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Isomorphism and stable isomorphism in
“real” and “quaternionic” K-theory

Malkhaz Bakuradze and Ralf Meyer

Abstract. We find lower bounds on the rank of a “real” vector bundle over
an involutive space, such that “real” vector bundles of higher rank have a
trivial summand and such that a stable isomorphism for such bundles im-
plies ordinary isomorphism. We prove similar lower bounds also for “quater-
nionic” bundles. These estimates have consequences for the classification of
topological insulators with time-reversal symmetry.
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1. Introduction
Topological insulators are materials that are insulators such that some spe-

cial topology enforces the existence of conducting states on their boundaries.
These conducting boundary states tend to be very robust under disorder. See,
for instance, [6] for a survey on this subject from the perspective of non-commu-
tative geometry and index theory. It is common to model such materials in the
one-particle approximation. The physical system is then described through a
C∗-algebra 𝐴 of observables and an invertible, self-adjoint element 𝐻 ∈ 𝐴, the
Hamiltonian. Two such systems with the same C∗-algebra 𝐴 are considered
in the same topological phase if there is a homotopy of invertible self-adjoint
elements in 𝐴 between their Hamiltonians. Up to homotopy, we may replace
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self-adjoint invertible elements by self-adjoint unitaries. By a linear transfor-
mation, these may be replaced by projections in 𝐴. So the set of possible topo-
logical phases of the system described by 𝐴 is the set of homotopy classes of
projections in 𝐴.
A projection in 𝐴 has a K-theory class in K0(𝐴). However, if two projec-

tions have the same class inK0(𝐴), then they are only stably homotopic, that is,
they become homotopic after adding the same projection to them both. Since
K-theory is easier to compute than sets of homotopy classes of projections, it is
important to know situations where stable homotopy implies homotopy.
If disorder in the system is neglegcted, then the observable algebra becomes

isomorphic to a matrix algebra over the algebra of continuous functions on the
𝑑-torus𝕋𝑑, where 𝑑 is the dimension of thematerial. Many interesting topolog-
ical materials only exhibit a nontrivial topological phase when we require extra
symmetries that are anti-unitary or that anticommute with the Hamiltonian.
A particularly important case is a time-reversal symmetry. This is actually two
cases because the symmetry may have square +1 or −1. It is explained in [4,5]
how topological phases in these two symmetry types are classified using “real”
and “quaternionic” vector bundles over tori with involution. We briefly sketch
this here.
The torus 𝕋𝑑 above appears through the Fourier transform. The relevant ob-

servable algebra is the group C∗-algebra of ℤ𝑑, tensored by a matrix algebra.
Here the time-reversal symmetry acts by entrywise complex conjugation com-
bined with conjugation by a suitable scalar matrixΘ. Under Fourier transform,
this becomes the real C∗-algebra

{
𝑓∶ 𝕋𝑑 → 𝕄𝑛(ℂ)

|||| 𝑓(𝑧) = Θ𝑓(𝑧)Θ−1 for all 𝑧 ∈ 𝕋𝑑
}
.

The conjugation map 𝑧 ↦ 𝑧 on 𝕋𝑑 is an involution and generates an action of
the group ℤ∕2. Projections in matrix algebras over the real group C∗-algebra
of ℤ𝑑 correspond by the Serre–Swan Theorem to “real” vector bundles over 𝕋𝑑
as defined by Atiyah [1]. That is, they carry a map on their total space that lifts
the involution on the base space, is fibrewise conjugate-linear, and squares to
the identitymap. For a time reversal symmetrywith square−1, we instead need
the map on the total space to square to the map of multiplication by −1, and
complex bundles with this kind of extra structure are called “quaternionic”.
Thus it is physically interesting to know sufficient criteria for two “real” or

“quaternionic” vector bundles over 𝕋𝑑 that are stably isomorphic to be isomor-
phic. Without the extra “real” or “quaternionic” structure map, such criteria
are well known: for each 𝑑 there is an explicit 𝑘(𝑑) ∈ ℕ such that two com-
plex vector bundles of rank at least 𝑘(𝑑) over a space of covering dimension 𝑑
are isomorphic once they are stably isomorphic (see [2, Theorem 1.5 in Chap-
ter 9]). Similar results are known for real and quaternionic vector bundles, but
themore general cases of “real” and “quaternionic” vector bundles have not yet
been treated. This will be done here.
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A related result says that any “real” vector bundle of sufficiently high rank is
a direct sum of a trivial “real” vector bundle of rank 1 and another “real” vector
bundle. In fact, a relative version of this result, saying that a trivial direct sum-
mand on a subspace may be extended to one on the whole space, implies that
stable isomorphism and isomorphism are equivalent for bundles of sufficiently
high rank. However, to prove that stable isomorphism and isomorphism are
equivalent for certain bundles over a space 𝑋, we need the statement for the
space 𝑋 × [0, 1], relative to the subspace 𝑋 × {0, 1}.
Some results about trivial direct summands in vector bundles of sufficiently

