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Power integral bases in a family
of octic fields

Istvan Gaal

ABSTRACT. Several recent results prove the monogenity of some polynomi-
als. In these cases the root of the polynomial generates a power integral ba-
sis in the number field generated by the root. A straightforward question is
whether such a number field admits other generators of power integral bases?
We have investigated this problem in some previous papers and here we ex-
tend this research to a family of octic polynomials, following a recent result
of L. Jones [11].
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A number field K of degree n with ring of integers Zx is called monogenic
(cf. [2]) if there exists £ € Zg such that (1,¢,...,£"1) is an integral basis,
called a power integral basis. We call £ the generator of this power integral
basis. a, 8 € Zx are called equivalent,ifa + § € Z or a — § € Z. Obviously,
a generates a power integral basis in K if and only if any f, equivalent to «,
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does. As it is known, any algebraic number field admits up to equivalence only
finitely many generators of power integral bases.

A monic irreducible polynomial f(x) € Z[x] is called monogenic, if a root
& of f(x) generates a power integral basis in K = Q(&). If f(x) is monogenic,
then K is monogenic, but the converse is not true.

For o € Zk (generating K over Q) we call the module index

I(a) = (Zg = Z]a])

the index of a. « generates a power integral basis in K if and only if I(a) =
1. If a® (1 < i < n) are the conjugates of « in K of degree n with absolute
discriminant Dg, then

1 . .
I(a) = H la® — g,
VIDk| 1<i<j<n

For more details concerning monogenity and power integral bases cf. [2].

In some recent papers we investigated number fields generated by a root of
a monogenic polynomial and made calculations to figure out, whether these
fields admit any additional generators of power integral bases. We refer to [3]
for some sextic trinomials, [4] for pure sextic fields, [5] for pure octic fields, [6]
for certain quartic trinomials and [7] for some quartic polynomials with given
Galois groups.

L. Jones [10] (see also [11]) gave conditions for the monogenity of certain
even octic polynomials of type x® + ax® + bx* + ax? + 1. In the present paper
we extend our calculations to this type of polynomials. Among others we prove
the existence of a non-trivial generator of power integral basis.

The octic field, generated by a root of the above polynomial is a quadratic
extension of a quartic field. It is an interesting point of our arguments, that
this octic field can also be considered as a quartic extension of a quadratic field,
which makes it much easier to deal with.

All tools used in our calculations are optimized to this special case, in order
to make our calculations more efficient.

2. The octic polynomial

Let
fx)=x+ax®+bx*+ax?>+1 (1)
witha,b € Z. Set Wy =b+2—-2a,W, =b+2+2a,W; =a’—4b+8. L.
Jones [11] proved:
Theorem 2.1. If W, W, W, is square free and
(@ mod 4, b mod4) €{(1,3),(3,1),(3,3)} (2)
then the polynomial f(x) in (1) is monogenic.
Assume f(x) is monogenic, not necessarily satisfying (2). We wonder how

many generators of power integral bases the number field K has, generated by
aroot o of f(x).
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Set
g(x)=x*+ax®+bx?+ax+1. 3)

Obviously, 8 = a? is a root of g(x). Therefore, the octic number field K = Q(«)
is a quadratic extension of the quartic field L = Q(f):

QCL=0Q@)cK=0a0).

Unfortunately, there exist no feasible algorithms for solving index form equa-
tions, that is, for determining generators of power integral bases, only for a re-
stricted class of number fields. Apart from low degree fields, like cubic and
quartic fields, there exist such algorithms only for some higher degree fields
with special structure. These are, e.g. sextic fields with a quadratic subfield
and octic fields with a quadratic subfield (cf. [2]). Above we have an octic field
with a quartic subfield, but using the reciprocal structure of f(x) and g(x) we
can help this problem.

If
B*+aB+bB*+aB+1=0,
then
52+aﬁ+b+%+%=o,
hence ) )
2 i - —
(,8 +52>+a<ﬁ+ﬁ>+b_0’
1\ 1
<ﬁ+g) +a<ﬁ+E>+b—2=0.
This yields, that
5=5+% @

satisfies the quadratic equation
82 +ad+(b-2)=0. (5)
Consequently, the number field M = Q(J) is a quadratic subfield of K:

Q¢ M=00) CK = Q).
By (4) we have
B2—68B+1=0,
therefore
at —da’+1=0.
This means that
h(x)=x*-6x*+1 (6)

is the relative defining polynomial of o over M, and this is what we need for
our procedure.
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Note that in some previous papers (cf. [9]) we have developed an algorithm
for the complete resolution of index form equations in octic fields with a qua-
dratic subfield. This takes quite a long CPU time, since one has to solve a unit
equation in the octic field. Also, it can take long to calculate the fundamental
units of that field, which is a necessary input data for the calculations.

