.
The results of these sequels to this paper have also been used in approximation
theory of holomorphic one-forms on Riemann surfaces [34].

The method of proof involves a surgery technique, the core of which is that
a certain “bounce operator” is bounded (Theorem 3.24). This operator takes
harmonic functions on collars of boundary curves of a surface, to harmonic
functions on the entire surface with the same boundary values. This allows
us to use the boundedness of overfare in the plane to prove boundedness on
Riemann surfaces through “cutting and pasting”. Indeed this technique is itself
of interest and should have further applications.
To obtain these results, there are two analytic problems to be resolved. The

first is to define the boundary values in preparation for overfare, and the second
is to show the existence and continuous dependence of the overfare. The first
problem is in a certain sense independent of the boundary regularity, while the
second problem is more delicate and sensitive to the regularity of the curve.
In defining the boundary values, the nature of the approach to the bound-

ary can be defined either extrinsically in terms of the geometry of the ambient
space containing the curve, or in terms of the intrinsic geometry of the region
on which the function is defined. For example, since harmonic functions with
𝐿2 derivatives are in the Sobolev space 𝐻1 for a wide class of curves, one could
consider the Sobolev trace to the boundary; in this case, one would need to take
into account the regularity of the boundary for this to be defined. The possibil-
ity of dealing with boundaries that may not be rectifiable would add additional
difficulties that brings one into the realm of geometric measure theory see [13],
[14]. Instead, our approach to boundary values proceeds intrinsically, viewing
the boundary as the ideal boundary of Σ1, which does not depend on the ge-
ometry of the boundary in R. Indeed, it can be regarded as an analytic Jordan
curve in the double of Σ1.
Our intrinsic approach to boundary values in some sense originates with H.

Osborn [17], who considered the boundary values of harmonic Dirichlet func-
tions in planar domains Σ1 along orthogonal trajectories of Green’s function of
that domain. This is conformally invariant and hence intrinsic, and can be for-
mulated in terms of the ideal boundary. We improve this “radial” approach by
defining a kind of conformally non-tangential boundary value (referred to as
CNT boundary values), in which non-tangential cones are defined in terms of
“collar charts” taking collar neighbourhoods of the boundary to annuli. Then,
a classical theorem of A. Beurling applies to show that the boundary values
exist except on a Borel set of logarithmic capacity zero in the circle under the
chart (we call this a null set). We show that this notion of boundary value is
independent of the choice of collar chart; this is essentially because the angle
of approach to the ideal boundary is a well-defined conformal invariant. Thus
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we show that the boundary values are defined not just along orthogonal trajec-
tories of Green’s function but along any non-tangentially approaching curve.
The independence of the boundary values on the choice of collar chart is a key
tool in the application of the cutting and sewing approach to boundary value
problems which we have developed in this and other papers [26], [27].

The overfare process, on the other hand, is extrinsic: the regularity of the
boundary curve is a crucial issue. We work with quasicircles; there are several
reasons for this choice. The first is geometric: at a foundational level, Teich-
müller theory of bordered surfaces involves viewing these surfaces as subsets
of compact surfaces bounded by quasicircles. Classically, this is seen in the
quasi-Fuschsian model of Teichmüller space [15]; for example, the universal
Teichmüller space can be viewed as the set of (normalized) planar domains
bounded by quasicircles. The first author’s work with D. Radnell [19], [20] also
shows that the Teichmüller space can be modelled via a set of punctured com-
pact surfaces capped by domains bounded by quasicircles, and that this leads
to a natural fibre structure on Teichmüller space. This model and fibre struc-
ture has its roots in ideas of conformal field theory. Thus, in this work, we
choose quasicircles in order to have sufficient generality in order to provide the
groundwork for applying our results to Teichmüller theory and conformal field
theory.
The second reason for choosing quasicircles is analytic. The authors showed

in [25] that in the Riemann sphere, the overfare exists and is bounded precisely
for quasicircles. This follows from a theoremofNag-Sullivan/Vodopy’anov that
shows that quasisymmetries are precisely the bounded composition operators
on the homogeneous Sobolev space 𝐻̇1∕2 on the circle. As we will see in the
third paper, this also relates to several characterizations of quasicircles in terms
of the Cauchy-type and Schiffer integral operators which play the main role in
this paper. A survey of such results in the Riemann sphere can be found in [28].

It should also be noted that the Sobolev theory techniques by themselves are
not sufficient in dealing with all aspects of the boundary value problems that
are involved in this paper, since Sobolev spaces involve functions defined up
to sets of Lebesgue measure zero. In fact, one needs to establish that bound-
ary values exist up to a set which maps under a collar chart to a Borel set of
logarithmic capacity zero in the unit circle. We call such sets null sets. By our
earlier results, for quasicircles, a set which is null with respect to a collar chart
on one side of the curve must be null with respect to a collar chart on the other
side. This fact is central to establishing a well-defined overfare of harmonic
functions. However, the claim fails if in the discussion above one replaces ca-
pacity zero with Lebesgue measure zero on the circles. Thus Sobolev theory on
its own is not sufficient.
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As described above, in this paper we extend our previous overfare results
to Riemann surfaces divided by many curves, rather than just a single curve.
There is an obstacle to doing so. If the region Σ2 is bounded by several curves,
but Σ1 is not connected, then the Dirichlet seminorm is not controlled by the
Dirichlet norm of the input. This is because one may add different constants
to different connected components of Σ1, driving up the seminorm of the over-
fare, while the Dirichlet norm on the originating surface is unchanged. If the
originating surface is connected, this issue does not arise, and we are able to
prove boundedness of overfare with respect to the Dirichlet seminorm.
One can also obtain boundedness with respect to a genuine norm if more

regularity is assumed. We introduce a conformally invariant Sobolev space
(Definition 3.20) with a norm in which, rather than adding the 𝐿2 norm of the
function in the case of classical Sobolev spaces, we add an integral of the func-
tion around a boundary curve. With no connectivity assumptions, we obtain
boundedness of overfare with respect to this conformally invariant norm, for
curveswith greater regularity. It suffices that the quasicircles are so-calledWeil-
Petersson quasicircles. For both of these results, in this paper we use a more
flexible method of proof than in [26], which makes systematic use of bounded-
ness of the so-called bounce operator (see Definition 3.23).

Acknowledgements. The first author was partially supported by the Na-
tional Sciences and Engineering Research Council of Canada. The second au-
thor is grateful to Andreas Strömbergsson for partial financial support through
a grant from Knut and Alice Wallenberg Foundation. Finally we would like to
thank the referee for suggestions which improved the presentation of the pa-
per.

1.2. Outline of the paper. In Section 2 we gather the preliminary material
about Riemann surfaces, their boundaries, and spaces of harmonic and holo-
morphic functions and forms. Section 3 defines the conformally non-tangential
boundary values of Dirichlet bounded harmonic functions, and proves the exis-
tence andboundedness of the overfaremap. Conformally non-tangential bound-
ary values are defined in Subsection 3.2. The so-called anchor lemmas (certain
boundary integrals are independent of the collar charts) can be found as Lem-
mas 3.14 and 3.15. The boundedness of the "bounce operator" is dealt with in
Subsection 3.5. The boundedness of composition operators associated to WP-
class quasisymmetries in Sobolev𝐻1∕2 space of the unit circle, is proven in Sub-
section 3.6. Finally the boundedness of the the overfare operator for general
quasicircles in proven in Subsection 3.6 as well.

2. Riemann surfaces, harmonic measures and Green’s function
2.1. About this section. This section gathers the definitions and basic results
used throughout the paper. This includes Dirichlet spaces of functions and
Bergman spaces of forms; Riemann surfaces, their boundaries and specialized
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charts called collar charts; sewing; Green’s functions on compact surfaces and
surfaceswith boundary; Sobolev spaces; and harmonicmeasures and boundary
period matrices.

2.2. Bordered surfaces. We briefly recall the definition of a bordered surface
in order to remove any ambiguity. See for example [1] for a complete treatment.

In what follows we denote by 𝔸𝑎,𝑏 the annulus {𝑧 ∶ 𝑎 < |𝑧| < 𝑏}. Let ℂ
denote the complex plane, and ℂ̄ denote the Riemann sphereℂ∪ {∞}. Let𝔻 =
{𝑧 ∈ ℂ ∶ |𝑧| < 1} denote the open unit disk, and let ℍ = {𝑧 ∈ ℂ ∶ Im 𝑧 > 0}
denote the upper half plane. Let cl (ℍ) denote its closure. In general we will
let cl denote closure throughout. Let 𝕊1 = {𝑧 ∈ ℂ ∶ |𝑧| = 1} denote the unit
circle.

Definition 2.1. We say that a connected Hausdorff topological space Σ̂ is a
bordered Riemann surface if there is an atlas of charts 𝜙 ∶ 𝑈 → cl (ℍ) with the
following properties.

(1) Each chart is a local homeomorphismwith respect to the relative topol-
ogy;

(2) Every point in Σ̂ is contained in the domain of some chart;
(3) Given any pair of charts 𝜙𝑘 ∶ 𝑈𝑘 → cl (ℍ), 𝑘 = 1, 2, if 𝑈1 ∩ 𝑈2 is

non-empty, then 𝜙1◦𝜙−12 is a biholomorphism on 𝑈1 ∩ 𝑈2 ∩ ℍ.

This defines a distinction between interior and border points (see e.g. [1, pp
23–24]). That is, we say 𝑝 is on the border if there is a chart in the atlas such
that 𝜙(𝑝) is on the real axis, and 𝑝 is in the interior if there a chart mapping 𝑝
to a point inℍ. In either case, if the claim holds for one chart, it holds for all of
them. We will denote the set of interior points by Σ and the set of border points
by 𝜕Σ. We call 𝜕Σ the border, and note that the border is also the topological
boundary of Σ in Σ̂. Observe that Σ is a Riemann surface in the standard sense.
Wewill call a chart𝜙which contains a boundary point in its domain a “bound-

ary chart” or “border chart”. Let Σ𝑑 be the double of Σ, which as a set consists of
Σ̂ together with a set of conjugate points 𝑧̃ for each 𝑧 ∈ Σ; for points on the bor-
der, 𝑧̃ = 𝑧. An atlas is constructed as follows. Assume that 𝜙𝑘 ∶ 𝑈𝑘 → cl (ℍ),
𝑘 = 1, 2, are charts such that𝑈1 ∩𝑈2 ∩ 𝜕Σ is non-empty. Then by the Schwarz
reflection principle, 𝜙1◦𝜙−12 extends to a biholomorphism of an open set con-
taining 𝜙2(𝑈1 ∩𝑈2). This open set can be taken to be the union of 𝜙2(𝑈1 ∩𝑈2)
with its reflection in the real axis. In the usual construction of the double, any
chart 𝜙 which contains border points can be extended to a chart in the dou-
ble by reflection. By the above argument, the overlap map 𝜙1◦𝜙−12 is a biholo-
morphism for any pair 𝜙1, 𝜙2 of such extensions. Charts which do not contain
boundary points in their domain have conjugate charts with domains in Σ̃. This
defines the atlas on the double of Σ𝑑 of Σ.

Remark 2.2. Once the border structure is established as above, for convenience
we will allow interior charts to have image in ℂ and not necessarily in ℍ. In
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particular, we will also consider border charts which map into the closure of
the disk 𝔻 = {𝑧 ∈ ℂ̄ ∶ |𝑧| < 1}, with border points mapping to |𝑧| = 1. Every
such chart is a border chart in the original sense after composition by a Möbius
transformation.

We consider bordered Riemann surfaces with 𝑛 simple closed borders and 𝑔
handles. The precise definition is the following.

Definition 2.3. We say that Σ is a bordered Riemann surface of type (𝑔, 𝑛), if it is
bordered (in the sense Definition 2.1), the border has 𝑛 connected components,
each of which is homeomorphic to 𝕊1, and its double Σ𝑑 is a compact surface
of genus 2𝑔 + 𝑛 − 1.
Visually, a bordered surface of type (𝑔, 𝑛) is a 𝑔-handled surface bounded by

𝑛 simple closed curves. We order the borders and label them accordingly, so
that 𝜕Σ = 𝜕1Σ∪⋯∪𝜕𝑛Σ. The borders can be identified with analytic curves in
the double Σ𝑑, and we can view the union Σ̂ = Σ∪𝜕Σ as cl(Σ)where the closure
is taken in the double Σ𝑑.
Finally, we observe that borders are conformally invariant. That is, if Σ1 and

Σ2 are bordered surfaces, then any biholomorphism 𝑓 ∶ Σ1 → Σ2 extends to
a homeomorphism of the borders. In fact, 𝑓 extends to a biholomorphism be-
tween the doubles Σ𝑑1 and Σ

𝑑
2 which takes 𝜕Σ1 to 𝜕Σ2. Finally, if only one of the

two surfaces has a border, say Σ1, then one can endow Σ2 with a border using
𝑓. In particular, there is a unique maximal border structure.
Remark 2.4. Note that ifΣ has type (𝑔, 𝑛), the border structure ismaximal, since
Σ𝑑 is a compact surface.
Definition 2.5. We say that a homeomorphic image Γ of 𝕊1 is a strip-cutting
Jordan curve if it is contained in an open set 𝑈 and there is a biholomorphism
𝜙 ∶ 𝑈 → 𝔸𝑟,𝑅 for some 𝑟 < 1 < 𝑅, in such a way that 𝜙(Γ) is isotopic to 𝕊1. We
call𝑈 a doubly-connected neighbouhood of Γ and 𝜙 a doubly-connected chart.
Remark 2.6. If Γ is a strip-cutting curve, by shrinking𝔸𝑟,𝑅, we can assume that
(1) 𝜙 extends biholomorphically to an open neighourhood of cl (𝑈), (2), that
the boundary curves of 𝑈 are themselves strip cutting (in fact analytic Jordan
curves), and (3) that Γ is isotopic to each of the boundary curves (using 𝜙−1 to
provide the isotopy).

Remark 2.7. An analytic Jordan curve is by definition strip-cutting.

Throughout the paper we consider nested Riemann surfaces. That is, we are
given a type (𝑔, 𝑛) bordered surface Σ, another Riemann surface R which is
compact, and a holomorphic inclusion map 𝜄(Σ) ⊂ R. Assume that the clo-
sure of Σ is compact in R, and furthermore the boundary consists of 𝑛 closed
strip-cutting Jordan curves, which do not intersect. In that case, the inclusion
map 𝜄 extends homeomorphically to a map from the border to the strip-cutting
Jordan curves. Thus 𝜕Σ is in one-to-one correspondence with its image under
the homeomorphic extension of 𝜄, and the image is the boundary of 𝜄(Σ) in the
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ordinary topological sense. For this reason, wewill not notationally distinguish
Σ from 𝜄(Σ), and use the notation 𝜕Σ for both the boundary of 𝜄(Σ) inR and the
abstract border of Σ.
In fact, if the boundary of Σ is a strip-cutting Jordan curve, it is also a border.

Theorem 2.8. Let Σ be an open connected subset of a Riemann surface R. As-
sume that the topological boundary of Σ in R is a finite collection Γ = Γ1 ∪⋯ ∪
Γ𝑛 of strip-cutting Jordan curves. Furthermore suppose that there are doubly-
connected charts 𝜙𝑘 ∶ 𝑈𝑘 → 𝔸𝑘 of Γ𝑘 for 𝑘 = 1,… , 𝑛 (where 𝔸𝑘 ’s are annuli)
such that the closures of 𝑈𝑘 are mutually disjoint, and 𝑈𝑘∖Γ consists of two con-
nected components, one of which is entirely contained in Σ and one which is in
R∖Σ. Then Σ is a bordered surface and the inclusion map is a homeomorphism.
Proof. First, observe that Σ has a unique complex structure compatible with
R, so we let A be an atlas compatible with this structure.
Let𝑈+

𝑘 denote the component of𝑈𝑘∖Γ in Σ. Then 𝜙𝑘(𝑈+
𝑘 ) is an open subset

ofℂ bounded by two Jordan curves, one of which is a boundary 𝛾 of𝔸𝑘 and one
of which is the Jordan curve 𝜙𝑘(Γ). By [7, Theorems 3.3, 3.4 Sect 15.3], there is
a biholomorphism 𝜓𝑘 ∶ 𝜙𝑘(𝑈+

𝑘 ) → 𝔸𝑟,1 which extends to a homeomorphism
of the boundaries, taking 𝛾 to |𝑧| = 𝑟 and 𝜙𝑘(Γ) to 𝕊1. Adjoining the points in
Γ𝑘 to Σ, Then

A ∪
{
𝜓1◦𝜙1|||𝑈+

1
, … , 𝜓𝑛◦𝜙𝑛|||𝑈+

𝑛

}

is an atlas making Σ ∪ 𝜕Σ into a bordered surface. □

Remark 2.9. The embedding of the border 𝜕Σ inR need not be regular. That is,
the inclusionmap does not extend to a smooth or analytic map from 𝜕Σ onto its
image under inclusion 𝜄, unless the image consists of smooth or analytic curves.
By another application of [7, Theorems 3.3, 3.4 Sect 15.3], it is easily shown

that if Σ1 ⊂ R1 and Σ2 ⊂ R2 satisfy the conditions above, and 𝑓 ∶ Σ1 → Σ2 is
a biholomorphism, then 𝑓 extends continuously to a map taking each Jordan
curve in 𝜕Σ1 homeomorphically to one of the Jordan curves of 𝜕Σ2.

