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𝑳𝒑-𝑳𝒒 boundedness of pseudo-differential
operators on graded Lie groups

Duván Cardona, Vishvesh Kumar
andMichael Ruzhansky

Abstract. In this paper we establish the 𝐿𝑝-𝐿𝑞 estimates for global pseudo-
differential operators on graded Lie groups. We provide both necessary and
sufficient conditions for the 𝐿𝑝-𝐿𝑞 boundedness of pseudo-differential oper-
ators associated with the global Hörmander symbol classes on graded Lie
groups, within the range 1 < 𝑝 ≤ 2 ≤ 𝑞 < ∞. Additionally, we present a
sufficient condition for the 𝐿𝑝-𝐿𝑞 estimates of pseudo-differential operators
within the range 1 < 𝑝 ≤ 𝑞 ≤ 2 or 2 ≤ 𝑝 ≤ 𝑞 < ∞. The proofs rely on
estimates of the Riesz and Bessel potentials associated with Rockland oper-
ators, along with previously established results on 𝐿𝑝-boundedness of global
pseudo-differential operators on graded Lie groups. Notably, as a byproduct,
we also establish the sharpness of the Sobolev embedding theorem for the
inhomogeneous Sobolev spaces on graded Lie groups.
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1. Introduction
1.1. Outline. Theboundedness of pseudo-differential operators is a fundamen-
tal problem in harmonic analysis that arises due to their diverse applications in
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harmonic analysis and partial differential equations [25, 44]. Several contribu-
tions have been made in the Euclidean space setting towards establishing the
𝐿𝑝-boundedness of pseudo-differential operators associated with the Hörman-
der symbol class 𝑆𝑚

𝜌,𝛿
(ℝ𝑛 × ℝ𝑛) [6, 18, 44]. For non-commutative groups, re-

cent papers [9, 13] have investigated the 𝐿𝑝-boundedness of pseudo-differential
calculus associated with global Hörmander classes on compact Lie groups and
graded Lie groups. Furthermore, Hörmander [26] established the 𝐿𝑝-𝐿𝑞 bound-
edness of pseudo-differential operators associated with the symbol class
𝑆𝑚
𝜌,𝛿
(ℝ𝑛 × ℝ𝑛) for the range 1 < 𝑝 ≤ 𝑞 < ∞ (see also [5]). It is worth noting

that Hörmander provided a sufficient condition for the 𝐿𝑝-𝐿𝑞 boundedness of
Fourier multipliers in his seminal paper [27] for the range 1 < 𝑝 ≤ 2 ≤ 𝑞 <∞,
and this result has recently been extended to various settings such as compact
homogeneous manifolds [1, 3], graded Lie groups [35], general locally com-
pact unimodular groups [4, 36], quantum groups [2], and for the generalised
Fourier transform onℝ𝑛 and hypergroups [29, 30], as well as for eigenfunction
expansions of certain operators [12, 11]. However, to the best of the authors’
knowledge, no attempts have been made to establish the 𝐿𝑝-𝐿𝑞 boundedness
of pseudo-differential operators on noncommutative Lie groups. The primary
objective of this article is to fill this gap and make progress towards the 𝐿𝑝-𝐿𝑞
boundedness of pseudo-differential operators for the range 1 < 𝑝, 𝑞 < ∞ as-
sociated with the global Hörmander symbol classes 𝑆𝑚

𝜌,𝛿
(𝐺 × 𝐺) on graded Lie

groups 𝐺 with its unitary dual 𝐺, introduced by V. Fischer and the third author
in the monograph [16].
Graded Lie groups, which include significant examples like the Heisenberg

group, Heisenberg-type groups, and stratified Lie groups, are a notable class
within the realm of homogeneous nilpotent Lie groups [21, 16]. What sets
them apart from other nilpotent Lie groups is the existence of hypoelliptic left-
invariant homogeneous partial differential operators known as Rockland oper-
ators [32, 45]. The Helffer and Nourrigat solution to the Rockland conjecture
sheds light on this distinguishing characteristic [22]. These groups have sig-
nificant applications in analysis, representation theory, and geometry [23]. A
visionary program for studying analysis and PDEs on graded Lie groups was
presented by Stein in his 1970 lecture at the ICM in Nice [42]. In the influential
paper by Rothschild and Stein [33], it was demonstrated how one can learn a
great deal about certain differential operators on manifolds, by approximation
using operators on certain homogeneous nilpotent groups [20, 34]. Inspired by
the setup of global pseudo-differential operators on the Heisenberg group ℍ𝑛

suggested by M. Taylor [43], V. Fischer and the third author [16] developed
a Kohn-Nirenberg type calculus on general graded Lie groups for a suitably
defined operator-valued global Hörmander symbols classes 𝑆𝑚

𝜌,𝛿
(𝐺 × 𝐺) on a

graded Lie group 𝐺. Recently, this calculus was extended by Federico, Rotten-
steiner, and the third author [14] using the so-called 𝜏-quantisation on graded
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Lie groups, which, in particular, gives rise to Weyl-type pseudo-differential cal-
culus on graded Lie groups. This construction is based on the general setup
of pseudo-differential operators on unimodular type-I locally compact groups
[31]. The 𝐿𝑝-boundedness of pseudo-differential operators associated with
operator-valuedHörmander symbol class 𝑆𝑚

𝜌,𝛿
(𝐺×𝐺)was established in [9] and

its validity for 𝜏-quantisations was discussed in [14]. We also refer to [10] for
further developments and applications to PDEs.

1.2. Main results. To state ourmain results, some notation, and basic knowl-
edge should be in order. We refer to Section 2 for a detailed exposition. Let 𝐺
be a graded Lie group of homogeneous dimension 𝑄. We denote the positive
Rockland operator on 𝐺 by ℛ, that is, a positive left-invariant hypoelliptic dif-
ferential operator which is homogeneous. The existence of such an operator on
𝐺 is assured by the resolution of the Rockland conjecture by Helffer and Nour-
rigat [22]. Some examples of the Rockland operators in particular situations are
as follows:

∙ For the Heisenberg group ℍ𝑛 ∶ the positive sub-Laplacian (−∆ℍ𝑛) and
its powers.

∙ For a stratified Lie group 𝐺 ∶ let 𝑋1, 𝑋2,… , 𝑋𝑚 be a basis of the first
stratum 𝔤1 of the stratified Lie algebra 𝔤 of 𝐺, then the operator

ℛ ∶= (−1)𝑘
𝑚∑

𝑖=1

𝑐𝑖𝑋
2𝑘
𝑖
, 𝑐𝑖 > 0

is an example of a Rockland operator for any 𝑘 ∈ ℕ. Note that the case
𝑘 = 1 corresponds to Hörmander type sub-Laplacians.

∙ In a more general setup, that is, on a graded Lie group 𝐺 with a ba-
sis 𝑋1, 𝑋2,… , 𝑋𝑛 of the Lie algebra 𝔤 of 𝐺 satisfying 𝐷𝑟𝑋𝑖 = 𝑟𝜈𝑖𝑋𝑖, 𝑖 =

1,… , 𝑛, 𝑟 > 0,with the dilationweights 𝜈1, 𝜈2,… , 𝜈𝑛, denoting by 𝜈0 any
common multiple of 𝜈1, 𝜈2,… , 𝜈𝑛, the operator

ℛ =

𝑛∑

𝑖=1

(−1)

𝜈0

𝜈𝑖 𝑐𝑖𝑋
2
𝜈0

𝜈𝑖 , 𝑐𝑖 > 0

is a Rockland operator of homogeneous degree 2𝜈0 on the graded Lie
group 𝐺.

There have been several studies dealing with function spaces such as homoge-
neous and inhomogeneous Sobolev spaces on gradedLie groups associatedwith
Rockland operators. We refer to [17, 16, 8] and references therein for more de-
tail. In particular, a sufficient condition for the 𝐿𝑝-𝐿𝑞 boundedness of the Riesz
operator 𝐼𝑎 ∶= ℛ

−
𝑎

𝜈 with 0 < 𝑎 < 𝑄 is given in [16].
The following theorem presents the result that establishes a sufficient con-

dition and in some cases a necessary condition, for the 𝐿𝑝-𝐿𝑞 boundedness of
pseudo-differential operators on graded Lie groups associated with the global
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Hörmander symbol classes 𝑆𝑚
𝜌,𝛿
(𝐺 × 𝐺).We denote the class of operators asso-

ciated with Op(𝑆𝑚
𝜌,𝛿
(𝐺 × 𝐺)) by Ψ𝑚

𝜌,𝛿
(𝐺 × 𝐺).

Theorem 1.1. Let 1 < 𝑝, 𝑞 < ∞. Let 𝐺 be a graded Lie group of homogeneous
dimension 𝑄 and let 0 ≤ 𝛿 ≤ 𝜌 ≤ 1, 𝛿 ≠ 1. Then, the following statements hold.

∙ Let 1 < 𝑝 ≤ 2 ≤ 𝑞 <∞. Every pseudo-differential operator𝐴 ∈ 𝑆𝑚
𝜌,𝛿
(𝐺×

𝐺) admits a bounded extension from 𝐿𝑝(𝐺) into 𝐿𝑞(𝐺), that is

∀𝑓 ∈ 𝐶∞
0
(𝐺), ‖𝐴𝑓‖𝐿𝑞(𝐺) ≤ 𝐶‖𝑓‖𝐿𝑝(𝐺) (1.1)

holds, if and only if,

𝑚 ≤ −𝑄 (
1

𝑝
−
1

𝑞
) . (1.2)

∙ Every pseudo-differential operator 𝐴 ∈ 𝑆𝑚
𝜌,𝛿
(𝐺 × 𝐺) admits a bounded

extension from 𝐿𝑝(𝐺) into 𝐿𝑞(𝐺), that is (1.1) holds, in the following cases:
(i) if 1 < 𝑝 ≤ 𝑞 ≤ 2 and

𝑚 ≤ −𝑄 (
1

𝑝
−
1

𝑞
+ (1 − 𝜌) (

1

𝑞
−
1

2
)) . (1.3)

(ii) if 2 ≤ 𝑝 ≤ 𝑞 <∞ and

𝑚 ≤ −𝑄 (
1

𝑝
−
1

𝑞
+ (1 − 𝜌) (

1

2
−
1

𝑝
)) . (1.4)

Remark 1.2. The order conditions in (1.2), (1.3) and (1.4) can be written in a
simplified way for 1 < 𝑝, 𝑞 <∞ as follows:

𝑚 ≤ −𝑄 (
1

𝑝
−
1

𝑞
+ (1 − 𝜌)max {

1

2
−
1

𝑝
,
1

𝑞
−
1

2
, 0}) , (1.5)

where 𝑄 is the homogeneous dimension of the group 𝐺.

Remark 1.3. If 𝐺 = ℝ𝑛, the order condition in (1.5) is sharp for Fourier multi-
pliers, see Hörmander [26, Page 163].