high rank are already proven in [4, Theorem 4.25] for “real” vector bundles and
[5, Theorem 2.5] for “quaternionic” vector bundles. However, these statements
assume that the set of fixed points of the “real” involution on the underlying
space is discrete, so that they never apply to a space of the form𝑋×[0, 1]. Thus
they cannot help to relate stable isomorphism to isomorphism. Therefore, our
main task is to remove this restriction from the results in [4, 5].
As in [4,5], weworkwithℤ∕2-CW-complexes. The key proof technique is in-

duction over cells, extending certain equivariant maps already defined on the
boundary of a ℤ∕2-cell to the interior. Any smooth manifold with a smooth
ℤ∕2-action carries an equivariant triangulation by [3], and this implies imme-
diately that it may be turned into a ℤ∕2-CW-complex. We now formulate our
main results.

Theorem 1.1. Let 𝑑1, 𝑑0, 𝑘 ∈ ℕ. Let 𝑋 be a ℤ∕2-CW-complex. Assume that the
free cells in (𝑋,𝐴) have atmost dimension 𝑑1 and that the trivial cells have atmost
dimension 𝑑0. Let

𝑘0 ∶= max {𝑑0,
⎡
⎢
⎢

𝑑1 − 1
2

⎤
⎥
⎥
} , 𝑘1 ∶= max {𝑑0 + 1, ⎡⎢

⎢

𝑑1
2
⎤
⎥
⎥
} .

(1) Let 𝐸 be a “real” vector bundle over𝑋 of rank 𝑘 ≥ 𝑘0. There is an isomor-
phism 𝐸 ≅ 𝐸0⊕(𝑋 ×ℂ𝑘−𝑘0) for some “real” vector bundle 𝐸0 over𝑋 and
the trivial “real” vector bundle 𝑋 × ℂ𝑘−𝑘0 of rank 𝑘 − 𝑘0.

(2) Let 𝐸1 and 𝐸2 be two “real” vector bundles over 𝑋 of rank 𝑘 ≥ 𝑘1. If 𝐸1
and 𝐸2 are stably isomorphic, that is, 𝐸1 ⊕𝐸3 ≅ 𝐸2 ⊕𝐸3 for some “real”
vector bundle 𝐸3, then they are isomorphic.

Theorem 1.2. Let 𝑑1, 𝑑0, 𝑘 ∈ ℕ. Let 𝑋 be a ℤ∕2-CW-complex. Assume that the
free cells in (𝑋,𝐴) have atmost dimension 𝑑1 and that the trivial cells have atmost
dimension 𝑑0. Let

𝑘0 ∶= max {⎡⎢
⎢

𝑑0 − 3
2

⎤
⎥
⎥
, ⎡⎢
⎢

𝑑1 − 1
2

⎤
⎥
⎥
} , 𝑘1 ∶= max {⎡⎢

⎢

𝑑0 − 2
2

⎤
⎥
⎥
, ⎡⎢
⎢

𝑑1
2
⎤
⎥
⎥
} .

(1) Let 𝐸 be a “quaternionic” vector bundle over 𝑋 of rank 𝑘 ≥ 𝑘0. There
is an isomorphism 𝐸 ≅ 𝐸0 ⊕ 𝜃2⌊(𝑘−𝑘0)∕2⌋𝑋 for some “quaternionic” vector
bundle 𝐸0 over 𝑋 and the trivial “quaternionic” vector bundle 𝜃2⌊(𝑘−𝑘0)∕2⌋𝑋
of rank 2⌊(𝑘 − 𝑘0)∕2⌋.
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(2) Let𝐸1 and𝐸2 be two “quaternionic” vector bundles over𝑋 of rank 𝑘 ≥ 𝑘1.
If 𝐸1 and 𝐸2 are stably isomorphic, that is, 𝐸1 ⊕ 𝐸3 ≅ 𝐸2 ⊕ 𝐸3 for some
“quaternionic” vector bundle 𝐸3, then they are isomorphic.

Proposition 1.3. Two “real” or “quaternionic” vector bundles over𝕋𝑑 with 𝑑 ≤ 4
are already isomorphic once they are stably isomorphic.

Proof. Here we are dealing with the ℤ∕2-CW-complex 𝕋𝑑, which has 𝑑0 = 0
and 𝑑1 = 𝑑 ≤ 4. This gives 𝑘1 ≤ 2 both in Theorem 1.1 and in Theorem 1.2.
So the assertion holds for “real” and “quaternionic” bundles of rank at least 2.
All rank-zero bundles are trivial. So it only remains to prove the statement for
bundles of rank one. All rank-one “real” bundles over𝕋𝑑 for all𝑑 ∈ ℕ are trivial
by [4, Proposition 5.3]. Since the torus has 𝜏-fixed points, any “quaternionic”
bundle over 𝕋𝑑 has even rank (see [5]), so there are no “quaternionic” vector
bundles of rank one. □

