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Preimages question for surjective
endomorphisms on (ℙ𝟏)𝒏

Xiao Zhong

Abstract. Let𝐾 be a number field and let 𝑓 ∶ (ℙ1)𝑛 → (ℙ1)𝑛 be a dominant
endomorphismdefined over𝐾. We show that if𝑉 is an𝑓-invariant subvariety
(that is, 𝑓(𝑉) = 𝑉) then there is a positive integer 𝑠0 such that

(𝑓−𝑠−1(𝑉) ⧵ 𝑓−𝑠(𝑉))(𝐾) = ∅
for every integer 𝑠 ≥ 𝑠0, answering the Preimages Question of Matsuzawa,
Meng, Shibata, and Zhang in the case of (ℙ1)𝑛.
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1. Introduction
Let𝑋 be a projective variety and let 𝑓 ∶ 𝑋 → 𝑋 be a surjective self-maps such

that both 𝑋 and 𝑓 are defined over a number field 𝐾. To study the dynamics
of (𝑋, 𝑓), it is important to identify the closed subvarieties of 𝑌 ⊆ 𝑋 that are
invariant under 𝑓; i.e., subvarieties with 𝑓(𝑌) ⊆ 𝑌. For an invariant subvariety
𝑌 for the map 𝑓, it is natural to study its preimages under iterates of 𝑓. An im-
portant principle within arithmetic dynamics is that the underlying geometric
structure should exert significant influence on the arithmetic structure, which
gives rise to the expectation that the tower of 𝐾-points:

𝑌(𝐾) ⊆ (𝑓−1(𝑌))(𝐾) ⊆ (𝑓−2(𝑌))(𝐾) ⊆ ⋯
should eventually stabilize. This expectation has beenmade precise in the form
of the Preimages Question of Matsuzawa, Meng, Shibata, and Zhang [MMS23,
Question 8.4(1)].
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There are recent works dealing with some special cases of the Preimages
Question. Notably, it has been solved with affirmative answer when 𝑋 is a
smooth variety with non-negative Kodaira dimension and 𝑓 is étale [BMS23,
Theorem 1.2]. Additionally, if we consider the case when 𝑓 = (𝑔, 𝑔) ∶ 𝑋 ×𝑋 →
𝑋 × 𝑋 is a diagonal map, with 𝑔 ∶ 𝑋 → 𝑋 is a surjective morphism, then
the diagonal subvariety ∆ ⊆ 𝑋 × 𝑋 is an invariant subvariety under 𝑓, and
in this special case the Preimages Question becomes a cancellation problem,
which asks whether there exists a natural number 𝑠 with the property that, for
all 𝑥, 𝑦 ∈ 𝑋(𝐾), if 𝑔𝑛(𝑥) = 𝑔𝑛(𝑦) for some natural number 𝑛 then we must
in fact have 𝑔𝑠(𝑥) = 𝑔𝑠(𝑦). This special form is a dynamical cancellation prob-
lem considered in the work of Bell, Matsuzawa, and Satriano [BMS23], and this
question is again answered affirmatively when 𝑋 is a curve [BMS23, Theorem
1.3] by applying 𝑝-adic uniformization techniques of Rivera-Letelier [Riv03].
Considerably more is known for polynomial maps on ℙ1, and a more general
dynamical cancellation results allowing multiple polynomial self-maps on ℙ1
is also proved along these lines in [BMS23, Theorem 1.7] and [Zho23, Theorem
1.2].
Our main result is to give a positive solution to the Preiamges Question for

surjective endomorphisms on (ℙ1)𝑛. It is well-known that a surjective endo-
morphismof (ℙ1)𝑛 has some iterate that becomes a split rationalmap (𝑓1, … , 𝑓𝑛).
Since answering the Preimages question for an iterate of a self-map gives one
the answer for the original map, our main theorem, stated below, solves the
Preiamges Question for surjective endomorphisms on (ℙ1)𝑛.

Theorem 1.1. Let 𝐾 be a number field, let 𝑛 ≥ 1, and let 𝑓 = (𝑓1, … , 𝑓𝑛) ∶
(ℙ1𝐾)𝑛 → (ℙ1𝐾)𝑛 be a split rational map defined over a number field 𝐾 with at
least one 𝑓𝑖 of degree greater than 1. If 𝑉 ⊆ (ℙ1)𝑛 is a subvariety defined over 𝐾
that is invariant under 𝑓 then there exists a non-negative integer 𝑠0 such that

(𝑓−𝑠−1(𝑉) ⧵ 𝑓−𝑠(𝑉))(𝐾) = ∅

for all 𝑠 ≥ 𝑠0.

It is also well known that Theorem 1.1 holds when 𝑛 = 1.

Remark 1.2. This paper works over a number field 𝐾 for the reader’s conve-
nience, but the argument also works if we let 𝐾 instead be a finitely generated
extension ofℚ. Proposition 2.4 uses the fact that the set of roots of unity in the
union of all finite field extensions ofℚ of bounded degree is finite and it remains
true that the set of roots of unity inside the union of field extensions of bounded
degree over 𝐾 is finite when 𝐾 is a finitely generated extension over ℚ. Propo-
sition 2.5 uses [BMS23, Theorem 2.3] whose proof is based on embedding 𝐾
into a finite extension ofℚ𝑝 for a suitable prime 𝑝, which works for any finitely
generated field extension ofℚ as well (see [BGT16, Proposition 2.5.3.1]). Every-
thing else goes through directly without additional changes when considering
𝐾 as a finitely generated field extension of ℚ.
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2. Proof of the main theorem
In this section we give the proof of the main result. Our first result shows

that we can reduce to the case when our maps all have degree ≥ 2.
Lemma 2.1. Let 𝑛 ≥ 2 be a natural number and let 𝑓 = (𝑓1, … , 𝑓𝑛) ∶ (ℙ1)𝑛 →
(ℙ1)𝑛 be a split rationalmapdefined over a algebraically closed characteristic zero
field and suppose that there exists a positive integer 𝑘 ∈ {1, … , 𝑛 − 1} such that
deg(𝑓𝑖) > 1 when 1 ≤ 𝑖 ≤ 𝑘 and deg(𝑓𝑖) = 1 when 𝑖 > 𝑘. If 𝑉 is an irreducible
subvariety of (ℙ1)𝑛 that is invariant under 𝑓 then there exist subvarieties 𝑉1 ⊆
(ℙ1)𝑘 and 𝑉2 ⊆ (ℙ1)𝑛−𝑘 such that 𝑉 = 𝑉1 × 𝑉2 and such that 𝑉1 is invariant
under 𝑔1 = (𝑓1, … , 𝑓𝑘) and 𝑉2 is invariant under 𝑔2 = (𝑓𝑘+1, … , 𝑓𝑛).
Proof. The proof is similar to [Xie23, Proposition 3.14]. Let 𝑑 denote the di-
mension of 𝑉 and let 𝜋1 ∶ (ℙ1)𝑛 → (ℙ1)𝑘 and 𝜋2 ∶ (ℙ1)𝑛 → (ℙ1)𝑛−𝑘 be re-
spectively the projection onto the first 𝑘 factors and the projection onto the last
𝑛 − 𝑘 factors.
Let 𝑉𝑖 = 𝜋𝑖(𝑉) and 𝑑𝑖 = dim(𝑉𝑖) for 𝑖 = 1, 2. Since 𝑉 ⊆ 𝑉1 × 𝑉2 we have

𝑑 ≤ 𝑑1 + 𝑑2 and 𝑑 = 𝑑1 + 𝑑2 if and only if 𝑉 = 𝑉1 × 𝑉2.
Thuswemay assumewithout loss of generality that𝑑 < 𝑑1+𝑑2. We take𝛼1 to

be numerical class of the ample line bundle 𝜋∗1𝒪(ℙ1)𝑘 (1, 1, … , 1) and 𝛼2 to be the
numerical class of the ample line bundle 𝜋∗2𝒪(ℙ1)𝑛−𝑘 (1, 1, … , 1). Furthermore,
we let 𝛽𝑗 denote the numerical class of the line bundle 𝑝∗𝑗𝒪ℙ1(1) for each 𝑗 ∈
{1, 2, … , 𝑛} and 𝑝𝑗 ∶ (ℙ1)𝑛 → ℙ1 the projection onto the 𝑗-th coordinate. Then