Remark 1.4. For the proof of the necessary and sufficient condition in (1.2), an
essential tool is the sharpness of the Sobolev embedding theorem on graded Lie
groups. More precisely, in Lemma 3.2 we prove that for 1 < 𝑝, 𝑞 < ∞, and for
a Rockland operator ℛ of homogeneous degree 𝜈 > 0 on a graded Lie group 𝐺,
the Bessel operator

𝐵𝑎 = (1 +ℛ)
−
𝑎

𝜈 ,

admits a bounded extension from 𝐿𝑝(𝐺) into 𝐿𝑞(𝐺), that is, the estimate

‖𝐵𝑎𝑓‖𝐿𝑞 ≤ 𝐶‖𝑓‖𝐿𝑝 (1.6)

holds, if and only if, 1 < 𝑝 < 𝑞 <∞ and

𝑎 ≥ 𝑄 (
1

𝑝
−
1

𝑞
) . (1.7)
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That (1.7) is a sufficient condition for the boundedness of𝐵𝑎 was proved in [16].
Our contribution in Lemma 3.2 is then the proof of the reverse statement.

2. Preliminaries
We begin by reviewing some basic definitions and results from the theory of

pseudo-differential operators on graded Lie groups as developed in [16] used in
our analysis of 𝐿𝑝-𝐿𝑞-bounds in the setting of graded Lie groups. We introduce
the necessary tools on the subject in the next subsections.

2.1. Hörmander classes on graded Lie groups. For the facts below we fol-
low [16].
Let 𝐺 be a connected, simply connected nilpotent Lie group with Lie algebra

𝔤. We always assume that 𝔤 is a real vector space of finite dimension. In this
case, the exponential map

exp ∶ 𝔤→ 𝐺

is a global diffeomorphism that allows us to make the identification 𝐺 ≃ ℝ𝑛.

The corresponding mapping (𝑥, 𝑦) ↦ 𝑥 ⋅ 𝑦 is a polynomial mapping and the
Haar measure on 𝐺 is induced by the exponential mapping from the Lebesgue
measure on ℝ𝑛, where 𝑛 = dim(𝐺) is the topological dimension of 𝐺.
A family of dilations on the Lie algebra 𝔤 is a family of endomorphisms𝐷𝑟 ∈

End(𝔤), 𝑟 > 0, satisfying the following properties:
∙ ∀𝑟 > 0, 𝐷𝑟 is an algebra automorphism, i.e. if [⋅, ⋅] denotes the Lie
bracket on 𝔤, then, for any 𝑟 > 0, we have that

𝐷𝑟(𝑋 + 𝑌) = 𝐷𝑟𝑋 + 𝐷𝑟(𝑌),

and
𝐷𝑟[𝑋,𝑌] = [𝐷𝑟𝑋,𝐷𝑟𝑌],

for all 𝑋,𝑌 ∈ 𝔤.

∙ There exists a diagonalisable linear operator 𝐴 ∶ 𝔤→ 𝔤 such that

𝐷𝑟𝑋 = 𝑒ln(𝑟)𝐴𝑋, ∀𝑋 ∈ 𝔤.

Such 𝐴 is called the dilation matrix of the group.
A homogeneous group is a connected, simply connected nilpotent Lie group 𝐺
such that the Lie algebra 𝔤 is endowed with a family of dilations {𝐷𝑟}𝑟>0. In this
case the mappings

exp◦𝐷𝑟◦exp−1 ∶ 𝐺 → 𝐺

are group automorphisms on 𝐺 that we also denote by 𝐷𝑟.Moreover, if

Spectrum(𝐴) = {𝜈1,⋯ 𝜈𝑛}

is the set of eigenvalues of the dilation matrix 𝐴, (where the eigenvalues are
counted with multiplicities) the number

𝑄 = Tr(𝐴) ∶= 𝜈1 +⋯ + 𝜈𝑛

is called the homogeneous dimension of 𝐺.
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Let 𝜋 be a continuous, unitary and irreducible representation of 𝐺 on a sep-
arable Hilbert space𝐻𝜋, this means that,

1. 𝜋 ∈ Hom(𝐺,U(𝐻𝜋)), i.e. 𝜋(𝑔𝑔′) = 𝜋(𝑔)𝜋(𝑔′) and for the adjoint of
𝜋(𝑔), 𝜋(𝑔)∗ = 𝜋(𝑔−1), for every 𝑔, 𝑔′ ∈ 𝐺.

2. The function (𝑔, 𝑣)↦ 𝜋(𝑔)𝑣, from𝐺×𝐻𝜋 into𝐻𝜋 is a continuousmap-
ping.

3. For every 𝑔 ∈ 𝐺, and for a vector subspace𝑊𝜋 ⊂ 𝐻𝜋, if 𝜋(𝑔)𝑊𝜋 ⊂ 𝑊𝜋,

then𝑊𝜋 = 𝐻𝜋 or𝑊𝜋 = {0}.

Let Rep(𝐺) be the family of unitary, continuous and irreducible representations
of 𝐺. The relation,

𝜋1 ∼ 𝜋2 ⟺ ∃𝐵 ∈ B(𝐻𝜋1
, 𝐻𝜋2

) ∶ ∀𝑔 ∈ 𝐺, 𝐵𝜋1(𝑔)𝐵
−1 = 𝜋2(𝑔)

is an equivalence relation and the unitary dual of𝐺, denoted by𝐺 is defined via
𝐺 ∶= Rep(𝐺)∕∼. We always identify any representation with its equivalence
class 𝜋 ≃ [𝜋].One reason to do this is that in the setting of nilpotent Lie groups
the unitary dual is a continuous set.
We are going to denote by𝑑𝜋 thePlancherelmeasure on𝐺.The groupFourier

transform F𝐺(𝑓) ∶= 𝑓 of 𝑓 ∈ S (𝐺) ≅ S (ℝ𝑛), at 𝜋 ∈ 𝐺, is defined by

𝑓(𝜋) = ∫

𝐺

𝑓(𝑔)𝜋(𝑔)∗𝑑𝑔 ∶ 𝐻𝜋 → 𝐻𝜋, and F𝐺 ∶ S (𝐺)→ S (𝐺) ∶= F𝐺(S (𝐺)).

Under the identification, 𝜋 ≃ [𝜋] = {𝜋′ ∶ 𝜋 ∼ 𝜋′}, the Kirillov trace character
Θ𝜋 defined by

𝑓 ∈ S (𝐺)↦ (Θ𝜋, 𝑓) ∶= Tr (𝑓(𝜋)),

is a tempered distribution on 𝐺. In particular, the identity

𝑓(𝑒𝐺) = ∫

𝐺

Tr (𝑓(𝜋))𝑑𝜋,

implies the Fourier inversion formula 𝑓 = F−1
𝐺
(𝑓), where

(F−1
𝐺
𝜎)(𝑔) ∶= ∫

𝐺

Tr [𝜋(𝑔)𝜎(𝜋)]𝑑𝜋, 𝑔 ∈ 𝐺, F−1
𝐺

∶ S (𝐺)→ S (𝐺),

is the inverse Fourier transform. We recall that the Plancherel theorem takes
the form

‖𝑓‖𝐿2(𝐺) = ‖𝑓‖𝐿2(𝐺),

where we have denoted by

𝐿2(𝐺) ∶= ∫

𝐺

𝐻𝜋 ⊗𝐻∗
𝜋𝑑𝜋,
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the Hilbert space endowed with the norm:

‖𝜎‖𝐿2(𝐺) = (∫
𝐺

‖𝜎(𝜋)‖2HS𝑑𝜋)

1

2

.

An important class of operators that interact with the dilations on the group
𝐺 are homogeneous operators. We recall that a linear operator 𝑇 ∶ 𝐶∞(𝐺) →

D ′(𝐺) is homogeneous of degree 𝜈 ∈ ℂ if for every 𝑟 > 0 the identity

𝑇(𝑓◦𝐷𝑟) = 𝑟𝜈(𝑇𝑓)◦𝐷𝑟

holds for every 𝑓 ∈ D(𝐺).

For every unitary representation 𝜋 ∈ 𝐺, acting as 𝜋 ∶ 𝐺 → 𝑈(𝐻𝜋), on a
representation space 𝐻𝜋, we denote by 𝐻∞

𝜋 the set of smooth vectors on 𝐻𝜋,

that consists of all elements 𝑣 ∈ 𝐻𝜋 such that the function 𝑥 ↦ 𝜋(𝑥)𝑣, 𝜋 ∈ 𝐺,

is smooth.
A Rockland operator is a positive left-invariant differential operatorℛ which

is homogeneous of positive degree 𝜈 = 𝜈ℛ and such that, for every unitary
irreducible non-trivial representation 𝜋 ∈ 𝐺, 𝜋(ℛ) is an injective operator on
the space of smooth vectors 𝐻∞

𝜋 . Here, 𝜎ℛ(𝜋) = 𝜋(ℛ) is the symbol associated
to ℛ. It coincides with the infinitesimal representation of ℛ as an element of
the universal enveloping algebra.
It can be shown that a Lie group 𝐺 is graded if and only if there exists a

differential Rockland operator on 𝐺.

Remark 2.1. If the Rockland operator

ℛ ∶=
∑

[𝛼]=𝜈

𝑎𝛼𝑋
𝛼

is formally self-adjoint, then ℛ and

𝜋(ℛ) =
∑

[𝛼]=𝜈

𝑎𝛼𝜋(𝑋
𝛼)

admit self-adjoint extensions on 𝐿2(𝐺) and on 𝐻𝜋, respectively, for a.e. 𝜋 ∈ 𝐺.
Now if we use the same notation for their (unbounded) self-adjoint extensions
and we denote by 𝐸 and 𝐸𝜋 their respective spectral measures, we will denote
by

𝜙(ℛ) =

∞

∫

−∞

𝜙(𝜆)𝑑𝐸(𝜆), and 𝜋(𝜙(ℛ)) ≡ 𝜙(𝜋(ℛ)) =

∞

∫

−∞

𝜙(𝜆)𝑑𝐸𝜋(𝜆),

the measurable functions defined by the spectral functional calculus associ-
ated with ℛ and 𝜋(ℛ), respectively. In general, we will reserve the notation
𝐸𝐴(𝜆)0≤𝜆<∞ for the spectral measure associated with a positive and self-adjoint
operator 𝐴 on a Hilbert space𝐻.
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For any multi-index 𝛼 ∈ ℕ𝑛
0
, and for an arbitrary family {𝑋1,⋯ , 𝑋𝑛}, of left-

invariant vector-fields compatible with respect to the graded structure of the
Lie algebra we will use the notation

[𝛼] ∶=

𝑛∑

𝑗=1

𝜈𝑗𝛼𝑗, (2.1)

for the homogeneous degree of the operator 𝑋𝛼 ∶= 𝑋
𝛼1
1
⋯𝑋

𝛼𝑛
𝑛 .

In order to present a consistent definition of pseudo-differential operators,
namely, a quantisation formula, as developed in [16] (see (2.5)), we need to
define a suitable class of Sobolev spaces on the unitary dual 𝐺 acting on the set
of smooth vectors𝐻∞

𝜋 , for every representation space𝐻𝜋. To record this notion,
let ℛ be a positive Rockland operator on 𝐺 of homogeneous degree 𝜈 > 0.

Definition 2.2 (Sobolev spaces on 𝐻∞
𝜋 ). Let 𝜋1 ∈ Rep(𝐺), and let 𝑎 ∈ ℝ.We

denote by𝐻𝑎
𝜋1
, theHilbert space obtained by the completion of𝐻∞

𝜋1
with respect

to the norm
‖𝑣‖𝐻𝑎

𝜋1
= ‖𝜋1(1 +ℛ)

𝑎

𝜈 𝑣‖𝐻𝜋1
.

