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Monogenic even octic polynomials
and their Galois groups

Lenny Jones

Abstract. A monic polynomial 𝑓(𝑥) ∈ ℤ[𝑥] of degree 𝑁 is called mono-
genic if 𝑓(𝑥) is irreducible overℚ and {1, 𝜃, 𝜃2, … , 𝜃𝑁−1} is a basis for the ring
of integers of ℚ(𝜃), where 𝑓(𝜃) = 0. In a series of recent articles, complete
classifications of the Galois groups were given for irreducible polynomials

ℱ(𝑥) ∶= 𝑥8 + 𝑎𝑥4 + 𝑏 ∈ ℤ[𝑥]

and
𝒢(𝑥) ∶= 𝑥8 + 𝑎𝑥6 + 𝑏𝑥4 + 𝑎𝑥2 + 1 ∈ ℤ[𝑥], 𝑎 ≠ 0.

In this article, for each Galois group 𝐺 arising in these classifications, we ei-
ther construct an infinite family ofmonogenic octic polynomialsℱ(𝑥) or𝒢(𝑥)
having Galois group 𝐺, or we prove that at most a finite such family exists.
In the finite family situations, we determine all such polynomials. Here, a
“family" means that no two polynomials in the family generate isomorphic
octic fields.
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1. Introduction
Unless stated otherwise, when we say that 𝑓(𝑥) ∈ ℤ[𝑥] is “irreducible", we

mean irreducible over ℚ. We let ∆(𝑓) and ∆(𝐾) denote the discriminants over
ℚ, respectively, of 𝑓(𝑥) and a number field𝐾. If 𝑓(𝑥) is irreducible, with 𝑓(𝜃) =
0 and 𝐾 = ℚ(𝜃), then [7]

∆(𝑓) = [ℤ𝐾 ∶ ℤ[𝜃]]
2 ∆(𝐾), (1.1)

where ℤ𝐾 is the ring of integers of 𝐾. We define a monic polynomial 𝑓(𝑥) ∈
ℤ[𝑥] to be monogenic if 𝑓(𝑥) is irreducible and ℤ𝐾 = ℤ[𝜃], or equivalently
from (1.1), that ∆(𝑓) = ∆(𝐾). When 𝑓(𝑥) is monogenic, {1, 𝜃, 𝜃2, … , 𝜃deg(𝑓)−1}
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is a basis for ℤ𝐾 , commonly referred to as a power basis. The existence of a
power basis facilitates computations in ℤ𝐾 , as in the case of the cyclotomic
polynomials Φ𝑛(𝑥) [45]. A number field 𝐾 is defined to be mongenic if there
exists a power basis for ℤ𝐾 .
We caution the reader concerning two items. Certainly, the monogenicity of

𝑓(𝑥) implies the monogenicity of 𝐾 = ℚ(𝜃), where 𝑓(𝜃) = 0. However, the
converse is not necessarily true. For example, let 𝑓(𝑥) = 𝑥2 − 5 and 𝐾 = ℚ(𝜃),
where 𝜃 =

√
5. Then, easy calculations show that ∆(𝑓) = 20 and ∆(𝐾) = 5.

Thus, 𝑓(𝑥) is not monogenic, but𝐾 is monogenic since {1, (𝜃+1)∕2} is a power
basis for ℤ𝐾 . A second item of concern is the following. We see from (1.1) that
if ∆(𝑓) is squarefree, then 𝑓(𝑥) is monogenic. However, the converse is false in
general, and when ∆(𝑓) is not squarefree, it can be quite difficult to determine
whether 𝑓(𝑥) is monogenic.
In a series of recent articles [1–3, 6], complete classifications of the Galois

groups were given for irreducible polynomials

ℱ(𝑥) ∶= 𝑥8 + 𝑎𝑥4 + 𝑏 ∈ ℤ[𝑥], (1.2)

and
𝒢(𝑥) ∶= 𝑥8 + 𝑎𝑥6 + 𝑏𝑥4 + 𝑎𝑥2 + 1 ∈ ℤ[𝑥], 𝑎 ≠ 0. (1.3)