Remark 1.4. Consider the stabilisationmap [𝐸] ↦ [𝐸⊕𝜃𝑚−𝑘𝑋 ] between the sets
of “real” or “quaternionic” vector bundles of rank 𝑘 and 𝑚 for 𝑚 ≥ 𝑘; in the
“quaternionic” case, this only works if𝑚−𝑘 is even. Theorems 1.1 and 1.2 say
that this map is injective for 𝑘 ≥ 𝑘1 and surjective for 𝑘 ≥ 𝑘0. So it is bijective
for 𝑘 ≥ max{𝑘0, 𝑘1} = 𝑘1. For instance, if 𝑑0, 𝑑1 ≤ 4, this happens if 𝑘 ≥ 2. So in
these low dimensions, it is no loss of generality to restrict attention to “real” and
“complex” vector bundles of rank atmost 2. This is claimed in [5, Corollary 2.1]
for 𝑑0 = 0 and 𝑑1 = 5 as well. We can only confirm the surjectivity of the map
in this case, however, and the injectivity of the map is not addressed in [5]. If
𝑑0 = 0, then the threshold 𝑘0 for the map above to be surjective is the same as
the threshold ⌊𝑑∕2⌋ in the “real” case in [5, Theorem 4.25] and the threshold
2⌊(𝑑 + 2)∕4⌋ in the “quaternionic” even rank case in [5, Theorem 2.5].

In the body of the paper, we state and prove generalisations of Theorems 1.1
and 1.2 for relative ℤ∕2-CW-complexes, which allow to extend a given direct
sum decomposition on a subspace. We need the relative versions of the first
statements in Theorems 1.1 and 1.2 to prove the second statements. Section 2
contains our results and some notation in the “real” case, and Section 3 treats
the “quaternionic” case. Finally, in Section 4, we explain how our results imply
statements about stable conjugacy and conjugacy of projections in the physical
observable C∗-algebra.
An involutive space (𝑋, 𝜏) is a topological space 𝑋 with a continuous invo-

lution 𝜏∶ 𝑋 → 𝑋, that is, 𝜏2 = id𝑋 . Throughout this article, let (𝑋,𝐴) be
a relative ℤ∕2-CW-complex, that is, 𝐴 ⊆ 𝑋 is a closed 𝜏-invariant subspace
and 𝑋 is gotten from 𝐴 by attachingℤ∕2-cells of increasing dimensions. There
are two different types of ℤ∕2-cells, namely, the free cells 𝔻𝑗 × ℤ∕2 with the
generator of ℤ∕2 acting by 𝜏(𝑥, 𝑗) ∶= (𝑥, 𝑗 + 1) and the fixed cells 𝔻𝑗 with the
trivialℤ∕2-action. Let 𝑑0 be the supremum of the dimensions of the fixed cells,
which is the dimension of 𝑋𝜏 ⧵ 𝐴. Let 𝑑1 be the supremum of the dimensions
of the free cells, which is the dimension of 𝑋 ⧵ (𝑋𝜏 ∪𝐴). Our results only work
if 𝑑0, 𝑑1 < ∞.
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2. “Real” vector bundles
This section proves ourmain result for “real” vector bundles. Evenmore, we

state and prove a relative version over relative ℤ∕2-CW-complexes.

Definition 2.1 ([1,4]). A “real” vector bundle over an involutive space (𝑋, 𝜏) is a
complex vector bundle𝜋∶ 𝐸 → 𝑋 together with a homeomorphismΘ∶ 𝐸 → 𝐸
such that

(1) 𝜋◦Θ = 𝜏◦𝜋;
(2) Θ is fibrewise additive and Θ(𝜆𝑝) = 𝜆𝑝 for all 𝜆 ∈ ℂ and 𝑝 ∈ 𝐸, where

𝜆 is the complex conjugate of 𝜆;
(3) Θ2 = id𝐸 .

The bundle has rank 𝑘 if all its fibres are isomorphic to ℂ𝑘.
The trivial “real” vector bundle of rank 𝑘 over 𝑋 is 𝑋 × ℂ𝑘 with the obvious,

trivial ℂ-vector bundle structure and Θ(𝑥, 𝑣) ∶= (𝜏(𝑥), 𝑣). It is denoted by 𝜃𝑘𝑋 .

Proposition 2.2 ([4]). Let 𝑋 be a space and let 𝑘 ∈ ℕ. Then any “real” vector
bundle over (𝑋, id𝑋) is the complexification of an ordinary real vector bundle.

Therefore, for any involutive space (𝑋, 𝜏), the restriction𝐸 on the subset𝑋𝜏 ⊆
𝑋 of 𝜏-fixed points is a complexification of a real vector bundle, namely,

𝐸|𝑋𝜏 ≅ 𝐸Θ ⊗ℝ ℂ,

where 𝐸Θ is the set of fixed points of Θ, which is an ℝ-vector bundle over 𝑋𝜏.

Let 𝔽 denote ℝ, ℂ, or ℍ, and let 𝑐 = dimℝ 𝔽. Recall a classical result:

Proposition 2.3 ([2, Chapter 9, Proposition 1.1]). Let 𝜉𝑘 be a 𝑘-dimensional
𝔽-vector bundle over a CW-complex 𝑋 with 𝑑 ≤ 𝑐𝑘 − 1. Then 𝜉 is isomorphic to
𝜂 ⊕ (𝑋 × 𝔽) for some 𝔽-vector bundle 𝜂 over 𝑋.