It is helpful to have the following distinction in mind throughout the paper:
certain statements are “intrinsic” while others are “extrinsic”. Intrinsic state-
ments about a Riemann surface Σ are those which depend only on the surface
itself and are unchanged under a biholomorphism. For example, the border is
intrinsic, and the harmonic function which is one on 𝜕𝑘Σ and 0 on other curves
is intrinsic. Extrinsic statements about a Riemann surfaces Σ nested in another
surface R, are those which make reference to R. For example, “strip-cutting”
is an extrinsic property, as is the regularity of 𝜄(𝜕Σ). An example of an extrinsic
object is the restriction of Green’s function of R to Σ (see the next subsection
for the definition of Green’s functions).
When dealing with intrinsically phrased boundary value problems, regular-

ity of the boundary is not an issue, since we can treat the boundary as a border
and thus we have its analytic structure at our disposal. Examples of this are the
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Dirichlet problem (here with less regular data) and CNT boundary values of
Dirichlet bounded harmonic functions on Σ in Section 3.2. On the other hand,
when dealing with extrinsically phrased boundary value problems, regularity
of the boundary is a major concern. Overfare, in which the boundary values of
a harmonic function on Σ become data for the Dirichlet problem onR∖Σ, is of
this nature.

2.3. Collar charts. We define a kind of chart on bordered surfaces near the
boundary, which we call a collar chart.

Definition 2.10. Let Σ be a bordered Riemann surface of type (𝑔, 𝑛). A biholo-
morphism 𝜙 ∶ 𝑈 → 𝔸𝑟,1 is called a collar chart of 𝜕𝑘Σ (for some fixed 𝑘) if𝑈 is
an open set in Σ bounded by two Jordan curves 𝜕Σ and Γ, such that Γ is isotopic
to 𝜕𝑘Σwithin the closure of𝑈. A domain𝑈 is a collar neighbourhood of 𝜕𝑘Σ if
it is the domain of some collar chart.

Proposition 2.11. Let Σ be a type (𝑔, 𝑛) surface. Then every boundary curve 𝜕𝑘Σ
has a collar chart.

Proof. Let Σ𝑑 be the double of Σ, so that each boundary 𝜕𝑘Σ is an analytic Jor-
dan curve and hence strip-cutting. Let 𝑈𝑘, 𝑈+

𝑘 , 𝜙𝑘 and 𝜓𝑘 be as in the proof of
Theorem 2.8. Then 𝜓𝑘◦𝜙𝑘|||𝑈+

𝑘
is a collar chart. □

Furthermore, we have the following consequence of Carathéodory’s theo-
rem.

Theorem 2.12. Let Σ be a bordered surface and Γ be a component of the border
which is homeomorphic to 𝕊1. If 𝜙 ∶ 𝑈 → 𝔸 is a collar chart, then 𝜙 extends
continuously to 𝜕𝑘Σ. The extension is a homeomorphism of 𝜕𝑘Σ onto 𝕊1.

Proof. Γ is an analytic Jordan curve in the double, and hence strip-cutting. Let
𝜓 ∶ 𝑉 → 𝔸 be a doubly-connected chart for Γ. By shrinking 𝑉 we may assume
that the boundaries of 𝜓(𝑉) are Jordan curves. Then 𝜓◦𝜙−1 maps 𝔸 onto a
doubly-connected region bounded by Jordan curves, so the claim follows from
[7, Theorems 3.4 Sect 15.3]. □

To keep the notation simple, we will also denote the continuous extension
by 𝜙.

Remark 2.13 (Isotopy and extension). By shrinking 𝑟, for any collar chart 𝜙 ∶
𝑈 → 𝔸1,𝑟 we can always assume that the inner boundary is an analytic curve
and𝜙 has an analytic extension to this curve. Furthermore,𝐻(𝑡, 𝜃) = 𝜙−1(𝑒𝑡𝑒𝑖𝜃)
defines an isotopy between the level curve |𝜙| = 𝑟 and 𝜕𝑘Σ, running through
the level curves of |𝜙|.

The homeomorphic extension is analytic on the border. This can be phrased
in various ways, one of which is as follows. Treat Σ as a subset of its double
Σ𝑑 with involution 𝑧 ↦ 𝑧̃. For a collar neighbourhood 𝑈 of 𝜕𝑘Σ, let 𝑈𝑑 =
𝑈 ∪ 𝑈̃ ∪ 𝜕𝑘Σ. We then have
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Proposition 2.14. Let 𝜙 ∶ 𝑈 → 𝔸𝑟,1 be a collar chart. Let 𝑈𝑑 = 𝑈 ∪ 𝑈̃ ∪ 𝜕𝑘Σ
be the double of 𝑈. If Σ is included in its double Σ𝑑, then 𝜙 extends to a doubly-
connected chart 𝜙𝑑 of 𝜕𝑘Σmapping𝑈𝑑 onto the annulus𝔸𝑟,1∕𝑟 satisfying 𝜙𝑑(𝑧̃) =
1∕𝜙𝑑(𝑧).

Remark 2.15. In particular, the border charts give a well-defined meaning to
continuous, 𝐶𝑘, and analytic functions on 𝜕𝑘Σ for 𝑘 = 1,… , 𝑛. Similarly it
gives a meaning to continuous, 𝐶𝑘, and analytic vector fields or one-forms on
the boundary. For example, a one-form 𝛼 on 𝜕𝑘Σ is continuous, 𝐶𝑘, or analytic
if its expression in a boundary chart 𝜓 ∶ 𝑈 → ℍ near 𝑝 is ℎ(𝑥) 𝑑𝑥 where ℎ is
continuous, 𝐶𝑘 or analytic respectively, and this holds for all 𝑝 ∈ 𝜕𝑘Σ. If the
property holds for any collection of boundary charts covering 𝜕𝑘Σ then it holds
for all boundary charts. In particular, it is enough that the property in question
holds for one collar chart; that is, 𝛼 is continuous, 𝐶𝑘, or analytic if and only
if in the local coordinates defined using 𝜙|||𝜕𝑘Σ for a collar chart 𝜙, 𝛼 is given by
ℎ(𝑒𝑖𝜃) 𝑑𝜃 where ℎ is respectively continuous, 𝐶𝑘 or analytic on 𝕊1.

Finally, we have the following useful fact.

Proposition 2.16. Let Σ be a Riemann surface with border Γ homeomorphic to
𝕊1, and let 𝑈 and 𝑉 be collar neighbourhoods of a boundary curve 𝜕𝑘Σ. There is
a collar chart 𝜙 ∶ 𝑊 → 𝔸𝑟,1 such that𝑊 ⊆ 𝑈 ∩ 𝑉. Moreover 𝑟 can be chosen so
that the inner boundary of𝑊 is contained in𝑈 ∩ 𝑉.

Proof. By Remark 2.13 we can choose collar neighbourhoods𝑈′ and𝑉′ whose
inner boundaries are analytic curves 𝛾1 and 𝛾2 contained in𝑈 and 𝑉, with cor-
responding collar charts 𝜓𝑈′ and 𝜓𝑉′ extending analytically to 𝛾1 and 𝛾2. By
composing with 𝜓𝑈′ , we can assume that Γ = 𝕊1, 𝜓𝑈′(𝑧) = 𝑧, 𝑈′ = 𝔸𝑟,1 for
some 𝑟, and 𝛾1 = {𝑧 ∶ |𝑧| = 𝑟}.
Now let𝑀 be the maximum value of |𝜓𝑉′(𝑧)| on 𝛾2, which exists because 𝛾2

is compact. In that case cl (𝔸𝑠,1) ⊆ 𝑉′ ∩ 𝑈′ for 𝑠 = (1 + 𝑀)∕2. We may now
choose𝑊 = 𝔸𝑠,1 and 𝜙(𝑧) = 𝑧 to prove the claim. □

Proposition 2.17. Let Γ be a strip-cutting Jordan curve in R, and let 𝜙 ∶ 𝑈 →
𝔸𝑟,𝑅 be a doubly-connected chart. There are collar charts 𝜓𝑘 ∶ 𝑈𝑘 → 𝔸 with
𝑈𝑘 ⊆ 𝑈 ∩ Σ𝑘 for 𝑘 = 1, 2. 𝑈𝑘 may be chosen so that their inner boundaries are
analytic curves contained in𝑈.

Proof. Applying the proof of Theorem 2.8 to each side of Γ we obtain the de-
sired 𝜓𝑘. □

2.4. Function spaces and holomorphic and harmonic forms. In this pa-
per, wewill denote by𝐶 positive constants in the inequalities whose value is not
crucial to the problem at hand. The value of 𝐶 may differ from line to line, but
in each instance could be estimated if necessary. Moreover, when the values of
constants in our estimates are of no significance for our main purpose, then we
use the notation 𝑎 ≲ 𝑏 as a shorthand for 𝑎 ≤ 𝐶𝑏. If 𝑎 ≲ 𝑏 and 𝑏 ≲ 𝑎 then we
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write 𝑎 ≈ 𝑏.

On any Riemann surface, define the dual of the almost complex structure, ∗
in local coordinates 𝑧 = 𝑥 + 𝑖𝑦, by

∗ (𝑎 𝑑𝑥 + 𝑏 𝑑𝑦) = 𝑎 𝑑𝑦 − 𝑏 𝑑𝑥.
This is independent of the choice of coordinates. It can also be computed in
coordinates that for any complex function ℎ

2𝜕ℎ = 𝑑ℎ + 𝑖 ∗ 𝑑ℎ. (2.1)

Definition 2.18. We say a complex-valued function 𝑓 on an open set𝑈 is har-
monic if it is 𝐶2 on 𝑈 and 𝑑 ∗ 𝑑𝑓 = 0. We say that a complex one-form 𝛼 is
harmonic if it is 𝐶1 and satisfies both 𝑑𝛼 = 0 and 𝑑 ∗ 𝛼 = 0.

Equivalently, harmonic one-forms are those which can be expressed locally
as 𝑑𝑓 for some harmonic function 𝑓. Harmonic one-forms and functions must
of course be 𝐶∞.

Denote complex conjugation of functions and forms with a bar, e.g. 𝛼. A
holomorphic one-form is onewhich can bewritten in coordinates as ℎ(𝑧) 𝑑𝑧 for
a holomorphic function ℎ, while an anti-holomorphic one-form is one which
can be locally written ℎ(𝑧) 𝑑𝑧̄ for a holomorphic function ℎ.
Denote by 𝐿2(𝑈) the set of one-forms 𝜔 on an open set 𝑈 which satisfy

∬
𝑈
𝜔∧ ∗ 𝜔 < ∞

(observe that the integrand is positive at every point, as can be seen by writing
the expression in local coordinates). This is a Hilbert space with respect to the
inner product

(𝜔1, 𝜔2) = ∬
𝑈
𝜔1∧ ∗ 𝜔2. (2.2)

Definition 2.19. The Bergman space of holomorphic one forms is

𝒜(𝑈) = {𝛼 ∈ 𝐿2(𝑈) ∶ 𝛼 holomorphic}. (2.3)

The anti-holomorphic Bergman space is denoted 𝒜(𝑈). We will also denote
𝒜harm(𝑈) = {𝛼 ∈ 𝐿2(𝑈) ∶ 𝛼 harmonic}. (2.4)

Observe that 𝒜(𝑈) and 𝒜(𝑈) are orthogonal with respect to the inner prod-
uct (2.2). In fact we have the direct sum decomposition

𝒜harm(𝑈) = 𝒜(𝑈) ⊕ 𝒜(𝑈). (2.5)

If we restrict the inner product to 𝛼, 𝛽 ∈ 𝒜(𝑈) then since ∗ 𝛽 = 𝑖𝛽, we have

(𝛼, 𝛽) = 𝑖∬
𝑈
𝛼 ∧ 𝛽.
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Denote the projections induced by this decomposition by

𝐏𝑈 ∶ 𝒜harm(𝑈) → 𝒜(𝑈)

𝐏𝑈 ∶ 𝒜harm(𝑈) → 𝒜(𝑈). (2.6)

Let 𝑓 ∶ 𝑈 → 𝑉 be a biholomorphism. We denote the pull-back of 𝛼 ∈
𝒜harm(𝑉) under 𝑓 by 𝑓∗𝛼. Explicitly, if 𝛼 is given in local coordinates 𝑤 by
𝑎(𝑤) 𝑑𝑤 + 𝑏(𝑤) 𝑑𝑤̄ and 𝑤 = 𝑓(𝑧), then the pull-back is given by

𝑓∗
(
𝑎(𝑤) 𝑑𝑤 + 𝑏(𝑤) 𝑑𝑤̄

)
= 𝑎(𝑓(𝑧))𝑓′(𝑧) 𝑑𝑧 + 𝑏(𝑓(𝑧))𝑓′(𝑧) 𝑑𝑧̄.

The Bergman spaces are all conformally invariant, in the sense that if 𝑓 ∶ 𝑈 →
𝑉 is a biholomorphism, then 𝑓∗𝒜(𝑉) = 𝒜(𝑈) and 𝑓∗ preserves the inner prod-
uct. Similar statements hold for the anti-holomorphic and harmonic spaces.

Definition 2.20. We define the space 𝒜e
harm(𝑈) as the subspace of exact ele-

ments of 𝒜harm(𝑈), and similarly for 𝒜e(Σ) and 𝒜e(Σ).

We also consider one-forms which have zero boundary periods, which we
call semi-exact.

Definition 2.21. Let Σ be a bordered surface of type (𝑔, 𝑛). We say that an 𝐿2
one-form 𝛼 ∈ 𝒜harm(Σ) is semi-exact if for any simple closed curve 𝛾 homotopic
to a boundary curve 𝜕𝑘Σ,

∫
𝛾
𝛼 = 0.

The class of semi-exact one-forms on Σ is denoted𝒜se
harm(Σ). The holomorphic

and anti-holomorphic semi-exact one-forms are denoted by 𝒜se(Σ) and 𝒜se(Σ)
respectively.

The following spaces also play significant roles in this paper.

Definition 2.22. The Dirichlet spaces of functions are defined by

𝒟harm(𝑈) = {𝑓 ∶ 𝑈 → ℂ, 𝑓 ∈ 𝐶2(𝑈), ∶ 𝑑𝑓 ∈ 𝐿2(𝑈) and 𝑑 ∗ 𝑑𝑓 = 0},
𝒟(𝑈) = {𝑓 ∶ 𝑈 → ℂ ∶ 𝑑𝑓 ∈ 𝒜(𝑈)}, and

𝒟(𝑈) = {𝑓 ∶ 𝑈 → ℂ ∶ 𝑑𝑓 ∈ 𝒜(𝑈)}.

We can define a degenerate inner product on𝒟harm(𝑈) by
(𝑓, 𝑔)𝒟harm(𝑈) = (𝑑𝑓, 𝑑𝑔)𝒜harm(𝑈),

where the right hand side is the inner product (2.2) restricted to elements of
𝒜harm(𝑈). The inner product can be used to define a seminorm on 𝒟harm(𝑈),
by letting

‖𝑓‖2𝒟harm(𝑈)
∶= (𝑑𝑓, 𝑑𝑓)𝒜harm(𝑈).
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We note that if one defines theWirtinger operators via their local coordinate
expressions

𝜕𝑓 = 𝜕𝑓
𝜕𝑧 𝑑𝑧, 𝜕𝑓 = 𝜕𝑓

𝜕𝑧̄ 𝑑𝑧̄,

then the aforementioned inner product can be written as

(𝑓, 𝑔)𝒟harm(𝑈) = 𝑖∬
𝑈

[
𝜕𝑓 ∧ 𝜕𝑔 − 𝜕𝑓 ∧ 𝜕𝑔

]
. (2.7)

Although this implies that 𝒟(𝑈) and 𝒟(𝑈) are orthogonal, there is no direct
sum decomposition of 𝒟harm(𝑈) into 𝒟(𝑈) and 𝒟(𝑈). This is because in gen-
eral there exist exact harmonic one-forms whose holomorphic and anti-holo-
morphic parts are not exact.
Observe that theDirichlet spaces are conformally invariant in the same sense

as the Bergman spaces. That is, if 𝑓 ∶ 𝑈 → 𝑉 is a biholomorphism then

𝐂𝑓ℎ = ℎ◦𝑓
satisfies

𝐂𝑓 ∶ 𝒟(𝑉) → 𝒟(𝑈)
and this is a seminorm preserving bijection. Similar statements hold for the
anti-holomorphic and harmonic spaces.
We also note that if ℎ ∈ 𝒟(𝑈) and ℎ̃(𝑧) = ℎ◦𝜙−1(𝑧) is the expression for ℎ

in local coordinates 𝑧 = 𝜙(𝑤) in an open set 𝜙(𝑈) ⊆ ℂ, then we have the local
expression

(ℎ, ℎ)𝒟(𝑈) = ∬
𝜙(𝑈)

|ℎ̃′(𝑧)|2𝑑𝐴𝑧

where 𝑑𝐴𝑧 denotes Lebesgue measure in the 𝑧-plane. Similar expressions hold
for the other Dirichlet spaces.

Next we gather some results from the theory of Sobolev spaces which we
shall use in this paper.

Definition 2.23. For 𝑠 ∈ ℝ, one defines the Sobolev space𝐻𝑠(ℝ𝑛), which con-
sists of tempered distributions 𝑢 such that

‖𝑢‖2𝐻𝑠(ℝ𝑛) ∶= ‖(1 − ∆)𝑠∕2𝑢‖2𝐿2(ℝ𝑛) = ∫
ℝ𝑛
(1 + |𝜉|2)𝑠|𝑢(𝜉)|2 𝑑𝜉 < ∞,

where 𝑢(𝜉) is the Fourier transform of 𝑢 defined by 𝑢(𝜉) = ∫ℝ𝑛 𝑢(𝑥) 𝑒−𝑖𝑥⋅𝜉 𝑑𝑥
and

(1 − ∆)𝑠∕2𝑢(𝑥) = 1
(2𝜋)𝑛

∫
ℝ𝑛
(1 + |𝜉|2)𝑠∕2 𝑢(𝜉) 𝑒𝑖𝑥⋅𝜉 𝑑𝜉.