𝛼1 = 𝛽1 +⋯+ 𝛽𝑘, (2.1)

𝛼2 = 𝛽𝑘+1 +⋯+ 𝛽𝑛. (2.2)

Notice that for any 𝑗 ∈ {0, 1, … , 𝑑}, 𝛼𝑗1 ⋅ 𝛼
𝑑−𝑗
2 ⋅ 𝑉 ≥ 0 and it is positive if 𝑗 = 𝑑1

or 𝑑 − 𝑗 = 𝑑2. Let’s denote 𝐼1 = {1, 2, … , 𝑘} and 𝐼2 = {𝑘 + 1,… , 𝑛} from now on.
Since there are only finitely many collections of indices (allowing repetition)

of size 𝑑−𝑑2 which is inside 𝐼1 and also only finitelymany collections of indices
(allowing repetition) of size𝑑2which is inside 𝐼2, there exists a {𝑟1, 𝑟2, … , 𝑟𝑑−𝑑2} ⊆
𝐼1, and a {𝑒1, 𝑒2, … , 𝑒𝑑2} ⊆ 𝐼2 such that

𝑉 ⋅
𝑑−𝑑2∏

𝑡=1
𝛽𝑟𝑡

𝑑2∏

𝑙=1
𝛽𝑒𝑙 > 0,

and 𝐶 = ∏𝑑−𝑑2
𝑡=1 𝑐𝑟𝑡 , where 𝑐𝑖 = deg(𝑓𝑖) for 𝑖 ∈ 𝐼, is the maximum in the set

{
∏

𝑖∈𝐼′
𝑐𝑖 ∶ 𝑉 ⋅

∏

𝑖∈𝐼′
𝛽𝑖
∏

𝑣∈𝐽′
𝛽𝑣 > 0, 𝐼′ ⊆ 𝐼1, 𝐽′ ⊆ 𝐼2, |𝐼′| = 𝑑 − 𝑑2, |𝐽′| = 𝑑2} .

We let 𝑉′ be an irreducible subvariety of 𝑉 ∩⋂𝑑−𝑑2
𝑡=1 𝛽𝑟𝑡 of dimension 𝑑2 and

here we abuse notation to view 𝛽𝑟𝑡 ’s as some suitable hypersurfaces in the nu-
merical classes 𝑝∗𝑟𝑡𝒪ℙ1(1)’s. Then noticed that dim(𝜋1(𝑉′)) = 𝑑1 − (𝑑 − 𝑑2).
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We have
𝑉′ ⋅ (𝛼1)𝑑1−(𝑑−𝑑2) ⋅ (𝛼2)𝑑−𝑑1 > 0.

This implies that there exists collections of indices

{𝑗1 = 𝑟1, 𝑗2 = 𝑟2, … , 𝑗𝑑−𝑑2 = 𝑟𝑑−𝑑2 , 𝑗𝑑−𝑑2+1, … , 𝑗𝑑1} ⊆ 𝐼1
and

{𝑢1, 𝑢2, … , 𝑢𝑑−𝑑1} ⊆ 𝐼2
such that

𝑉 ⋅
𝑑1∏

𝑡=1
𝛽𝑗𝑡

𝑑−𝑑1∏

𝑙=1
𝛽𝑢𝑙 > 0. (2.3)

Notice that
𝑑1∏

𝑡=1
𝑐𝑗𝑡 > 𝐶 (2.4)

by construction and Equation (2.3) implies that

𝑉 ⋅ 𝛼𝑑11 ⋅ 𝛼𝑑−𝑑12 > 0.
Let 𝑢1, 𝑢2 ∈ ℝ, we have

(deg(𝑓|𝑉))(𝑉 ⋅ (𝑢1𝛼1 + 𝑢2𝛼2)𝑑) = 𝑓∗(𝑉) ⋅ ((𝑢1𝛼1 + 𝑢2𝛼2)𝑑)
= 𝑉 ⋅ (𝑢1(𝑔1)∗(𝛼1) + 𝑢2(𝑔2)∗(𝛼2))𝑑

= 𝑉 ⋅
⎛
⎜
⎝
𝑢1

𝑘∑

𝑖=1
𝑐𝑖𝛽𝑖 + 𝑢2

𝑛∑

𝑖=𝑘+1
𝑐𝑖𝛽𝑖

⎞
⎟
⎠

𝑑

.

Nowwe compare the coefficients of the 𝑢𝑑11 𝑢
𝑑−𝑑1
2 and 𝑢𝑑−𝑑21 𝑢𝑑22 terms and we

obtain that for each positive integer𝑚:

deg(𝑓𝑚|𝑉)𝛼𝑑11 ⋅ 𝛼𝑑−𝑑12 ⋅ 𝑉 =
⎛
⎜
⎝

𝑘∑

𝑖=1
𝑐𝑚𝑖 𝛽𝑖

⎞
⎟
⎠

𝑑1

⋅ (
𝑛∑

𝑖=𝑘+1
𝑐𝑚𝑖 𝛽𝑖)

𝑑−𝑑1

⋅ 𝑉,

and

deg(𝑓𝑚|𝑉)𝛼𝑑−𝑑21 ⋅ 𝛼𝑑22 ⋅ 𝑉 =
⎛
⎜
⎝

𝑘∑

𝑖=1
𝑐𝑚𝑖 𝛽𝑖

⎞
⎟
⎠

𝑑−𝑑2

⋅ (
𝑛∑

𝑖=𝑘+1
𝑐𝑚𝑖 𝛽𝑖)

𝑑2

⋅ 𝑉.

Therefore

deg(𝑓𝑚|𝑉) =
⎛
⎜
⎝

𝑘∑

𝑖=1
𝑐𝑚𝑖 𝛽𝑖

⎞
⎟
⎠

𝑑1

⋅ 𝛼𝑑−𝑑12 ⋅ 𝑉∕
(
𝛼𝑑11 ⋅ 𝛼𝑑−𝑑12 ⋅ 𝑉

)
(2.5)

and

deg(𝑓𝑚|𝑉) =
⎛
⎜
⎝

𝑘∑

𝑖=1
𝑐𝑚𝑖 𝛽𝑖

⎞
⎟
⎠

𝑑−𝑑2

⋅ 𝛼𝑑22 ⋅ 𝑉∕
(
𝛼𝑑−𝑑21 ⋅ 𝛼𝑑22 ⋅ 𝑉

)
, (2.6)
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since 𝑐𝑖 = 1 when 𝑖 ∈ 𝐼2,
𝛼𝑑11 ⋅ 𝛼𝑑−𝑑12 ⋅ 𝑉 > 0,

and
𝛼𝑑−𝑑21 ⋅ 𝛼𝑑22 ⋅ 𝑉 > 0.

Now, by (2.4) and Equation (2.5), we have

deg(𝑓𝑚|𝑉) = 𝑎𝑀𝑚 + 𝑜(𝑀𝑚)

for somepositive integer𝑎 and𝑀, such that𝑀 > 𝐶 ≥ ∏𝑑−𝑑2
𝑡=1 𝑐𝑙𝑡 for all {𝑙1, … , 𝑙𝑑−𝑑2} ⊆

𝐼1 and {𝑣1, … , 𝑣𝑑2} ⊆ 𝐼2 with the property
𝑑−𝑑2∏

𝑡=1
𝛽𝑙𝑡

𝑑2∏

𝑠=1
𝛽𝑣𝑠 ⋅ 𝑉 > 0.

On the other hand, Equation (2.6) gives that deg(𝑓𝑚|𝑉) = 𝒪(𝐶𝑚). This is a
contradiction and so the result follows.