The key ingredient in the proof is [2, Theorem7.1 inChapter 2], which allows
to extend sections of fibre bundles under a higher connectedness assumption.
This proof technique provides a relative version of the proposition for a relative
CW-complex (𝑋,𝐴), which shows that a given direct sum decomposition on 𝐴
extends to 𝑋.
We now formulate and prove a relative version of Theorem 1.1.(1), which

generalises the relative version of Proposition 2.3 for 𝔽 = ℝ to “real” bundles.
Our proof follows the proof of [2, Theorem 1.2] and [4, Proposition 4.23]. Our
main task is to remove the extra assumption in the latter result that fixed point
cells are only of dimension 0.

Theorem 2.4. Let 𝑑1, 𝑑0, 𝑘 ∈ ℕ. Let (𝑋,𝐴) be a relative ℤ∕2-CW-complex. As-
sume that the free cells in (𝑋,𝐴) have at most dimension 𝑑1 and that the trivial
cells have at most dimension 𝑑0. Let

𝑘0 ∶= max {⎡⎢
⎢

𝑑1 − 1
2

⎤
⎥
⎥
, 𝑑0} .
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Let 𝐸 be a “real” vector bundle over 𝑋 of rank 𝑘 ≥ 𝑘0. Let an isomorphism 𝐸|𝐴 ≅
𝐸𝐴0 ⊕ 𝜃𝑘−𝑘0𝐴 for some “real” vector bundle 𝐸𝐴0 over 𝐴 be given. This extends to an
isomorphism 𝐸 ≅ 𝐸0 ⊕ 𝜃𝑘−𝑘0𝑋 for some “real” vector bundle 𝐸0 over 𝑋.

Proof. We are going to extend an isomorphism 𝐸|𝐴 ≅ 𝐸𝐴0 ⊕ 𝜃1𝐴 to an isomor-
phism 𝐸 ≅ 𝐸0 ⊕ 𝜃1𝑋 , assuming 𝑘 > 𝑘0. Repeating this step 𝑘 − 𝑘0 times then
gives the result that is stated. An isomorphism 𝐸 ≅ 𝐸0 ⊕ 𝜃1𝑋 contains an injec-
tive “real” vector bundle map 𝜃1𝑋 ↪ 𝐸. Conversely, such an embedding implies
an isomorphism 𝐸 ≅ 𝐸0 ⊕ 𝜃1𝑋 because any “real” vector subbundle has an or-
thogonal complement, which is again a “real” vector subbundle, and then the
direct sum is isomorphic to the whole bundle (see [4]). An injective “real” vec-
tor bundle map 𝜃1𝑋 ↪ 𝐸 is equivalent to a section 𝑠 ∶ 𝑋 → 𝐸 that satisfies
𝑠(𝑥) ≠ 0 and Θ(𝑠(𝑥)) = 𝑠(𝜏(𝑥)) for all 𝑥 ∈ 𝑋: then we map 𝜃1𝑋 = 𝑋 × ℂ to 𝐸
by (𝑥, 𝜆) ↦ 𝜆 ⋅ 𝑠(𝑥). We call the section ℤ∕2-equivariant if Θ(𝑠(𝑥)) = 𝑠(𝜏(𝑥))
for all 𝑥 ∈ 𝑋. Let 𝐸× ⊂ 𝐸 be the subbundle of nonzero vectors. Our task is
to extend a ℤ∕2-equivariant section 𝐴 → 𝐸×|𝐴 to a ℤ∕2-equivariant section
𝑋 → 𝐸×. The fibres of 𝐸× are (ℂ𝑘)× = ℂ𝑘 ⧵ {0}. This is homotopy equivalent to
the sphere 𝕊2𝑘−1, which is 2𝑘 − 2-connected.
First, we construct our section on 𝐴 ∪ 𝑋𝜏. This is equivalent to extending a

given section on 𝐴𝜏 to a section 𝑋𝜏 → (𝐸Θ)× (compare Proposition 2.2). The
ℝ-vector bundle 𝐸Θ ↠ 𝑋𝜏 has dimension 𝑘. The proof of Proposition 2.3 also
allows to extend a section that is given on a closed subspace. The assumption
𝑑0 ≤ 𝑘0 ≤ 𝑘−1 ensures that the section that is given on𝐴𝜏 may be extended to
a section𝑋𝜏 → (𝐸Θ)×. Together with the given section on𝐴, we get the desired
ℤ∕2-equivariant section of 𝐸× on 𝐴 ∪ 𝑋𝜏.
We prolong this section to all of 𝑋 by induction over skeleta. Since the cells