The homogeneous Sobolev space 𝐻̇𝑠(ℝ𝑛), is the space of tempered distributions
such that ∫ℝ𝑛 |𝜉|2𝑠 |𝑢(𝜉)|2 𝑑𝜉 < ∞.
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The scales of Sobolev spaces that are of particular interest for us are 𝑠 = 1, ± 1
2

(defined on various manifolds). For instance 𝐻1(ℝ𝑛) consists of the space of
tempered distributions 𝑢 for which

‖𝑢‖𝐻1(ℝ𝑛) ∶= (∫
ℝ𝑛
|∇𝑢(𝑥)|2 𝑑𝑥 + ∫

ℝ𝑛
|𝑢|2𝑑𝑥)

1
2

=∶ (‖𝑢‖2𝐻̇1(ℝ𝑛) + ‖𝑢‖2𝐿2(ℝ𝑛))
1
2
< ∞,

(2.8)

and𝐻1∕2(ℝ𝑛) consists of the space of tempered distributions 𝑢 for which

‖𝑢‖𝐻1∕2(ℝ𝑛) ∶= (∫
ℝ𝑛
∫
ℝ𝑛

|𝑢(𝑥) − 𝑢(𝑦)|2
|𝑥 − 𝑦|𝑛+1 𝑑𝑥𝑑𝑦 + ∫

ℝ𝑛
|𝑢|2𝑑𝑥)

1
2

=∶ (‖𝑢‖2𝐻̇1∕2(ℝ𝑛) + ‖𝑢‖2𝐿2(ℝ𝑛))
1
2
< ∞.

(2.9)

The Sobolev space 𝐻𝑠(𝕊1), 𝑠 ≥ 0, will also play an important role in our
investigations, whose definition we also recall. Given 𝑓 ∈ 𝐿2(𝕊1) one defines
the Fourier coefficients and the Fourier series associated to 𝑓 by

𝑓(𝑛) = 1
2𝜋 ∫

2𝜋

0
𝑓(𝑡)𝑒−𝑖𝑛𝜃 𝑑𝜃, 𝑓 =

∞∑

𝑛=−∞
𝑓(𝑛)𝑒𝑖𝑛𝜃, (2.10)

where the convergence of the series is both in the 𝐿2-norm and also pointwise
almost everywhere. The Sobolev space𝐻𝑠(𝕊1) is defined by

𝐻𝑠(𝕊1) = {𝑓 ∈ 𝐿2(𝕊1) ∶
∞∑

𝑛=−∞

(
1 + |𝑛|2

)𝑠 |𝑓(𝑛)|2 < ∞} . (2.11)

Like all other 𝐿2-based Sobolev spaces, 𝐻𝑠(𝕊1) is a Hilbert space and given
𝑓, 𝑔 ∈ 𝐻𝑠(𝕊1) their scalar product is given by

⟨𝑓, 𝑔⟩𝐻𝑠(𝕊1) =
∞∑

𝑛=−∞

(
1 + |𝑛|2

)𝑠 𝑓(𝑛)𝑔̂(𝑛), (2.12)

and so

‖𝑓‖𝐻𝑠(𝕊1) = (
∞∑

𝑛=−∞

(
1 + |𝑛|2

)𝑠 |𝑓(𝑛)|2)
1∕2

. (2.13)

Of particular interest in this paper, are the functions in the Sobolev space𝐻1∕2(𝕊1)
for which one also has the analogue of (2.9), i.e.

‖𝑓‖𝐻1∕2(𝕊1) ∶=
(
∫
𝕊1
∫
𝕊1

|𝑓(𝑧) − 𝑓(𝜁)|2

|𝑧 − 𝜁|2
|𝑑𝑧| |𝑑𝜁| + ‖𝑓‖2𝐿2(𝕊1)

)1∕2
. (2.14)
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As was shown by J. Douglas [8], for a function 𝐹 ∈ 𝒟harm(𝔻) the restriction of
𝐹 to 𝕊1 is in𝐻1∕2(𝕊1), and if the boundary value of 𝐹 is denoted by 𝑓 then

‖𝐹‖2𝒟harm(𝔻)
= 𝜋 ∫

2𝜋

0
∫

2𝜋

0

|𝑓(𝑧) − 𝑓(𝜁)|2

|𝑧 − 𝜁|2
|𝑑𝑧| |𝑑𝜁|. (2.15)

We shall also recall the following useful embedding result, whose proof can
be found in [37].

Theorem 2.24. If 1 ≤ 𝑝 < ∞ and 𝑠 ≥ 0 with 𝑠 + 1
𝑝
≥ 1

2
then one has the

continuous inclusion (embedding)

𝐻𝑠(𝕊1) ⊂ 𝐿𝑝(𝕊1). (2.16)

Now regarding Sobolev spaces on manifolds, we first recall the definition of
Sobolev𝐻𝑠(𝑀), 𝑠 ∈ ℝ for compact manifolds𝑀, see e.g. [3].

Definition 2.25. Let𝑀 be an 𝑛−dimensional smooth compact manifold with-
out boundary, with the smooth atlas (𝜙𝑗, 𝑈𝑗) and the corresponding smooth
partition of unity 𝜓𝑗 with 𝜓𝑗 ≥ 0, supp𝜓𝑗 ⊂ 𝑈𝑗 and

∑
𝑗 𝜓𝑗 = 1. Given 𝑠 ≥ 0,

the Sobolev spaces 𝐻𝑠(𝑀) are the space of complex-valued 𝐿2 functions on𝑀
for which

‖𝑓‖𝐻𝑠(𝑀) ∶=
∑

𝑗
‖(𝜓𝑗𝑓)◦𝜙−1𝑗 ‖𝐻𝑠(ℝ𝑛) < ∞. (2.17)

The homogeneous Sobolev space 𝐻̇𝑠(𝑀) is defined using (2.17) by substituting
𝐻𝑠(ℝ𝑛) with 𝐻̇𝑠(ℝ𝑛).

It is also well-known that different choices of the atlas and its corresponding
partition of unity, produces norms that are equivalent with (2.17).
Next let𝑋 be a smooth compact𝑛-dimensionalmanifoldwith smooth bound-

ary bd(𝑋) and fix a Riemannian structure on 𝑋. Use the Riemannian structure
to construct a collar neighbourhood𝑁 = bd(𝑋) × 𝐼 of the boundary bd(𝑋) and
denote the (inward) normal coordinate by 𝑡 ∈ 𝐼 = [0, 1]. We may assume that
𝑋 is a submanifold of a closed compact, smooth manifold𝑀, which is the com-
pact double of 𝑋.

Definition 2.26. Let 𝑋 be a smooth compact 𝑛-dimensional manifold with
boundary. We can regard𝑋 as a submanifold of a closed smooth 𝑛-dimensional
manifold 𝑀 (i.e. 𝑀 is compact without boundary as above). Then the space
𝐻𝑠(𝑋) consists of the restrictions {𝐑𝑢; 𝑢 ∈ 𝐻𝑠(𝑀)} where 𝐑 ∶ 𝐿2(𝑀) → 𝐿2(𝑋)
denotes the restriction operator 𝑢 ↦ 𝑢|𝑋 .

In this connection one also has the fundamental fact about Sobolev spaces
on manifolds with boundary that asserts that the trace map, i.e. the map

Tr ∶ 𝑢 ↦ 𝑢|bd(𝑋)



336 ERIC SCHIPPERS ANDWOLFGANG STAUBACH

from 𝐻𝑠(𝑋) → 𝐻𝑠− 1
2 (bd(𝑋)) is continuous for 𝑠 > 1

2
, see e.g. [3, Theorem 11.4,

p 68].

Ahead, wewill show that the border structure on a Riemann surface induces
a smooth boundary in the Riemannian sense above, so that Sobolev trace can be
applied. In this section, wewill keep the notation bd(𝑋) to denote the boundary
in the sense above. Once it is established that the theory applies to the case of
the border of a Riemann surface, we will return to the notation 𝜕Σ.
Occasionally, we will also use the invariance of the Sobolev space 𝐻𝑠 under

diffeomorphisms. We state this below as a lemma whose proof could be found
in Lemma 1.3.3 in [12], or evenmore explicitly as Theorem 9.2.3 in [?], or by us-
ing interpolation between the well-known results for Sobolev spaces of integer
scales.

Lemma 2.27. Let 𝑠 ∈ ℝ and 𝜓 be a diffeomorphism of a bounded open set𝑈1 ⊂
ℝ𝑛 onto another bounded open set 𝑈2 ⊂ ℝ𝑛 such that 𝜓 ∈ 𝒞∞(cl(𝑈1)) and
𝜓−1 ∈ 𝒞∞(cl(𝑈2)). Then one has

‖𝑓◦𝜓‖𝐻𝑠(𝑈1) ≈ ‖𝑓‖𝐻𝑠(𝑈2).

The following result is quite useful in connection to the boundedness of cer-
tain operators which will be introduced later. In fact this theorem enables us to
turn our estimates into conformally invariant ones through suitable choices of
the norms involved in the estimates.

Theorem 2.28. Let 𝑋 be a compact Riemannian manifold with smooth bound-
ary, for which the homogeneous and inhomogeneous Sobolev spaces are well de-
fined. Assume that F is a non-negative functional on 𝐻𝑠(𝑋), 𝑠 > 0, with the
following properties:

(1) F is real-valued and for all 𝑐 ∈ ℂ and 𝑓 ∈ 𝐻𝑠(𝑋),F (𝑐𝑓) = |𝑐|F (𝑓);

(2) For 𝑓 ∈ 𝐻𝑠(𝑋), there exists a constant 𝐶 (independent of 𝑓) such that
0 ≤ F (𝑓) ≤ 𝐶‖𝑓‖𝐻𝑠(𝑋);

(3) For 𝑓 ≡ 1 on cl(𝑋) one has thatF (𝑓) ≠ 0.
Then there are constants 𝐶1 and 𝐶2 such that for 𝑓 ∈ 𝐻𝑠(𝑋) one has

𝐶1
(
‖𝑓‖2𝐻̇𝑠(𝑋)+(F (𝑓))2

)1∕2
≤ ‖𝑓‖𝐻𝑠(𝑋) ≤ 𝐶2

(
‖𝑓‖2𝐻̇𝑠(𝑋)+(F (𝑓))2

)1∕2
. (2.18)

Proof. SetΦ(𝑓) ∶=
(
‖𝑓‖2𝐻̇𝑠(𝑋)+(F (𝑓))2

)1∕2
.Then trivially onehas thatΦ(𝑓1+

𝑓2) ≤ Φ(𝑓1) + Φ(𝑓2), and for any 𝑐 ∈ ℂ one has Φ(𝑐𝑓) = |𝑐|Φ(𝑓). Moreover Φ
is injective, since ifΦ(𝑓) = 0 then ‖𝑓‖

𝐻̇𝑠(𝑋)
= 0 andF (𝑓) = 0. The first equality
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yields that 𝑓 = constant, and from the second inequality and the assumption
on F it follows that 𝑓 = 0. This shows that Φ(⋅) defines a norm on 𝐻𝑠(𝑋).
Furthermore since the continuity ofF implies thatΦ(𝑓) ≤ 𝐴‖𝑓‖𝐻𝑠(𝑋), a result
based on Banach’s open mapping theorem, see e.g. [23] Corollary 2.12b, yields
that ‖𝑓‖ ≤ 𝐵Φ(𝑓). Taking 𝐶1 = 1∕𝐴 and 𝐶2 = 𝐵 we obtain (2.18). □

A useful corollary of this result is the following

Corollary 2.29. Let 𝐹 ∈ 𝒟harm(𝔻)and let 𝑓 denote the boundary value of 𝐹.
Then one has

‖𝑓‖𝐻1∕2(𝕊1) ≈ |𝐹(0)| + ‖𝐹‖𝒟harm(𝔻). (2.19)

Proof. Since 𝑓 ∈ 𝐻1∕2(𝕊1), we know that 𝑓 ∈ 𝐿2(𝕊1) and so

𝑓 =
∞∑

𝑛=−∞
𝑓(𝑛)𝑒𝑖𝑛𝜃,

with convergence almost everywhere, where 𝑓(𝑛) is given by (2.10). Therefore,
for the harmonic extension𝐹 of𝑓, one has that𝐹(0) = 𝑓(0) andusing Parseval’s
identity we obtain

|𝐹(0)| = |𝑓(0)| ≤
( ∞∑

𝑛=−∞
|𝑓(𝑛)|2

)1∕2
= 1
√
2𝜋

‖𝑓‖𝐿2(𝕊1). (2.20)

Hence using (2.20) and (2.14) among others, one can easily check that the func-
tional

F (𝑓) ∶= |𝐹(0)|
satisfies all the conditions of Theorem 2.28. Hence Theorem 2.28 and equation
(2.14) yield that

‖𝑓‖𝐻1∕2(𝕊1) ≈
(
|𝐹(0)|2 + ∫

2𝜋

0
∫

2𝜋

0

|𝑓(𝑧) − 𝑓(𝜁)|2

|𝑧 − 𝜁|2
|𝑑𝑧| |𝑑𝜁|

)1∕2
.

Finally, (2.15) and the elementary inequality 1
√
2
(|𝑎| + |𝑏|) ≤ (|𝑎|2 + |𝑏|2)1∕2 ≤

|𝑎| + |𝑏| shows that (2.19) is valid. □

We also record a rather general fact that is often useful in connection to var-
ious boundedness results involving Sobolev spaces, see e.g. Theorem 2.6 in [6]
for a proof.

Theorem 2.30. LetΩ be a domain whose boundary is locally the graph of a Lip-
schitz function (i.e. a Lipschitz domain). Then there exists a unique continuous
linear mapping 𝛾 ∶ 𝐻1(Ω) → 𝐿2(bd(Ω)) such that 𝛾(𝑢) = 𝑢|bd(Ω). In particular,
one has the estimate

∫
bd(Ω)

|𝑢|2 ≲ ‖𝑢‖2𝐻1(Ω). (2.21)
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Now let us turn to Sobolev spaces on bordered Riemann surfaces. Let (R, ℎ)
be a compact Riemann surfacewithmetric ℎ. In the case thatR is the sphere or
torus, we let ℎ be the spherical or Euclideanmetric respectively. Otherwise, ℎ is
the hyperbolicmetric. Set𝑑𝜎(ℎ) ∶=

√
|det ℎ𝑖𝑗| |𝑑𝑧|2which is the area-element

of R, where ℎ𝑖𝑗 are the components of the metric with respect to coordinates
𝑧 = 𝑥1 + 𝑖𝑥2. We define the inhomogeneous and homogeneous Sobolev norms
and seminorms respectively of a function 𝑓 defined on R as

‖𝑓‖𝐻1(R) ∶=
(
∬

R

𝑑𝑓∧ ∗ 𝑑𝑓 +∬
R

|𝑓|2𝑑𝜎(ℎ)
) 1
2

=∶
(
‖𝑓‖2𝐻̇1(R) + ‖𝑓‖2𝐿2(R)

) 1
2 . (2.22)

Observe that the Dirichlet seminorm and the homogeneous Sobolev seminorm
‖ ⋅ ‖𝐻̇1(R) are given by the same expression up to a constant.

We also note that since any two smooth metrics on R have comparable de-
terminants, choosing different metrics in the definitions above yield equivalent
norms. Now if R is a compact Riemann surface and Σ is an open subset of R
with analytic boundary 𝜕Σ, then the pull back of themetric ℎ𝑖𝑗 under the inclu-
sion map yields a metric on Σ. Using that metric, we can define the inhomo-
geneous and homogeneous Sobolev spaces 𝐻1(Σ) and 𝐻̇1(Σ). However these
definitions will a-priori depend on the choice of the metric induced by R, due
to the non-compactness of Σ, unless further conditions on Σ are specified.
We define Sobolev spaces on the border of a surface Σ using the intrinsic

notion of border. Since the point is important, we embed it in a remark in order
to refer to it later.

Remark 2.31 (Sobolev spaces on the border). Wheneverwe consider the Sobolev
space 𝐻1∕2(𝜕Σ) in this paper, we assume that Σ ⊂ Σ𝑑 where Σ𝑑 is the compact
double, so that 𝜕Σ is an analytic curve (and in particular smooth) and thus an
embedded submanifold of 𝑅. Thus the charts on 𝜕Σ can be taken to be restric-
tions of charts from Σ𝑑. Equivalently, the boundary 𝜕Σ is endowed with the
manifold structure obtained by treating it as the border of Σ.

Ahead we consider the case that Σ ⊆ R and the topological boundary of Σ
in R is a quasicircle. Although the border of Σ can be identified as a set with
the topological boundary of Σ, the inclusion map of the bordered surface Σ into
R is not an embedding in the differential geometric sense. In this situation, we
do not apply the Sobolev theory directly to the boundary 𝜕Σ as a subset of R,
but consider instead the Sobolev space on the abstract border or double Σ𝑑 as
in Remark 2.31.
Regarding the homogeneous and inhomogeneous Sobolev spaces, it was

proved in [26] that
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Theorem 2.32. Let R be a compact surface and let Σ ⊂ R be bounded by a
closed analytic curve Γ. Fix a Riemannian metric ΛR on R as follows. If R has
genus 𝑔 > 1 then let ΛR be the hyperbolic metric; ifR has genus 1 then let ΛR be
the Euclidean metric, and ifR has genus 0 then let ΛR be a spherical metric. Let
𝐻1(Σ) and 𝐻̇1(Σ) denote the Sobolev spaces with respect to ΛR . Then 𝐻̇1(Σ) =
𝐻1(Σ) as sets.

2.5. Harmonicmeasures. We start with the definition of harmonic measure
in the context of bordered Riemann surfaces.

Definition 2.33. Let 𝜔𝑘, 𝑘 = 1,… , 𝑛 be the unique harmonic function which
is continuous on the closure of Σ and which satisfies

𝜔𝑘 = { 1 on 𝜕𝑘Σ
0 on 𝜕𝑗Σ, 𝑗 ≠ 𝑘.