□

Lemma 2.1 allows us to reduce to the case that all maps 𝑓𝑖 in the statement
of Theorem 1.1 have degree at least two when proving the result, and we now
consider this restricted case. We begin with a result in which the maps are
special.

Definition 2.2. We define the Chebyshev polynomial of degree 𝑟 to be the
unique polynomial 𝑇𝑟 of degree 𝑟 such that

𝑇𝑟((𝑥 + 𝑥−1)∕2) = (𝑥𝑟 + 𝑥−𝑟)∕2
for any 𝑥 ∈ ℂ∗.

Remark 2.3. We introduce the notation here to avoid confusion in the later
discussion: Let 𝑛, 𝐷 ∈ ℕ and 𝐾 be a field. For a quasi-projective variety𝑊 ⊆
(ℙ1𝐾)𝑛 defining over 𝐾 and a set 𝐿 which is a union of the finite field extensions
of 𝐾 of degree not exceeding 𝐷, which is not necessarily a field or a ring, we
let 𝑊(𝐿) denote the largest subset of points in 𝑊(𝐾) such that for every 𝑖 ∈
{1, 2, … , 𝑛},

𝜋𝑖(𝑊(𝐿)) ⊆
⋃

𝐾′∶𝐾′⊆𝐿
ℙ1𝐾′ ,

where 𝜋𝑖 is the projection to the 𝑖-th factor and 𝐾′ ranges in the set of field
extensions of 𝐾 contained in 𝐿 as a set. We call this set of points𝑊(𝐿) the 𝐿-
points of𝑊.
More concretely, after fixing a coordinate of𝑊 defined over𝐾, we have𝑊(𝐿)

is the set of points (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑊 ⊆ (ℙ1
𝐾
)𝑛 such that 𝑥𝑖 ∈ 𝐿∪ {∞}, for each

𝑖 ∈ {1, 2, … , 𝑛}.
Moreover, we let 𝐿∗ denote the set 𝐿 ⧵ {0}.



638 XIAO ZHONG

Proposition 2.4. Let𝐾 be a number field, let 𝑛 and𝐷 be positive integers that are
at least 2, and let𝐾′ be the union of all the finite field extensions of𝐾 of degree not
greater than𝐷. Suppose that 𝑓 = (𝑓1, … , 𝑓𝑛) ∶ (ℙ1𝐾)𝑛 → (ℙ1𝐾)𝑛 is a split rational
map defined over 𝐾 in which the 𝑓𝑖 ’s all have the same degree 𝑑 ≥ 2 and each 𝑓𝑖
is conjugate to either 𝑥±𝑑 or±𝑇𝑑 for 𝑖 ∈ {1, 2, … , 𝑛}. If𝑉 ⊂ (ℙ1)𝑛 is an irreducible
𝑓-invariant hypersurface defined over 𝐾, then there exists a non-negative integer
𝑠0 such that

(𝑓−𝑠−1(𝑉) ⧵ 𝑓−𝑠(𝑉))(𝐾′) = ∅
for all 𝑠 ≥ 𝑠0.
Proof. We first enlarge our number field 𝐾 to a larger number field so that
each 𝑓𝑖 can be conjugated to either 𝑥±𝑑 or to ±𝑇𝑑 by a map 𝑣𝑖 ∈ PGL2(𝐾)
and {𝑖, 𝑒𝜋𝑖∕4} ⊆ 𝐾. Notice that it is enough to prove the statement in this
larger field we henceforth assume that 𝐾 is a number field satisfying this con-
dition. We can then perform a change of coordinates and may assume with-
out the loss of the generality that 𝑓 is of the form 𝑓 = (𝑓1(𝑥1), … , 𝑓𝑛(𝑥𝑛)) =
(𝑥±𝑑1 , 𝑥±𝑑2 , … , 𝑥±𝑑𝑘 , ±𝑇𝑑(𝑥𝑘+1), … , ±𝑇𝑑(𝑥𝑛)) for some 𝑘 ∈ {0, … , 𝑛}.
Let

𝜇 = (𝑥1, … , 𝑥𝑘, (𝑥𝑘+1 + 𝑥−1𝑘+1)∕2, … , (𝑥𝑛 + 𝑥−1𝑛 )∕2) ∶ (ℂ∗)𝑛 → (ℙ1)𝑛,
and

𝐺′ = (𝑥±𝑑1 , … , 𝑥±𝑑𝑘 , ±𝑥𝑑𝑘+1, … , ±𝑥
𝑑
𝑛) ∶ (ℂ∗)𝑛 → (ℂ∗)𝑛

such that 𝜇◦𝐺′ = 𝑓◦𝜇. Then take
𝜇′ = (𝑥1, … , 𝑥𝑘, 𝜉𝑘+1𝑥𝑘+1, … , 𝜉𝑛𝑥𝑛)

and
𝐺 = (𝑥±𝑑1 , … , 𝑥±𝑑𝑘 , 𝑥𝑑𝑘+1, … , 𝑥

𝑑
𝑛),

where 𝜉𝑘+1, … , 𝜉𝑛 are some roots of unity such that 𝜇′◦𝐺 = 𝐺′◦𝜇′. Enlarge 𝐾
so that {𝜉𝑘+1, … , 𝜉𝑛} ⊆ 𝐾 and abuse notation from now on to let 𝜇 be 𝜇◦𝜇′. So
we have

𝜇◦𝐺 = 𝑓◦𝜇.
Notice that further abusing notations by replacing𝐺 by𝐺2 and 𝑓 by 𝑓2, wemay
let

𝐺 = (𝑥𝑑1 , … , 𝑥𝑑𝑘 , 𝑥
𝑑
𝑘+1, … , 𝑥

𝑑
𝑛)

and
𝜇◦𝐺 = 𝑓◦𝜇.

Now we prove the statement by induction on the dimension 𝑛. If 𝑛 = 1,
then the statement is certainly true as 𝑉 is a just a finite set of points. Now, we
suppose it is truewhen 𝑛 ≤ 𝑛0 for some positive integer 𝑛0 andwewant to show
it is true when 𝑛 = 𝑛0+1. From now on, let 𝑛 = 𝑛0+1. Let𝑊 be the preimage
of 𝑉 under 𝜇, which is a subvariety in (ℂ∗)𝑛. Since 𝑓(𝑉) = 𝑉, we have

𝐺(𝑊) ⊆ 𝑊.
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Thus, there exists a subvariety𝑊′ ⊆ 𝑊 such that 𝐺(𝑊′) = 𝑊′, after replacing
𝑓 and 𝐺 by a suitable iterate, we have 𝑊 ⊆ 𝐺−1(𝑊′). Therefore, by [Hin88,
Lemma 10], we have𝑊′ is a finite union of translation of algebraic subgroups
of (ℂ∗)𝑛. Notice that (𝜉𝑖𝑥𝑖 + 𝜉−1𝑖 𝑥−1𝑖 )∕2 maps {0,∞} to {∞}, for each 𝑖 ∈ {𝑘 +
1,… , 𝑛}. Thus, we have

𝑉′ = 𝑉 ⧵ 𝜇(𝑊) = (
𝑛⋃

𝑖=1
(𝑉 ∩ 𝐻𝑖)) ∪

𝑘⋃

𝑖=1
(𝑉 ∩ 𝑃𝑖),

where 𝐻𝑖 is the hypersurface in (ℙ1)𝑛 defined by having the 𝑖-th coordinate
equals to∞ and 𝑃𝑖 is the hypersurface with the 𝑖-th coordinate equals to 0. We
write 𝑉′ = ⋃𝑘0