of the same dimension are disjoint, we may work one ℤ∕2-cell at a time. Since
we have already found the section on 𝑋𝜏, we only encounter free cells of the
form ℤ∕2 × 𝔻𝑗, and 𝑗 ≤ 𝑑1 by assumption. We are given a ℤ∕2-equivariant
section on the boundaryℤ∕2×𝜕𝔻𝑗, which we have to extend toℤ∕2×𝔻𝑗. The
involution 𝜏 flips the two copies of 𝔻𝑗 in ℤ∕2 × 𝜕𝔻𝑗. So it suffices to construct
the section 𝑠 ∶ {+1} × 𝔻𝑗 → 𝐸× and then define 𝑠(−1, 𝑥) ∶= Θ(𝑠(1, 𝑥)). This is
automatically ℤ∕2-equivariant. The restriction of the bundle 𝐸 to {+1} × 𝔻𝑗 is
trivial because 𝔻𝑗 is contractible. So our task becomes equivalent to extending
a map 𝜕𝔻𝑗 → (ℂ𝑘)× to a map 𝔻𝑗 → (ℂ𝑘)×. This is possible because 𝑗 ≤ 𝑑1 ≤
2𝑘0 + 1 ≤ 2𝑘 − 1. □

Theorem 2.5. Let 𝑑1, 𝑑0, 𝑘 ∈ ℕ. Let (𝑋,𝐴) be a relative ℤ∕2-CW-complex. As-
sume that the free cells in (𝑋,𝐴) have at most dimension 𝑑1 and that the trivial
cells have at most dimension 𝑑0. Let

𝑘1 ∶= max {⎡⎢
⎢

𝑑1
2
⎤
⎥
⎥
, 𝑑0 + 1} .
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Let𝐸1 and𝐸2 be two “real” vector bundles over𝑋 of rank 𝑘 ≥ 𝑘1. An isomorphism
𝐸1|𝐴 ≅ 𝐸2|𝐴 that extends to a stable isomorphismbetween𝐸1 and𝐸2 on𝑋 extends
to an isomorphism 𝐸1 ≅ 𝐸2.

Proof. Let𝜑𝐴 ∶ 𝐸1|𝐴 ≅ 𝐸2|𝐴 be the given isomorphismon𝐴. Any “real” vector
bundle over a finite-dimensional ℤ∕2-CW-complex is a direct summand in a
trivial “real” bundle. Therefore, our stable isomorphism assumption implies
that there is an isomorphism 𝜓∶ 𝐸1 ⊕ 𝜃𝓁𝑋 ≅ 𝐸2 ⊕ 𝜃𝓁𝑋 for some 𝓁 ≥ 0 such
that 𝜓|𝐴 is 𝜑𝐴 ⊕ id𝜃𝓁𝑋 . There is nothing to do if 𝓁 = 0. We are going to prove
that there is an isomorphism 𝐸1 ⊕ 𝜃𝓁−1𝑋 ≅ 𝐸2 ⊕ 𝜃𝓁−1𝑋 that extends 𝜑𝐴 ⊕ id𝜃𝓁−1𝑋

.
Repeating this step 𝓁 times gives the result we need. Replacing 𝐸𝑗 by 𝐸𝑗⊕𝜃𝓁−1𝑋 ,
we reduce to the case where 𝓁 = 1. Thus we may assume an isomorphism
𝜓∶ 𝐸1 ⊕ 𝜃1𝑋 ≅ 𝐸2 ⊕ 𝜃1𝑋 in the following.
Wewant to reduce the proof to Theorem2.4, as in the proof of [2, Theorem1.5

in Chapter 9]. We work on 𝑌 = 𝑋 × 𝐼 with 𝐼 = [0, 1], equipped with the
involution 𝜏(𝑥, 𝑡) ∶= (𝜏(𝑥), 𝑡). We let 𝐸 be the pullback of 𝐸1 ⊕ 𝜃1𝑋 to 𝑌. The
relevant dimensions and ranks are now

𝑑1(𝑌) = 𝑑1(𝑋) + 1, 𝑑0(𝑌) = 𝑑0(𝑋) + 1, rank(𝐸) = 𝑘 + 1.

We identify the restriction of 𝐸 to 𝐵 ∶= 𝑋 × 𝜕𝐼 ∪ 𝐴 × 𝐼 ⊆ 𝑌 with a “real”
vector bundle of the form 𝐸0 ⊕ 𝜃1𝐵. Here we glue the identity isomorphism
from 𝐸 to the pull back of 𝐸1⊕𝜃1𝑋 on 𝑋 × {0} ∪ 𝐴 × [0, 1] and the isomorphism
𝐸|𝑋×{1} = 𝐸1 ⊕ 𝜃1𝑋 ≅ 𝐸2 ⊕ 𝜃1𝑋 on 𝑋 × {1}; we may glue this on 𝐴 × {1} because
the isomorphism 𝜓 is of the form 𝜑𝐴 ⊕ id𝜃1𝐴 on 𝐴. Now Theorem 2.4 provides
an isomorphism 𝐸 ≅ 𝐸0 ⊕ 𝜃1𝑋 on all of 𝑌 extending the given isomorphism on
𝐵 ⊆ 𝑌. By construction, the bundle 𝐸0 on𝑌 restricts to 𝐸1 on𝑋×{0}∪𝐴×[0, 1]
and to 𝐸2 on 𝑋 × {1}, glued together using the given isomorphism 𝜑𝐴. Now, as
in the proof in [2], the existence of such a “real” vector bundle over 𝑌 implies
that there is an isomorphism of “real” vector bundles 𝐸1 ≅ 𝐸2 that restricts to
the given isomorphism on 𝐴. □

3. “Quaternionic” vector bundles
The goal of this section is to prove a relative version of Theorem 1.2.