Therefore, if we would like to have an overall picture about the generators of
power integral bases of our octic fields, we have to restrict ourselves to the calcu-
lation of the so called "small solutions”, that means we calculate all generators
of power integral bases having coefficients, say < 10?% in absolute value in a
given integral basis. Since the generators of power integral bases usually have
very small coefficients, such an algorithm determines all generators of power
integral bases with a very high probability. Moreover, it certainly indicates, if
a number field, generated by a root of a monogenic polynomial, has also other
generators of power integral bases, in addition to the root of the polynomial.

As we shall see in the following, a crucial point in this algorithm is the reso-
lution of a relative quartic Thue equation over the quadratic subfield. The fast
algorithm [1] for determining "small” solutions of quartic relative Thue equa-
tions over quadratic fields is only efficient if the quadratic subfield is complex.
Therefore in our calculations we assume

a’—4b +8 <0, (7)

which guarantees by (5), that M is a complex quadratic subfield.

On the other hand, we shall not restrict ourselves to those monogenic poly-
nomials f(x), satisfying all conditions of Theorem 2.1. We shall run the pa-
rameters a, b in certain regions and consider all irreducible polynomials f(x)
that are monogenic. The only condition we keep is that W5 = a®> — 4b + 8 is
square-free, in order to fix the basis element of M and to make our arguments
simpler. Note, that we made calculations also for non-squarefree W, and had
completely the same experiences, including also the non-trivial generator of
power integral bases (cf. Theorem 10.1).

3. Integral basis
We have M = Q(6), with

5_—a+\/a2—4b+8 ®)
= 3 .

According to the above arguments, we assume W5 = a?> —4b + 8 < 0 is square-
free. To keep usual notation we set m = W;. This number can only be square-
freeifa = +1 (mod 4), whence m = 1 (mod 4), therefore the integral basis

of the complex quadratic field M = @(\/ﬁ) is (1, w), where

1++/m
5

We shall make calculations for monogenic polynomials f(x). In this case a
root ¢ of f(x) generates a power integral basis in K = Q(«).

w =
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We shall use the following statements of [8] which are certainly well known:

Theorem 3.1.
A. IfK is monogenic, then K is also relative monogenic over the subfield M.
B. All generators of power integral bases of K are of the form

Y = Xo + €Yo,

where X, € Zy, € is a unit in M and y, generates a relative power integral basis
of K over M.

If

2 3 4 5 6 7
sk, at, o, ab al)

1,a,ax
is an integral basis of K, then by the first part of the theorem
(L, a%, a®)

is a relative integral basis of K over M, that is any y € Zg can be written in the
form

y=C+Xa+Ya?+Za, (9)
where
C = C, +C002,X = X1 +C()X2,Y=y1 +C()y2,Z= Z1 +wz, € ZM

with ¢y, ¢, X1, X2, V1, Y2, 21,22 € Z.

4. A quartic relative Thue equations

A consequence of [9] is the following

Lemma 4.1. Let x* + a;x> + a,x? + a;x + a4 € Z;[x] be the relative defining
polynomial of o over M. Let

Fu,v) = u®—au’v+ (a,a; — 4a)uv? + (4aya, — a2 — alayv?,

Qi(x,y,2) = x?
+z3(—a a3 + a3 + ay) = u,

— xya; + y*a, + xz(a} — 2a,) + yz(as — a,a,)

Q,(x,y,z) = y>—xz—a,yz+z%a, =v.