𝑗=1 𝑉𝑗 for some positive integer 𝑘0, where 𝑉𝑗’s are irreducible
components of 𝑉 ∩ 𝐻𝑖 or 𝑉 ∩ 𝑃𝑙 for some 𝑖 ∈ {1, 2, … , 𝑛} and 𝑙 ∈ {1, 2, … , 𝑘}.
Also, 𝑓(𝑉′) = 𝑉′ because 𝑓(𝑉) = 𝑉, 𝑓(𝑉′) ⊆ 𝑉′ and 𝑓(𝜇(𝑊)) ⊆ 𝜇(𝑊) as
power maps take 0 or∞ to themselves and Chebyshev polynomials take∞ to
itself.
After replacing 𝑓 by some iteration we may assume each 𝑉𝑗 is invariant un-

der𝑓. Notice that every irreducible component of𝑉∩𝐻𝑖 or𝑉∩𝑃𝑙 has dimension
at least 𝑛 − 2, if not empty, for each 𝑖 ∈ {1, 2, … , 𝑛} and 𝑙 ∈ {1, 2, … , 𝑘}. Thus,
after some reorderings of the coordinates, each 𝑉𝑗 projects onto either an irre-
ducible hypersurface in (ℙ1)𝑛−1 or (ℙ1)𝑛−1 itself, denoted as 𝑉′

𝑗 in both case,
and projects to either 0 or∞ in the remaining ℙ1 factor. If 𝑉′

𝑗 = (ℙ1)𝑛−1, then
its preimages under 𝑓 restricted to (ℙ1)𝑛−1 is itself and there is nothing to show,
so from now onwe assume𝑉′

𝑗 is an irreducible hypersurface. Also,𝑉′
𝑗 is invari-

ant under 𝑓′𝑗, the restriction of 𝑓 to the corresponding (ℙ1)𝑛−1 factors. Now the
induction hypothesis tells us that there exists non-negative integer 𝑠′𝑗 such that

((𝑓′𝑗)−𝑠−1(𝑉′
𝑗) ⧵ (𝑓′𝑗)−𝑠(𝑉′

𝑗))(𝐾′) = ∅

for every 𝑠 ≥ 𝑠′𝑗. But notice that this also implies

(𝑓−𝑠−1(𝑉𝑗) ⧵ 𝑓−𝑠(𝑉𝑗))(𝐾′) = ∅

for 𝑠 ≥ 𝑠′𝑗, since preimages of {∞, 0} under 𝑥𝑑 and preimages of∞ under ±𝑇𝑑
are just themselves. Take 𝑠′0 = max𝑘0𝑗=1 𝑠′𝑗.
Now we look at the preimages of 𝑉 under 𝜇. If this is empty, then 𝑉 lives

completely inside some 𝐻𝑖 or 𝑃𝑗 for some 𝑖 ∈ {1, 2, … , 𝑛} and 𝑗 ∈ {1, 2, … , 𝑘}
and, using arguments above, we go to the induction steps. From now on, we
assume that𝑊 = 𝜇−1(𝑉) is not empty. Notice that 𝜇−1((𝑉 ⧵ 𝑉′)(𝐾′)) ⊆ 𝑊(𝐿),
where 𝐿 is the union of finite field extensions of degree 𝐷 ⋅ 2𝑛 over 𝐾. Recall
that 𝑊 ⊆ 𝐺−1(𝑊′) and 𝐺(𝑊′) = 𝑊′. It is enough to show that there exists
a non-negative integer 𝑠1 such that for any 𝑥 ∈ (𝐿∗)𝑛, if 𝐺𝑠(𝑥) ∈ 𝑊′(𝐿) for
some 𝑠 ≥ 0, then 𝐺𝑠1(𝑥) ∈ 𝑊′(𝐿). As, if this 𝑠1 exists and there still exists a
𝑦 ∈ (ℙ1𝐾′)𝑛 and a 𝑠 > 𝑠1 such that 𝑓𝑠(𝑦) ∈ 𝜇(𝑊)(𝐾′) but 𝑓𝑠1(𝑦) ∉ 𝜇(𝑊), then
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for any 𝑥 ∈ 𝜇−1(𝑦) ⊂ (𝐿∗)𝑛,
𝐺𝑠+1(𝑥) ∈ 𝐺(𝜇−1(𝑓𝑠(𝑥))) ⊂ 𝐺(𝑊(𝐿)) ⊆ 𝑊′(𝐿).

This implies that 𝐺𝑠1(𝑥) ∈ 𝑊′(𝐿). But we have 𝐺𝑠1(𝑥) ∉ 𝑊 from 𝑓𝑠1(𝑦) ∉
𝜇(𝑊). This is a contradiction.
Now, recall𝑊′ is a finite union of torsion translation of algebraic subgroups.

It is enough to prove for each torsion translation of algebraic subgroup sepa-
rately. So, without loss of generality, we assume

𝑊′ = 𝑉(𝑥𝑟11 …𝑥
𝑟𝑛
𝑛 − 𝜖)

where 𝑟1, … , 𝑟𝑛 are integers that are not all zero and 𝜖 is an torsion element such
that 𝜖𝑑 = 𝜖. Enlarge 𝐾, 𝐾′ and 𝐿 if necessary so that 𝜖 ∈ 𝐾. Then 𝐿-points in
preimages of𝑊′(𝐿) under iterates of 𝐺 live in the union of 𝑉(𝑥𝑟11 …𝑥

𝑟𝑛
𝑛 − 𝜖𝜆),

where 𝜆 ranges over elements which is 𝑑𝑚-torsion for some non-negative inte-
ger 𝑚. Notice that if (𝑥1, … , 𝑥𝑛) ∈ (𝐿∗)𝑛, then 𝑥𝑖 ∈ 𝐿𝑖 where 𝐿𝑖 is a finite field
extension of 𝐾 such that [𝐿𝑖 ∶ 𝐾] ≤ 𝐷 ⋅ 2𝑛 for each 𝑖 ∈ {1, 2, … , 𝑛}. There-
fore, 𝜆 ∈ 𝐿′ = 𝐿1𝐿2…𝐿𝑛 where 𝐿′ is a finite field extension of 𝐾 such that
[𝐿′ ∶ 𝐾] ≤ (𝐷 ⋅ 2𝑛)𝑛. Therefore, 𝜆 is a root of unity such that

[ℚ(𝜆) ∶ ℚ] ≤ (𝐷 ⋅ 2𝑛)𝑛 ⋅ [𝐾 ∶ ℚ].
We claim that

𝑀 = {𝜆 ∈ ℚ ∶ 𝜆𝑑𝑚 = 1, for some𝑚 ∈ ℕ+, [ℚ(𝜆) ∶ ℚ] ≤ (𝐷 ⋅ 2𝑛)𝑛 ⋅ [𝐾 ∶ ℚ]}
is a finite set. This is because the set of roots of unity of bounded degree is finite,
which is a special case of Northcott property, and𝑀 is a subset of it. Then we
can take

𝑠1 = max
𝜆∈𝑀

ord(𝜆),

where ord(𝜆) is the minimum non-negative integer𝑚 such that 𝜆𝑑𝑚 = 1. Then
for any 𝑦 ∈ (𝐿∗)𝑛 such that 𝐺𝑠(𝑦) ∈ 𝑊′(𝐿) for some 𝑠 > 𝑠1, we have 𝑦 ∈
𝑉(𝑥𝑟11 …𝑥

𝑟𝑛
𝑛 − 𝜖𝜆) for some 𝜆 ∈ 𝑀 and thus 𝐺𝑠1(𝑦) ∈ 𝑊′(𝐿). This will conclude

the proof in this case.
To conclude, we take 𝑠0 = max(𝑠′0, 𝑠1). We have

(𝑓−𝑠−1(𝑉) ⧵ 𝑓−𝑠(𝑉))(𝐾′) = ∅
for any 𝑠 ≥ 𝑠0. □

Proposition 2.5. Let 𝐾 be a number field, let 𝑛 and 𝐷 be positive integers that
are at least 2, and let 𝐾′ be the union of all the finite field extensions of 𝐾 of
degree not greater than 𝐷 in some fixed algebraic closure of 𝐾. Suppose that
𝑓 = (𝑓1, … , 𝑓𝑛) ∶ (ℙ1𝐾)𝑛 → (ℙ1𝐾)𝑛 is a split rational map defined over 𝐾 in
which the 𝑓𝑖 ’s all have the same degree 𝑑 ≥ 2 and each 𝑓𝑖 is a Lattès map for
𝑖 ∈ {1, 2, … , 𝑛}. If 𝑉 ⊂ (ℙ1)𝑛 is an irreducible 𝑓-invariant hypersurface defined
over 𝐾 that projects dominantly onto any subset of 𝑛 − 1 coordinate axes, then
there exists a non-negative integer 𝑠0 such that