Definition 3.1 ([5]). A “quaternionic” bundle over the involutive space (𝑋, 𝜏) is
a complex vector bundle 𝜋∶ 𝐸 → 𝑋 together with a homeomorphismΘ∶ 𝐸 →
𝐸 such that

∙ 𝜋◦Θ = 𝜏◦𝜋;
∙ Θ is fibrewise additive and Θ(𝜆𝑝) = 𝜆𝑝 for all 𝜆 ∈ ℂ and 𝑝 ∈ 𝐸;
∙ Θ2(𝑥, 𝑣) = (𝑥, −𝑣) is fibrewise multiplication by −1 for all 𝑥 ∈ 𝑋, 𝑣 ∈
𝐸𝑥.

The bundle has rank 𝑘 if all its fibres are isomorphic to ℂ𝑘.

The name “quaternionic” vector bundles is justified by the following:
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Proposition 3.2 ([5]). A “quaternionic” vector bundle over (𝑋, id𝑋) is equivalent
to anℍ-vector bundle, where 𝑎+𝑏𝑖 + 𝑐𝑗 +𝑑𝑘 acts by (𝑎+𝑏𝑖)+ (𝑐 +𝑑𝑖)Θ on each
fibre. The rank as a “quaternionic” vector bundle is twice the rank as anℍ-vector
bundle because ℍ𝑘 = ℂ2𝑘.

In particular, the restriction of a “quaternionic” vector bundle to 𝑋𝜏 must
have even rank. If𝑋 is connected and𝑋𝜏 ≠ ∅, then this implies that the rank is
even on all of 𝑋. Nevertheless, “quaternionic” vector bundles of odd rank are
possible if 𝑋𝜏 = ∅. All trivial “quaternionic” bundles have even rank. Namely,
the trivial “quaternionic” vector bundle 𝜃2𝑘𝑋 over (𝑋, 𝜏) of rank 2𝑘 is the space
𝑋 × ℂ2𝑘 with

Θ(𝑥, 𝜆1, 𝜆2, … , 𝜆2𝑘−1, 𝜆2𝑘) ∶= (𝜏(𝑥), 𝜆2, −𝜆1, … , 𝜆2𝑘, −𝜆2𝑘−1).

A vector bundle map 𝑓∶ 𝜃1𝑋 → 𝐸 is of the form 𝑓(𝑥, 𝜆1, 𝜆2) = 𝜆1𝑠1(𝑥) +
𝜆2𝑠2(𝑥) for two sections 𝑠1, 𝑠2 of 𝐸. This map is ℤ∕2-equivariant if and only if
𝑠2(𝑥) = −Θ(𝑠1(𝜏(𝑥))) for all 𝑥 ∈ 𝑋. Thus the section 𝑠1 already determines 𝑓
if it is ℤ∕2-equivariant. Of course, 𝑓 is injective if and only if 𝑠1(𝑥) and 𝑠2(𝑥)
are linearly independent for all 𝑥 ∈ 𝑋. If 𝜏(𝑥) = 𝑥, this is true once 𝑠1(𝑥) ≠ 0
because then the restriction of 𝑓 to the fibre at 𝑥 is anℍ-linear mapℍ → 𝐸𝑥. If,
however, 𝑥 ≠ 𝜏(𝑥), then 𝑠1(𝑥) ≠ 0 is not sufficient. Wemust ensure that 𝑠2(𝑥) =
−Θ(𝑠1(𝜏(𝑥))) is linearly independent of 𝑠1(𝑥) as well. Here a mistake is made
in [5]: their argument above Definition 2.1 why 𝑠1(𝑥) ≠ 0 should suffice for
𝑠1(𝑥) and 𝑠2(𝑥) to be linearly independent is wrong because it only implies that
the functions 𝑠1 and 𝑠2 are linearly independent, which ismuchweaker; so their
proofs of Propositions 2.4 and 2.7 are incomplete. It is easy to fix the proof of
their Proposition 2.4, and our theorem above may replace their Proposition 2.7.

Theorem 3.3. Let 𝑑1, 𝑑0, 𝑘 ∈ ℕ. Let (𝑋,𝐴) be a relative ℤ∕2-CW-complex. As-
sume that the free cells in (𝑋,𝐴) have at most dimension 𝑑1 and that the trivial
cells have at most dimension 𝑑0. Let

𝑘0 ∶= max {⎡⎢
⎢

𝑑0 − 3
2

⎤
⎥
⎥
, ⎡⎢
⎢

𝑑1 − 1
2

⎤
⎥
⎥
} .