Ify,, represented in the form (9) generates a relative power integral basis of K over
M (that is the relative index of Ix ;v (Vo) = (Zx * Zulyol) isequalto 1), then there
exist U,V € Z,; such that

Ny(F(U, V) = 1, (10)
QX,Y,2) U, 1)
Q,X,Y,Z) = V. (12)
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In our case by (6) we have a; = 0,a, = —§,a; = 0,a, = 1, hence
F(u,v) = (u—2v)(u + 2v)(u + 6v).
If y, generates a relative power integral basis of K over M, then in view of the

above Lemma, together with the X,Y,Z € Z,, appearing in its representation
(9) there exist U,V € Z,, with

Ny o(F(U,V)) = +1.

If F(U,V)is a unit in M, then U — 2V,U + 2V, U + 8V are also units in M.
Therefore
U-=-2V=¢,U+2V =g,
and
4V =g — .

In a complex quadratic field each unit is of absolute value 1, and V' € Z,, is of
absolute value 0 or > 1. Since the right side is of absolute value < 2, the above
equation implies V = 0. As a consequence, U is a unit in M. Then we have

QiX,Y,Z)=¢, Q)X,Y,Z)=0
with a unit e € M. Following the arguments of [9] we construct
Qu(X,Y,2) =UQ,(X,Y,Z) - VQi(X,Y,Z) =0,
whence
Q,(X,Y,Z)=Y?—-XZ—-6Z%>=0.

Xo = 1,Y, = 0,Z, = 01is a non-trivial solution of Q,(X,Y,Z) = 0. Using an
argument of L. J. Mordell [12] we parametrize X,Y,Z with R,P,Q € M:

X = RX,

Y = RY,+P (13)

Z = RZ,+Q
Substituting this representation of X, Y, Z into Q,(X, Y, Z) = 0 we obtain

RQ = P? - 5Q2.
We multiply by Q the equations in (13) and replace RQ by P? — §Q?, then

kx = P? -5 Q%

kY = PQ, (14)
kZ = Q?,

with ak € M. Further, applying the arguments of [9], in (14) we can replace the
parameters k, P,Q € M by integer parameters in Z,;, and it follows from the
form of the above coefficient matrix of P2, PQ, Q? (and the property of y, being
a generator of a relative power integral basis) that k is a unit in M. Finally, we
substitute the representation (14) into Q,(X, Y, Z) = U and then we obtain

F(P,Q) =P*—6P2Q*+ Q* =c¢, (15)
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with a unite. Thisis a quartic relative Thue equation over the quadratic subfield
M. As F(x,1) is just the relative defining polynomial of & over M, the equation
can be written in the form

Ng/m(P—aQ) =¢. (16)

5. Solving the quartic relative Thue equation

M is a complex quadratic field, therefore the conjugate of any v € M is its
complex conjugate v. Denote by al¥,a®, a®, a® the relative conjugates of
a € K over M, corresponding to w (these are the roots of h(x) in (6)), then

a®, @, a®) a@ are the relative conjugates of a over M corresponding to w.
Set P = p; + wp,,Q = q; + wq, With py, py, 1,92 € Z.
Let P,Q € Z,; be an arbitrary but fixed solution of (16). The unit ¢ in (16) is
of absolute value 1, hence using § = P — aQ (16) implies
BOEAEIED]| = 1. a”)

Denote by i, the conjugate with

(io) = min @) A
6] = min, 59

(We have to perform all calculations for all possible values of i;.) Then by (17)
we have |3(0)| < 1, whence
1P| < 8% + [allQl < 1 +]allQl, (18)

where we denote by |«| the size of «, that is the maximum absolute value of its
conjugates.

Our purpose is to determine c,, x;, X5, Y1, V2, Z1, Z5 in (9) with absolute value
< S = 102, This implies |X| = |x; + wx,| < (1 + |@|)S and similarly |Z| <
(1 + |w|)S. The representation (14) of Z implies

11 <V1Z] < V(1 + |w])S.

The representation of X implies
IPI> < IX]+811QI* < IX] + 1512

whence
Pl <V + o)+ [8])S.
therefore
max(|P|, |Q]) < max(|X|,|Y]) < V(A + |o)(1 + |3])S. (19)
‘We have
@P — wP| _ 2|w||P P-P 2|P
pi = Lz ePl 2leliPl PP 2P )
|w — w| |w — w| |w — w| |w — o
and similarly
2|wl|Q] 2|Q|
g < = » gzl <

|o — w] lw — @]
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These imply
A =max(|p1, |p2l, |q1], 1g2]) < (21)
2|lw 2|l
< 2@l axqpl o) < 2 L+ T+ 18D,
|w — @] |w —

that is we have to determine the solutions of (16) until this bound. Note that
for S = 10?% this bound is of magnitude 101,
Further, together with (18) we have