(𝑓−𝑠−1(𝑉) ⧵ 𝑓−𝑠(𝑉))(𝐾′) = ∅
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for all 𝑠 ≥ 𝑠0.
Proof. In this case, 𝑓 = (𝑓1, 𝑓2, … , 𝑓𝑛) where each 𝑓𝑖’s is a Lattès map. We
consider a diagram:

𝐸1 × 𝐸2 ×⋯ × 𝐸𝑛 𝐸1 × 𝐸2 ×⋯ × 𝐸𝑛

(ℙ1)𝑛 (ℙ1)𝑛

𝐺

𝜋 𝜋
𝑓

(2.7)

where 𝐺 = (𝑔1, 𝑔2, … , 𝑔𝑛) is also a split morphism on the abelian variety 𝐸1 ×
𝐸2 ×⋯ × 𝐸𝑛 and 𝜋 = (𝜋1, 𝜋2, … , 𝜋𝑛) is a projection map such that each 𝑔𝑖 and
𝜋𝑖 satisfies 𝑓𝑖◦𝜋𝑖 = 𝜋𝑖◦𝑔𝑖 by the fact that 𝑓𝑖 is a Lattès map. Let𝑊 = 𝜋−1(𝑉),
which is a subvariety in 𝐸1×𝐸2×⋯×𝐸𝑛. Since each 𝜋𝑖 has degree bounded by
6 [Sil07, Proposition 6.37] and we can enlarge𝐾 to a larger number field so that
𝑔𝑖’s are defined over 𝐾, we replace 𝐾 by this larger number field. It is enough
to show that 𝐿-points of𝑊 are stabilized under preimages of 𝐺, for every finite
field extension 𝐿 of 𝐾 of degree not greater than (6𝑛 ⋅ 𝐷)𝑛. We have 𝐺(𝑊) ⊆ 𝑊
by construction and there exists a subvariety𝑊′ ⊆ 𝑊 such that, after replacing
𝐺 and 𝑓 by some suitable iterate, 𝐺(𝑊′) = 𝑊′ and 𝐺(𝑊) ⊆ 𝑊′. We just need
to show that there exists a non-negative integer 𝑠0 such that for any 𝑠 ≥ 𝑠0 and
[𝐿 ∶ 𝐾] ≤ (6𝑛 ⋅ 𝐷)𝑛,

(𝐺−𝑠−1(𝑊′) ⧵ 𝐺−𝑠(𝑊′))(𝐿) = ∅. (2.8)

This will imply that
(𝑓−𝑠−1(𝑉) ⧵ 𝑓−𝑠(𝑉))(𝐾) = ∅, (2.9)

since, if not, there exists 𝑥 ∈ (ℙ1𝐾)𝑛 such that 𝑓𝑠(𝑥) ∈ 𝑉(𝐾) but 𝑓𝑠0(𝑥) ∉ 𝑉(𝐾)
for some 𝑠 > 𝑠0. Thus there exists a

𝑦 ∈ 𝜋−1(𝑥) ⊂ (𝐸1 × 𝐸2 ×⋯ × 𝐸𝑛)(𝐿),
where 𝐿 is a finite field extension of 𝐾 of degree not greater than (6𝑛 ⋅ 𝐷)𝑛, such
that 𝐺𝑠+1(𝑦) ∈ 𝑊′(𝐿), but 𝐺𝑠0(𝑦) ∉ 𝑊 so is not in𝑊′. This is a contradiction
to (2.8).
Notice that it is enough to prove 2.8 for each irreducible component of𝑊′.

From now onwe abuse notation and let𝑊 denote an arbitrary irreducible com-
ponent of𝑊′. To prove the statement (2.8), we first consider 𝑊̃which is a trans-
lation of𝑊 by some 𝐾̄-point in 𝐸1×𝐸2×⋯×𝐸𝑛 such that 𝑊̃ is invariant under
𝐺̃, where 𝐺̃ is a group homomorphism of the abelian variety with the property
that 𝐺 is the composition of 𝐺̃ with a suitable translation.
Then, by [GTZ11, Theorem 3.1], 𝑊̃ contains a Zariski dense set of preperi-

odic points of 𝐺̃.
Note that the preperiodic points of 𝐺̃ are torsion points in

𝐸1 × 𝐸2 ×⋯ × 𝐸𝑛
(see [GTZ11, Claim 3.2] and notice that 𝐺̃, 𝐺 and 𝑓 are polarizable). Therefore,
we can apply the classical Manin-Mumford conjecture (proved in [Ray83]) to
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get that 𝑊̃ is a translation of some subabelian variety of 𝐸1 × 𝐸2 ×⋯× 𝐸𝑛 and
so is𝑊. Thus 𝐺 restricted to𝑊 is an étale morphism and therefore we apply
[BMS23, Theorem 2.3] to conclude that there exists a nonnegative integer 𝑠0
such that for any 𝑠 ≥ 𝑠0 we have

(𝐺−𝑠−1(𝑊) ⧵ 𝐺−𝑠(𝑊))(𝐿) = ∅, (2.10)

for any finite field extension 𝐿 of 𝐾 of degree not greater than (6𝑛 ⋅ 𝐷)𝑛. □

Lemma 2.6. Let 𝑉 be an irreducible hypersurface in (ℙ1)𝑛 that projects dom-
inantly onto every subset of 𝑛 − 1 coordinate axes. Let 𝑓 = (𝑓1, … , 𝑓𝑛) be a
split rational map with deg(𝑓𝑖) > 1 for all 1 ≤ 𝑖 ≤ 𝑛. If 𝑓(𝑉) = 𝑉 then
deg(𝑓1) = deg(𝑓2) = ⋯ = deg(𝑓𝑛).

Proof. Let’s consider for each 𝑖 ∈ {1, 2, … , 𝑛} the following diagram:

𝑉 𝑉

(ℙ1)𝑛 (ℙ1)𝑛

(ℙ1)𝑛−1 (ℙ1)𝑛−1

𝑓|𝑉

𝜄 𝜄
𝑓

𝜋𝑖 𝜋𝑖
𝑔𝑖

(2.11)

where 𝜄 ∶ 𝑉 → (ℙ1)𝑛 is the natural embedding, 𝜋𝑖 is the projection to the 𝑛 − 1
coordinates excluding the 𝑖-th coordinate, and

𝑔𝑖 = (𝑓1, 𝑓2, … , 𝑓𝑖−1, 𝑓𝑖+1, … , 𝑓𝑛),
i.e., we skip the 𝑖-th index and so 𝑔𝑖 ∶ (ℙ1)𝑛−1 → (ℙ1)𝑛−1. Since 𝜋𝑖◦𝜄 is a finite
morphism by the assumption that 𝑉 projects dominantly onto every subset of
𝑛 − 1 coordinate axes, we have

deg(𝑓|𝑉) = deg(𝑔𝑖) =
∏

𝑗∈𝐼𝑖
deg(𝑓𝑗),

where 𝐼𝑖 = {1, 2, … , 𝑖 − 1, 𝑖 + 1, … , 𝑛}. Since this argument and equation hold
for each 𝑖 ∈ {1, 2, … , 𝑛}, we have

∏

𝑗∈𝐼𝑖
deg(𝑓𝑗) =

∏

𝑗∈𝐼𝑘
deg(𝑓𝑗)

for any 𝑖, 𝑘 ∈ {1, 2, … , 𝑛}. This implies that deg(𝑓𝑖) = deg(𝑓𝑘) for any pair of
𝑖, 𝑘 in {1, 2, … , 𝑛}. □