The one-forms 𝑑𝜔𝑘 are the harmonic measures. We denote the complex linear
span of the harmonic measures by 𝒜hm(Σ).Moreover we define

∗ 𝒜hm(Σ) = {∗ 𝛼 ∶ 𝛼 ∈ 𝒜hm(Σ)}.

By definition any element of𝒜hm(Σ) is exact, and its anti-derivative𝜔 is con-
stant on each boundary curve. On the other hand, the elements of ∗ 𝒜hm(Σ)
are closed but not exact. Elements of 𝒜hm(Σ) and ∗ 𝒜hm(Σ) extend real ana-
lytically to the border, in the sense that they are restrictions to Σ of harmonic
one-forms on the double. In particular they are square-integrable, which ex-
plains our choice of notation. Thus to summarize:

Proposition 2.34. Let Σ be a bordered surface of type (𝑔, 𝑛). Then 𝒜hm(Σ) ⊆
𝒜e
harm(Σ) and ∗ 𝒜hm(Σ) ⊆ 𝒜harm(Σ).

Definition 2.35. The boundary period matrix Π𝑗𝑘 of a non-compact surface Σ
of type (𝑔, 𝑛) is defined by

Π𝑗𝑘 ∶= ∫
𝜕Σ
𝜔𝑗 ∗ 𝑑𝜔𝑘 = ∫

𝜕𝑗Σ
∗ 𝑑𝜔𝑘.

Theorem 2.36. If we let 𝑗, 𝑘 run from 1 to 𝑛, omitting one fixed value𝑚 say, then
the resulting matrixΠ𝑗𝑘 is symmetric and positive definite.

Proof. The matrix is symmetric, because

Π𝑗𝑘 − Π𝑘𝑗 = ∫
𝜕Σ

(
𝜔𝑗 ∗ 𝑑𝜔𝑘 − 𝜔𝑘 ∗ 𝑑𝜔𝑗

)
= ∬

Σ

(
𝜔𝑗 𝑑 ∗ 𝑑𝜔𝑘 − 𝜔𝑘 𝑑 ∗ 𝑑𝜔𝑗

)
= 0.

Now let 𝜆1, … , 𝜆𝑛 denote fixed real numbers, where 𝜆𝑚 is omitted from the
list. Define

𝜔 =
𝑛∑

𝑘=1
𝑘≠𝑚

𝜆𝑘𝜔𝑘
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then using the fact that 𝜔 is harmonic we obtain (implicitly using Proposition
2.34)

‖𝑑𝜔‖2 = ∬
Σ
𝑑𝜔∧ ∗ 𝑑𝜔 = ∫

𝜕Σ
𝜔∧ ∗ 𝑑𝜔

= ∫
𝜕Σ

⎛
⎜
⎝

∑

𝑗≠𝑚
𝜆𝑗𝜔𝑗

⎞
⎟
⎠
∗ 𝑑

⎛
⎜
⎝

∑

𝑘≠𝑚
𝜆𝑘𝜔𝑘

⎞
⎟
⎠

=
∑

𝑗≠𝑚

∑

𝑘≠𝑚
Π𝑗𝑘𝜆𝑗𝜆𝑘.

Since 𝑑𝜔1, … , 𝑑𝜔𝑛 (omitting 𝑑𝜔𝑚) are linearly independent, this completes
the proof. □

ThusΠ𝑗𝑘, 𝑗, 𝑘 = 1,… 𝑚̂, … , 𝑛 (here ̂(⋅) denotes omission) is an invertible ma-
trix, and we can specify 𝑛−1 of the boundary periods of elements of ∗ 𝒜hm(Σ).
2.6. Green’s functions. Another basic notion which is of fundamental im-
portance in our investigations is that of Green’s functions.

Definition 2.37. Let Σ be a type (𝑔, 𝑛) surface. For fixed 𝑧 ∈ Σ, we define
Green’s function of Σ to be a function 𝐺Σ(𝑤; 𝑧) such that

(1) for a local coordinate 𝜙 vanishing at 𝑧 the function 𝑤 ↦ 𝐺Σ(𝑤; 𝑧) +
log |𝜙(𝑤)| is harmonic in an open neighbourhood of 𝑧;

(2) lim𝑤→𝜁 𝐺Σ(𝑤; 𝑧) = 0 for any 𝜁 ∈ 𝜕Σ.
That such a function exists, follows from [1, II.3 11H, III.1 4D], considering

Σ to be a subset of its double Σ𝑑.

Green’s function is conformally invariant. That is, if Σ is of type (𝑔, 𝑛), and
𝑓 ∶ Σ → Σ′ is conformal, then

𝐺Σ′(𝑓(𝑤); 𝑓(𝑧)) = 𝐺Σ(𝑤; 𝑧). (2.23)
This follows from uniqueness of Green’s function, and the fact that a biholo-

morphism extends to a homeomorphism of the boundary curves.

2.7. Quasisymmetricmappings. Throughout this paperwewill use the con-
cept of quasisymmetric mappings. Therefore, we recall the definitions of qua-
sisymmetries in plane and on Riemann surfaces. We start by defining the qua-
sisymmetric homeomorphisms of the circle.

Definition 2.38. An orientation-preserving homeomorphism ℎ of 𝕊1 is called
an orientation-preserving quasisymmetric mapping, iff there is a constant 𝑘 > 0,
such that for every 𝜃, and every 𝜓 not equal to a multiple of 2𝜋, the inequality

1
𝑘 ≤

||||||||
ℎ(𝑒𝑖(𝜃+𝜓)) − ℎ(𝑒𝑖𝜃)
ℎ(𝑒𝑖𝜃) − ℎ(𝑒𝑖(𝜃−𝜓))

||||||||
≤ 𝑘

holds. We say that ℎ is an orientation-reversing quasisymmetry if ℎ◦𝑠 is an
orientation-preserving quasisymmetry where 𝑠(𝑒𝑖𝜃) = 𝑒−𝑖𝜃.
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Aquasisymmetry is either an orientation-preserving or orientation-reversing
quasisymmetry.
We generalize this to general Riemann surfaces of type (𝑔, 𝑛).

Definition 2.39. Fix 𝑘 ∈ {1, … , 𝑛}. Let 𝜏 ∶ 𝕊1 → 𝜕𝑘Σ be a homeomorphism.
We say that 𝜏 is a quasisymmetry if there is a collar chart 𝜙 ∶ 𝑈 → 𝔸𝑟,1 of 𝜕𝑘Σ
such that 𝜙◦𝜏 is a quasisymmetry in the sense of Definition 2.38. We say that 𝜏
is orientation-preserving (resp. orientation-reversing) when 𝜙◦𝜏 is orientation-
preserving (resp. orientation-reversing).

Theorem 2.40. Let 𝜏 ∶ 𝕊1 → 𝜕𝑘Σ be a homeomorphism for some fixed 𝑘 ∈
{1, … , 𝑛}. If 𝜙◦𝜏 is a quasisymmetry of 𝕊1 for some collar chart 𝜙 of 𝜕𝑘Σ, then 𝜙◦𝜏
is a quasisymmetry of 𝕊1 for any collar chart 𝜓 of 𝜕𝑘Σ.

Proof. If 𝜓 is another collar chart, then 𝜓◦𝜙−1 is a conformal map from some
collar neighbourhood of 𝕊1 to another collar neighbourhood of 𝕊1. It extends
homeomorphically to the boundary by Theorem 2.12. Thus by Schwarz re-
flection 𝜓◦𝜙−1 extends to a conformal map of a neighbourhood of 𝕊1. Thus
𝜓◦𝜏 = 𝜓◦𝜙−1◦𝜙◦𝜏 is also a quasisymmetry. □

In a similar way, we can define the notion of analytic parametrization.

Definition 2.41. We say that 𝜏 is an analytic parametrization if 𝜙◦𝜏 is analytic
for any collar chart 𝜙.

3. Conformally non-tangential limits and overfare of harmonic
functions

3.1. About this section. Since there are many technical details in proving
that overfare is well-defined and bounded, we give here an overview of the con-
structions and the argument.
First, we need a notion of boundary values; these are what we call confor-

mally non-tangential boundary values. They are defined in Section 3.2; briefly,
we use a collar chart tomap the function near the boundary to the disk, and ap-
plyBeurling’s theoremonnon-tangential boundary values ofDirichlet bounded
functions. We then show that this is independent of the choice of collar chart.
To prove that the overfare process makes sense, it must be shown that the

set of possible boundary values of Dirichlet bounded harmonic functions is the
same from either side. This requires, among other things, showing that a set
which is potential-theoretically negligible from the point of view of Σ1 is also
potential-theoretically negligible from the point of view of Σ2. To be precise, a
negligible set from the point of view of Σ1 (resp. Σ2) is a Borel set whose image
under a collar chart in Σ1 (resp. Σ2) is a set of logarithmic capacity zero. We
call such sets “null sets” with respect to Σ1 (resp. Σ2). The proof that null sets
with respect to Σ1 are also null with respect to Σ2 is accomplished by cutting
and pasting neighbourhoods of the boundary, applying a chart, and using the
corresponding result in the plane. This is done in Section 3.6.
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We will also prove that the overfare operator exists and is bounded, using
sewing techniques. The proof proceeds in steps. First, we show that a certain
“bounce operator” is bounded. This bounce operator acts entirely within one
surface, say Σ1. It takes Dirichlet bounded functions defined on a collar neigh-
bourhood of the collection of quasicircles, and produces the unique Dirichlet
bounded function on the Riemann surface Σ1 with the same boundary values.
We show in Section 3.5 that this operator is bounded, by using the existence and
continuous dependence of solutions to the Dirichlet problem together with the
fact that the Sobolev trace is bounded. Then, we define a “local” overfare as fol-
lows. Given a function defined in a collar neighbourhood of a boundary curve
in Σ1, we cut out a tubular neighbourhood of a quasicircle, and map it into the
plane with a doubly connected chart. Using the fact that bounce and overfare
are bounded in the plane, we obtain a bounded map taking Dirichlet bounded
functions on a collar neighbourhood in Σ1 to Dirichlet bounded functions in a
collar neighbourhood in Σ2.
The overfare operator is then shown to be bounded in Section 3.6 by first

overfaring locally and then applying the bounce operator on Σ2. Since every
step is bounded, this will complete the proof.
In previous works of the authors, only one curve was involved. This meant

that constant functions overfare to constant functions. For this reason, it was
sufficient to work with the Dirichlet seminorm. However, if there are many
curves, it is possible that many constants are involved, and indeed it is even
possible that the overfare of a locally constant function is a non-constant func-
tion. It is then possible to drive up the Dirichlet seminorm on one side while it
is unchanged on the other.
If the originating surface is connected, this problem does not arise. In this

case, we show that overfare is bounded with respect to the Dirichlet seminorm
for general quasicircles. On the other hand, to control the constants, we need to
work with a true norm. We introduce a conformally invariant norm in Section
3.3, which can be given in several equivalent forms. We show that for quasi-
circles with greater regularity the overfare is bounded with respect to this true
norm. This conformally invariant norm also plays an important role in the the-
ory of boundary values of 𝐿2 harmonic one-forms established in the second pa-
per in this series. In Section 3.3 we also establish two “anchor lemmas” which
are necessary to rigorously define boundary integrals of pairings of Dirichlet
bounded functions with 𝐿2 forms. This is necessary for definition of the norm
which controls constants, and will also play a role in the sequels to this paper
[30, 31, 32].

3.2. CNT limits and boundary values of functions and forms. In this sec-
tion, we define a notion of non-tangential limit which is conformally invariant.
Existence of this limit is independent of coordinate. In a sense, this is the natu-
ral notion of non-tangential limit on the border of a Riemann surface. Themain
idea is that any border chart determines a notion of non-tangential approach to
a point on the boundary, and the compatibility of border charts implies that this
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notion is independent of chart.

We now give the precise definition. First, we recall the definition of non-
tangential limit on the upper half plane and the disk 𝔻. For 𝜃 ∈ (0, 𝜋∕2) and
𝑝 ∈ 𝜕ℍ define the wedge

𝑉𝑝,𝜃 = {𝑧 ∈ ℍ ∶ 𝜋∕2 − 𝜃 < arg(𝑧 − 𝑝) < 𝜋∕2 + 𝜃}.
Let ℎ ∶ 𝑈 → ℂ be a function defined on an open set 𝑈 in ℍ which contains a
half disk 𝐷𝑟 = {𝑧 ∶ |𝑧 − 𝑝| < 𝑟, 𝑧 ∈ ℍ}.

Definition 3.1. We say that ℎ has a non-tangential limit at 𝑝 if
lim
𝑧→𝑝

ℎ|𝑉𝑝,𝜃∩𝑈

exists for every 𝜃 ∈ (0, 𝜋∕2).

Similarly, we can define non-tangential limit for functions ℎ on open subsets
𝑈 of 𝔻 containing a set 𝐷𝑟 = {𝑧 ∶ |𝑧 − 𝑝| < 𝑟, 𝑧 ∈ 𝔻}. A non-tangential wedge
in 𝔻 with vertex at 𝑝 ∈ 𝕊1 is a set of the form

𝑊(𝑝,𝑀) = {𝑧 ∈ 𝔻 ∶ |𝑝 − 𝑧| < 𝑀(1 − |𝑧|)}
for some𝑀 ∈ (1,∞). We say that a function ℎ ∶ 𝔻 → ℂ has a non-tangential
limit at 𝑝 if the limit of ℎ|𝑊(𝑝,𝑀)∩𝑈 as 𝑧 → 𝑝 exists for all𝑀 ∈ (1,∞). One may
equivalently use Stolz angles, that is sets of the form

𝑆(𝑝, 𝛼) = {𝑧 ∶ arg(1 − 𝑝̄𝑧) < 𝛼, |𝑧| < 𝜌 cos 𝛼}
where 𝛼 ∈ (0, 𝜋∕2) [18, p6].
It is easily seen that if 𝑇 ∶ 𝔻 → 𝔻 is a disk automorphism, then ℎ has a

non-tangential limit at 𝑝 if and only if ℎ◦𝑇 has a non-tangential limit at 𝑇(𝑝).
A similar statement holds for non-tangential limits in the upper half plane. Fi-
nally, observe that if 𝑇 is a Möbius transformation from 𝔻 to ℍ then a function
ℎ on a subset of the upper half plane has a non-tangential limit at 𝑝 if and only
if ℎ◦𝑇 has a non-tangential limit at 𝑇−1(𝑝).
We now define conformally non-tangential limits. Let 𝑈 be an open subset

of Σ and let ℎ ∶ 𝑈 → ℂ. Let 𝑝 ∈ 𝜕Σ. We say that ℎ is “defined near 𝑝” if
there is a boundary chart 𝜙 ∶ 𝑉 → cl(ℍ) such that 𝜙(𝑈) contains a half-disk
𝐷𝑟 = {𝑧 ∶ |𝑧 − 𝑝| < 𝑟, 𝑧 ∈ ℍ}.

Definition 3.2. Let Σ be a Riemann surface with border 𝜕Σ. Fix 𝑝 ∈ 𝜕Σ and let
ℎ ∶ 𝑈 → ℂ be defined near 𝑝. We say that ℎ has a conformally non-tangential
limit at 𝑝 if there is a boundary chart 𝜙 ∶ 𝑉 → cl(ℍ) such that 𝑝 ∈ 𝑉 and ℎ◦𝜙−1
has a non-tangential limit at 𝜙(𝑝).

We will use the acronym CNT in place of “conformally non-tangential”.
The following theorem shows that the existence of theCNT limit does not de-

pend on the chart, in the sense that the condition of the definition holds either
for all boundary charts or none.
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Proposition 3.3. For fixed 𝑝 ∈ 𝜕Σ, let ℎ ∶ 𝑈 → ℂ be defined near 𝑝 and let
ℎ have a CNT limit equal to 𝜁 at 𝑝. Then the CNT limit is independent of the
boundary chart used inDefinition 3.2. That is, for any boundary chart 𝜓 ∶ 𝑊 →
ℍ, ℎ◦𝜓−1 has a non-tangential limit equal to 𝜁 at 𝜓(𝑝). The same claims holds
for boundary charts 𝜓 ∶ 𝑊 → 𝔻+.

Proof. Assume that ℎ◦𝜙−1 has a non-tangential limit equal to 𝜁 at 𝜙(𝑝) for
some boundary chart 𝜙 ∶ 𝑉 → ℍ. Let 𝜓 ∶ 𝑊 → ℍ be any other boundary
chart near 𝑝. By the Schwarz reflection principle, 𝜙◦𝜓−1 extends to a biholo-
morphism from an open neighbourhood of 𝜓(𝑝) to an open neighbourhood of
𝜙(𝑝). In particular, for any non-tangentialwedge𝑉𝜓(𝑝),𝜃 there is a disk𝐷 at𝜙(𝑝)
such that 𝜙◦𝜓−1(𝐷 ∩ 𝑉𝜓(𝑝),𝜃) is contained in a non-tangential wedge at 𝜙(𝑝).
Thus the limit as 𝑧 approaches 𝜓(𝑝) of ℎ◦𝜓−1 = ℎ◦𝜙◦𝜙◦𝜓−1 within 𝐷 ∩𝑉𝜓(𝑝),𝜃
equals 𝜁. □

It follows immediately from the definition of CNT limits that they are confor-
mally invariant. Although this is a simple consequence it deserves to be high-
lighted.