In order to introduce the general notion of a symbol, that in our contexts are
operators acting on Hilbert spaces (the corresponding representation spaces),
as the one developed in [16], we require the following definition.

Definition 2.3. A 𝐺-field of operators

𝜎 = {𝜎(𝜋) ∶ 𝜋 ∈ 𝐺}

defined on the class of smooth vectors is defined on some Sobolev space 𝐻𝑎
𝜋

when for each unitary representation 𝜋1 ∈ Rep(𝐺), such that 𝜋1 ∈ 𝜋 ∈ 𝐺, the
operator 𝜎(𝜋1) is bounded from𝐻𝑎

𝜋1
to𝐻𝜋1

in the sense that

sup
‖𝑣‖𝐻𝑎𝜋1

=1

‖𝜎(𝜋1)𝑣‖𝐻𝜋
<∞,

holds, and satisfying for every two elements 𝜎(𝜋1) and 𝜎(𝜋2) in 𝜎(𝜋) the prop-
erty

If 𝜋1 ∼ 𝜋2 then 𝜎(𝜋1) ∼ 𝜎(𝜋2).

We recall that the inhomogenous Sobolev space 𝐿𝑝𝑎 (𝐺) is defined by the com-
pletion of D(𝐺) with respect to the norm (see [16, Chapter 4])

‖𝑓‖𝐿𝑝𝑎 (𝐺)
= ‖(1 +ℛ)

𝑎

𝜈 𝑓‖𝐿𝑝(𝐺), (2.2)

for 𝑎 ∈ ℝ, and for any 0 < 𝑝 <∞. On the other hand, the homogenous Sobolev
space �̇�𝑝𝑎 (𝐺) is defined by the completion ofD(𝐺) ∩Dom(ℛ

𝑎

𝜈 ), with respect to
the norm (see [16, Chapter 4])

‖𝑓‖�̇�𝑝𝑎 (𝐺)
= ‖ℛ

𝑎

𝜈 𝑓‖𝐿𝑝(𝐺), (2.3)

for 𝑎 ∈ ℝ, and for any 0 < 𝑝 <∞.
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Definition 2.4. A 𝐺-field of operators defined on smooth vectors with range
in the Sobolev space 𝐻𝑎

𝜋 is a family of classes of operators 𝜎 = {𝜎(𝜋) ∶ 𝜋 ∈ 𝐺}

where
𝜎(𝜋) ∶= {𝜎(𝜋1) ∶ 𝐻

∞
𝜋1
→ 𝐻𝑎

𝜋, 𝜋1 ∈ 𝜋},

for every 𝜋 ∈ 𝐺 viewed as a subset of Rep(𝐺), satisfying for every two elements
𝜎(𝜋1) and 𝜎(𝜋2) in 𝜎(𝜋) ∶

If 𝜋1 ∼ 𝜋2 then 𝜎(𝜋1) ∼ 𝜎(𝜋2).

The following notion will be useful in order to use the general theory of non-
commutative integration.

Definition 2.5. A𝐺-field of operators defined on smooth vectors with range in
the Sobolev space𝐻𝑎

𝜋 is measurable when for some (and hence for any) 𝜋1 ∈ 𝜋

and any vector 𝑣𝜋1 ∈ 𝐻∞
𝜋1
, as 𝜋 ∈ 𝐺, the resulting field {𝜎(𝜋)𝑣𝜋 ∶ 𝜋 ∈ 𝐺}, is

𝑑𝜋-measurable and

∫

𝐺

‖𝑣𝜋‖
2

𝐻𝑎
𝜋

𝑑𝜋 = ∫

𝐺

‖𝜋(1 +ℛ)
𝑎

𝜈 𝑣𝜋‖
2
𝐻𝜋
𝑑𝜋 <∞.

Remark 2.6. We always assume that a 𝐺-field of operators defined on smooth
vectors with range in the Sobolev space𝐻𝑎

𝜋 is 𝑑𝜋-measurable.

The 𝐺-fields of operators associated to Rockland operators can be defined as
follows.

Definition 2.7. Let 𝐿2𝑎(𝐺) denote the space of measurable fields of operators 𝜎
with range in𝐻𝑎

𝜋, that is,

𝜎 = {𝜎(𝜋) ∶ 𝐻∞
𝜋 → 𝐻𝑎

𝜋}, with {𝜋(1 +ℛ)
𝑎

𝜈 𝜎(𝜋) ∶ 𝜋 ∈ 𝐺} ∈ 𝐿2(𝐺),

for one (and hence for any) Rockland operator of homogeneous degree 𝜈.We
also denote

‖𝜎‖𝐿2𝑎(𝐺)
∶= ‖𝜋(1 +ℛ)

𝑎

𝜈 𝜎(𝜋)‖𝐿2(𝐺).

By using the notation above, we will introduce a family of function spaces
required to define 𝐺-fields of operators (that will be used to define the symbol
of a pseudo-differential operator, see Definition 2.9).

Definition 2.8 (The spaces L𝐿(𝐿
2
𝑎(𝐺), 𝐿

2

𝑏
(𝐺)),𝒦𝑎,𝑏(𝐺) and 𝐿∞𝑎,𝑏(𝐺)).

∙ The space L𝐿(𝐿
2
𝑎(𝐺), 𝐿

2

𝑏
(𝐺)) consists of all left-invariant linear opera-

tors 𝑇 such that 𝑇 ∶ 𝐿2𝑎(𝐺)→ 𝐿2
𝑏
(𝐺) extends to a bounded operator.

∙ The space 𝒦𝑎,𝑏(𝐺) is the family of all right convolution kernels of el-
ements in L𝐿(𝐿

2
𝑎(𝐺), 𝐿

2

𝑏
(𝐺)), i.e. 𝑘 = 𝑇𝛿 ∈ 𝒦𝑎,𝑏(𝐺) if and only if

𝑇 ∈ L𝐿(𝐿
2
𝑎(𝐺), 𝐿

2

𝑏
(𝐺)).
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∙ We also define the space 𝐿∞
𝑎,𝑏
(𝐺) of symbols by the following condition:

𝜎 ∈ 𝐿∞
𝑎,𝑏
(𝐺) if

‖𝜋(1+ℛ)
𝑏

𝜈 𝜎(𝜋)𝜋(1+ℛ)
−
𝑎

𝜈 ‖𝐿∞(𝐺) ∶= sup
𝜋∈𝐺

‖𝜋(1+ℛ)
𝑏

𝜈 𝜎(𝜋)𝜋(1+ℛ)
−
𝑎

𝜈 ‖B(𝐻𝜋)
<∞.

In this case 𝑇𝜎 ∶ 𝐿2𝑎(𝐺)→ 𝐿2
𝑏
(𝐺) extends to a bounded operator with

‖𝜎‖𝐿∞
𝑎,𝑏
(𝐺) = ‖𝑇𝜎‖L (𝐿2𝑎(𝐺),𝐿

2
𝑏
(𝐺)),

and note that 𝜎 ∈ 𝐿∞
𝑎,𝑏
(𝐺) if and only if 𝑘 ∶= F−1

𝐺
𝜎 ∈ 𝒦𝑎,𝑏(𝐺).

With the previous definitions, we will introduce the type of symbols used
when quantising on nilpotent Lie groups.

Definition 2.9 (Symbols and right-convolution kernels). A symbol is a field of
operators {𝜎(𝑥, 𝜋) ∶ 𝐻∞

𝜋 → 𝐻∞
𝜋 , 𝜋 ∈ 𝐺}, depending on 𝑥 ∈ 𝐺, such that

𝜎(𝑥, ⋅) = {𝜎(𝑥, 𝜋) ∶ 𝐻∞
𝜋 → 𝐻∞

𝜋 , 𝜋 ∈ 𝐺} ∈ 𝐿∞
𝑎,𝑏
(𝐺)

for some 𝑎, 𝑏 ∈ ℝ. The right-convolution kernel 𝑘 ∈ 𝐶∞(𝐺,S ′(𝐺)) associated
with 𝜎 is defined, via the inverse Fourier transform on the group by

𝑥 ↦ 𝑘(𝑥) ≡ 𝑘𝑥 ∶= F−1
𝐺
(𝜎(𝑥, ⋅)) ∶ 𝐺 → S ′(𝐺).

Definition 2.9 in this section allows us to establish the following theorem,
which gives sense to the quantization of pseudo-differential operators in the
setting of graded Lie groups (see Theorem 5.1.39 of [16]).

Theorem 2.10. Let us consider a symbol 𝜎 and its associated right-convolution
kernel 𝑘. For every 𝑓 ∈ S (𝐺), let us define the operator 𝐴 acting onS (𝐺), via

𝐴𝑓(𝑥) = (𝑓 ∗ 𝑘𝑥)(𝑥), 𝑥 ∈ 𝐺. (2.4)

Then 𝐴𝑓 ∈ 𝐶∞, and

𝐴𝑓(𝑥) = ∫

𝐺

Tr (𝜋(𝑥)𝜎(𝑥, 𝜋)𝑓(𝜋))𝑑𝜋. (2.5)

Theorem 2.10 motivates the following definition.

Definition 2.11. A continuous linear operator 𝐴 ∶ 𝐶∞(𝐺) → D ′(𝐺) with
Schwartz kernel 𝐾𝐴 ∈ 𝐶∞(𝐺)⊗̂𝜋D

′(𝐺), is a pseudo-differential operator, if
there exists a symbol, which is a field of operators {𝜎(𝑥, 𝜋) ∶ 𝐻∞

𝜋 → 𝐻∞
𝜋 , 𝜋 ∈

𝐺}, depending on 𝑥 ∈ 𝐺, such that

𝜎(𝑥, ⋅) = {𝜎(𝑥, 𝜋) ∶ 𝐻∞
𝜋 → 𝐻∞

𝜋 , 𝜋 ∈ 𝐺} ∈ 𝐿∞
𝑎,𝑏
(𝐺)

for some 𝑎, 𝑏 ∈ ℝ, such that, the Schwartz kernel of 𝐴 is given by

𝐾𝐴(𝑥, 𝑦) = ∫

𝐺

Tr (𝜋(𝑦−1𝑥)𝜎(𝑥, 𝜋))𝑑𝜋 = 𝑘𝑥(𝑦
−1𝑥).
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In this case, we use the notation

𝐴 ∶= Op(𝜎),

to indicate that 𝐴 is the pseudo-differential operator associated with symbol 𝜎.

On the other hand, it is also known that one can write a global symbol in
terms of its corresponding pseudo-differential operator (see [9, Theorem 3.2]).
Indeed, let 𝐴 ∶ 𝐶∞(𝐺)→ 𝐶∞(𝐺) be a continuous linear operator with symbol

𝜎 ∶= {𝜎(𝑥, 𝜋) ∶ 𝐻∞
𝜋 → 𝐻∞

𝜋 , 𝜋 ∈ 𝐺, 𝑥 ∈ 𝐺}

such that

𝐴𝑓(𝑥) = ∫

𝐺

Tr (𝜋(𝑥)𝜎(𝑥, 𝜋)𝑓(𝜋))𝑑𝜋

for every 𝑓 ∈ S (𝐺) and a.e. (𝑥, 𝜋) ∈ 𝐺 × 𝐺. Then, we have

𝜎(𝑥, 𝜋) = 𝜋(𝑥)∗𝐴𝜋(𝑥)

for every 𝑥 ∈ 𝐺 and a. e. 𝜋 ∈ 𝐺 provided that the operator 𝐴𝜋(𝑥) is a densely
defined operator on𝐻∞

𝜋 .