Lemma 2.7. In the case where the degrees of 𝑓1, … , 𝑓𝑛 are all at least two, it is
enough to prove Theorem 1.1 with the additional assumption that 𝑉 is an irre-
ducible hypersurface of dimension not less than 1 that projects dominantly onto
every subset of 𝑛 − 1 coordinate axes in (ℙ1)𝑛.
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Proof. The idea is the same as in [GNY18, Proposition 2.1]. We assume through-
out this proof that we have the hypotheses of Theorem 1.1 and that the maps
𝑓1, … , 𝑓𝑛 all have degree ≥ 2.
We use induction on the dimension of 𝑉. If dim(𝑉) = 0, then 𝑉 is a finite

set of points and Theorem 1.1 is true since the preimages of 𝐾-points in 𝑉 live
inside a set of 𝐾-points of bounded height. Now suppose that the conclusion
to Theorem 1.1 holds when dim(𝑉) < 𝐷, we prove the case that dim(𝑉) =
𝐷. Notice that it is enough to prove that the conclusion to Theorem 1.1 holds
for each irreducible components of 𝑉 separately after replacing 𝑓 by a suitable
iterate.
Thus we assume that 𝑉 is irreducible. Then there exist 𝐷 coordinate axes

such that the projection 𝜋 of 𝑉 onto these axes is dominant.
Without loss of generality, we assume that they are the first 𝐷 coordinates

and for 𝑗 > 𝐷 we let 𝜋𝑗 denote the projection from 𝑉 to the coordinate axes
indexed by {1, … , 𝐷, 𝑗}.
Therefore 𝜋𝑗(𝑉) is a hypersurface in (ℙ1)𝐷+1 and also

𝐻𝑗 ∶= 𝜋𝑗(𝑉) × (ℙ1)𝑛−𝐷−1

is a hypersurface in (ℙ1)𝑛. Now we claim that 𝑉 is a component of
⋂𝑛

𝑗=𝐷+1𝐻𝑗.
Notice that dim(⋂𝑛

𝑗=𝐷+1𝐻𝑗) ≥ 𝐷 and𝑉 ⊂ ⋂𝑛
𝑗=𝐷+1𝐻𝑗. So we just need to show

that dim(⋂𝑛
𝑗=𝐷+1𝐻𝑗) = 𝐷.

Since𝜋𝑗(𝑉) projects dominantly onto the first𝐷 coordinate axes, there exists
a Zariski open subset 𝑈 ⊂ (ℙ1)𝐷 such that for each

𝛼 = (𝛼1, … , 𝛼𝐷) ∈ 𝑈
there exists a finite set 𝑆𝛼,𝑗 such that if (𝛼1, … , 𝛼𝑛) ∈ 𝐻𝑗 and (𝛼1, … , 𝛼𝐷) ∈ 𝜋(𝑉)
then 𝛼𝑗 ∈ 𝑆𝛼,𝑗. This is saying for each 𝛼 ∈ 𝑈 there are only finitely many
points in

⋂𝑛
𝑗=𝐷+1𝐻𝑗 such that the first𝐷 coordinates are equal to 𝛼. Therefore,

dim(⋂𝑛
𝑗=𝐷+1𝐻𝑗) = 𝐷 and 𝑉 is a component of

⋂𝑛
𝑗=𝐷+1𝐻𝑗. Notice that since

𝑓(𝑉) = 𝑉, we also have 𝑓(𝐻𝑗) = 𝐻𝑗.
We claim that if for each 𝐻𝑗, we have the statement of Theorem 1.1 holds,

then certainly it holds for 𝑉. To prove the claim, we first notice that there
exists a subvarity 𝐻 ⊆ ⋂𝑛

𝑗=𝐷+1𝐻𝑗 containing 𝑉 such that 𝑓(𝐻) = 𝐻 and
𝑓(⋂𝑛

𝑗=𝐷+1𝐻𝑗) = 𝐻 if we replace 𝑓 by some iterate. We denote 𝑉1, … , 𝑉𝑘 as
the irreducible components of𝐻 of dimension𝐷 and without loss of generality
assume that 𝑉 = 𝑉1 and 𝑓(𝑉𝑖) = 𝑉𝑖 for each 𝑖 ∈ {1, … , 𝑘} by replacing 𝑓 with
suitable iterates. Assume that the conclusion to Theorem 1.1 holds for each𝐻𝑗.
Then there exist non-negative integers 𝑠𝑗 such that each 𝑥 ∈ (ℙ1𝐾)𝑛 satisfies
𝑓𝑠(𝑥) ∈ 𝐻𝑗(𝐾) for some non-negative integer 𝑠, and we have 𝑓𝑠𝑗 (𝑥) ∈ 𝐻𝑗(𝐾)
for each 𝐷 + 1 ≤ 𝑗 ≤ 𝑛.
Now for each 𝑥 ∈ (ℙ1𝐾)𝑛 such that 𝑓𝑠(𝑥) ∈ 𝑉(𝐾) for some non-negative

integer 𝑠, we have certainly 𝑓𝑠(𝑥) ∈ 𝐻𝑗(𝐾) for each𝐷+1 ≤ 𝑗 ≤ 𝑛. Thus letting
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𝑠′0 denote the quantity max𝐷+1≤𝑗≤𝑛{𝑠𝑗}, we have 𝑓𝑠
′
0(𝑥) ∈ ⋂𝑛

𝑗=𝐷+1𝐻𝑗(𝐾) and
𝑓𝑠′0+1(𝑥) ∈ 𝐻. If 𝑓𝑠′0+1(𝑥) ∉ 𝑉 then 𝑓𝑠′0+1(𝑥) ∈ 𝑉𝑖 for some 𝑖 ∈ {2, … , 𝑘} such
that 𝑓𝑠(𝑥) ∈ 𝑉 ∩ 𝑉𝑖. Since 𝑓(𝑉) = 𝑉 and 𝑓(𝑉𝑖) = 𝑉𝑖, we have 𝑓(𝑉 ∩ 𝑉𝑖) ⊆
(𝑉 ∩𝑉𝑖) and there exists 𝑉′ ⊆ 𝑉 ∩𝑉𝑖 such that 𝑓(𝑉 ∩𝑉𝑖) = 𝑉′ and 𝑓(𝑉′) = 𝑉′

after further replacing 𝑓 by a suitable iterate. Notice that dim(𝑉′) < 𝐷 and 𝑥
is in the preimages of 𝑉′ under 𝑓. By the induction hypothesis, there exists a
positive integer 𝑠′1 such that (𝑓−𝑠

′
1−1(𝑉′) ⧵ 𝑓−𝑠′1(𝑉))(𝐾) = ∅. Therefore, taking

𝑠0 = max{𝑠′1, 𝑠′0 + 1}, we have 𝑓𝑠0(𝑥) ∈ 𝑉(𝐾). We proved that it is enough to
prove that the conclusion to Theorem 1.1 holds for each𝐻𝑗.
Now for each 𝐻𝑗, it is equivalent to prove the statement of Theorem 1.1 for

𝜋𝑗(𝑉) ⊂ (ℙ1)𝐷+1 which is an irreducible hypersurface invariant under 𝑓′ =
(𝑓1, … , 𝑓𝐷) and projecting dominantly onto first 𝐷 coordinate axes. We claim
that, after reordering coordinate axes, we have 𝜋𝑗(𝑉) = 𝑊𝑗 × (ℙ1)𝑚𝑗 for some
0 ≤ 𝑚𝑗 ≤ 𝐷, where 𝑊𝑗 ⊆ (ℙ1)𝐷+1−𝑚𝑗 projects dominantly onto any subset
of 𝐷 − 𝑚𝑗 coordinate axes. This can be proved by induction and the base case
is that 𝐷 = 1 and in this case 𝜋𝑗(𝑉) either projects dominantly onto any ℙ1
factors or it is𝑊𝑗 × ℙ1, after reordering coordinate axes, where𝑊𝑗 is a finite
set of points. Now, assuming the claim is true for 𝐷 = 𝐷0, 𝐷0 ≥ 1 is a positive
integer, let’s prove it for 𝐷 = 𝐷0 + 1. If there exists 𝐷 subset of coordinate axes
such that the projection,𝜋1(𝜋𝑗(𝑉)), onto those axes is not dominant and denote
𝜋2 as the projection onto the otherℙ1 factor, then dim(𝜋1(𝜋𝑗(𝑉))) = 𝐷−1 since
we have

dim(𝜋𝑗(𝑉)) ≤ dim(𝜋1(𝜋𝑗(𝑉))) + dim(𝜋2(𝜋𝑗(𝑉))). (2.12)