Theorem 3.4 (Conformal invariance of CNT limits). Let Σ be a bordered Rie-
mann surface and ℎ ∶ 𝑈 → ℂ be a function defined near 𝑝 ∈ 𝜕Σ. If 𝐹 ∶ Σ1 → Σ
is a conformalmap, then ℎ has aCNT limit of 𝜁 at 𝑝 if and only if ℎ◦𝐹 has aCNT
limit of 𝜁 at 𝐹−1(𝑝).

Next, we define a potentially-theoretically negligible set on the border which
we call a null set. We first need a lemma.

Lemma 3.5. Let Σ be a type (𝑔, 𝑛) bordered surface and let 𝜙𝑘 ∶ 𝑈𝑘 → 𝔸𝑟𝑘 ,1 be
collar charts of a boundary curve 𝜕𝑗Σ for 𝑘 = 1, 2 and some fixed 𝑗 ∈ {1, … , 𝑛}.
Let 𝐼 ⊂ 𝜕𝑗Σ be a Borel set. Then 𝜙1(𝐼) has logarithmic capacity zero if and only if
𝜙2(𝐼) has logarithmic capacity zero.

Proof. If 𝐾 ⊂ 𝕊1 = {𝑧 ∶ |𝑧| = 1} is a Borel set of logarithmic capacity zero,
and 𝜙 is a quasisymmetry, then 𝜙(𝐾) has logarithmic capacity zero [25, Theo-
rem 2.9]. Since the inverse of a quasisymmetric map is also a quasisymmetry
(and in particular a homeomorphism), we see that a Borel set𝐾 has logarithmic
capacity zero if and only if 𝜙(𝐾) is a Borel set of logarithmic capacity zero.
Now let 𝜙1 ∶ 𝑈1 → 𝔸𝑟1,1 and 𝜙2 ∶ 𝑈2 → 𝔸𝑟2,1 be collar charts such that

𝑈1 and𝑈2 are in Σ. By Lemma 2.12, 𝜙1◦𝜙−12 has a homeomorphic extension to
𝕊1. By the Schwarz reflection principle, it has an extension to a conformal map
of an open neighbourhood of 𝕊1, so it is an analytic diffeomorphism of 𝕊1 and
in particular a quasisymmetry. Thus 𝜙2(𝐼) has logarithmic capacity zero if and
only if 𝜙1(𝐼) has capacity zero. This completes the proof. □

The previous lemma motivates and justifies the following definition.

Definition 3.6. Let Σ be a bordered Riemann surface of type (𝑔, 𝑛). We say that
a Borel set 𝐼 ⊂ 𝜕𝑘Σ is a null set if 𝜙(𝐼) is a set of logarithmic capacity zero in 𝕊1
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for some collar chart 𝜙 of 𝜕𝑘Σ. We say that a Borel set 𝐼 in 𝜕Σ is null if it is a
union of null sets 𝐼𝑘 ⊂ 𝜕𝑘Σ, 𝑘 = 1,… , 𝑛.

We also have the following two results:

Proposition 3.7. If 𝐼1 and 𝐼2 are null in 𝜕𝑘Σ then 𝐼1 ∪ 𝐼2 is null.

Proof. It is enough to show that the union of Borel sets 𝐼1 and 𝐼2 of logarith-
mic capacity zero in𝕊1 are of logarithmic capacity zero. By Choquet’s theorem,
the outer capacity of 𝐼1 and 𝐼2 equal their capacity. Since outer capacity is sub-
additive, the outer capacity of 𝐼1 ∪ 𝐼2 is zero. The claim follows from another
application of Choquet’s theorem. □

Harmonic functions which are Dirichlet bounded near a border have CNT
boundary values except possibly on a null set.

Theorem 3.8. Let Σ be a bordered Riemann surface of type (𝑔, 𝑛). Let 𝑈𝑘 be a
collar neighbourhood of 𝜕𝑘Σ for some 𝑘 ∈ {1, … , 𝑛}. If ℎ ∈ 𝒟harm(𝑈𝑘) then ℎ has
CNT boundary values on 𝜕𝑘Σ∖𝐼 for some null set 𝐼 ⊂ 𝜕𝑘Σ.

Proof. By conformal invariance of the Dirichlet space and CNT boundary val-
ues (Theorem 3.4), it is enough to prove this for an annulus in the plane, which
is a special case of [26, Theorem 3.12]. □

Remark 3.9. The non-tangential boundary values agree with the Sobolev trace
up to a set of measure zero, if the boundary is sufficiently regular. This holds
for example if we treat the border as an analytic curve in the double.
In fact if one has an (𝜀, 𝛿) domain Ω (in the plane these are quasidisks) with
Ahlfors-regular boundary in the sense of Definition 1.1 of [5], then using The-
orem 8.7 (iii) in [5] and taking 𝑠 = 1, 𝑝 = 2 and 𝑛 = 2, we have that their
condition 𝑠 − 𝑛−𝑑

𝑝
= 1 − 2−1

2
= 1

2
∈ (0,∞) is satisfied. Thus, Theorem

8.7 (iii) in [5] yields that the Sobolev trace belonging to 𝐻1∕2(𝜕Ω) agrees al-
most everywhere (since the 1-dimensional Hausdorff measure on 𝜕Ω is the 1-
dimensional Lebesgue measure) with the non-tangential limit of the function
ℎ ∈ 𝐻1(Ω). Note that chord-arc domains, are examples of (𝜀, 𝛿) domains with
Ahlfors-regular boundary.

Theorem 3.10. Let Σ be a bordered surface of type (𝑔, 𝑛). If ℎ ∈ 𝒟harm(Σ), then
there is a null set 𝐼 ⊂ 𝜕Σ such that ℎ has CNT boundary values on Σ∖𝐼. If 𝐻 is
any element of𝒟harm(Σ) with CNT boundary values which agree with those of ℎ
except possibly on a null set 𝐽, then ℎ = 𝐻.

Proof. The first claim follows directly from Theorem 3.8. For the uniqueness
part, it is well-known that if𝑋 is a smooth compact Riemannianmanifold with
boundary, then the Dirichlet problem

{∆𝑢 = 0
𝑢|𝜕𝑋 = 𝑓 ∈ 𝐻1∕2(𝜕𝑋)

(3.1)
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has a unique solution that satisfies

‖𝑢‖𝐻1(𝑋) ≤ 𝐶‖𝑓‖𝐻1∕2(𝜕𝑋),
see e.g. [36, Proposition 1.7, p 382]. Using this together with Remark 3.9 it
follows that if𝐻 = ℎ up to a null set on 𝜕Σ then ℎ = 𝐻. □

A suitable adaptation of the proof of [26, Theorem 3.17] also yields

Theorem 3.11. Let Σ be a bordered surface of type (𝑔, 𝑛) and let𝑈𝑘 ⊆ Σ be collar
neighbourhoods of 𝜕𝑘Σ for 𝑘 = 1,… , 𝑛. Let ℎ𝑘 ∈ 𝒟harm(𝑈𝑘) for 𝑘 = 1,… , 𝑛.
There is a function 𝐻 ∈ 𝒟harm(Σ) whose CNT boundary values agree with those
of ℎ𝑘 on 𝜕𝑘Σ up to a null set for each 𝑘 = 1,… , 𝑛.

We thus make the following definition.

Definition 3.12. Let Σ be a Riemann surface and let Γ be a finite collection
of borders of Σ each of which is homeomorphic to 𝕊1. Given functions ℎ𝑘 ∶
Γ∖𝐼𝑘 → ℂ where 𝐼1 and 𝐼2 are null sets, we say that ℎ1 ∼ ℎ2 if ℎ1 and ℎ2 are
both defined on Γ∖𝐼 for some null set 𝐼 and ℎ1 = ℎ2 on Γ∖𝐼. The Osborn space
ℋ(Γ) is the set of equivalence classes of such functions.

Remark 3.13. It follows from the results of this section that every element of
𝐻1∕2(Γ), which is defined almost everywhere, has a unique extension to an el-
ement ofℋ(Γ) which is defined except possibly on a null set.

3.3. Anchor lemmas, boundary integrals, and a conformally invariant
Dirichlet norm. Having defined the notion of CNT boundary values in the
previous section, we establish two lemmaswhich allowus to consistently define
integrals of the form

∫
Γ
𝛼 ℎ

where Γ is a boundary curve of a Riemann surface, 𝛼 is an 𝐿2 harmonic one-
form in a collar neighbourhood of Γ, and ℎ is a harmonic function with finite
Dirichlet norm in a collar neighbourhood of Γ. Moreover the integral, as far as
ℎ is concerned, depends only on the CNT boundary values of ℎ on Γ.
We do this by evaluating the integral along curves which approach Γ in the

limit. LetΣ be aRiemann surface of type (𝑔, 𝑛), Γ𝑘 be one of its boundary curves,
and 𝜙 ∶ 𝐴 → 𝔸 be a collar chart for Γ𝑘. By Remark 2.13, setting 𝐶𝑟 = {𝑧 ∶ |𝑧| =
𝑟} for 𝑟 ∈ (0, 1)

Γ𝑟𝑘 = 𝜙(𝐶𝑟) (3.2)

is an isotopy of analytic Jordan curves on [𝑅, 1] for some 𝑅 ∈ (0, 1), such that
Γ1𝑘 = Γ𝑘.
The following two lemmas show that the limiting integrals are well-defined

in the sense that they are independent of the choice of limiting curves (the first
anchor lemma), and depend only on the boundary values (the second anchor
lemma).
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Lemma 3.14 (First anchor lemma). Let 𝜙 ∶ 𝐴 → 𝔸 be a collar chart of Γ𝑘 in
Σ1, and let Γ𝑟𝑘 = 𝜙(𝐶𝑟). Let 𝛼 ∈ 𝒜(𝐴). For any ℎ ∈ 𝒟harm(𝐴)

lim
𝑟↗1

∫
Γ𝑟𝑘

𝛼(𝑤)ℎ(𝑤)

exists. Furthermore, this quantity is independent of the collar chart.

Proof. Existence follows from Stokes’ theorem, since

lim
𝑟↗1

∫
Γ𝑟𝑘

𝛼(𝑤)ℎ(𝑤) = ∫
Γ𝑘
𝛼(𝑤)ℎ(𝑤) +∬

𝐴𝑟
𝛼 ∧ 𝜕ℎ(𝑤). (3.3)

where𝐴𝑟 is the region bounded byΓ𝑟𝑘 andΓ𝑘. This existence argument of course
applies to any choice of collar chart.
We need to show that it gives the same result regardless of the choice. By

change of variables, it is enough to prove this in the situation that one of the
collar charts 𝜙 is of Γ𝑘 = 𝕊1 as a boundary of 𝐴 = 𝔸𝑟,1, and 𝜙 = Id. The curves
Γ𝑟𝑘 are then just |𝑧| = 𝑟. Let 𝜙′ ∶ 𝐴′ → 𝔸′ be some other collar chart of 𝕊1. Let
𝛾𝑟𝑘 denote the isotopy induced by 𝜙

′.
Fix any 𝜀 > 0 and choose 𝑅 such that

||||||||||
lim
𝑟↗1

∫
𝛾𝑟𝑘

𝛼(𝑤)ℎ(𝑤) − ∫
𝛾𝑅𝑘

𝛼(𝑤)ℎ(𝑤)
||||||||||
< 𝜀∕2

and
‖𝛼‖𝒜(𝐴′

𝑅)‖𝜕ℎ‖𝒜(𝐴′
𝑅)
< 𝜀∕2 (3.4)

where 𝐴′
𝑅 is the region bounded by 𝕊1 and 𝛾

𝑅
𝑘 . Since 𝛾

𝑅
𝑘 is compact, |𝑧| has a

maximum 𝑀 < 1 on 𝛾𝑅𝑘 . For any 𝑟 > 𝑀, Γ𝑟𝑘 is contained in 𝐴
′
𝑅 and does not

intersect 𝛾𝑅𝑘 . If we let 𝐵 denote the region bounded by these two curves, then
𝐵 ⊆ 𝐴′

𝑅. Therefore using Cauchy-Schwarz’s inequality we deduce that
||||||||||
lim
𝑟↗1

∫
𝛾𝑟𝑘

𝛼(𝑤)ℎ(𝑤) − ∫
Γ𝑟𝑘

𝛼(𝑤)ℎ(𝑤)
||||||||||
≤
||||||||||
lim
𝑟↗1

∫
𝛾𝑟𝑘

𝛼(𝑤)ℎ(𝑤) − ∫
𝛾𝑅𝑘

𝛼(𝑤)ℎ(𝑤)
||||||||||

+
||||||||||
∫
𝛾𝑅𝑘

𝛼(𝑤)ℎ(𝑤) − ∫
Γ𝑟𝑘

𝛼(𝑤)ℎ(𝑤)
||||||||||

< 𝜀
2 +

||||||||
∬

𝐵
𝛼(𝑤) ∧ 𝜕ℎ(𝑤)

||||||||
≤ 𝜀
2 + ‖𝛼‖𝒜(𝐴′

𝑅)‖𝜕ℎ‖𝒜(𝐴′
𝑅)

which by (3.4) proves the claim. □

Henceforth we will denote this limiting integral by

∫
Γ𝑘
𝛼(𝑤)ℎ(𝑤) or ∫

𝜕𝑘Σ
𝛼(𝑤)ℎ(𝑤)
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if Γ𝑘 = 𝜕𝑘Σ, where the notation is justified by Lemma 3.14.
We now show that the integral depends only on the CNT boundary values of

the harmonic function ℎ in the integral above.
Lemma 3.15 (Second anchor lemma). Let𝐴 be a collar neighbourhood of Γ𝑘 in
Σ1 for some 𝑘 ∈ {1, … , 𝑛}. If ℎ1 and ℎ2 are any two elements of𝒟harm(𝐴)with the
same CNT boundary values on Γ𝑘 up to a null set, then for any 𝛼 ∈ 𝒜(𝐴)

∫
𝜕𝑘Σ

𝛼(𝑤)ℎ1(𝑤) = ∫
𝜕𝑘Σ

𝛼(𝑤)ℎ2(𝑤).

Proof. By Lemma 3.14 we may use any collar chart to determining a limiting
sequence of curves. By Proposition 2.16 we can find a collar chart whose do-
main is in 𝐴. Since the integral along a curve is invariant under composition
with a conformal map, it is enough to prove this for Γ𝑘 = 𝕊1 and 𝐴 = 𝔸𝑟,1 for
some 𝑟, with limiting curves Γ𝑟𝑘 given by |𝑧| = 𝑟. We can apply [27, Theorem
4.7] or [28, Lemma 3.21] to (ℎ1 − ℎ2) in this case. □

In summary, the limiting integral of ℎ against any 𝛼 ∈ 𝒜(𝐴) exists and de-
pends only on the CNT boundary values of ℎ.
Remark 3.16. We will often consider the situation where the Riemann surface
Σ is a subset of a compact surface R, where the boundary is irregular (such as
a quasicircle). However the anchor lemmas involve only the assumption that
the boundary is a border (and hence, a collar chart exists). In particular, no
reference is made to any outside surface, and thus they apply in the situation
above.

We now obtain two explicit collar charts which arise naturally from the har-
monic measure and Green’s function. These two canonical collar charts are
very useful in association with the evaluation of certain boundary integrals.
The first lemma tackles the case of the collar chart from harmonic measure.

Lemma 3.17 (Collar chart from harmonic measure). Let Σ be a type (𝑔, 𝑛) Rie-
mann surface for 𝑛 > 1. Let𝜔𝑘 be the harmonic function which is one on 𝜕𝑘Σ and
0 on the other boundary curves. Let 𝜓 be the multi-valued holomorphic function
with real part 𝜔𝑘 − 1 and set

𝑖𝑎𝑘 = 𝑖 ∫
𝜕𝑘Σ

∗ 𝑑𝜔𝑘.

Then
𝜙(𝑧) = exp (2𝜋𝜓∕𝑎𝑘)

is a collar chart on some collar neighbourhood𝑈 of 𝜕𝑘Σ. Furthermore

∗ 𝑑𝜔𝑘 =
𝑎𝑘
2𝜋𝜙

∗𝑑𝜃,

and thus for any ℎ ∈ 𝒟harm(𝑈) we have

∫
𝜕𝑘Σ

ℎ ∗ 𝑑𝜔𝑘 =
𝑎𝑘
2𝜋 ∫

𝕊1
ℎ◦𝜙(𝑒𝑖𝜃)𝑑𝜃.
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Proof. It is clear that 𝜙 takes level curves 𝜔𝑘 = 1 − 𝜖 to curves |𝑧| = 𝑒−𝜖 for
𝜖 sufficiently small. Observe that 𝑑Re𝜓 = 𝑑𝜔𝑘, so the harmonic conjugate of
𝜔𝑘 − 1 is a primitive of ∗ 𝑑𝜔𝑘. By the definition of 𝑎𝑘, this shows that 𝜙 is
single-valued. An application of the argument principle shows that the map is
a bijection for some collar neighbourhood defined by 0 < 𝜖 < 𝑠 for some fixed
𝑠. This proves the first claim.
The second claim follows from

𝑑𝜃 = 𝑑 Im log𝜓 = 2𝜋
𝑎𝑘

∗ 𝑑𝜔𝑘.

The final claim follows from a change of variables and the second claim. □

We also have

Lemma 3.18 (Collar chart from Green’s function). Let Σ be a type (𝑔, 𝑛) Rie-
mann surface and let 𝐺Σ be Green’s function of Σ. For fixed 𝑝, let 𝜓(𝑤) be the
multi-valued holomorphic function with real part 𝐺Σ(𝑤; 𝑝). Setting

𝑖𝑎𝑘 = 𝑖 ∫
𝜕𝑘Σ

∗ 𝑑𝐺Σ(⋅; 𝑝)

it holds that
𝜙(𝑤) = exp(2𝜋𝜓(𝑤)∕𝑎𝑘)

is a collar chart on some open neighbourhood𝑈 of 𝜕𝑘Σ.
Proof. The proof is similar to that of the above, and can be found in [26]. □

The important property of these two collar charts is that the limiting curves
are level curves of the harmonic measure and Green’s function respectively.