The main tool in the construction of the global Hörmander classes is the
notion of difference operators. Indeed, for every smooth function 𝑞 ∈ 𝐶∞(𝐺)

and 𝜎 ∈ 𝐿∞
𝑎,𝑏
(𝐺),where 𝑎, 𝑏 ∈ ℝ, the difference operator∆𝑞 acts on 𝜎 according

to the formula (see Definition 5.2.1 of [16]),

∆𝑞𝜎(𝜋) ≡ [∆𝑞𝜎](𝜋) ∶= F𝐺(𝑞𝑓)(𝜋), 𝜋 ∈ 𝐺, where 𝑓 ∶= F−1
𝐺
𝜎 .

Wewill reserve the notation∆𝛼 for the difference operators defined by the func-
tions

𝑞𝛼(𝑥) ∶= 𝑥𝛼, 𝛼 ∈ ℕ𝑛
0
,

while we denote by ∆̃𝛼 the difference operators associated with the functions
𝑞𝛼(𝑥) = (𝑥−1)𝛼. In particular, we have the Leibniz rule,

∆𝛼(𝜎𝜏) =
∑

𝛼1+𝛼2=𝛼

𝑐𝛼1,𝛼2∆
𝛼1(𝜎)∆𝛼2(𝜏), 𝜎, 𝜏 ∈ 𝐿∞

𝑎,𝑏
(𝐺). (2.6)

In terms of these difference operators, the global Hörmander classes intro-
duced in [16] can be defined as follows. Let:

∙ 0 ≤ 𝛿, 𝜌 ≤ 1, and
∙ let ℛ be a positive Rockland operator of homogeneous degree 𝜈 > 0,

if 𝑚 ∈ ℝ, we say that the symbol 𝜎 ∈ 𝐿∞
𝑎,𝑏
(𝐺), where 𝑎, 𝑏 ∈ ℝ, belongs to the

(𝜌, 𝛿)-Hörmander class of order 𝑚, 𝑆𝑚
𝜌,𝛿
(𝐺 × 𝐺), if for all 𝛾 ∈ ℝ, the following

conditions

𝑝𝛼,𝛽,𝛾,𝑚(𝜎) = ess sup
(𝑥,𝜋)∈𝐺×𝐺

‖𝜋(1 +ℛ)
𝜌[𝛼]−𝛿[𝛽]−𝑚−𝛾

𝜈 [𝑋
𝛽
𝑥∆

𝛼𝜎(𝑥, 𝜋)]𝜋(1 +ℛ)
𝛾

𝜈 ‖op <∞,

(2.7)
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hold true for all 𝛼 and 𝛽 inℕ𝑛
0
. The resulting class 𝑆𝑚

𝜌,𝛿
(𝐺×𝐺), does not depend

on the choice of the Rockland operator ℛ. In particular (see Theorem 5.5.20 of
[16]), the following facts are equivalent:

(A) ∀𝛼, 𝛽 ∈ ℕ𝑛
0
,∀𝛾 ∈ ℝ, 𝑝𝛼,𝛽,𝛾,𝑚(𝜎) <∞;

(B) ∀𝛼, 𝛽 ∈ ℕ𝑛
0
, 𝑝𝛼,𝛽,0,𝑚(𝜎) <∞;

(C) ∀𝛼, 𝛽 ∈ ℕ𝑛
0
, 𝑝𝛼,𝛽,𝑚+𝛿[𝛽]−𝜌[𝛼],𝑚(𝜎) <∞;

(D) 𝜎 ∈ 𝑆𝑚
𝜌,𝛿
(𝐺 × 𝐺);

and in view of the additional Theorem 13.16 of [7], the conditions (A), (B), (C)
and (D) are equivalent to the following one:

(E) ∀𝛼, 𝛽 ∈ ℕ𝑛
0
,∃𝛾0 ∈ ℝ, 𝑝𝛼,𝛽,𝛾0,𝑚(𝜎) <∞.

We will denote,

‖𝜎‖𝑘 ,𝑆𝑚
𝜌,𝛿
∶= max

[𝛼]+[𝛽]≤𝑘
{𝑝𝛼,𝛽,0,𝑚(𝜎)}. (2.8)

Remark 2.12. In the abelian case 𝐺 = ℝ𝑛, endowed with its natural structure
of the abelian group, and with

ℛ = −∆𝑥, 𝑥 ∈ ℝ𝑛,

with ∆𝑥 =
∑𝑛

𝑗=1
𝜕2𝑥𝑖 being the usual Laplace operator on ℝ

𝑛, the classes de-
fined via (2.7), agree with the well known Hörmander classes on ℝ𝑛 (see e.g.
Hörmander [25, Vol. 3]). In this case the difference operators are the partial
derivatives on ℝ𝑛, (see Remark 5.2.13 and Example 5.2.6 of [16]).

For an arbitrary graded Lie group, theHörmander classes 𝑆𝑚
𝜌,𝛿
(𝐺×𝐺), 𝑚 ∈ ℝ,

provide a symbolic calculus closed under compositions, adjoints, and existence
of parametrices. The following theorem summarises the composition and the
adjoint rules for global operators as well as the Calderón-Vaillancourth theo-
rem.

Theorem 2.13. Let 0 ⩽ 𝛿 < 𝜌 ⩽ 1, and let us denote Ψ𝑚

𝜌,𝛿
= Ψ𝑚

𝜌,𝛿
(𝐺 × 𝐺) ∶=

Op(𝑆𝑚
𝜌,𝛿
(𝐺 × 𝐺)), for every𝑚 ∈ ℝ. Then,

(i) The mapping 𝐴 ↦ 𝐴∗ ∶ Ψ𝑚

𝜌,𝛿
→ Ψ𝑚

𝜌,𝛿
is a continuous linear mapping be-

tween Fréchet spaces and the symbol of𝐴∗, 𝜎𝐴∗(𝑥, 𝜋) ≡ 𝐴∗(𝑥, 𝜋) satisfies
the asymptotic expansion,

𝐴∗(𝑥, 𝜋) ∼

∞∑

|𝛼|=0

∆𝛼𝑋𝛼
𝑥 (𝐴(𝑥, 𝜋)

∗).

This means that, for every𝑁 ∈ ℕ, and all 𝓁 ∈ ℕ,

∆𝛼𝓁𝑋
𝛽
𝑥

⎛

⎜

⎝

𝐴∗(𝑥, 𝜋) −
∑

|𝛼|⩽𝑁

∆𝛼𝑋𝛼
𝑥 (𝐴(𝑥, 𝜋)

∗)
⎞

⎟

⎠

∈ 𝑆
𝑚−(𝜌−𝛿)(𝑁+1)−𝜌𝓁+𝛿[𝛽]

𝜌,𝛿
(𝐺 × 𝐺),

where [𝛼𝓁] = 𝓁.
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(ii) The mapping (𝐴1, 𝐴2) ↦ 𝐴1◦𝐴2 ∶ Ψ
𝑚1

𝜌,𝛿
× Ψ

𝑚2

𝜌,𝛿
→ Ψ

𝑚3

𝜌,𝛿
is a continuous

bilinear mapping between Fréchet spaces, and the symbol of𝐴 = 𝐴1◦𝐴2,

satisfies the asymptotic expansion,

𝜎𝐴(𝑥, 𝜋) ∼

∞∑

|𝛼|=0

(∆𝛼𝐴1(𝑥, 𝜋))(𝑋
𝛼
𝑥𝐴2(𝑥, 𝜋)),

this means that, for every𝑁 ∈ ℕ, and all 𝓁 ∈ ℕ,

∆𝛼𝓁𝑋
𝛽
𝑥

⎛

⎜

⎝

𝜎𝐴(𝑥, 𝜋) −
∑

|𝛼|⩽𝑁

(∆𝛼𝐴1(𝑥, 𝜋))(𝑋
𝛼
𝑥𝐴2(𝑥, 𝜋))

⎞

⎟

⎠

∈ 𝑆
𝑚1+𝑚2−(𝜌−𝛿)(𝑁+1)−𝜌𝓁+𝛿[𝛽]

𝜌,𝛿
(𝐺 × 𝐺),

for every 𝛼𝓁 ∈ ℕ𝑛
0
with [𝛼𝓁] = 𝓁.

(iii) For 0 ⩽ 𝛿 ≤ 𝜌 ⩽ 1, 𝛿 ≠ 1, let us consider a continuous linear operator
𝐴 ∶ 𝐶∞(𝐺) → D ′(𝐺) with symbol 𝜎 ∈ 𝑆0

𝜌,𝛿
(𝐺 × 𝐺). Then 𝐴 extends to a

bounded operator from 𝐿2(𝐺) to 𝐿2(𝐺).

As for the 𝐿𝑝-boundedness theorem on graded Lie groups, we have the fol-
lowing statement (see [9]).

Theorem 2.14. Let 𝐺 be a graded Lie group of homogeneous dimension 𝑄. Let
𝐴 ∶ 𝐶∞(𝐺)→ D ′(𝐺) be a pseudo-differential operator with symbol 𝜎 ∈ 𝑆−𝑚

𝜌,𝛿
(𝐺×

𝐺), 0 ≤ 𝛿 ≤ 𝜌 ≤ 1, 𝛿 ≠ 1. If 1 < 𝑝 < ∞, then 𝐴 = Op(𝜎) extends to a bounded
operator from 𝐿𝑝(𝐺) to 𝐿𝑝(𝐺) provided that

𝑚 ≥ 𝑚𝑝 ∶= 𝑄(1 − 𝜌)
|||||||

1

𝑝
−
1

2

|||||||
.

3. 𝑳𝒑-𝑳𝒒-boundedness on graded Lie groups
3.1. 𝑳𝒑-𝑳𝒒-boundedness of Riesz and Bessel potentials. Here we discuss
the 𝐿𝑝-𝐿𝑞-boundedness of Riesz and Bessel potentials. We start with the case
of Riesz potentials which already have been established in [16].