Let𝐸 be a “quaternionic” vector bundle over𝑋 of rank 𝑘 ≥ 𝑘0. Assume an isomor-
phism 𝐸|𝐴 ≅ 𝐸𝐴0 ⊕ 𝜃2⌊(𝑘−𝑘0)∕2⌋𝐴 for some “quaternionic” vector bundle 𝐸𝐴0 over 𝐴
is given. This isomorphism extends to an isomorphism 𝐸 ≅ 𝐸0 ⊕ 𝜃2⌊(𝑘−𝑘0)∕2⌋𝑋 for
some “quaternionic” vector bundle 𝐸0 over 𝑋.

Proof. We are going to prove that any injective ℤ∕2-equivariant vector bun-
dle map 𝑓𝐴 ∶ 𝜃2𝐴 → 𝐸|𝐴 extends to an injective ℤ∕2-equivariant vector bundle
map 𝑓∶ 𝜃2𝑋 → 𝐸 if 𝑘 ≥ 𝑘0 + 2. This implies the statement as in the proof of
Theorem 2.4.
We first construct 𝑓 on the subset 𝑋𝜏 ∪ 𝐴. This is equivalent to extending

𝑓𝐴|𝐴𝜏 from 𝐴𝜏 to 𝑋𝜏. In this part of the proof, we may assume without loss
of generality that 𝑋𝜏 ≠ ∅. This forces 𝑘 to be even. Since the involution acts
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trivially on 𝑋𝜏, the “quaternionic” bundle 𝐸 of rank 𝑘 becomes an ℍ-vector
bundle of rank 𝑘∕2. Our assumptions imply that all cells in the relative CW-
complex (𝑋𝜏, 𝐴𝜏) have dimension 𝑗 ≤ 𝑑0 ≤ 2𝑘0+3 ≤ 2𝑘−1 = 4(𝑘∕2)−1. Now
the relative version of Proposition 2.3 allows us to extend 𝑓𝐴|𝐴𝜏 to an injective
ℤ∕2-equivariant vector bundle map 𝜃1𝑋𝜏 → 𝐸|𝑋𝜏 .
Next, we extend our section further from𝑋𝜏∪𝐴 to𝑋. It suffices to extend an

injective ℤ∕2-equivariant vector bundle map from the boundary of any cell in
(𝑋,𝐴∪𝑋𝜏) to thewhole cell: if we can do this, wemay build the required section
by induction over the skeleta. Since we work relative to 𝑋𝜏, only free cells𝔻𝑗 ×
ℤ∕2 occur. An injective ℤ∕2-equivariant vector bundle map on 𝔻𝑗 × ℤ∕2 is
equivalent to an injective vector bundle map on one of the pieces 𝔻𝑗. Here
our problem becomes equivalent to extending a ℂ-vector bundle isomorphism
𝐸|𝜕𝔻𝑗 ≅ 𝐸0 ⊕ (𝜕𝔻𝑗 × ℂ2) for some ℂ-vector bundle 𝐸0 over 𝜕𝔻𝑗 to a ℂ-vector
bundle isomorphism𝐸|𝔻𝑗 ≅ 𝐸̃0⊕(𝔻𝑗×ℂ2) for someℂ-vector bundle 𝐸̃0 over𝔻𝑗.
This amounts to applying Proposition 2.3 for 𝔽 = ℂ twice and is possible if
𝑗 ≤ 2(𝑘 − 1) − 1 = 2𝑘 − 3. This is indeed the case because 𝑗 ≤ 𝑑1 ≤ 2𝑘0 + 1 ≤
2𝑘 − 3. □

Theorem 3.4. Let 𝑑1, 𝑑0, 𝑘 ∈ ℕ. Let (𝑋,𝐴) be a relative ℤ∕2-CW-complex. As-
sume that the free cells in (𝑋,𝐴) have at most dimension 𝑑1 and that the trivial
cells have at most dimension 𝑑0. Let

𝑘1 ∶= max {⎡⎢
⎢

𝑑0 − 2
2

⎤
⎥
⎥
, ⎡⎢
⎢

𝑑1
2
⎤
⎥
⎥
} .

Let 𝐸1 and 𝐸2 be two “quaternionic” vector bundles over𝑋 of rank 𝑘 ≥ 𝑘1. An iso-
morphism 𝐸1|𝐴 ≅ 𝐸2|𝐴 that extends to a stable isomorphism between 𝐸1 and 𝐸2
on 𝑋 extends to an isomorphism 𝐸1 ≅ 𝐸2.