A useful application is the following extension of the well-known reproduc-
ing property of Green’s function.

Proposition 3.19. LetΣ be a type (𝑔, 𝑛)Riemann surface and let𝐺Σ be its Green’s
function. Let Γ𝑝𝜖 denote the level curves of Green’s function for any fixed 𝑝 ∈ Σ.
For any ℎ ∈ 𝒟harm(Σ)

ℎ(𝑧) = − 1
2𝜋 ∫

𝜕Σ
∗ 𝑑𝑤𝐺Σ(𝑤; 𝑧)ℎ(𝑤) = − lim

𝜖↘0
1
2𝜋 ∫

Γ𝑝𝜖
∗ 𝑑𝑤𝐺Σ(𝑤; 𝑧)ℎ(𝑤).

We also have
ℎ(𝑧) = − 1

𝜋𝑖 ∫𝜕Σ
𝜕𝑤𝐺Σ(𝑤; 𝑧)ℎ(𝑤).

Proof. We prove the first displayed equation. By Lemma 3.14, the integral on
the left is well-defined, that is, the right hand side is the same no matter what
the choice of 𝑝 is. Thus we may assume that 𝑝 = 𝑧. In that case, Stokes’ theo-
rem and the harmonicity of ℎ yield that

∫
Γ𝑝𝜖
𝐺Σ ∗ 𝑑ℎ = 𝜖 ∫

Γ𝑝𝜖
∗ 𝑑ℎ = 0.
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From here, the proof proceeds in the usual way using Green’s identity

∫
Γ𝑝𝜖
(𝐺Σ(𝑤; 𝑝) ∗ 𝑑ℎ(𝑤) − ℎ(𝑤) ∗ 𝑑𝐺Σ(𝑤; 𝑝)) =

∫
𝛾𝑟
(𝐺Σ(𝑤; 𝑝) ∗ 𝑑ℎ(𝑤) − ℎ(𝑤) ∗ 𝑑𝐺Σ(𝑤; 𝑝))

where 𝛾𝑟 is a curve |𝑤 − 𝑝| = 𝑟 in some local coordinate, and letting 𝑟 ↘ 0.
To prove the second displayed equation, choose the limiting curves to be level

curves of 𝐺Σ(⋅ ; 𝑧); again, this can be done by Lemma 3.14. Along such curves
𝑑𝐺Σ = 0, so that

𝜕𝑤𝐺Σ(𝑤; 𝑧) =
𝑖
2 ∗ 𝑑𝑤𝐺Σ

by equation (2.1), which proves the claim. □

Note that, this is usually written in terms of an integral around the boundary,
under the assumption that ℎ is more regular.

3.4. Conformally invariant Sobolevnorms. Wenowdefine conformally in-
variant norms onDirichlet-bounded harmonic functions. The idea ismotivated
by the case of the disk as follows. To turn the Dirichlet semi-norm of harmonic
functions ℎ on the disk into a norm, one usually adds a value at a point to the
norm, say |ℎ(0)|, which equals

1
2𝜋

||||||||
∫
𝕊1
ℎ(𝑒𝑖𝜃) 𝑑𝜃

||||||||
.

But on a Riemann surface we do not have a distinguished point or a canonically
determined measure 𝑑𝜃 on the borders. We therefore replace 𝑑𝜃 with more
general quantities associated to harmonic measures or Green’s function.
Given ℎ ∈ 𝒟harm(Σ) we set

H𝑘 ∶= ∫
𝜕𝑘Σ

ℎ𝑘 ∗ 𝑑𝜔𝑘.

In the case that 𝑛 = 1, fix a point 𝑝 ∈ Σ ⧵ 𝑈1 and define instead

H1 ∶= ∫
𝜕1Σ

ℎ1 ∗ 𝑑𝐺Σ(𝑤, 𝑝), (3.5)

where 𝐺Σ(𝑤, 𝑝) is Green’s function of Σ.

Definition 3.20. Set𝑈 = 𝑈1∪⋯∪𝑈𝑛 as above. Let𝐻1
conf (𝑈) be the harmonic

Dirichlet space𝒟harm(𝑈) endowed with the norm

‖ℎ‖𝐻1
conf (𝑈)

∶=
(
‖ℎ‖2𝒟harm(𝑈)

+
𝑛∑

𝑘=1
|H𝑘|2

) 1
2 . (3.6)
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Assuming the Riemann surface Σ is connected, we can choose any fixed bound-
ary curve 𝜕𝑛Σ say, and define the norm

‖ℎ‖𝐻1
conf (Σ)

∶=
(
‖ℎ‖2𝒟harm(Σ)

+ |H𝑛|2
)1∕2

, (3.7)

(where any of the H𝑘 could in fact be used in place of H𝑛).

We can also use Green’s function to define the norm in the case that 𝑛 > 1,
as the following lemma shows. The different characterizations will be of use to
us later.

Lemma 3.21. Let Σ be a connected Riemann surface of type (𝑔, 𝑛). For any fixed
point 𝑝 ∈ Σ, the norms given by

‖ℎ‖2𝒟harm(Σ),𝑝
= ‖ℎ‖2𝒟harm(Σ)

+ |ℎ(𝑝)|2

= ‖ℎ‖2𝒟harm(Σ)
+
|||||||||
lim
𝜀↘0

1
𝜋𝑖 ∫Γ𝜀

𝜕𝑤𝐺Σ(𝑤; 𝑝)ℎ(𝑤)
|||||||||

2

,

where Γ𝜀 are the level curves of Green’s function based at𝑝, and the𝐻1
conf (Σ) norm

are equivalent.

Proof. If 𝑛 = 1 there is nothing to prove. First we note that if𝑈 ⊂ Σ is a small
neighbourhood of 𝑝 ∈ Σ then by the mean-value theorem for harmonic func-
tions and Jensens inequality we have that |ℎ(𝑝)|2 ≲ ‖ℎ‖2𝐿2(Σ), which confirms
condition (2) of Theorem 2.28. Therefore, since conditions (1) and (3) of that
theorem are also trivially satisfied, the Lemma follows. □

Theorem 3.22. Let Σ be a connected Riemann surface of type (𝑔, 𝑛). Then, the
𝐻1
conf (Σ)norm is equivalent to the𝐻1(Σ)norm. In particular, any choice of bound-

ary curve in the definition of𝐻1
conf (Σ) leads to an equivalent norm.

Proof. We note that for any integer 0 ≤ 𝑘 ≤ 𝑛, |H𝑘| ≥ 0, ∫𝜕𝑘Σ ∗ 𝑑𝜔𝑘 = −∫𝛾𝑘 ∗
𝑑𝜔𝑘 ≠ 0, and |H𝑘| ≤ 𝐶‖ℎ‖𝐻1(Σ), by the Cauchy-Schwarz inequality and (2.21).
Similarly in the case that 𝑛 = 1 and we use ∗ 𝑑𝐺Σ to define H1. Therefore
Theorem 2.28 yields the desired result. □

3.5. The bounce operator. Let Σ be a bordered surface of type (𝑔, 𝑛) and let
𝑈𝑘 ⊆ Σ be collar neighbourhoods of 𝜕𝑘Σ for 𝑘 = 1,… , 𝑛. Let ℎ𝑘 ∈ 𝒟harm(𝑈𝑘)
for 𝑘 = 1,… , 𝑛. Recall that by Theorems 3.10 and 3.11, there is a unique 𝐻 ∈
𝒟harm(Σ)whoseCNTboundary values agreewith those ofℎ𝑘 on 𝜕𝑘Σup to a null
set for each 𝑘 = 1,… , 𝑛. This fact allows us to define the following operator,
which plays a major role in what follows.

Definition 3.23. Set 𝑈 = 𝑈1 ∪ ⋯ ∪ 𝑈𝑛 and let ℎ ∶ 𝑈 → ℂ be the function
whose restriction to 𝑈𝑘 is ℎ𝑘 for each 𝑘 = 1,… , 𝑛. We define

𝐆𝑈,Σ ∶ 𝒟harm(𝑈) → 𝒟harm(Σ)
ℎ ↦ 𝐻



352 ERIC SCHIPPERS ANDWOLFGANG STAUBACH

where𝐻 is the unique element of𝒟harm(Σ)withCNTboundary values agreeing
with ℎ up to a null set, which exists by Theorem 3.10. We call this operator the
bounce operator.

By conformal invariance of CNT limits, the bounce operator is conformally
invariant, that is, if 𝑓 ∶ Σ → Σ′ is a biholomorphism and 𝑓(𝑈) = 𝑈′, then

𝐆𝑈,Σ𝐂𝑓 = 𝐂𝑓𝐆𝑈′,Σ′ . (3.8)

Theorem 3.24 (Boundedness of bounce operator). Let Σ and𝑈𝑘 be as above for
𝑘 = 1,… , 𝑛. Then 𝐆𝑈,Σ is bounded from𝐻1

conf (𝑈) to𝐻
1
conf (Σ).

Remark 3.25. Note that a proof of the special case of Theorem 3.24 can be found
in [28], Theorem 4.6.

Proof. The goal is to show that if 𝑈 = 𝑈1 ∪ ⋯ ∪ 𝑈𝑛 and if ℎ ∶ 𝑈 → ℂ is a
function in𝒟harm(𝑈) whose restriction to 𝑈𝑘 is ℎ𝑘 for each 𝑘 = 1,… , 𝑛, then

‖𝐆𝑈,Σ ℎ‖𝐻1
conf (Σ)

≲ ‖ℎ‖𝐻1
conf (𝑈)

,

for ℎ ∈ 𝒟harm(𝑈). First, observe that we can assume that the inner boundary
of 𝑈𝑘 is analytic. To see this, let 𝑈′

𝑘 ⊆ 𝑈𝑘 be a collar neighbourhood whose
inner boundary is analytic. Since ‖ ℎ𝑘|||𝑈′

𝑘
‖𝐻1

conf (𝑈
′
𝑘)
≤ ‖ℎ𝑘‖𝐻1

conf (𝑈𝑘), it is enough
to show that 𝐆𝑈,Σ is bounded with respect to the 𝐻1

conf (𝑈
′) norm, where 𝑈′ =

𝑈′
1 ∪ ⋯ ∪ 𝑈′

𝑛 ⊂ 𝑈. In what follows, we relabel the new sets by removing the
primes.
Next, observe that because CNT boundary values and the Dirichlet norms

are conformally invariant, it is enough to prove this for analytic strip-cutting
curves 𝜕𝑘Σ, and this can be arranged for example by embedding Σ in its double.
Thus, we can assume that 𝜕𝑈𝑘 is analytic.
Furthermore by the result on the unique Sobolev extension, see e.g. [36, Propo-
sition 4.5, p 356] and the fact that 𝜕𝑘Σ ⊊ 𝜕𝑈𝑘, yields that

‖ ℎ|𝜕𝑘Σ ‖𝐻1∕2(𝜕𝑘Σ) ≤ ‖ ℎ|𝜕𝑘Σ ‖𝐻1∕2(𝜕𝑈𝑘) = ‖ℎ𝑘‖𝐻1(𝑈𝑘). (3.9)

Also, since 𝜕Σ = ∪𝑛𝑘=1𝜕𝑘Σ, given theDirichlet dataℎ|𝜕𝑘Σ, 𝑘 = 1,… , 𝑛, on each
of the boundary components, Theorem 3.10 yields that the unique harmonic
extension𝐻 of the boundary values ℎ|𝜕𝑘Σ satisfies

‖𝐻‖𝐻1(Σ) ≲
𝑛∑

𝑘=1
‖ ℎ|𝜕𝑘Σ ‖𝐻1∕2(𝜕𝑘Σ). (3.10)

Now since𝐻 = 𝐆𝑈,Σ ℎ, using (3.9) and (3.10) one has

‖𝐆𝑈,Σ ℎ‖𝐻1(Σ) ≲
𝑛∑

𝑘=1
‖ℎ𝑘‖𝐻1(𝑈𝑘)≲‖ℎ‖𝐻1(𝑈). (3.11)

Now let F (ℎ) ∶=
(∑𝑛

𝑘=1 |H𝑘|2
)1∕2

then F is clearly non-negative, and
(3.12) yields that



OVERFARE OF HARMONIC FUNCTIONS ON RIEMANN SURFACES 353

F (1) =
( 𝑛∑

𝑘=1

|||||||||
∫
𝜕𝑘Σ

∗ 𝑑𝜔𝑘
|||||||||

2)1∕2
≠ 0.

Assume for the moment that the inner boundary of 𝑈𝑘 is an analytic curve
𝛾𝑘 (this can be arranged by taking a level curve of the collar chart of 𝑈𝑘 and
considering a new domain 𝑈′

𝑘 ⊆ 𝑈𝑘). By Stokes’ theorem we have

∫
𝜕𝑘Σ

ℎ𝑘 ∗ 𝑑𝜔𝑘 ∶= ∬
𝑈𝑘

𝑑ℎ𝑘∧ ∗ 𝑑𝜔𝑘 − ∫
𝛾𝑘
ℎ𝑘 ∗ 𝑑𝜔𝑘 (3.12)

where we give 𝛾𝑘 the same orientation as 𝜕𝑘Σ. Furthermore the definition
(3.12), the Cauchy-Schwarz inequality, (3.9) and Theorem 2.30 yield that

F (ℎ) ≤
𝑛∑

𝑘=1
|∬

𝑈𝑘

𝑑ℎ𝑘∧ ∗ 𝑑𝜔𝑘| +
𝑛∑

𝑘=1
| ∫

𝛾𝑘
ℎ𝑘 ∗ 𝑑𝜔𝑘| ≲ ‖ℎ‖𝐻1(𝑈) (3.13)

Now ifwehad to choose newdomains𝑈′
𝑘 ⊆ 𝑈𝑘 to arrange that 𝛾𝑘 were analytic,

since ‖ℎ𝑘‖𝐻1(𝑈′
𝑘) ≤ ‖ℎ𝑘‖𝐻1(𝑈𝑘) we see that (3.13) holds in general.

This shows thatF is a bounded linear functional on𝐻1(𝑈) and thereby the
conditions of Theorem 2.28 are all satisfied. Hence using (3.11) and Theorem
2.28 we obtain

‖𝐆𝑈,Σ ℎ‖𝐻1(Σ) ≲ ‖ℎ‖𝐻1(𝑈) ≲
(
‖ℎ‖2𝐻̇1(𝑈) + (F (ℎ))2

)1∕2

≲
(
‖ℎ‖2𝒟harm(𝑈)

+
𝑛∑

𝑘=1
|H𝑘|2

)1∕2
≲ ‖ℎ‖𝐻1

conf (𝑈)
.

(3.14)

Now Theorem 3.22 on equivalence of the norms ends the proof of the bound-
edness of the bounce operator. □

Now as an illuminating example, choose Σ = 𝔻 and𝑈 = 𝔸where𝔸 = 𝔸𝑟,1.
Choosing 𝑝 = 0 in (3.5), we observe that ∗ 𝑑𝐺 = 𝑑𝜃 where 𝜃 is angle in polar
coordinates 𝑧 = 𝑟𝑒𝑖𝜃 on 𝔻. Thus

H1 = ∫
𝕊1
ℎ(𝑒𝑖𝜃) 𝑑𝜃,

that is, it is just the constant term in the Fourier expansion of the trace of ℎ to
the boundary. Using this fact it is elementary to show that

Proposition 3.26. The subset 𝐆𝔸,𝔻𝒟(𝔸) is dense in𝐻1
conf (𝔻).

Proof. Given 𝑓 ∈ 𝐻1
conf (𝔻) and 𝜀 > 0, take a polynomial 𝑝(𝑧) ∈ 𝒟(𝔸) such

that ‖𝑓 − 𝑝‖𝐻1
conf (𝔻)

< 𝜀. Now since 𝐆𝔸,𝔻𝑓 = 𝑓, Theorem 3.24 yields that

‖𝑓 − 𝐆𝔸,𝔻𝑝‖𝐻1
conf (𝔻)

= ‖𝐆𝔸,𝔻(𝑓 − 𝑝)‖𝐻1
conf (𝔻)

≲ ‖𝑓 − 𝑝‖𝐻1
conf (𝔻)

< 𝜀, (3.15)

which proves the desired density. □
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In order to prove a density result in the case of many boundary curves, we
need the following lemma.

Lemma 3.27. Let Σ be a Riemann surface of type (𝑔, 𝑛). For any collar neigh-
bourhood 𝜙 ∶ 𝑈 → 𝔸 of a border 𝜕𝑘Σ, the map

𝐂𝜙 ∶ 𝐻1
conf (𝑈) → 𝐻1

conf (𝔸)
is a bounded isomorphism.

Proof. Note that we can treat 𝜕𝑘Σ as an analytic curve in the double and in
fact there is a biholomorphism of a doubly-connected neighbourhood of 𝜕𝑘Σ in
the double to a doubly-connected neighbourhood of 𝕊1. So after localizations
and partition of unity on the boundary structure of Σ, and using Theorem 2.28,
matters reduce to Lemma 2.27. □

We will also need the following when we study overfare in the next section.

Proposition 3.28. Let Σ be a type (𝑔, 𝑛) Riemann surface. Let 𝜙𝑘 ∶ 𝑈𝑘 → 𝔸𝑘
be a collection of collar charts of the boundaries 𝜕𝑘Σ for 𝑘 = 1,… , 𝑛 and let 𝑈 =
𝑈1 ∪⋯ ∪𝑈𝑛. Then the restriction map

𝐑Σ,𝑈 ∶ 𝐻1
conf (Σ) → 𝐻1

conf (𝑈)
is bounded.