Lemma 3.1. Letℛ be a positive Rockland operator of homogeneous degree 𝜈 > 0

on a graded Lie group 𝐺. Then, the Riesz operator 𝐼𝑎 = ℛ
−
𝑎

𝜈 , with 0 < 𝑎 < 𝑄,

admits a bounded extension from 𝐿𝑝(𝐺) into 𝐿𝑞(𝐺), that is, the estimate

‖𝐼𝑎𝑓‖𝐿𝑞 ≤ 𝐶‖𝑓‖𝐿𝑝 (3.1)

holds, if and only if, 𝑝 < 𝑞 and

𝑎 = 𝑄 (
1

𝑝
−
1

𝑞
) . (3.2)

Proof. First, assume that 𝐼𝑎 ∶ 𝐿𝑝(𝐺) → 𝐿𝑞(𝐺) admits a bounded extension.
Since 𝐼𝑎 is homogeneous of order−𝑎, Proposition 3.2.8 in [16, Page 138] implies
that the pair (𝑝, 𝑞) satisfies the conditions 𝑝, 𝑞 ∈ (1,∞) together with (3.2).
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That (3.2) and the condition 1 < 𝑝 < 𝑞 < ∞ are sufficient conditions for the
existence of a bounded extension of 𝐼𝑎 ∶ 𝐿𝑝(𝐺) → 𝐿𝑞(𝐺) was proved in [16,
Page 229]. □

Lemma 3.2. Let 1 < 𝑝, 𝑞 < ∞. Let ℛ be a positive Rockland operator of ho-
mogeneous degree 𝜈 > 0 on a graded Lie group 𝐺. Then, the Bessel operator
𝐵𝑎 = (1 + ℛ)

−
𝑎

𝜈 , admits a bounded extension from 𝐿𝑝(𝐺) into 𝐿𝑞(𝐺), that is,
the estimate

‖𝐵𝑎𝑓‖𝐿𝑞 ≤ 𝐶‖𝑓‖𝐿𝑝 (3.3)
holds, if and only if, 1 < 𝑝 < 𝑞 <∞ and

𝑎 ≥ 𝑄 (
1

𝑝
−
1

𝑞
) . (3.4)

Proof. Before beginning the proof, let us first recall the following properties
that will be used later in this proof:

∙

F𝐺(𝑓◦𝐷𝑟)(𝜋) = 𝑟−𝑄F𝐺(𝑓)(𝑟
−1 ⋅ 𝜋) (3.5)

for any suitable functions 𝑓, 𝑟 > 0 and 𝜋 ∈ 𝐺.

∙ Let ℛ be a positive Rockland operator of homogeneous degree 𝜈 > 0

then we have

((𝑟 ⋅ 𝜋)(ℛ))
1

𝜈 = 𝑟𝜋(ℛ)
1

𝜈 for 𝑟 > 0, 𝜋 ∈ 𝐺. (3.6)

The first property is easy to verify using the definition of the group Fourier
transform. For the proof of the second property, see [15, Lemma 4.3].
Now we begin the proof of Lemma 3.2. First, let us prove that under the

continuity property in (3.3) we have that 𝑝 < 𝑞 and that (3.4) holds. Assume
that (3.3) holds with 1 < 𝑝, 𝑞 < ∞. That the inequality 𝑝 < 𝑞 holds is a conse-
quence of the general statement of Proposition 3.2.4 in [16, Page 134]. Now, we
are going to prove (3.4). Let us consider the space of functions

𝐶∞
0,𝜆
(𝐺) ∶= 𝐸(𝜆,∞)𝐶∞

0
(𝐺), (3.7)

where {𝑑𝐸𝜆}𝜆>0 denotes the spectral measure associated with the spectral pro-
jections 𝐸(0, 𝜆), 𝜆 > 0, of ℛ and where 𝐸𝜆 ∶= 𝐸(𝜆,∞) = 𝐼 − 𝐸(0, 𝜆). Note that
𝐶∞
0,𝜆
(𝐺) is invariant under the action of the projection 𝐸𝜆, in the sense that

𝐸(𝜆,∞)𝐶∞
0,𝜆
(𝐺) = 𝐶∞

0,𝜆
(𝐺). (3.8)

Take 𝑓 ∈ 𝐶∞
0,𝜆
(𝐺) such that 𝑓 ≠ 0. In view of (3.8) we have that 𝑓 = 𝐸(𝜆,∞)𝑓,

and for some �̇� ∈ 𝐶∞
0
(𝐺), 𝑓 = 𝐸(𝜆,∞)�̇�. Note that we have the point-wise

identity
∀𝑥 ∈ 𝐺, 𝑓(𝑥) = (𝐸(𝜆,∞)𝑓)(𝑥). (3.9)

By the duality of (𝐿𝑞, 𝐿𝑞′) we have that

‖(1 +ℛ)
−
𝑎

𝜈 𝑓‖𝐿𝑞 = sup
‖𝑔‖

𝐿𝑞
′=1

|((1 +ℛ)
−
𝑎

𝜈 𝑓, 𝑔)𝐿2|.
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Since 𝑔 = 𝑓∕‖𝑓‖𝐿𝑞′ has norm less than or equal to one in 𝐿𝑞′ we have that

‖(1 +ℛ)
−
𝑎

𝜈 𝑓‖𝐿𝑞 ≥ |((1 +ℛ)
−
𝑎

𝜈 𝑓, 𝑔)𝐿2| =
1

‖𝑓‖𝐿𝑞′
|((1 +ℛ)

−
𝑎

𝜈 𝑓, 𝑓)𝐿2|.

Indeed, if ‖𝑓‖𝐿𝑞′ < ∞ we have that 𝑔 = 𝑓∕‖𝑓‖𝐿𝑞′ is a unit vector in 𝐿𝑞
′

(𝐺). In
the case where ‖𝑓‖𝐿𝑞′ = ∞, then 𝑔 is the trivial function. In both cases, the
positivity of 𝐵𝑎 = (1 +ℛ)

−
𝑎

𝜈 implies that

|((1 +ℛ)
−
𝑎

𝜈 𝑓, 𝑓)𝐿2| = ((1 +ℛ)
−
𝑎

𝜈 𝑓, 𝑓)𝐿2 ≥ 0.

In what followswe assume that 𝜆 = 2𝑁 > 0where𝑁 is an integer. We are going
to prove now that ‖𝑓‖𝐿𝑞′ < ∞. This can be deduced from the Littlewood-Paley
theorem in [8]. Indeed, if {𝜙𝑗}𝑗∈ℤ is a dyadic partition of unity, in such a way
that

∑

𝑗
𝜙𝑗(𝑡) = 1, with 𝜙𝑗(𝑡) = 𝜙0(2

−𝑗𝑡), and 𝜙0 ∈ S (ℝ) being positive, one
has that for 1 < 𝑞 <∞ (and then 1 < 𝑞′ <∞),

‖𝑓‖𝐿𝑞′ (𝐺) = ‖𝐸(𝜆,∞)𝑓‖𝐿𝑞′ (𝐺) ≍

‖‖‖‖‖‖‖‖‖‖‖‖‖‖

⎛

⎜

⎝

∑

𝑗∈ℤ

|𝜙𝑗(ℛ
1∕𝜈)𝐸(𝜆,∞)𝑓|2

⎞

⎟

⎠

1

2

‖‖‖‖‖‖‖‖‖‖‖‖‖‖𝐿𝑞′ (𝐺)

=

‖‖‖‖‖‖‖‖‖‖‖‖‖‖

⎛

⎜

⎝

∑

𝑗≥𝑁

|𝜙𝑗(ℛ
1∕𝜈)𝐸(𝜆,∞)�̇�|2

⎞

⎟

⎠

1

2

‖‖‖‖‖‖‖‖‖‖‖‖‖‖𝐿𝑞′ (𝐺)

=

‖‖‖‖‖‖‖‖‖‖‖‖‖‖

⎛

⎜

⎝

∑

𝑗≥𝑁

|𝜙𝑗(ℛ
1∕𝜈)�̇�|2

⎞

⎟

⎠

1

2

‖‖‖‖‖‖‖‖‖‖‖‖‖‖𝐿𝑞′ (𝐺)

≤

‖‖‖‖‖‖‖‖‖‖‖‖‖‖

⎛

⎜

⎝

∑

𝑗∈ℤ

|𝜙𝑗(ℛ
1∕𝜈)�̇�|2

⎞

⎟

⎠

1

2

‖‖‖‖‖‖‖‖‖‖‖‖‖‖𝐿𝑞′ (𝐺)

≤ 𝐶‖�̇�‖𝐿𝑞′ <∞, since �̇� ∈ 𝐶∞
0
(𝐺).
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By the commutativity of the functional calculus of ℛ with the spectral projec-
tions 𝐸(𝜆,∞) we have that

‖(1 +ℛ)
−
𝑎

𝜈 𝑓‖𝐿𝑞 ≥
1

‖𝑓‖𝐿𝑞′
((1 +ℛ)

−
𝑎

𝜈 𝑓, 𝑓)𝐿2

=
1

‖𝑓‖𝐿𝑞′
∫
𝐺
(1 +ℛ)

−
𝑎

𝜈 𝑓(𝑥)𝑓(𝑥)𝑑𝑥

=
1

‖𝑓‖𝐿𝑞′
∫
𝐺

∞

∫
0
(1 + 𝜔)

−
𝑎

𝜈 𝑑𝐸𝜔𝐸(𝜆,∞)𝑓(𝑥)𝑓(𝑥)𝑑𝑥

=
1

‖𝑓‖𝐿𝑞′
∫
𝐺

∞

∫
𝜆
(1 + 𝜔)

−
𝑎

𝜈 𝑑𝐸𝜔𝑓(𝑥)𝑓(𝑥)𝑑𝑥

=
1

‖𝑓‖𝐿𝑞′

∞

∫
𝜆
(1 + 𝜔)

−
𝑎

𝜈 𝑑 (∫
𝐺
𝐸𝜔𝑓(𝑥)𝑓(𝑥)𝑑𝑥)

=
1

‖𝑓‖𝐿𝑞′

∞

∫
𝜆
(1 + 𝜔)

−
𝑎

𝜈 𝑑(𝐸𝜔𝑓, 𝑓)𝐿2 .

In our further analysis note that there is a constant 𝐶𝜆 > 0 such that

∀𝜔 ≥ 𝜆, (1 + 𝜔)
−
𝑎

𝜈 ≥ 𝐶𝜆𝜔
−
𝑎

𝜈 . (3.10)

Since 𝐶𝜆 satisfies the inequality

𝐶𝜆 ≤ (1 + 𝜔)
−
𝑎

𝜈𝜔
𝑎

𝜈 = (1 −
1

1 + 𝜔
)

𝑎

𝜈

∶= 𝑠(𝜔), ∀𝜔 ≥ 𝜆,

and the function 𝑠(𝜔) is increasing when 𝜔 ≥ 𝜆, we can take

𝐶𝜆 ∶= 𝑠(𝜆) = (1 −
1

1 + 𝜆
)

𝑎

𝜈

. (3.11)

In consequence, for all 𝑓 ∈ 𝐶∞
0,𝜆
(𝐺) such that 𝑓 ≠ 0, we have the inequality

‖(1 +ℛ)
−
𝑎

𝜈 𝑓‖𝐿𝑞 ≥
1

‖𝑓‖𝐿𝑞′

∞

∫
𝜆
(1 + 𝜔)

−
𝑎

𝜈 𝑑(𝐸𝜔𝑓, 𝑓)𝐿2

≥ 𝐶𝜆
1

‖𝑓‖𝐿𝑞′

∞

∫
𝜆
𝜔
−
𝑎

𝜈 𝑑(𝐸𝜔𝑓, 𝑓)𝐿2

= 𝐶𝜆
1

‖𝑓‖𝐿𝑞′

∞

∫
𝜆
𝜔
−
𝑎

𝜈 𝑑 (∫
𝐺
𝐸𝜔𝑓(𝑥)𝑓(𝑥)𝑑𝑥)

= 𝐶𝜆
1

‖𝑓‖𝐿𝑞′
∫
𝐺

∞

∫
𝜆
𝜔
−
𝑎

𝜈 𝑑𝐸𝜔𝑓(𝑥)𝑓(𝑥)𝑑𝑥

= 𝐶𝜆
1

‖𝑓‖𝐿𝑞′
(ℛ

−
𝑎

𝜈 𝑓, 𝑓)𝐿2 .