So dim(𝜋2(𝜋𝑗(𝑉))) = 1, which implies 𝜋2(𝜋𝑗(𝑉)) = ℙ1. Then the equality
actually holds in (2.12) and we have 𝜋𝑗(𝑉) = 𝜋1(𝜋𝑗(𝑉)) × ℙ1. Applying the
induction hypothesis on 𝜋1(𝜋𝑗(𝑉)) concludes the proof of the claim.
Recall, we have already shown that it is equivalent to prove the statement

of Theorem 1.1 for 𝜋𝑗(𝑉). By the claim, proving for 𝜋𝑗(𝑉) is also equivalent
to proving for𝑊𝑗 which is an irreducible hypersurface in (ℙ1)𝐷+1−𝑚𝑗 invariant
under 𝑓′′ = (𝑓1, … , 𝑓𝐷+1−𝑚𝑗 ), after reordering coordinate axes, and projects
dominantly onto any subset of 𝐷 −𝑚𝑗 coordinate axes. □

Proposition 2.8. Let 𝐾 be a finitely generated field extension of ℚ, 𝐷 a positive
integer and let 𝐿 be the union of the finite extensions of 𝐾 of degree less or equal
to 𝐷. Let 𝑓 ∶ ℙ1𝐾 → ℙ1𝐾 be a surjective morphism of degree greater than 1 defined
over 𝐾. Then there exists a positive integer 𝑁 such that if 𝑎, 𝑏 ∈ ℙ1(𝐿) satisfies
𝑓𝑛(𝑎) = 𝑓𝑛(𝑏) for some 𝑛 ≥ 0, then 𝑓𝑁(𝑎) = 𝑓𝑁(𝑏).

Proof. [BMS23, Theorem 3.1] proved this for 𝐿 a number field. But the proof
still works if we have 𝐿 as above. The only changes to the proof that are needed
is that instead of embedding 𝐿 intoℚ𝑝 for a suitable prime 𝑝 directly such that,
after embedding, 𝑓 ∈ ℤ𝑝[[𝑥]], we embed 𝐾 intoℚ𝑝 for a suitable prime 𝑝 such
that 𝑓 ∈ ℤ𝑝[[𝑥]]. Then 𝐿 is naturally embedded as a set in the union of the
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finite field extensions of ℚ𝑝 of degree less or equal to 𝐷 which is inside ℚ𝑝.
Denote such an embedding map as 𝜄.
Notice that the key ingredient of the proof of [BMS23, Theorem 3.1] is the

𝑝-adic uniformization which works over ℂ𝑝 and thus it can be applied here
without changes. Also, in the proof [BMS23, Theorem 3.1], 𝑁 is based on the
least commonmultiple of the orders of roots of unity in a finite extension ofℚ𝑝
which is a finite set. And now, we only need to take it to be depending on a
positive integer𝑀, the least common multiple of orders of roots of unity inℚ𝑝
of degrees bounded by a constant depending only on 𝐷, 𝑓 and 𝐾. In particular,
the orders of roots of unity in 𝜄(𝐿) ⊆ ℚ𝑝 are all dividing𝑀. Notice that this is
doable since the set of roots of unity in ℚ𝑝 such that their degrees over ℚ𝑝 are
all bounded by a constant is also finite [BMS23, Proposition 3.6(3)] and 𝜄(𝐿) is
contained in the union of the finite field extensions ofℚ𝑝 of degree less or equal
to 𝐷. Thus, the proof follows just as in [BMS23, Theorem 3.1]. □

Proof of Theorem 1.1 in the case when deg(𝑓1), … , deg(𝑓𝑛) ≥ 2. Notice that
by Lemma 2.7, it is enough to prove the statementwith the assumption that𝑉 is
an irreducible hypersurface projecting dominantly onto any subset of (𝑛−1) co-
ordinate axes in (ℙ1)𝑛. Since 𝑓(𝑉) = 𝑉, we have that𝑉 contains a Zariski dense
set of preperiodic points of 𝑓 [Fak03, Theorem 5.1]. Therefore, by [GNY18,
Theorem 2.2], we have if 𝑛 > 2 then

(1) either 𝑓1, … , …𝑓𝑛 are all Lattès maps;
(2) or 𝑓𝑖’s are all conjugated to 𝑥±𝑑𝑖 or ±𝑇𝑑𝑖 , where 𝑇𝑑𝑖 ’s are Chebyshev

polynomials of degree 𝑑𝑖 = deg(𝑓𝑖).
Notice that by Lemma 2.6 in both cases 𝑑1 = 𝑑2 = ⋯ = 𝑑𝑛. If 𝑛 = 2, then by
the proof of [GNY19, Theorem 1.3] we have either 𝑓1, 𝑓2 are both Lattès maps
or neither of them is. So overall we have three separate cases to show:

(1) 𝑛 = 2, 𝑓1 and 𝑓2 are not Lattès maps;
(2) 𝑛 > 2, 𝑓𝑖’s are conjugated to either 𝑥±𝑑 or ±𝑇𝑑 for some 𝑑 > 1;
(3) 𝑓𝑖’s are all Lattès maps.
Case (2) is implied by Proposition 2.4 and Case (3) is implied by Proposition

2.5. We left to prove case (1): By [Pak23, Corollary 4.5] and [Pak23, Remark
4.3], we have that there exists rational functions 𝑈1, 𝑈2 and 𝐹 defined over 𝐾
such that

𝑈1◦𝐹 = 𝑓1◦𝑈1,
𝑈2◦𝐹 = 𝑓2◦𝑈2

and 𝑊1 = (𝑈1, 𝑈2)−1(𝑉) is a subvariety such that (𝐹, 𝐹)(𝑊1) ⊆ 𝑊1 and it
contains an irreducible component 𝑉′ ⊆ 𝑊 such that (𝐹, 𝐹)(𝑉′) = 𝑉′ and
(𝐹, 𝐹)(𝑊1) ⊆ 𝑉′ after replacing 𝐹, 𝑓1 and 𝑓2 by some suitable iterate. Also by
replacing𝐾with some larger number field, we assume𝑈1,𝑈2 and𝐹 are defined
over 𝐾. Let 𝐾′ be the union of the finite field extensions of 𝐾, whose degree is
bounded by deg(𝑈1)2 = deg(𝑈2)2 of 𝐾. It is enough to show that there exists a
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positive integer 𝑠0 such that
((𝐹, 𝐹)−𝑠−1(𝑉′) ⧵ (𝐹, 𝐹)−𝑠(𝑉′))(𝐾′) = ∅

for any integer 𝑠 ≥ 𝑠0.
Now if 𝐹 is Lattès map or is conjugate to either a power map or a Cheby-

shev polynomial or its negative, we obtain the result from Proposition 2.4 and
Proposition 2.5 separately. So, we assume𝐹 is not a Lattèsmap nor conjugate to
either a powermap or a Chebyshev polynomial or its negative. Then by [Pak23,
Theorem 4.15], we have there exists rational functions 𝑈3, 𝑈4, 𝐹1 and 𝐹2 over
ℂ such that