Proof. This follows from the definitions of the norms (3.6), (3.7) and Theorem
3.22. □

We may now prove the following:

Theorem3.29. LetΣ be a type (𝑔, 𝑛)Riemann surface. Let𝑈 = 𝑈1∪⋯∪𝑈𝑛 be a
union of collar neighbourhoods𝑈𝑘 of 𝜕𝑘Σ. Then 𝐆𝑈,Σ𝒟(𝑈) is dense in𝐻1

conf (Σ).

Proof. The proof relies on a factorization trick. Let 𝐹𝑘 ∶ 𝑈𝑘 → 𝔸𝑘 be collar
charts, and denote 𝔸𝑛 = 𝔸1 × ⋯ × 𝔸𝑛 and 𝔻𝑛 = 𝔻 × ⋯ × 𝔻, and define
𝐹 ∶ 𝑈 → 𝔸 by 𝐹(𝑧) = (𝐹1(𝑧), … , 𝐹𝑛(𝑧)). Define the restriction maps

𝐑Σ,𝑈 ∶ 𝒟harm(Σ) → 𝒟harm(𝑈)
ℎ ↦ ℎ|𝑈

and similarly

𝐑𝔻𝑛 ,𝔸𝑛 ∶
𝑛⨁
𝒟harm(𝔻) →

𝑛⨁

𝑘=1
𝒟harm(𝔸𝑘)

(ℎ1, … , ℎ𝑛) ↦
(
ℎ1|𝔸1

, … , ℎ𝑛|||𝔸𝑛

)
.

Now
𝐂𝐹𝐑𝔻𝑛 ,𝔸𝑛 ∶ 𝐻1

conf (𝔻
𝑛) → 𝐻1

conf (𝑈)
is bounded by Lemma 3.27, where we put the direct sum norm on 𝐻1

conf (𝔻
𝑛).

Similarly
𝐂𝐹−1𝐑Σ,𝑈 ∶ 𝐻1

conf (Σ) → 𝐻1
conf (𝔸

𝑛)
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is bounded. Thus

𝜌 = 𝐆𝑈,Σ 𝐂𝐹 𝐑𝔻𝑛 ,𝔸𝑛 ∶ 𝐻1
conf (𝔻

𝑛) → 𝐻1
conf (𝔻

𝑛)
is bounded by Theorem 3.24, as is

𝜌−1 = 𝐆𝔸𝑛 ,𝔻𝑛𝐂𝐹−1𝐑Σ,𝑈 .
The fact that this is the inverse of 𝜌 follows from conformal invariance of CNT
boundary values.
Again by conformal invariance of CNT boundary values and the definition

of the bounce operator, we have the factorization

𝐆𝑈,Σ = 𝜌𝐆𝔸𝑛 ,𝔻𝑛 𝐂𝐹−1 .
Since𝐂𝐹−1 is a bounded invertiblemap by Lemma 3.27, andwe have shown that
𝜌 is a bounded invertible map, then density follows from Proposition 3.26. □

3.6. Overfare of harmonic functions. In this section, we show that given a
collection of quasicircles Γ separating a Riemann surface R into two compo-
nents Σ1 and Σ2, given ℎ1 ∈ 𝒟harm(Σ1) there is an ℎ2 ∈ 𝒟harm(Σ2) with the
same boundary values up to a negligible set. We call ℎ2 the overfare of ℎ1.

We saw that for theDirichlet space, the negligible sets are null sets. However,
a null set with respect to Σ1 is not obviously null with respect to Σ2. we show
that this is true for quasicircles. Furthermore, for quasicircles, the overfare
exists and is a boundedmap with respect to the Dirichlet seminorms, when the
originating surface Σ1 is connected. We will also show that that the overfare
map is bounded with respect to𝐻1

conf in the general case, if we assume that the
quasicircle is more regular. As we shall see ahead, the so-called Weil-Petersson
class quasicircles are sufficient for this purpose.

Definition 3.30. We say that a simple closed curve in ℂ̄ is a quasicircle if it is
the image of 𝕊1 under a quasiconformal map of the plane.
A simple closed curve Γ in a Riemann surface 𝑅 is a quasicircle if there is

an open set 𝑈 containing Γ and a biholomorphism 𝜙 ∶ 𝑈 → 𝔸 where 𝔸 is an
annulus in ℂ, such that 𝜙(Γ) is a quasicircle.
By definition, a quasicircle is a strip-cutting Jordan curve.

There is a class of quasicircles, called Weil-Petersson quasicircles, that arise
naturally and frequently in geometric function theory, Teichmüller theory, the
theory of Schramm-Loewner evolution, and conformal field theory.

Definition 3.31. We say that a quasicircle in ℂ̄ is a Weil-Petersson class qua-
sicircle (or WP quasicircle) if there is a conformal map 𝑓 ∶ 𝔻 → Ω where Ω is
one of the connected components of the complement, such that the Schwarzian
derivative 𝑆(𝑓) = 𝑓′′′∕𝑓′ − 3∕2(𝑓′′∕𝑓′)2 satisfies

∬
𝔻
(1 − |𝑧|2)2|𝑆(𝑓)|2𝑑𝑧̄ ∧ 𝑑𝑧2𝑖 < ∞.
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We say that a quasicircle Γ in a Riemann surfaceR is a WP class quasicircle
if there is an open set𝑈 containing Γ and a biholomorphism 𝜙 ∶ 𝑈 → 𝔸where
𝔸 is an annulus, such that 𝜙(Γ) is a WP quasicircle.

One characterization of WP quasicircles is that Γ is a WP quasicircle if and
only if the 𝑓 in the definition above has a quasiconformal extension whose Bel-
trami differential is 𝐿2hyp(𝔻

−) where 𝔻− = {𝑧 ∶ |𝑧| > 1} ∪ {∞}, and 𝐿2hyp(𝔻
−)

is the set of 𝐿2 functions with respect to the hyperbolic metric of the disk. As
with the case of general quasicircles, there are in fact a large number of char-
acterizations of WP quasicircles. C. Bishop [4] has listed over twenty, many of
which are new. His paper also contains other far-reaching generalizations of
the concept of WP quasicircles to higher dimensions.

Having the definition of quasicircles at hand, we consider the following sit-
uation.

Definition 3.32. Let R be a compact Riemann surface, and let Γ1, … , Γ𝑚 be a
collection of quasicircles inR. Denote Γ = Γ1∪⋯∪Γ𝑚. We say that Γ separates
R into Σ1 and Σ2 if

(1) there are doubly-connected neighbourhoods 𝑈𝑘 of Γ𝑘 for 𝑘 = 1,… , 𝑛
such that 𝑈𝑘 ∩ 𝑈𝑗 is empty for all 𝑗 ≠ 𝑘,

(2) one of the two connected components of𝑈𝑘∖Γ𝑘 is in Σ1, while the other
is in Σ2;

(3) R∖Γ = Σ1 ∪ Σ2;
(4) R∖Γ consists of finitely many connected components;
(5) Σ1 and Σ2 are disjoint.

Briefly, Σ1 and Σ2 are the two “sides” of Γ, and each side is a finite union of
Riemann surfaces.

Proposition 3.33. LetR be a compact Riemann surface and Γ = Γ1∪⋯∪Γ𝑚 be
a collection of quasicircles separatingR into Σ1 and Σ2. Then Σ1 and Σ2 are each
a finite union of bordered surfaces. For 𝑘 = 1, 2, the inclusion map of Σ𝑘 into R
extends continuously to the border 𝜕𝑘Σ, and this extension is a homeomorphism
onto Γ.

Proof. This follows immediately from Theorem 2.8. □

Thus, we will identify 𝜕Σ1 and 𝜕Σ2 pointwise with Γ. It is important to note
that the border structure is entirely independent of the inclusion map, and fur-
thermore the border structures induced by Σ1 and Σ2 do not agree in general
(unless the curves are analytic). In particular, a border chart in Σ1 does not in
general extend to a chart in R which is also a border chart of Σ2, unless the
curves Γ𝑘 are analytic.
It is not obvious that a null set in 𝜕Σ1 is null in 𝜕Σ2, even though they are the

same set. This holds for quasicircles.
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Theorem 3.34. LetR be a Riemann surface (not necessarily compact) and Γ =
Γ1 ∪ ⋯ ∪ Γ𝑚 be a collection of quasicircles separating R into Σ1 and Σ2. Then
𝐼 ⊆ Γ is null in 𝜕Σ1 if and only if 𝐼 is null in 𝜕Σ2.
Proof. It is enough that this is true for a single boundary curve Γ𝑘. Let 𝜂 ∶
𝑈 → 𝑉 be a doubly-connected chart in a neighbourhood of Γ. By shrinking
𝑈 if necessary, we can assume that 𝑈 is bounded by analytic curves 𝛾1 and 𝛾2
in Σ1 and Σ2 respectively, and that 𝜂 has a conformal extension to an open set
containing the closure of𝑈 so that 𝜂(𝛾1) and 𝜂(𝛾2) are analytic curves inℂ. Let
𝜙 ∶ 𝐴 → 𝔸 be a collar chart in a neighbourhood of Γ in Σ1 and 𝜓 ∶ 𝐵 → 𝔹 be a
collar chart in a neighbourhood of Γ in Σ2. LetΩ+ denote the bounded compo-
nent of the complement of 𝜂(Γ) in ℂ̄ andΩ− denote the unbounded component.
We assume that 𝜂 takes 𝑈 ∩ Σ1 into Ω+, again by composing with 𝑧 ↦ 1∕𝑧 if
necessary. Finally, by possibly shrinking the domain of 𝜂 again, we can assume
that the analytic curve 𝛾1 is contained in the domain of 𝜙.
Thus, 𝜙◦𝜂−1 is a conformal map of a collar neighbourhood𝑊 of 𝜂(Γ) in Ω+

onto a collar neighbourhood of 𝕊1 in𝔻, whose inner boundary 𝜙(𝛾1) is an ana-
lytic curve. By the previous paragraph it has a conformal extension to an open
neighbourhood of 𝜂(𝛾1), and thus the restriction of 𝜙◦𝜂−1 is an analytic diffeo-
morphism from 𝜂(𝛾1) to 𝜙(𝛾1). Thus if we let𝑊′ be the simply connected set
in Ω+ bounded by 𝜂(𝛾1), then there is a quasiconformal map 𝐹 of 𝑊′ with a
homeomorphic extension to 𝜂(𝛾1) equalling 𝜓◦𝜂−1. The map

Φ(𝑧) = { 𝐹(𝑧) 𝑧 ∈ 𝑊′

𝜙◦𝜂−1(𝑧) 𝑧 ∈ 𝑊 ∪ 𝜂(𝛾1)
(3.16)

is therefore a quasiconformal map from Ω+ to 𝔻. A similar argument shows
that 𝜓◦𝜂−1 has a quasiconformal extension to a map from Ω− to 𝔻.
Since 𝜂(Γ) is a quasicircle, there is a quasiconformal reflection 𝑟 of the plane

which fixes each point in 𝜂(Γ). Thus 𝜓◦𝜂−1◦𝑟◦(𝜙◦𝜂−1)−1 has an extension to
an (orientation reversing) quasiconformal self-map of the disk. Thus it extends
continuously to a quasisymmetry of 𝕊1, which takes Borel sets of capacity zero
to Borel sets of capacity zero. Furthermore, on𝕊1, thismap equals𝜓◦𝜙−1. Since
the same argument applies to𝜙◦𝜓−1, we have shown that𝜙(𝐼) has capacity zero
in 𝕊1 if and only if 𝜓(𝐼) has capacity zero in 𝕊1. This completes the proof. □

Definition 3.35. In the case that Σ is a finite union of connected Riemann
surfaces Σ1, … , Σ𝑠, we define the Dirichlet seminorm on these components by

‖ℎ‖𝒟harm(Σ) ∶=
𝑠∑

𝑘=1

‖‖‖‖‖ℎ|Σ𝑘
‖‖‖‖‖𝒟harm(Σ𝑘)

and similarly for the holomorphic and anti-holomorphicDirichlet spaces, Berg-
man spaces, etc.

The overfare map was shown to exist and be bounded in the plane.

Theorem 3.36. Let Γ be a quasicircle in ℂ̄, and let Ω1 and Ω2 be the connected
components of the complement of Γ. For all ℎ1 ∈ 𝒟harm(Ω1) there is an ℎ2 ∈
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𝒟harm(Ω2) whose CNT boundary values agree with those of ℎ1 up to a null set,
and one has the estimate

‖ℎ2‖𝒟harm(Ω2) ≲ ‖ℎ1‖𝒟harm(Ω1).

Proof. See [26] Theorem 3.25. □

In particular, we have well-defined operators

𝐎Ω1,Ω2 ∶ 𝒟harm(Σ1) → 𝒟harm(Σ2)
and

𝐎Ω2,Ω1 ∶ 𝒟harm(Σ2) → 𝒟harm(Σ1).
If the quasicircle is more regular, we can also control the𝐻1

conf norm.

Definition 3.37 (BZM quasicircle). Let Γ be a quasicircle in ℂ̄, and let Ω1
and Ω2 denote the connected components of the complement. We say that Γ
is a bounded zero mode quasicircle (BZM for short), if 𝐎Ω1,Ω2 and 𝐎Ω2,Ω1 are
bounded with respect to𝐻1

conf (Ω𝑘).
A quasicircle Γ in a compact Riemann surfaceR is called an BZMquasicircle

if there is an open set𝑈 containing Γ and a conformal map 𝜙 ∶ 𝑈 → 𝔸 onto an
annulus 𝔸 ⊆ ℂ such that 𝜙(Γ) is a BZM quasicircle.

In this connection we have the following theorem which is built upon deep
results regarding flows of Sobolev-vector fields on the unit circle, and also a ba-
sic result regarding the action of the group of quasisymmetries of the unit circle,
by bounded automorphisms on the homogeneous Sobolev space 𝐻̇1∕2(𝕊1) (the
action is essentially a composition).

Theorem 3.38. WP quasicircles are BZM quasicircles.

Proof. It is enough to show that for a WP-class quasisymmetric homeomor-
phism of the circle 𝜙, the composition operator 𝐂𝜙 is bounded on the Sobolev
space𝐻1∕2(𝕊1).

Here we note that by the results of A. Figalli [10] and F. Gay-Balmaz and T.
Ratiu [11], for aWP-class quasisymmetry 𝜙 on𝕊1 both 𝜙 and its inverse 𝜙−1 are
in𝐻3∕2−𝜀(𝕊1) for all 𝜀 > 0. In particular, 𝜙−1 ∈ 𝐻1(𝕊1) in the case that 𝜀 = 1∕2.
Therefore using change of variables and Cauchy-Schwarz’s inequality one has

‖𝐂𝜙𝑓‖2𝐿2(𝕊1) = ∫
𝕊1
|𝑓◦𝜙|2 = ∫

𝕊1
|𝑓|2|(𝜙−1)′| ≤

(
∫
𝕊1
|𝑓|4

)1∕2(
∫
𝕊1
|(𝜙−1)′|2

)1∕2
≤ ‖𝑓‖2𝐿4(𝕊1)‖𝜙

−1‖𝐻1(𝕊1).
(3.17)

Now if 𝑓 ∈ 𝐻1∕2(𝕊1), then the Sobolev embedding (2.16) with 𝑝 = 4 and
𝑠 = 1

2
yields that

‖𝑓‖𝐿4(𝕊1) ≲ ‖𝑓‖𝐻1∕2(𝕊1). (3.18)
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Thus taking the square root of both sides of (3.17), and using (3.18), we obtain
for 𝑓 ∈ 𝐻1∕2(𝕊1) that

‖𝐂𝜙𝑓‖𝐿2(𝕊1) ≲ ‖𝑓‖𝐻1∕2(𝕊1)‖𝜙−1‖
1∕2
𝐻1(𝕊1) ≲ ‖𝑓‖𝐻1∕2(𝕊1). (3.19)

Moreover, by a result of Vodop’yanov-Nag-Sullivan [38] and [16], we also
know that

‖𝐂𝜙𝑓‖𝐻̇1∕2(𝕊1) ≲ ‖𝑓‖𝐻̇1∕2(𝕊1). (3.20)
Consequently (3.19) and (3.20) yield that

‖𝐂𝜙𝑓‖𝐻1∕2(𝕊1) ≈ ‖𝐂𝜙𝑓‖𝐻̇1∕2(𝕊1) + ‖𝐂𝜙𝑓‖𝐿2(𝕊1)
≲ ‖𝑓‖𝐻̇1∕2(𝕊1) + ‖𝑓‖𝐻1∕2(𝕊1) ≲ ‖𝑓‖𝐻1∕2(𝕊1). (3.21)

Note also that the hidden constants in the final estimates of (3.19) and (3.20)
only depend on 𝜙, which yield the same thing for the last estimate in (3.21). □

Remark 3.39. Regarding the implicit exponentials in the calculations above, let
us assume that the angle in the image of the quasisymmetric homeomorphism
𝜒 ∶ 𝕊1 → 𝕊1 is 𝜓(𝜃), so that

𝑒𝑖𝜓 = 𝜒(𝑒𝑖𝜃).
One could write the estimate in terms of either 𝜙 or 𝜒. If 𝜒′(𝑧) denotes the
derivative of 𝜒 with respect to 𝑧, and 𝜓̇ denotes the derivative with respect to 𝜃,
we would have

𝜓̇ = 𝜒′(𝑒𝑖𝜃) 𝑒𝑖𝜃
𝜒(𝑒𝑖𝜃)

.

From this it immediately follows that

|𝜓̇| = |𝜒′(𝑒𝑖𝜃)|.
In particular the outcome of the estimate is unaffected by the choice.

The next three theorems concern existence and boundedness of the overfare
operator for general curve complexes. Their proofs are somewhat involved and
will be approached together in stages.