Now, assume that (1 +ℛ)
−
𝑎

𝜈 admits a bounded extension from 𝐿𝑝(𝐺) to 𝐿𝑞(𝐺).
Then, there exists 𝐶 > 0, such that, in particular, for all 𝑓 ∈ 𝐶∞

0,𝜆
(𝐺) such that

𝑓 ≠ 0, we have the inequality
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𝐶‖𝑓‖𝐿𝑝(𝐺) ≥ ‖(1 +ℛ)
−
𝑎

𝜈 𝑓‖𝐿𝑞 . (3.12)

Combining the previous inequality and the analysis above we have that

𝐶‖𝑓‖𝐿𝑝(𝐺) ≥ 𝐶𝜆
1

‖𝑓‖𝐿𝑞′
(ℛ

−
𝑎

𝜈 𝑓, 𝑓)𝐿2 . (3.13)

Now we will use a scaling argument. Let 𝑟 = 2−𝑀 , where𝑀 is an integer, and
let us analyse the action of the projection 𝐸(𝜆,∞) on the function 𝑓◦𝐷𝑟. Note
that

[𝐸(𝜆,∞)(𝑓◦𝐷𝑟)](𝑥) = [𝐸(𝜆,∞)
⎛

⎜

⎝

∑

𝑗∈ℤ

𝜙𝑗(ℛ
1∕𝜈)

⎞

⎟

⎠

(𝑓◦𝐷𝑟)](𝑥)

=
⎛

⎜

⎝

∑

𝑗≥𝑁

𝜙𝑗(ℛ
1∕𝜈)(𝑓◦𝐷𝑟)

⎞

⎟

⎠

(𝑥).

We observe that, for any 𝑧 ∈ 𝐺, using (3.5) and (3.6), we have

𝜙𝑗(ℛ
1∕𝜈)(𝑓◦𝐷𝑟)(𝑧) = ∫

𝐺

Tr[𝜋(𝑧)𝜙𝑗(𝜋(ℛ)1∕𝜈)F𝐺[𝑓◦𝐷𝑟](𝜋)]𝑑𝜋

= ∫
𝐺

Tr[𝜋(𝑧)𝜙𝑗(𝜋(ℛ)1∕𝜈)𝑓(𝑟−1 ⋅ 𝜋)]𝑟−𝑄𝑑𝜋

= ∫
𝐺

Tr[((𝑟 ⋅ 𝜋′)(𝑧))𝜙𝑗(((𝑟 ⋅ 𝜋′)(ℛ))1∕𝜈)𝑓(𝜋′)]𝑑𝜋′

= ∫
𝐺

Tr[𝜋′(𝐷𝑟(𝑧)))𝜙𝑗(((𝑟 ⋅ 𝜋′)(ℛ))1∕𝜈)𝑓(𝜋′)]𝑑𝜋′

= ∫
𝐺

Tr[𝜋′(𝐷𝑟(𝑧)))𝜙0(2−𝑗((𝑟 ⋅ 𝜋′)(ℛ))1∕𝜈)𝑓(𝜋′)]𝑑𝜋′

= ∫
𝐺

Tr[𝜋′(𝐷𝑟(𝑧)))𝜙0(2−𝑗((𝑟𝜈𝜋′(ℛ))1∕𝜈)𝑓(𝜋′)]𝑑𝜋′

= ∫
𝐺

Tr[𝜋′(𝐷𝑟(𝑧)))𝜙0(2−𝑗𝑟𝜋′(ℛ)1∕𝜈)𝑓(𝜋′)]𝑑𝜋′

= ∫
𝐺

Tr[𝜋′(𝐷𝑟(𝑧)))𝜙0(2−𝑗−𝑀𝜋′(ℛ)1∕𝜈)𝑓(𝜋′)]𝑑𝜋′

= (𝜓𝑗+𝑀(ℛ
1

𝜈 )𝑓)◦𝐷𝑟(𝑧).
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In consequence

[𝐸(𝜆,∞)(𝑓◦𝐷𝑟)](𝑥) =
⎛

⎜

⎝

∑

𝑗≥𝑁

𝜙𝑗(ℛ
1∕𝜈)(𝑓◦𝐷𝑟)

⎞

⎟

⎠

(𝑥)

=
⎛

⎜

⎝

∑

𝑗≥𝑁

(𝜙𝑗+𝑀(ℛ
1

𝜈 )𝑓)◦𝐷𝑟

⎞

⎟

⎠

(𝑥)

=
⎛

⎜

⎝

∑

𝑗≥𝑁+𝑀

(𝜙𝑗(ℛ
1

𝜈 )𝑓)◦𝐷𝑟

⎞

⎟

⎠

(𝑥)

= (𝑓 − 𝐸(0, 2𝑁+𝑀)𝑓)◦𝐷𝑟(𝑥)

= (𝐸(2𝑁+𝑀 ,∞)𝑓)◦𝐷𝑟.

We have proved that

∀𝑓 ∈ 𝐶∞
0,𝜆
(𝐺), ∀𝑟 = 2−𝑀 , 𝐸(𝜆,∞)(𝑓◦𝐷𝑟) = (𝐸(2𝑁+𝑀 ,∞)𝑓)◦𝐷𝑟. (3.14)

Let us consider the set of dilations

𝔻0 ∶= {𝐷𝑟 ∶ 𝑟 = 2−𝑀 , 𝑀 ∈ ℤ}.

Inwhat follows let us consider𝑅 ∈ 𝔻0, and let us consider the function 𝑓◦𝐷𝑅 ∈
𝐶∞
0,𝜆
(𝐺). By applying (3.13) with 𝐸(2𝑁 ,∞)(𝑓◦𝐷𝑅), we have the inequality

𝐶‖𝐸(2𝑁 ,∞)(𝑓◦𝐷𝑅)‖𝐿𝑝(𝐺)

≥ 𝐶𝜆
1

‖𝐸(2𝑁 ,∞)(𝑓◦𝐷𝑅)‖𝐿𝑞′
(ℛ

−
𝑎

𝜈 𝐸(2𝑁 ,∞)(𝑓◦𝐷𝑅), 𝐸(2
𝑁 ,∞)(𝑓◦𝐷𝑅))𝐿2 .

Using that

∙ ‖(𝐸(2𝑁+𝑀 ,∞)𝑓)◦𝐷𝑅‖𝐿𝑝(𝐺) = 𝑅−𝑄∕𝑝‖𝐸(2𝑁+𝑀 ,∞)𝑓‖𝐿𝑝(𝐺),

∙ ‖(𝐸(2𝑁+𝑀 ,∞)𝑓)‖𝐿𝑞′ (𝐺) = 𝑅−𝑄∕𝑞
′

‖𝐸(2𝑁+𝑀 ,∞)𝑓‖𝐿𝑞′ (𝐺),

that the change of variables 𝑦 = 𝐷𝑅(𝑥) gives the volume element 𝑑𝑥 = 𝑅−𝑄𝑑𝑦,

and the identities below

(ℛ
−
𝑎

𝜈 (𝐸(2𝑁+𝑀 ,∞)𝑓)◦𝐷𝑅, (𝐸(2
𝑁+𝑀 ,∞)𝑓)◦𝐷𝑅)𝐿2

= ∫
𝐺
ℛ
−
𝑎

𝜈 (𝐸(2𝑁+𝑀 ,∞)𝑓)◦𝐷𝑅(𝑥)(𝐸(2
𝑁+𝑀 ,∞)𝑓)◦𝐷𝑅(𝑥)𝑑𝑥

= ∫
𝐺
𝑅−𝑎(ℛ

−
𝑎

𝜈 𝐸(2𝑁+𝑀 ,∞)𝑓)◦𝐷𝑅(𝑥))𝐸(2
𝑁+𝑀 ,∞)𝑓◦𝐷𝑅(𝑥)𝑑𝑥

= 𝑅−𝑎−𝑄 ∫
𝐺
(ℛ

−
𝑎

𝜈 𝐸(2𝑁+𝑀 ,∞)𝑓)(𝑦))𝐸(2𝑁+𝑀 ,∞)𝑓(𝑦)𝑑𝑦

= 𝑅−𝑎−𝑄(ℛ
−
𝑎

𝜈 𝐸(2𝑁+𝑀 ,∞)𝑓, 𝐸(2𝑁+𝑀 ,∞)𝑓)𝐿2 ,
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we have that for any 𝑅 ∈ 𝔻0, and with ℎ = 𝐸(2𝑁+𝑀 ,∞)𝑓, we get the following
lower-bound estimate

𝐶𝑅−𝑄∕𝑝‖ℎ‖𝐿𝑝(𝐺) ≥ 𝐶𝜆𝑅
𝑄∕𝑞′ 1

‖ℎ‖𝐿𝑞′
𝑅−𝑎−𝑄(ℛ

−
𝑎

𝜈 ℎ, ℎ)𝐿2 .

Let us observe that the previous inequality is equivalent to the following one

𝐶𝑅−𝑄∕𝑝+𝑎+𝑄−𝑄∕𝑞
′

‖ℎ‖𝐿𝑝(𝐺)‖ℎ‖𝐿𝑞′𝐶
−1

𝜆
≥ (ℛ

−
𝑎

𝜈 ℎ, ℎ)𝐿2 > 0.

Using (3.11) we have the inequality

𝐶𝑅−𝑄∕𝑝+𝑎+𝑄−𝑄∕𝑞
′

‖ℎ‖𝐿𝑝(𝐺)‖ℎ‖𝐿𝑞′ (1 −
1

1 + 2𝑁
)

−
𝑎

𝜈

≥ (ℛ
−
𝑎

𝜈 ℎ, ℎ)𝐿2 > 0, 𝑅 = 2−𝑀 .

(3.15)
If 𝜘 ∶= −𝑄∕𝑝 + 𝑎 + 𝑄 − 𝑄∕𝑞′ < 0, we take 𝑀 < 0, 𝑁 = −𝑀. Then ℎ ∶=

𝐸(2𝑁+𝑀 ,∞)𝑓 = 𝐸(1,∞)𝑓 is independent of the pair (𝑁,𝑀) = (−𝑀,𝑀) and
consequently (3.15) takes the form

𝐶2−𝑀𝜘‖ℎ‖𝐿𝑝(𝐺)‖ℎ‖𝐿𝑞′ (1 −
1

1 + 2−𝑀
)

−
𝑎

𝜈

≥ (ℛ
−
𝑎

𝜈 ℎ, ℎ)𝐿2 > 0. (3.16)

Since𝑀 < 0, 2−𝑀 > 1, we have

(1 −
1

1 + 2−𝑀
)

−
𝑎

𝜈

= 2
𝑀𝑎

𝜈 (1 + 2−𝑀)
𝑎

𝜈 ≤ 2
𝑀𝑎

𝜈 (2 × 2−𝑀)
𝑎

𝜈 = 2
𝑎

𝜈 .