2|w
a< 22l maxqipr1Qn <alal, 22)
lw — o
with ol
a) —
= —(1 + |a)).
lw — o
If |Q| > 10 then for 1 < j < 4, j # i, this yields
18V > |89 = g@| — |80 > (23)

> |a = a®@1Q] =1 > (Ja — @] —0.1)|Q].
In our calculations we have to check all possible q,, g, with |Q| < 10 separately.
(17) and (23) imply
1 1

= = B3 <y AR, 24
lB | H |6(])| - H (loc(]) — a(io)l _ Ol)lQl CZLO ( )
1<j<4 1<j<4
J#io J#io
with
6 = a
2,ip IT (JaW — alio)] —0.1)
1<j<4
J#lo
(depending on iy).

6. Reduction

We apply a reduction procedure to reduce the bound in (22), using inequality
(24), that is
|p1 + wp, — a®q; — wa®g,| < c,A73. (25)
We follow the arguments of [1]. Let H be a large constant to be determined
appropriately (for a practical choice of H see later). Consider the lattice gener-
ated by the columns of the matrix

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
H HR(w) HR(—al) HR(—aw)
0 HS(w) HS(—a®) HF(—alw)
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Lemma 6.1. (cf. [1], or Lemma 5.3 of [2]) Denote by ¢ the first vector of the LLL
reduced basis of this lattice. If A < Ay and H is large enough to have

[€1] > V40 - Ay, (26)
then y
1/3
CZ,iO -H
< .
e o

Note that this procedure must be performed for all possible values of i.
We start with the upper bound A, in (21). For a certain A, usually A2, 10- AS

or 100 - Aé is a suitable choice for H. We have to make H so large that (26) is

satisfied. In view of (27) the new bound for A will be of magnitude A(l)/ *in the
first reduction steps. The following steps of the reduction is not so fast anymore,
but in about 8-10 steps the original bound of magnitude 10'% is reduced to
about 10. A typical sequence is the following:

step Ap H new A
1 10100 10%02 9.1198 - 10%3
2 [9.1198-10% | 8.3172-10%° | 8.8440 - 10™!
3 [8.8440-10 | 7.8217 - 10% | 87540.0136
4 | 87540.0136 | 7.6632-1011 | 187.9568
5 187.9568 3.5327 - 10° 24.2479
6 24.2479 58796.3577 12.2522
7 12.2522 15011.6532 9.7587

The reduction process is very fast, it usually only takes a few seconds. For a
constant H of magnitude 10%*® we have to use multiply precision arithmetic
with about 250 digits.

7. Determining P and Q
We return to the quartic relative Thue equation (15), that is
P*—6P2Q*+Q*—¢c=0.
Let Ay be the reduced bound for A obtained in the previous section.

1 (mod 4), [Q] < 10 yields |q, + 1+2ﬁ

20/+/Im| and |q;| < 10 + |g,]/2 < 10 + 10/+/|m].

Set S; = 10 + 10/4/|m|, S, = 20/\/Im|. Let A, = max(A4g,S,), A, =
max(Ag, S,).

We let g; run up to |gq;| < A; and g, run up to |q,| < A,. For each pair
(g1, g,) we calculate Q = q; +wq,, substitute it into (28), and for all possible unit
¢ € M we solve the quartic polynomial equation (28) for the complex number
P. Having the real and complex parts of P we can determine p;, p, with P =
D1 + wp, (similarly as in (20)) and check if these values of p;, p, are integers.

(28)

Bym = q>| < 10 whence |g,| <
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Having P and Q we can determine X, Y, Z from (14). Recall that k in (14) is
a unit of M. Therefore all generators of relative power integral bases of K over
M are of the form C + e(aX + a?Y + aZ) with arbitrary C € Z,, and arbitrary
unite € M.

8. Determining generators of power integral bases of K
For all possible X, Y, Z as calculated above, we set y, = aX + a’Y + a>Z. In
view of Theorem 3.1 all generators of power integral bases are of the form

Yy =c; + wey + €Yy, (29)

with ¢;,c, € Zyy, € is a unit in M. In order to determine all non-equivalent
generators of power integral bases of M we have to determine € and c, so that
I(y) = 1. For this purpose we shall use the following consequence of Proposi-
tion 1 of [8]. Here we denote by y(1)) the conjugates of y corresponding to a(/)

and by yJ) the conjugates of y corresponding to a() for 1 < j < 4.