𝑈3◦𝐹1 = 𝐹◦𝑈3,
𝑈4◦𝐹2 = 𝐹◦𝑈4

and 𝑊 = (𝑈3, 𝑈4)−1(𝑊1) is a subvariety such that (𝐹1, 𝐹2)(𝑊) ⊆ 𝑊 and it
contains a subvariety 𝑊′ such that (𝐹1, 𝐹2)(𝑊′) = 𝑊′ after replacing 𝐹1, 𝐹2,
𝑓1, 𝑓2 and 𝐹 by a suitable iterate. Furthermore, 𝐹1 and 𝐹2 are not generalized
Lattès maps by the Theorem.
Now let 𝜏1 = 𝑈1◦𝑈3 and 𝜏2 = 𝑈2◦𝑈4 and replace 𝐾 by a finite generated

field extension of 𝐾 such that 𝜏1, 𝜏2, 𝐹1 and 𝐹2 are all defined over 𝐾. After
replacing 𝐹 and 𝐹1, 𝐹2 with a suitable iterate and abusing notation to let𝑊 be
some irreducible component of𝑊′, we may assume (𝐹1, 𝐹2)(𝑊) = 𝑊. Let 𝐿
be the union of the finite field extensions of𝐾 of degree bounded by deg(𝜏1)2 =
deg(𝜏2)2. Similarly, it is enough to show that there exists a positive integer 𝑠0
such that

((𝐹1, 𝐹2)−𝑠−1(𝑊) ⧵ (𝐹1, 𝐹2)−𝑠(𝑊))(𝐿) = ∅
for all integers 𝑠 ≥ 𝑠0.
In this case, we use [Pak23, Theorem 1.1] andwe get that there exists rational

functions 𝑋1, 𝑋2, 𝑌1, 𝑌2 and 𝐵 such that there exists some positive integer 𝑑
satisfies

𝐹𝑑1 = 𝑋1◦𝑌1 (2.13)

𝐹𝑑2 = 𝑋2◦𝑌2 (2.14)

𝐵𝑑 = 𝑌1◦𝑋1 = 𝑌2◦𝑋2, (2.15)
𝑊 ⊆ (𝑌1, 𝑌2)−1(∆) and also (𝐹𝑑1 , 𝐹𝑑2 )((𝑌1, 𝑌2)−1(∆)) = 𝑊.
Enlarging 𝐾 by adjoining coefficients of 𝑋1, 𝑌1, 𝑋2 and 𝑌2 and abuse the no-

tation to let 𝐾 denote this larger field and 𝐿 be the union of the finite field ex-
tensions of degree bounded by deg2(𝜏1) = deg2(𝜏2) of K.
Now it is enough to show that there exists a non-negative integer 𝑠0 such that

for any 𝑠 ≥ 𝑠0,
((𝐹1, 𝐹2)(−𝑠−1)𝑑(𝑊) ⧵ (𝐹1, 𝐹2)−𝑠𝑑(𝑊))(𝐿) = ∅. (2.16)

We claim that to prove the above, it suffices to show that there exists 𝑠0 such
that for any 𝑠 ≥ 𝑠0
((𝐹1, 𝐹2)𝑑(−𝑠−1)((𝑌1, 𝑌2)−1(∆)) ⧵ (𝐹1, 𝐹2)−𝑑𝑠((𝑌1, 𝑌2)−1(∆)))(𝐿) = ∅. (2.17)
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To see this, suppose there exists 𝑠′0 such that for any 𝑠 ≥ 𝑠′0 Equation (2.17)
holds. If there exists a non-negative integer 𝑠 > 𝑠′0 and a 𝑥 ∈ (ℙ1 ×ℙ1)(𝐿) such
that (𝐹1, 𝐹2)𝑠𝑑(𝑥) ∈ 𝑊(𝐿) but (𝐹1, 𝐹2)𝑠

′
0𝑑(𝑥) ∉ 𝑊, then

(𝐹1, 𝐹2)𝑠
′
0𝑑(𝑥) ∈ (𝑌1, 𝑌2)−1(∆) ⧵ 𝑊

by Equation (2.17). Thus (𝐹1, 𝐹2)(𝑠
′
0+1)𝑑(𝑥) ∈ 𝑊. Therefore, take 𝑠0 = 𝑠′0 + 1,

we have for any 𝑠 ≥ 𝑠0
((𝐹1, 𝐹2)(−𝑠−1)𝑑(𝑊) ⧵ (𝐹1, 𝐹2)−𝑠𝑑(𝑊))(𝐿) = ∅.

Thus, it is enough to show that there exists 𝑠0 such that for any 𝑠 ≥ 𝑠0
((𝐹1, 𝐹2)𝑑(−𝑠−1)((𝑌1, 𝑌2)−1(∆)) ⧵ (𝐹1, 𝐹2)−𝑑𝑠((𝑌1, 𝑌2)−1(∆)))(𝐿) = ∅ (2.18)

which is equivalent to, by Equation (2.13), (2.14) and (2.15),

((𝑌1, 𝑌2)−1((𝐵𝑑, 𝐵𝑑)−𝑠−1(∆) ⧵ (𝐵𝑑, 𝐵𝑑)−𝑠(∆)))(𝐿) = ∅. (2.19)

Since, again, 𝑌1, 𝑌2 are defined over 𝐾, it is enough to show
((𝐵𝑑, 𝐵𝑑)−𝑠−1(∆) ⧵ (𝐵𝑑, 𝐵𝑑)−𝑠(∆))(𝐿) = ∅. (2.20)

Notice that if there exists a non-negative integer 𝑠0 such that for any non-
negative integer 𝑠 and any 𝑥, 𝑦 ∈ ℙ1(𝐿), we have

𝐵𝑑𝑠(𝑥) = 𝐵𝑑𝑠(𝑦) (2.21)

implies
𝐵𝑑𝑠0(𝑥) = 𝐵𝑑𝑠0(𝑦), (2.22)

then Equation (2.20) holds for 𝑠 ≥ 𝑠0. While this is proved by Proposition 2.8.
The result follows.

□

Proof of Theorem 1.1 in the general case. By replacing 𝑓 by some suitable
iterate, we have that each irreducible component of 𝑉 is also an invariant sub-
variety of 𝑓. It is enough to prove the theorem for each irreducible component
of 𝑉, so we assume that 𝑉 is irreducible.
If there doesn’t exist 𝑓𝑖 such that deg(𝑓𝑖) = 1, for 𝑖 ∈ {1, … , 𝑛}, then the

statement has been proved. Thus we may assume that at least one 𝑓𝑖 is an
automorphism. We reorder the coordinates so that there exists a positive in-
teger 𝑘 ∈ {2, … , 𝑛 − 1} such that deg(𝑓𝑖) > 1 when 𝑖 ≤ 𝑘 and deg(𝑓𝑖) = 1
when 𝑖 > 𝑘. Now Lemma 2.1 implies that 𝑉 = 𝑉1 × 𝑉2, where 𝑉1 ⊆ (ℙ1)𝑘,
𝑉2 ⊆ (ℙ1)𝑛−𝑘 such that 𝑔1(𝑉1) = 𝑉1 and 𝑔2(𝑉2) = 𝑉2, where 𝑔1 = (𝑓1, … , 𝑓𝑘)
and 𝑔2 = (𝑓𝑘+1, … , 𝑓𝑛). Notice that 𝑔−12 (𝑉2) = 𝑉2 and there exists a non-
negative integer 𝑠0 such that (𝑔−𝑠−11 (𝑉1)⧵𝑔−𝑠1 (𝑉1)(𝐾) = ∅ for all 𝑠 ≥ 𝑠0, since we
have established Theorem 1.1 in the case when the maps all have degree ≥ 2.
Thus, or any non-negative integer 𝑠 ≥ 𝑠0,

(𝑓−𝑠−1(𝑉) ⧵ 𝑓−𝑠(𝑉))(𝐾)
= (𝑔−𝑠−11 (𝑉1) ⧵ 𝑔−𝑠1 (𝑉1))(𝐾) × (𝑔−𝑠−12 (𝑉2) ⧵ 𝑔−𝑠2 (𝑉2))(𝐾) = ∅.

The result follows.
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