In consequence, letting −𝑀 → ∞, 2−𝑀𝜘 → 0+ implying that the inequality in
(3.16) is only possible if

𝜘 = −𝑄∕𝑝 + 𝑎 + 𝑄 − 𝑄∕𝑞′ = 𝑎 − 𝑄∕𝑝 + 𝑄∕𝑞 ≥ 0, (3.17)

as desired. Now, in order to prove the converse, that is if (3.4) holds, then 𝐵𝑎 is
bounded from 𝐿𝑝(𝐺) into 𝐿𝑞(𝐺), let us proceed as follows. If

𝑎 = 𝑄(1∕𝑝 − 𝑄∕𝑞),

the boundedness of 𝐵𝑎 from 𝐿𝑝(𝐺) into 𝐿𝑞(𝐺) is a consequence of the Sobolev
embedding theoremproved in [16, page 246]. Indeed, from [16, Theorem4.4.28]
it follows that the continuous embedding 𝐿𝑝𝑣 (𝐺) ⊂ 𝐿

𝑝
𝑢 (𝐺) holds for 𝑣 − 𝑢 =

𝑄(1∕𝑝 − 𝑄∕𝑞). Certainly, this means that

∀𝑓 ∈ S (𝐺), ‖𝐵−𝑢𝑓‖𝐿𝑞(𝐺) ≤ 𝐶‖𝐵−𝑣𝑓‖𝐿𝑝(𝐺). (3.18)

With 𝑎 = −𝑢 and 𝑣 = 0, that is when 𝑎 = 𝑄(1∕𝑝 − 𝑄∕𝑞), we have the bound-
edness operator inequality

∀𝑓 ∈ S (𝐺), ‖𝐵𝑎𝑓‖𝐿𝑞(𝐺) ≤ 𝐶‖𝑓‖𝐿𝑝(𝐺). (3.19)

Now, if 𝑎 > 𝑄(1∕𝑝−𝑄∕𝑞),we take 𝜀 = 𝑎−𝑄(1∕𝑝−𝑄∕𝑞) > 0, and we factorise

𝐵𝑎 = (1 +ℛ)
−
𝑎

𝜈 = (1 +ℛ)−𝑄(1∕𝑝−1∕𝑞)∕𝜈−𝜀∕𝜈 = (1 +ℛ)−𝑄(1∕𝑝−𝑄∕𝑞)𝐵𝜀. (3.20)
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Is it clear that (1 +ℛ)−𝑄(1∕𝑝−𝑄∕𝑞)∕𝜈 ∶ 𝐿𝑝(𝐺)→ 𝐿𝑞(𝐺) is bounded. On the other
hand 𝐵𝜀 ∶ 𝐿𝑝(𝐺)→ 𝐿𝑝(𝐺) is bounded on 𝐿𝑝(𝐺) for all 1 < 𝑝 <∞. Indeed,

𝐵𝜀 ∈ Ψ−𝜀
1,0
(𝐺 × 𝐺) ⊂ B(𝐿𝑝(𝐺)).

In consequence 𝐵𝑎 is bounded from 𝐿𝑝(𝐺) into 𝐿𝑞(𝐺). The proof is complete.
□

Remark 3.3. Observe that the necessary and sufficient conditions of Lemma
3.1 have been obtained in [16]. While in Lemma 3.2 that 1 < 𝑝 < 𝑞 < ∞ is a
necessary condition for the 𝐿𝑝-𝐿𝑞-boundedness of 𝐵𝑎, this fact follows from a
more general statement, see Proposition 3.2.4 in [16, Page 134]:
if 𝑇 ∶ 𝐿𝑝(𝐺) → 𝐿𝑞(𝐺) is left-invariant and bounded, with 1 ≤ 𝑝, 𝑞 < ∞, and

𝑝 > 𝑞, then 𝑇 = 0.

On the other hand, that (3.4) is a necessary condition for the 𝐿𝑝-𝐿𝑞-bounded-
ness of 𝐵𝑎 is the contribution to the statement in Lemma 3.2 in this paper.

3.2. 𝑳𝒑-𝑳𝒒-boundedness of pseudo-differential operators I. The aimof this
subsection is to extend the results in the previous subsection to the pseudo-
differential setting. The following result presents the necessary and sufficient
criteria for a pseudo-differential operator to be bounded from 𝐿𝑝(𝐺) into 𝐿𝑞(𝐺)
for the range 1 < 𝑝 ≤ 2 ≤ 𝑞 <∞.

Theorem 3.4. Let 1 < 𝑝 ≤ 2 ≤ 𝑞 < ∞ and 𝑚 ∈ ℝ. Let 𝐺 be a graded Lie
group of homogeneous dimension𝑄.Then, every pseudo-differential operator𝐴 ∈

Ψ𝑚

𝜌,𝛿
(𝐺 × 𝐺) with 0 ≤ 𝛿 ≤ 𝜌 ≤ 1 and 𝛿 ≠ 1, admits a bounded extension from

𝐿𝑝(𝐺) into 𝐿𝑞(𝐺), that is

∀𝑓 ∈ 𝐶∞
0
(𝐺), ‖𝐴𝑓‖𝐿𝑞 ≤ 𝐶‖𝑓‖𝐿𝑝 (3.21)

holds, if and only if,

𝑚 ≤ −𝑄 (
1

𝑝
−
1

𝑞
) . (3.22)

Proof. Assume that 𝑚 > −𝑄 (
1

𝑝
−

1

𝑞
) .We are going to show that there exists

𝐴 ∈ Ψ𝑚

𝜌,𝛿
(𝐺 × 𝐺) which is not bounded from 𝐿𝑝(𝐺) into 𝐿𝑞(𝐺).We consider

𝐴 = 𝐵−𝑚 = (1 +ℛ)
𝑚

𝜈 ∈ Ψ𝑚
1,0
(𝐺 × 𝐺) ⊂ Ψ𝑚

𝜌,𝛿
(𝐺 × 𝐺).

Since
−𝑚 < 𝑄 (

1

𝑝
−
1

𝑞
) ,

from Lemma 3.2, we have that𝐴 = 𝐵−𝑚 is not bounded from 𝐿𝑝(𝐺) into 𝐿𝑞(𝐺).
So, we have proved the necessity of the order condition (3.22). Now, in order
to prove the reverse statement, we consider𝑚 satisfying (3.22) and𝑚1 and𝑚2

satisfying the conditions

𝑚 = 𝑚1 +𝑚2, 𝑚1 ≤ −𝑄(1∕𝑝 − 1∕2), 𝑚2 ≤ −𝑄(1∕2 − 1∕𝑞). (3.23)
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If 𝐴 ∈ Ψ𝑚

𝜌,𝛿
(𝐺 × 𝐺), we factorise 𝐴 as follows,

𝐴 = 𝐵−𝑚2
𝐴0𝐵−𝑚1

, 𝐴0 = 𝐵𝑚2
𝐴𝐵𝑚1

.

Note that 𝐴0 ∈ Ψ0

𝜌,𝛿
(𝐺 × 𝐺). The Calderón-Vaillancourt theorem (Theorem

2.13(iii)) implies that𝐴0 is bounded from 𝐿2(𝐺) into 𝐿2(𝐺).On the other hand,
from Lemma 3.2 we have that 𝐵𝑚2

∶ 𝐿2(𝐺) → 𝐿𝑞(𝐺), and 𝐵𝑚1
∶ 𝐿𝑝(𝐺) →

𝐿2(𝐺), are bounded operators. In consequence, we have proved that 𝐴 admits
a bounded extension from 𝐿𝑝(𝐺) into 𝐿𝑞(𝐺). The proof is complete. □

3.3. 𝑳𝒑-𝑳𝒒-boundedness of pseudo-differential operators II. In this sub-
section, we consider the 𝐿𝑝 − 𝐿𝑞 boundedness of pseudo-differential operators
on graded Lie groups for a wider range of indices 𝑝 and 𝑞. Our main result of
this section is the following theorem.

Theorem3.5. Let 1 < 𝑝 ≤ 𝑞 <∞, 𝑚 ∈ ℝ, and let𝐺 be a graded Lie group of ho-
mogeneous dimension 𝑄. Then, every pseudo-differential operator 𝐴 ∈ Ψ𝑚

𝜌,𝛿
(𝐺 ×

𝐺) with 0 ≤ 𝛿 ≤ 𝜌 ≤ 1 and 𝛿 ≠ 1, admits a bounded extension from 𝐿𝑝(𝐺) into
𝐿𝑞(𝐺), that is

∀𝑓 ∈ 𝐶∞
0
(𝐺), ‖𝐴𝑓‖𝐿𝑞 ≤ 𝐶‖𝑓‖𝐿𝑝 (3.24)

holds in the following cases:
(i) if 1 < 𝑝 ≤ 𝑞 ≤ 2 and

𝑚 ≤ −𝑄 (
1

𝑝
−
1

𝑞
+ (1 − 𝜌) (

1

𝑞
−
1

2
)) . (3.25)

(ii) if 2 ≤ 𝑝 ≤ 𝑞 <∞ and

𝑚 ≤ −𝑄 (
1

𝑝
−
1

𝑞
+ (1 − 𝜌) (

1

2
−
1

𝑝
)) ; (3.26)

Proof. (i) Let us consider 𝑝, 𝑞 and 𝑚 satisfying the conditions given in

(i). Choose𝑚′ = −𝑄 (
1

𝑝
−

1

𝑞
) and this implies that the Bessel potential

𝐵−𝑚′ is bounded from 𝐿𝑝(𝐺) to 𝐿𝑞(𝐺) as a consequence of Lemma 3.2.
For 𝐴 ∈ Ψ𝑚

𝜌,𝛿
(𝐺 × 𝐺), we decompose it as follows:

𝐴 = (𝐴𝐵𝑚′)𝐵−𝑚′ .

Now,wenote that operator𝐴𝐵𝑚′ ∈ Ψ𝑚−𝑚′

𝜌,𝛿
(𝐺×𝐺)with𝑚−𝑚′ satisfying

𝑚 −𝑚′ ≤ −𝑄(1 − 𝜌) (
1

𝑞
−

1

2
) . Then, Theorem 2.14 shows that 𝐴𝐵𝑚′ is

bounded operator from 𝐿𝑞(𝐺) into 𝐿𝑞(𝐺). Therefore, we conclude that
the operator 𝐴 has a bounded extension from 𝐿𝑝(𝐺) into 𝐿𝑞(𝐺).

(ii) To prove this part we follow the same strategy as in Part (i). We factorise
the operator 𝐴 ∈ Ψ𝑚

𝜌,𝛿
(𝐺 × 𝐺) in the following manner:

𝐴 = 𝐵−𝑚′(𝐵𝑚′𝐴),
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where𝑚′ = −𝑄(
1

𝑝
−

1

𝑞
). Again, it follows from Lemma 3.2 that the op-

erator 𝐵−𝑚′ is a bounded from 𝐿𝑝(𝐺) into 𝐿𝑞(𝐺). On the other hand,

the operator 𝐵𝑚′𝐴 ∈ Ψ𝑚−𝑚′

𝜌,𝛿
(𝐺 ×𝐺)with𝑚−𝑚′ ≤ −𝑄(1−𝜌) (

1

2
−

1

𝑝
) ,

which, as a consequence of Theorem 2.14, yields that the operator
𝐵−𝑚′𝐴 is bounded from 𝐿𝑝(𝐺) into 𝐿𝑝(𝐺).Hence, we conclude that the
operator 𝐴 has a bounded extension from 𝐿𝑝(𝐺) into 𝐿𝑞(𝐺).