Proof. This follows from Theorem 3.3 in exactly the same way as Theorem 2.5
follows from Theorem 2.4. First, we use that any “quaternionic” vector bundle
over a finite-dimensional ℤ∕2-CW-complex is a direct summand in a trivial
“quaternionic” bundle. The relevant quantities for 𝑑1, 𝑑0, 𝑘 on 𝑋 × 𝐼 are now
𝑑1 + 1, 𝑑0 + 1 and 𝑘 + 2 because the smallest trivial “quaternionic” bundle
has rank 2. So the estimate about the rank in Theorem 3.3 for the extension
problem on 𝑋 × 𝐼 is equivalent to the assumption made in this theorem. □

4. Conjugacy of projections
Our physical motivation was about projections in the observable algebra be-

ing homotopic. In this very short section, we briefly comment on the link be-
tween this original problem and our results on vector bundles.
Let 𝐸 be a “real” or “quaternionic” vector bundle over (𝑋, 𝜏). Then 𝐸 is a

direct summand in a trivial bundle. Equivalently, there is another “real” or
“quaternionic” vector bundle 𝐸⊥ over 𝑋 so that 𝐸 ⊕ 𝐸⊥ ≅ 𝜃𝑘𝑋 for some 𝑘 ∈ ℕ,
with 𝑘 ∈ 2ℕ in the “quaternionic” case. The projection onto 𝐸 is an endo-
morphism of the trivial bundle 𝜃𝑘𝑋 . In the “real” case, the endomorphism ring
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of 𝜃𝑘𝑋 is the ring of functions 𝑋 → 𝕄𝑘(ℂ) that satisfy 𝑓(𝑥) = 𝑓(𝜏(𝑥)). In the
“quaternionic” case, let Θ0 =

( 0 −1
1 0

)
∈ 𝕄2(ℝ) and let Θ

(𝑘)
0 ∈ 𝕄2𝑘(ℝ) be the

block diagonal sum of 𝑘 copies ofΘ0. Then the endomorphism ring of 𝜃𝑘𝑋 is the
ring of functions 𝑋 → 𝕄𝑘(ℂ) that satisfy Θ

(𝑘)
0 𝑓(𝑥)Θ(𝑘)

0 = 𝑓(𝜏(𝑥)). Taking the
pointwise adjoint of a matrix-valued function makes this endomorphism ring
into a unital C∗-algebra 𝐴. For 𝑋 = 𝕋𝑑, this is the observable C∗-algebra for a
translation-invariant physical system in dimension 𝑑 with a time-reversal sym-
metry of square +1 in the “real” case and of square −1 in the “quaternionic”
case. Homotopy classes of projections in 𝐴 are in bijection with homotopy
classes of invertible, self-adjoint elements of𝐴, which are the possible Hamilto-
nians for insulators when the observable algebra is 𝐴. So the physical question
is to classify the projections in 𝐴 up to homotopy.
Each projection in𝐴 generates a direct sumdecomposition of the trivial bun-

dle 𝜃𝑘𝑋 as 𝐸⊕𝐸⊥, where 𝐸 and 𝐸⊥ are the image bundles of 𝑝 and 1−𝑝, respec-
tively. The following result is well known.

Lemma 4.1. Let 𝑝 and 𝑞 be two such projections and let 𝜃𝑘𝑋 = 𝐸 ⊕ 𝐸⊥ and
𝜃𝑘𝑋 = 𝐹 ⊕ 𝐹⊥ be the resulting direct sum decompositions. There is an invertible
element 𝑣 ∈ 𝐴 with 𝑣𝑝𝑣−1 = 𝑞 if and only if 𝐸 ≅ 𝐹 and 𝐸⊥ ≅ 𝐹⊥ as “real” or
“quaternionic” vector bundles.

Proof. If 𝐸 ≅ 𝐹 and 𝐸⊥ ≅ 𝐹⊥, then the two isomorphisms together produce
an automorphism 𝜃𝑘𝑋 = 𝐸 ⊕ 𝐸⊥ ≅ 𝐹 ⊕ 𝐹⊥ = 𝜃𝑘𝑋 . This is simply an invertible
element 𝑣 ∈ 𝐴, and it satisfies 𝑣𝑝𝑣−1 = 𝑞. Conversely, such an invertible
element defines an automorphism of 𝜃𝑘𝑋 that restricts to isomorphisms 𝐸 ≅ 𝐹
and 𝐸⊥ ≅ 𝐹⊥. □

Wecall𝑝 and 𝑞 conjugate if there is an invertible element 𝑣 ∈ 𝐴with 𝑣𝑝𝑣−1 =
𝑞. This is well known to be equivalent to the existence of a unitary 𝑣 ∈ 𝐴 with
𝑣𝑝𝑣−1 = 𝑞. It is also well known that homotopic projections are conjugate. The
converse is only known up to stabilisation, however. The issue is whether the
invertible element implementing the conjugacy is homotopic to the unit in 𝐴.
The projections 𝑝 and 𝑞 are stably conjugate, meaning that there is a projec-

tion 𝑟 in another matrix algebra so that 𝑝 ⊕ 𝑟 and 𝑞 ⊕ 𝑟 are conjugate, if and
only if 𝐸 and 𝐹 are stably isomorphic and 𝐸⊥ and 𝐹⊥ are stably isomorphic. So
Proposition 1.3 says that if 𝑋 = 𝕋𝑑 with 𝑑 ≤ 4, then stable conjugacy and con-
jugacy are equivalent for projections in 𝐴. It is impossible, however, to prove a
result that relates stable homotopy and homotopy by working only with vector
bundles.
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