Theorem 3.40 (Existence of overfare). Let R be a compact Riemann surface
and let Γ = Γ1 ∪⋯∪ Γ𝑚 be a collection of quasicircles separatingR into Σ1 and
Σ2. Let ℎ1 ∈ 𝒟harm(Σ1). There is a ℎ2 ∈ 𝒟harm(Σ2) whose CNT boundary values
agree with those of ℎ1 up to a null set, and this ℎ2 is unique.

This theorem, which we will prove shortly, allows the definition of the over-
fare operator, which plays an important role in the scattering theory that is de-
veloped in [31, 32].

Definition 3.41. With the assumption of Theorem 3.40, we define the overfare
operator 𝐎Σ1,Σ2 by

𝐎Σ1,Σ2 ∶ 𝒟harm(Σ1) → 𝒟harm(Σ2)
ℎ1 ↦ ℎ2
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One obviously has that
𝐎Σ2,Σ1𝐎Σ1,Σ2 = Id

and of course one can switch the roles of Σ1 and Σ2.
The overfare operator is conformally invariant. That is, if 𝑓 ∶ R → R′ is a

biholomorphism andwe set𝑓(Σ𝑘) = Σ′𝑘 for 𝑘 = 1, 2 then it follows immediately
from conformal invariance of CNT limits that

𝐎Σ1,Σ2𝐂𝑓 = 𝐂𝑓𝐎Σ′1,Σ
′
2
. (3.22)

Notation. If Σ1 and Σ2 are clear from context, we will denote the overfare op-
erator by 𝐎1,2.
We will also obtain two results on boundedness of this operator with respect

to𝐻1
conf and the Dirichlet seminorm.

Theorem 3.42 (Bounded overfare theorem for BZM quasicircles). Let R be a
compact Riemann surface and let Γ = Γ1 ∪⋯ ∪ Γ𝑚 be a collection of BZM qua-
sicircles separatingR into Σ1 and Σ2. There is a constant 𝐶 such that

‖𝐎1,2ℎ‖𝐻1
conf (Σ2)

≤ 𝐶‖ℎ‖𝐻1
conf (Σ1)

for all ℎ ∈ 𝒟harm(Σ1).

One can also obtain Dirichlet boundedness for general quasicircles, but one
must assume that the originating surface is connected.

Theorem 3.43 (Bounded overfare theorem for general quasicircles). Let R be
a compact Riemann surface and let Γ = Γ1∪⋯∪Γ𝑚 be a collection of quasicircles
separatingR into Σ1 and Σ2. Assume that Σ1 is connected. There is a constant 𝐶
such that

‖𝐎1,2ℎ‖𝒟harm(Σ2) ≤ 𝐶‖ℎ‖𝒟harm(Σ1)

for all ℎ ∈ 𝒟harm(Σ1).

The remainder of the section is dedicated to proving these three theorems.

Lemma 3.44. LetR be aRiemann surface and letΓ be a quasicircle inR. Let𝜙 ∶
𝑈 → 𝔸 be a doubly-connected chart, and let𝑈1, 𝑈2 be the connected components
of𝑈∖Γ. There is an operator

𝐎(𝜙)1,2 ∶ 𝒟harm(𝑈1) → 𝒟harm(𝑈2)

such that the CNT boundary values of𝐎(𝜙)1,2ℎ agree with those of ℎ up to a null
set, and a 𝐶 such that

‖𝐎(𝜙)1,2ℎ‖𝒟harm(𝑈2) ≤ 𝐶‖ℎ‖𝒟harm(𝑈1).

If Γ is a BZM quasicircle, then there is a 𝐶′ such that for all ℎ ∈ 𝒟harm(𝑈1)

‖𝐎(𝜙)1,2ℎ‖𝐻1
conf (𝑈2) ≤ 𝐶′‖ℎ‖𝐻1

conf (𝑈1).
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Proof. LetΩ1 andΩ2 be the connected components of ℂ̄∖𝜙(Γ) containing𝜙(𝑈1)
and𝜙(𝑈2) respectively. We thenhave a bounded overfare𝐎Ω1,Ω2 ∶ 𝒟harm(Ω1) →
𝒟harm(Ω2) by Theorem 3.36. Furthermore, the bounce operator 𝐆𝜙(𝑈𝑘),Ω𝑘 is
bounded with respect to𝒟harm by [28, Theorem 4.6]. Defining

ℎ2 = 𝐂𝜙𝐑Ω2,𝑈2𝐎Ω1,Ω2𝐆𝜙(𝑈1),Ω1𝐂𝜙−1ℎ1, (3.23)

by conformal invariance of the Dirichlet seminorm we have proven the first
claim. The second claim follows by definition of BZM quasicircles, using The-
orem 3.24, and Proposition 3.28. □

We call (3.23) the local overfare of induced by 𝜙. It is non-canonical in the
sense that it depends on 𝜙. Since the values on the other boundaries of 𝑈 are
not specified, the local overfare is not unique.
On the other hand, the overfare to Σ2 is unique. By combining local overfare

with the bounce operator, we can show that the overfare exists.

Proof. (of Theorem 3.40). Let 𝜙𝑘 ∶ 𝑈𝑘 → 𝔸𝑘 be the doubly-connected charts
corresponding to the curves Γ1, … , Γ𝑚. Denote 𝑈𝑘

𝑗 = 𝑈𝑘 ∩ Σ𝑗. Given ℎ ∈
𝒟harm(Σ1), Lemma 3.44 produces a collection of functions 𝐻𝑘

2 ∈ 𝒟harm(𝑈𝑘
2 )

whose boundary values agree with ℎ.
For each connected component Σ𝑗2 of Σ2, let 𝑈̂𝑗 denote the union of those

𝑈𝑘
2 which lie in this component. We now apply the bounce operator 𝐆𝑈̂𝑗 ,Σ

𝑗
2
∶

𝒟harm(𝑈̂𝑗) → 𝒟harm(Σ
𝑗
2) on each component separately to obtain a harmonic

function in𝒟harm(Σ2) whose CNT boundary values agree with ℎ. □

We now prove the boundedness for BZM quasicircles.

Proof. (of Theorem 3.42). The idea is the same as in the previous proof, ex-
cept that we must keep track of the bounds. Let 𝜙𝑘 ∶ 𝑈𝑘 → 𝔸𝑘 be doubly-
connected charts corresponding to the curves Γ1, … , Γ𝑚, and let𝑈𝑘

𝑙 be the com-
ponents of 𝑈𝑘∖Γ in Σ𝑙 for 𝑙 = 1, 2. Let 𝐶 = sup{𝐶1, … , 𝐶𝑚} where 𝐶1, … , 𝐶𝑚
are the constants in the second estimate of Lemma 3.44 for the local overfares
from 𝒟harm(𝑈𝑘

1 ) to 𝒟harm(𝑈𝑘
2 ) determined by 𝜙𝑘 for 𝑘 = 1,… ,𝑚. For any

ℎ1 ∈ 𝒟harm(Σ1) we have therefore a collection of functions 𝐻𝑘
2 ∈ 𝒟harm(𝑈𝑘

2 )
such that

‖‖‖‖𝐻
𝑘
2
‖‖‖‖𝐻1

conf (𝑈
𝑘
2 )
≤ 𝐶 ‖‖‖‖‖ℎ1|𝑈𝑘

1

‖‖‖‖‖𝐻1
conf (𝑈

𝑘
1 )
≤ 𝐶‖ℎ1‖𝐻1

conf (Σ1)
(3.24)

where we have also used Proposition 3.28.
Now let Σ12, … , Σ

𝑠
2 be the connected components of Σ2. For each fixed 𝑗 ∈

1,… , 𝑠, let 𝑈̂𝑗 be the union of those 𝑈𝑘
2 which are in Σ

𝑗
2, and let ℎ

𝑗
2 be the func-

tion whose restriction to 𝑈̂𝑗 agrees with the corresponding functions 𝐻𝑘
2 . By

Theorem 3.24 there is a constant 𝐶′𝑗 such that

‖𝐆𝑈̂𝑗 ,Σ2ℎ
𝑗
2‖𝐻1

conf (Σ2)
≤ 𝐶′𝑗‖ℎ

𝑗
2‖𝐻1

conf (𝑈̂𝑗). (3.25)
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Combining (3.24) and (3.25) we obtain

‖𝐆𝑈̂𝑗 ,Σ
𝑗
2
ℎ𝑗2‖𝐻1

conf (Σ
𝑗
2)
≤ 𝑚𝐶𝐶′𝑗‖ℎ1‖𝐻1

conf (Σ1)

(where the 𝑚 appears because there are at most 𝑚 curves bounding the com-
ponent Σ𝑗2).
Set 𝐶′ = sup{𝑚𝐶𝐶′1, … ,𝑚𝐶𝐶

′
𝑠}. If we now let ℎ2 be the function on Σ2 whose

restriction to Σ𝑗2 is 𝐆𝑈̂𝑗 ,Σ
𝑗
2
ℎ𝑗2 for 𝑗 = 1,… , 𝑠, we have that the CNT boundary

values of ℎ2 agree with those of ℎ1 and

‖ℎ2‖𝐻1
conf (Σ2)

=
𝑠∑

𝑗=1
‖𝐆𝑈̂𝑗 ,Σ

𝑗
2
ℎ𝑗2‖𝐻1

conf (Σ
𝑗
2)
≤ 𝑠𝐶′‖ℎ1‖𝐻1

conf (Σ1)
.

□

To prove boundedness with respect to the Dirichlet seminorm, we require
three lemmas.

Lemma 3.45. LetR be a compact Riemann surface and Γ be a collection of qua-
sicircles separating R into components Σ1 and Σ2. Assume that Σ1 is connected.
If Γ has the property that

‖𝐎1,2ℎ‖𝐻1
conf (Σ2)

≤ 𝐾‖ℎ‖𝐻1
conf (Σ1)

then Γ also has the property that
‖𝐎1,2ℎ‖𝒟harm(Σ2) ≤ 𝐾‖ℎ‖𝒟harm(Σ1).

Proof. Denote by ℎev the evaluation of ℎ at a fixed point 𝑝 (alternatively, it can
be chosen to be the integral H𝑘 for some fixed 𝑘, see Definition 3.20). For all 𝑐
constant on Σ1 we have

‖𝐎1,2ℎ‖2𝒟harm(Σ2)
= ‖𝐎1,2(ℎ + 𝑐)‖2𝒟harm(Σ2)

≤ ‖𝐎1,2(ℎ + 𝑐)‖2𝐻1
conf (Σ2)

≤ 𝐾2‖ℎ + 𝑐‖2𝐻1
conf (Σ1)

= 𝐾2
(
‖ℎ‖2𝒟harm(Σ1)

+ |(ℎ + 𝑐)ev|2
)
.

The claim follows by choosing 𝑐 such that 𝑐ev = −ℎev . □

Lemma 3.46. For 𝑘 = 1, 2 let Γ𝑘 be a quasicircle in a Riemann surfaceR𝑘, and
let 𝑈𝑘 be collar neighbourhoods of Γ𝑘. Let 𝑓 ∶ 𝑈1 → 𝑈2 be a quasiconformal
map of an open neighbourhood of𝑈1 ∪ Γ1 which takes Γ1 to Γ2. Let ℎ ∶ 𝑈2 → ℂ.
Then ℎ has a CNT limit of 𝜉 at 𝑝 ∈ Γ2 if and only if ℎ◦𝑓 has a CNT limit of 𝜉 at
𝑓−1(𝑝).

Proof. By conformal invariance of CNT boundary values, it’s enough for this
to hold for Γ𝑘 = 𝕊1 for 𝑘 = 1, 2, and a quasiconformal map 𝑓 ∶ 𝔸𝑟 → 𝔸𝑠 where
𝔸𝑟 = {𝑧 ∶ 𝑟 < |𝑧| < 1} and 𝔸2 = {𝑧 ∶ 𝑠 < |𝑧| < 1}. For a proof of this fact see
[26]. □
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Lemma 3.47. LetR be a compact Riemann surface, and Γ = Γ1 ∪ … ∪ Γ𝑚 be a
collection of quasicircles separatingR into components Σ1 and Σ2. Let𝑈1, … ,𝑈𝑚
be collar neighbourhoods of Γ1, … , Γ𝑛 in Γ2. There is a quasiconformal map 𝑓 ∶
R → R′ which is conformal on the complement of the closure of 𝑈1 ∪⋯ ∪ 𝑈𝑚,
such that 𝑓(Γ𝑘) is analytic for 𝑘 = 1,… ,𝑚.

Proof. This was proven in [26] for a single quasicircle using a sewing argu-
ment. The proof extends to a complex of curves without issue. □

With these three lemmas in hand, we may now prove boundedness with re-
spect to the Dirichlet seminorm.

Proof. (of Theorem 3.43). By Lemma 3.47 there is a quasiconformal map 𝑓 ∶
R → R′, which is conformal on Σ1 and takes each quasicircle Γ𝑗 to an analytic
curve Γ′𝑗. Denote Σ

′
1 = 𝑓(Σ1) and Σ′2 = 𝑓(Σ2).

By quasi-invariance of the Dirichlet norm, there is a fixed𝐾 such that for any
ℎ ∈ 𝒟harm(Σ1) we have

‖𝐎Σ′1,Σ
′
2
(ℎ◦𝑓−1)◦𝑓‖𝐻̇1(Σ2) ≤ 𝐾‖𝐎Σ′1,Σ

′
2
(ℎ◦𝑓−1)‖𝒟harm(Σ′2). (3.26)

Now analytic curves are WP quasicircles, so by Theorems 3.38 and 3.42,
𝐎Σ′1,Σ

′
2
is bounded with respect to 𝐻1

conf . Since Σ
′
1 is connected, by Lemma 3.45

there is a 𝐾′ such that

‖𝐎Σ′1,Σ
′
2
(ℎ◦𝑓−1)‖𝒟harm(Σ′2) ≤ 𝐾′‖ℎ◦𝑓−1‖𝒟harm(Σ′1)

= 𝐾′‖ℎ‖𝒟harm(Σ1) (3.27)

where the second equality is just invariance of Dirichlet energy under confor-
mal maps.
Finally, by Lemma 3.46, 𝐎Σ1,Σ2ℎ has the same CNT boundary values as

𝐎Σ′1,Σ
′
2
(ℎ◦𝑓−1)◦𝑓. Let

𝐹 ∶= 𝐎Σ′1,Σ
′
2
(ℎ◦𝑓−1)◦𝑓 − 𝐎Σ1,Σ2ℎ.

Then 𝐹 ∈ 𝐻1(Σ2) by Theorem 2.32. Then using 𝐹|𝜕Σ2 = 0, the harmonicity
of 𝐎Σ1,Σ2ℎ and the Sobolev space Stokes’ theorem (see e.g. Theorem 4.3.1 page
133 in [9]; note that we treat 𝜕Σ2 as analytic in the double), which also works
for manifolds with several oriented boundary curves, one can show that

∫
Σ2
𝜕(𝐎Σ1,Σ2ℎ) ∧ 𝜕𝐹 = 0.
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This yields that

‖𝐎Σ1,Σ2ℎ‖
2
𝒟harm(Σ2)

≤ ‖𝐎Σ1,Σ2ℎ‖
2
𝐻̇1(Σ2)

+ ‖𝐹‖2𝐻̇1(Σ2)

= ‖𝐎Σ1,Σ2ℎ‖
2
𝐻̇1(Σ2)

+ 2Re∬
Σ2
𝜕(𝐎Σ1,Σ2ℎ) ∧ 𝜕𝐹

+ ‖𝐹‖2𝐻̇1(Σ2)
(3.28)

= ‖𝐎Σ′1,Σ
′
2
(ℎ◦𝑓−1)◦𝑓‖2𝐻̇1(Σ2)

,

which is just the manifestation of the Dirichlet principle. Therefore we have

‖𝐎Σ1,Σ2ℎ‖𝒟harm(Σ2) ≤ ‖𝐎Σ′1,Σ
′
2
(ℎ◦𝑓−1)◦𝑓‖𝐻̇1(Σ2). (3.29)

The claim follows from (3.26), (3.27), (3.29). □

Definition 3.48. For a Riemann surface Σ, with finitely many connected com-
ponents, let 𝒟̇harm(Σ) be the equivalence classes of𝒟harm(Σ)modulo functions
which are constant on each connected component of Σ.

It is clear that on 𝒟̇harm(Σ) the Dirichlet seminorm becomes a norm.
Let R be a compact Riemann surface, separated by quasicircles into Σ1 and

Σ2. If Σ1 is connected and 𝑐 is a constant, then 𝐎Σ1,Σ2 is also constant on Σ2 so
the operator

𝐎̇Σ1,Σ2 ∶ 𝒟̇harm(Σ1) → 𝒟̇harm(Σ2) (3.30)

is well-defined. We have

Corollary 3.49. LetR be a compact Riemann surface, separated by quasicircles
into Σ1 and Σ2. Assume that Σ1 is connected. Then 𝐎̇Σ1,Σ2 is bounded with respect
to the Dirichlet norm.

One further observation must be made. As a set, 𝜕Σ1 = Γ = 𝜕Σ2. By Theo-
rem 3.40 and Theorem 3.34, we now have the following striking result.

Corollary 3.50. LetR be a compact Riemann surface and Γ = Γ1 ∪⋯ ∪ Γ𝑚 be
a family of quasicircles separatingR into Σ1 and Σ2. Then

ℋ(𝜕Σ1) = ℋ(𝜕Σ2).

We can now define

ℋ(Γ) = ℋ(𝜕Σ1) = ℋ(𝜕Σ2).

This result requires the fact thatΓ consists of quasicircles anddoes not appear
to hold in general. In the case of the Riemann sphere, the authors have shown
that it holds with a Dirichlet-bounded identification of the spaces, precisely for
quasicircles [25].
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