This completes the proof of this theorem. □

Now, we illustrate with an example our main Theorem 1.1. We end this sec-
tion with the following example.

Example 3.6. Let 𝐿1, 𝐿2 ∈ 𝐶∞(𝐺) be complex-valued smooth functions with
bounded derivatives, i.e. such that for any 𝛼, 𝑋𝛼

𝑥𝐿1 and𝑋𝛼
𝑥𝐿2 are bounded func-

tions and such that for some Λ ≥ 0, there exists a constant 𝑐Λ > 0 such that
they satisfy the following growth condition

∀𝑥 ∈ 𝐺, ∀𝜆 ≥ Λ, |𝐿1(𝑥) + 𝐿2(𝑥)𝜆| ≥ 𝑐Λ(1 + 𝜆). (3.27)

Then the operator

𝐴(𝑥,ℛ) ∶= 𝐿1(𝑥) + 𝐿2(𝑥)ℛ ∈ Ψ𝜈
1,0
(𝐺 × 𝐺)

is a non-invariant elliptic operator with a left-parametrix 𝑃(𝑥,ℛ) ∈ Ψ−𝜈
1,0
(𝐺×𝐺)

(see [16, Proposition 5.8.2] and [10]). According to the order condition in (1.5),
if

𝜈 ≥ 𝑄 (
1

𝑝
−
1

𝑞
) , (3.28)

where 𝑄 is the homogeneous dimension of the group 𝐺,

𝑃(𝑥,ℛ) ∶ 𝐿𝑝(𝐺)→ 𝐿𝑞(𝐺)

is bounded.
We note that the inequality in (3.28) is not sharp in the sense that the differ-

ence

𝜈 − 𝑄 (
1

𝑝
−
1

𝑞
)

could be strictly positive. However, if 𝑟, 𝑎 ∈ ℝ are real parameters in such a
way that

𝑟 − 𝑎 = 𝜈 − 𝑄 (
1

𝑝
−
1

𝑞
) ,

we will use this fact in Theorem 4.1 in the next section to establish the subel-
liptic regularity of elliptic operators.
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4. Applications
4.1. Subelliptic regularity ongradedLie groups. This subsection is devoted
to applying the 𝐿𝑝-𝐿𝑞-boundedness of pseudo-differential operators on graded
Lie groups to the validity of subelliptic estimates for elliptic operators. For the
main aspects of this subject in the Euclidean setting and on compact manifolds
we refer to Hörmander [24, 25] and Kohn and Nirenberg [28], see also Taylor
[44].

Theorem 4.1. Let 𝐿1, 𝐿2 ∈ 𝐶∞(𝐺) be complex functions satisfying the growth
property in (3.27). Let ℛ be a positive Rockland operator of homogeneous degree
𝜈 > 0, and assume that 𝑢 ∈ S ′(𝐺) and 𝑓 ∈ 𝐶∞(𝐺) are solutions of the equation

𝐴(𝑥,ℛ)𝑢 = 𝑓, 𝐴(𝑥,ℛ) ∶= 𝐿1(𝑥) + 𝐿2(𝑥)ℛ. (4.1)

If 𝑓 ∈ 𝐿
𝑝
𝑟 (𝐺), for some 𝑟 ∈ ℝ, with 1 < 𝑝 < ∞, then for any 𝑠 ∈ ℝ, there exists

𝐶𝑠 > 0, such that the a-priori estimate

‖𝑢‖𝐿𝑞𝑎
≤ 𝐶𝑠(‖𝑓‖𝐿𝑝𝑟 (𝐺)

+ ‖𝑢‖𝐿𝑞−𝑠(𝐺)
), (4.2)

holds for 𝑎 ∈ ℝ provided that 1 < 𝑝 ≤ 𝑞 <∞ and that

𝜈 ≥ 𝑎 − 𝑟 + 𝑄 (
1

𝑝
−
1

𝑞
) . (4.3)

Proof. Let 𝑃 ∶= 𝑃(𝑥,ℛ) be a left-parametrix of 𝐴 ∶= 𝐴(𝑥,ℛ). Then, we have
that 𝑆 ∶= 𝑃𝐴− 𝐼 ∈ Ψ−∞

1,0
(𝐺 ×𝐺). Let 𝑎, 𝑟, 𝑠 ∈ ℝ. From the identity 𝐴𝑢 = 𝑓,we

have that
𝑃𝐴𝑢 = 𝑢 + 𝑆𝑢 = 𝑃𝑓, (4.4)

and then

‖𝐵−𝑎𝑢‖𝐿𝑞(𝐺) = ‖𝐵−𝑎𝑃𝑓 − 𝐵−𝑎𝑆𝑢‖𝐿𝑞(𝐺) ≤ ‖𝐵−𝑎𝑃𝐵𝑟𝐵−𝑟𝑢‖𝐿𝑞(𝐺) + ‖𝐵−𝑠𝑆𝑢‖𝐿𝑞(𝐺).

(4.5)
Since the operator 𝐵−𝑎𝑆 is smoothing, we have that, for any 𝑠 ∈ ℝ, there exists
𝐶𝑠 > 0 such that the following inequality holds

‖𝐵−𝑎𝑆𝑢‖𝐿𝑞(𝐺) = ‖𝐵−𝑎𝑆𝐵−𝑠𝐵𝑠𝑢‖𝐿𝑞(𝐺) ≤ 𝐶𝑠‖𝐵𝑠𝑢‖𝐿𝑞(𝐺) = 𝐶𝑠‖𝑢‖𝐿𝑞−𝑠(𝐺)
.

On the other hand, the operator 𝐵−𝑎𝑃𝐵𝑟 has order 𝑎 − 𝜈 − 𝑟 and it is bounded
from 𝐿𝑝(𝐺) into 𝐿𝑞(𝐺) (see (1.5) and Remark 1.2) if

−𝑎 + 𝜈 + 𝑟 ≥ 𝑄 (
1

𝑝
−
1

𝑞
) .

In this case we have that

‖𝑢‖𝐿𝑞𝑎(𝐺)
= ‖𝐵−𝑎𝑢‖𝐿𝑞(𝐺) ≲𝑠 ‖𝐵−𝑟𝑢‖𝐿𝑝(𝐺) + ‖𝑢‖𝐿𝑞−𝑠(𝐺)

= ‖𝑢‖𝐿𝑝𝑟 (𝐺)
+ ‖𝑢‖𝐿𝑞−𝑠(𝐺)

.

The proof is complete. □
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4.2. 𝑳𝒑-𝑳𝒒-bounds for 𝝉-quantisations ongradedLie groups. This subsec-
tion is devoted to discussing the implications of our results in the setting of
newly developed 𝜏-quantisation on graded Lie groups by the third author with
S. Federico and D. Rottensteiner [14] (see also [31] for general locally compact
groups). We refer to [14] for more details on the 𝜏-quantisation and several
other results including the global symbolic calculus for this general quantisa-
tion.
Wewill here briefly recall the relationship between the 𝜏-quatisation and the

global Kohn-Nirenberg quantisation on graded Lie groups.
We say that a measurable function 𝜏 ∶ 𝐺 → 𝐺 often referred as quantising

function satisfies the property (HP) if, by representing it via exponential coor-
dinates as 𝜏(𝑥) = (𝑐𝜏

1
(𝑥),… , 𝑐𝜏𝑛(𝑥)) ∈ 𝐺, either the coordinates 𝑐𝜏

𝑖
, 𝑖 = 1,… , 𝑛,

of 𝜏(𝑥) vanish identically or are homogeneous polynomials given by
𝑐𝜏
𝑖
(𝑥) ∶= 𝑐𝜏

𝑖
(𝑥1,… , 𝑥𝑖) = 𝐶𝜏

𝑖
𝑥𝑖 + 𝑑𝜏

𝑖
(𝑥1,… , 𝑥𝑖−1)

for some nonzero 𝐶𝜏
𝑖
and some homogeneous polynomials 𝑑𝜏

𝑖
of degree 𝜈𝑖 de-

pending only on 𝑥𝑘 for 𝑘 = 1,… , 𝑖−1.Having this quantisation function 𝜏, one
defines the 𝜏-quantisation on a graded Lie group 𝐺 by

Op𝜏(𝜎)𝑓(𝑥) = ∫
𝐺

Tr (∫
𝐺

𝜋(𝑦−1𝑥)𝜎(𝑥𝜏(𝑦−1𝑥)−1, 𝜋)𝑓(𝑦)𝑑𝑦)𝑑𝜋. (4.6)

In the following result of [14], the authors established the relationship between
the Kohn-Nirenberg quantisation and the 𝜏-quantisation on graded Lie groups.
Theorem 4.2. [14, Theorem 4.12] Let 𝜏 be quantising function different from
the constant function 𝜏 ≡ 𝑒𝐺 on 𝐺 which satisfies the property (HP) and let 𝐴 be
a continuous operator from S (𝐺) to S (𝐺). Assume that 𝑚 ∈ ℝ and 0 ≤ 𝛿 <

min{𝜌,
1

𝜈𝑛
} ≤ 1 and there exist two symbols 𝜎 and 𝜎𝜏 such that 𝐴 = Op𝜏(𝜎𝜏) =

Op(𝜎). Then 𝜎 ∈ 𝑆𝑚
𝜌,𝛿
(𝐺 × 𝐺) if and only if 𝜎𝜏 ∈ 𝑆𝑚

𝜌,𝛿
(𝐺 × 𝐺).

By combining Theorem 4.2, Theorem 3.4 and Theorem 3.5 we obtain the
following 𝐿𝑝-𝐿𝑞 boundedness result for the 𝜏-quantisation of operators on 𝐺.

Theorem 4.3. Let 𝑚 ∈ ℝ, 0 ≤ 𝛿 < min{𝜌,
1

𝜈𝑛
} ≤ 1, and let 𝜏 be a quantising

function satisfying (HP). Then, for 1 < 𝑝 ≤ 𝑞 <∞, the operator 𝑇 = Op𝜏(𝜎) has
a bounded extension from 𝐿𝑝(𝐺) to 𝐿𝑞(𝐺) for 𝜎 ∈ 𝑆𝑚

𝜌,𝛿
(𝐺 × 𝐺) if

𝑚 ≤ −𝑄 (
1

𝑝
−
1

𝑞
+ (1 − 𝜌)max {

1

2
−
1

𝑝
,
1

𝑞
−
1

2
, 0}) .

Moreover, every operator Op𝜏(𝜎) has a bounded extension from 𝐿𝑝(𝐺) to 𝐿𝑞(𝐺)

for the range 1 < 𝑝 ≤ 2 ≤ 𝑞 <∞ if and only if𝑚 ≤ −𝑄 (
1

𝑝
−

1

𝑞
) .

Proof. It follows from Theorem 4.2 that the operator 𝐴 = Op𝜏(𝜎) can be writ-
ten as𝐴 = Op(𝜎′) for some 𝜎′ ∈ 𝑆𝑚

𝜌,𝛿
(𝐺×𝐺) in a unique way. Hence, the asser-

tion of theorem immediately follows from Theorem 3.4 and Theorem 3.5. □
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