Lemma 8.1.
I(y) = Ixm) - J(¥)

where

2
1 o .
IK/M(V) = | | | | |y(l,h) _ 7,(1,12)|

INwj@Dk a)| =1 157h<ias4

is the relative index of a and

4 4

1 ; .
J(y) = H H |)/(1’J1) — y(Z’J2)|_

2
Dyl J1=1 jp=1

In view of Lemma 4.1 we calculated y, to have relative index 1. Any y of type
(29)isrelative equivalent to y,,, that is their relative indices are equal. Therefore,
we have to determine € and ¢, using J(y) = 1. For all of the few possible units
¢ of M, we calculate J(y). The equation

4 4

H H(y(LJl) — y(z’jz)) + D]%d — 0

J1=1jo=1

is a polynomial equation with rational integer coefficients of degree 16. To de-
termine the possible values (if any) of ¢, € Z, corresponding to ¢, we have to
determine the integer roots in ¢, of this polynomial. Note that Dy; = a®?—4b+8.
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9. Results of our calculations

Our routines were written in Maple. We made calculations for several pairs
(a, b), such that the polynomial f(x) is irreducible, monogenic and m is square-
free. These pairs seldom satisfied the conditions of Theorem 2.1. Note that we

also made calculations in cases when m is not square-free (then m = my - mf

with square-free m; and w can be either (1 4+ {/m;)/2 or \/m;) and we had
similar experiences.

The table below summarizes generators of power integral bases of K, repre-
sented in the form

y =(c; + wey) + (x1 + wxy)a + (y; + wyy)a + (21 + wzy)a’.

We let (a,b) run in —25 < a < 25,2 < b < 25 and took those pairs (a, b)
for which f(x) is irreducible, monogenic and m is square-free. In these 51 ex-
amples, it took 526 seconds (using an average PC) to calculate all generators of
power integral bases with coefficients < 10?%° in absolute value. We list (a, b, m)
and then the coefficients [c,, X1, X2, V1, V2, Z1, 22| of generators of power integral
bases. We omit the trivial [0, 1, 0, 0, 0, 0, 0].

(-9,23,-3), [0,4,1,0,0,—1,0]

(-7,15,-3), [0,3,1,0,0,—1,0]

(-7,19,-19), [0,3,1,0,0,—1,0]

(-7,23,-35), [0,3,1,0,0,-1,0]

(-5,9,-3), [0,2,1,0,0,-1,0], [1,-2,1,1,-1,1,-1], [1,2,-1,1,—1,-1,1]
(-5,10,-7), [0,2,1,0,0,—1,0]

(-5,11,-11), [0,2,1,0,0,—1,0]

(-5,14,-23), [0,2,1,0,0,—1,0]

(-5,18,-39), [0,2,1,0,0,-1,0]

(-5,19,—43), [0,2,1,0,0,-1,0]

(-5,21,-51), [0,2,1,0,0,—1,0]

(-5,22,-55), [0,2,1,0,0,—1,0]

(-5,23,-59), [0,2,1,0,0,—1,0]

(-5,25,-67), [0,2,1,0,0,—1,0]

(-3,7,-11), [0,1,1,0,0,-1,0]

(-3,15,-43), [0,1,1,0,0,—1,0]

(—1,3,-3), [0,0,1,0,0,-1,0], [0,1,-1,0,0,0,1], [0,1,0,0,0,—1,1],

[0,1,-1,0,0,0,0], [0,0,1,0,0,0,0]

(-1,6,-15), [0,0,1,0,0,—1,0]

(-1,7,-19), [0,0,1,0,0,-1,0]

(-1,10,-31), [0,0,1,0,0,—1,0]

(-1,11,-35), [0,0,1,0,0,—1,0]

(-1,13,-43), [0,0,1,0,0,—1,0]

(-1,15,-51), [0,0,1,0,0,—1,0]

(-1,17,-59), [0,0,1,0,0,-1,0]

(-1,19,-67), [0,0,1,0,0,—1,0]
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(-1,22,-79), [0,0,1,0,0,—1,0]

1,3,-3), [0,-1,1,0,0,-1,0], [0,0,0,1,-1,0,1], [0,0,1,0,0,—1,1],
[0,1,0,0,0,0,1], [0, O 0, 1 1,0,-1],
[1,-1,2,-1,1,-1,0], [1, -1,1,1,0],
[0,1,-1,0,0,0,0], [0, O 1, 0 0,0,0]

(1,7,-19), [0,-1,1,0,0,-1,0]

(1,11, -35), [0,-1,1,0,0,-1,0]

(1,15,-51), [0,-1,1,0,0,-1,0]

(1,19, -67), [0,-1,1,0,0,—1,0]

(3,5,-3), [0,-2,1,0,0,-1,0], [0,1,-2,0,0,1,—1], [0, -1,0,0,0,-1],
[-1,1,0,0,-1,1,0], [1 1, O 0,1,1,0],
[0,0,-2,0,-1,1,-1], [0,0,—2,0,1,1,—1],
[0,1,-1,0,0,0,0], [0,0,1,0,0,0,0]

(3,6,-7), [0,-2,1,0,0,—1,0]

(3,7,-11), [0,-2,1,0,0,—1,0]

(3,9,-19), [0,-2,1,0,0,-1,0]

(3,14, -39), [0,-2,1,0,0,-1,0]

(3,15,—43), [0,-2,1,0,0,-1,0]

(3,18,-55), [0,-2,1,0,0,-1,0]

(3,21,-67), [0,-2,1,0,0,—1,0]

(3,25,-83), [0,-2,1,0,0,-1,0]

(5,11, -11), [0,-3,1,0,0,-1,0]

(5,19, —43), [0,-3,1,0,0,-1,0]

(5,23,-59), [0,-3,1,0,0,-1,0]

(7,15,-3), [0,-4,1,0,0,-1,0],

(7,17,-11), [0,-4,1,0,0,-1,0],

(7,18, -15), [0,-4,1,0,0,-1,0],

(7,19, -19), [0,—4,1,0,0,-1,0],

(7,22,-31), [0,—4,1,0,0,-1,0],

(7,23,-35), [0,-4,1,0,0,-1,0],

(7,25,—43), [0,-4,1,0,0,-1,0],

(9,23,-3), [0,-5,1,0,0,-1,0],

10. Another solution

In addition to [0,1,0,0,0,0,0] in all cases considered, there appeared another
solution with [0,k,1,0,0,-1,0] where k seems to be related to a. The above ta-
ble was constructed to indicate this relation clearly. The vector [0,k,1,0,0,-1,0]
yields the element

alk + w) —a?

If we try find the corresponding X, Y, Z in the form (14), we get X = k + w =
P2 —58Q%Y =0=PQ,Z = —1 = Q?, which is not possible. But if we consider
the negative of this element, that is

a(=k —w) — a3,
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thenwe have X = —k —w = P> —8Q%,Y = 0 = PQ,Z = 1 = Q? which has the
solution P = 0,Q = 1, whence

—k —w=-4.
This implies
1+ym  —a++m
k + = ,
2 2
implying
a+1
k=-=

Indeed, this is shown by the examples. There remained to prove it formally.

Theorem 10.1. If m = a? — 4b + 8 is square free, then

<a+1

5 —co)oc—oc3 (30)

generates a power integral basis in K.

Proof. We have

2 ¢ 2

Using the notation of Lemma 8.1 we have

a+1 a—\/ﬁ

y D) = # o) 4 (a3,

e +2\/% caD) + (a3,

for 1 < j < 4. As we have seen above, the element (30) satisfies I /y(y) = 1 (it
comes from a valid representation of X, Y, Z by suitable P, Q in (14)), therefore
we only have to check J(y) = 1. Using symmetric polynomials (a satisfies

x* — 6x2 + 1 = 0 and () satisfies x* — 5x2 + 1 = 0) we calculated

f[ ﬁ h/(l,]'l) — y(zajz)L

Jj1=1jp=1

and, making all possible simplifications, we found that it is equal to m?. This
calculation was also performed by Maple, and after several optimizations it took
a negligible time. Note that this calculation of the above degree 16 polynomial
must be made very carefully, otherwise it results unusable formulas. O
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