These classifications provide Gal(ℱ) and Gal(𝒢), the Galois groups over ℚ of
ℱ(𝑥) and 𝒢(𝑥), respectively, by determining whether certain expressions in-
volving only the coefficients of ℱ(𝑥) and 𝒢(𝑥) are, or are not, squares in ℤ. We
point out that some of the results in [1–3, 6] were given over ℚ or an arbitrary
field of characteristic zero. However, in this article, we are only concerned with
polynomials with coefficients in ℤ.
Using the standard “8TX"-notation for transitive groups of degree 8 as given

inMagma and [5,8,36], the values of X that arise in the classifications in [1–3,6]
for ℱ(𝑥) and 𝒢(𝑥) are, respectively,

𝑋ℱ ∶= {2, 3, 4, 6, 8, 9, 11, 15, 16, 17, 22, 26} and 𝑋𝒢 ∶= {2, 3, 4, 9, 10, 18}. (1.4)

Using 𝐶𝑛 to denote the cyclic group of order 𝑛, 𝐷𝑛 to denote the dihedral group
of order 2𝑛, 𝑄8 to denote the quaterion group, × to denote a direct product, ⋊
to denote a semi-direct product, . to denote a non-split extension, ◦ to denote a
central product, ≀ to denote a wreath product andHol to denote the holomorph,
we provide in Table 1 some more-familiar names for the groups in (1.4).

X 2 3 4 6 8 9 10
8TX 𝐶2 × 𝐶4 𝐶32 𝐷4 𝐷8 𝑄8 ⋊ 𝐶2 𝐶2 × 𝐷4 𝐶22 ⋊ 𝐶4
X 11 15 16 17 18 22 26
8TX 𝐶4◦𝐷4 𝐶8 ⋊ 𝐶22 𝐶4.𝐷4 𝐶4 ≀ 𝐶2 𝐶22 ≀ 𝐶2 𝐷4◦𝐷4 Hol(𝐷4)

Table 1. Familiar names for the groups 8TX in (1.4)
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In this article, for each value of X in (1.4), we either construct an infinite
family of monogenic polynomials ℱ(𝑥) or 𝒢(𝑥) in ℤ[𝑥] having Galois group
8TX, or we prove that at most a finite such family exists. In the finite family
situations, we determine all such polynomials. In certain cases, there are no
such polynomials. By a “family", wemean that all polynomials in the family are
distinct in the sense that no two polynomials in the family generate isomorphic
octic fields.
More precisely, we prove the following:

Theorem 1.1. Let ℱ(𝑥) ∈ ℤ[𝑥] and 𝒢(𝑥) ∈ ℤ[𝑥] be as defined in (1.2) and
(1.3). Let 𝑋ℱ and 𝑋𝒢 be as defined in (1.4).

(1) For each X ∈ {9, 15, 17, 26}, there exists at least one infinite family of
monogenic polynomialsℱ(𝑥) having Galois group 8TX. For all other val-
ues of X ∈ 𝑋ℱ , there exist at most finitely many monogenic polynomials
ℱ(𝑥) having Galois group 8TX.

(2) For each X ∈ {9, 18}, there exists at least one infinite family of monogenic
polynomials 𝒢(𝑥) having Galois group 8TX. For all other values of X ∈
𝑋𝒢, there exist at most finitely many monogenic polynomials 𝒢(𝑥) having
Galois group 8TX.

The literature involving the construction of monogenic or non-monogenic
polynomials is fairly extensive [9, 11, 16–21, 23–30, 32, 33, 35, 41–43]. However,
the approach used in the proof of Theorem 1.1 differs from most previously-
addressed situations in that eachmonogenic family is constructedwith the spe-
cific goal that every polynomial in the family has the same Galois group. We
do point out that a similar approach was carried out in [11, 30] for monogenic
quartic polynomials and their Galois groups. Of course, in the quartic case, a
complete classification of the Galois groups is known [34].
Another distinction of Theorem 1.1 is the fact that, for certain groups 𝐺, we

also establish the nonexistence of amonogenic polynomialℱ(𝑥) or 𝒢(𝑥) having
Galois group 𝐺. Consequently, Theorem 1.1 is somewhat more in line with the
following theorem of Gras [10]:
Theorem 1.2. [10] Let 𝓁 be a prime, and let 𝐾 be a degree-𝓁 cyclic extension of
ℚ. If 𝓁 ≥ 5, then ℤ𝐾 does not have a power basis except in the case when 2𝓁 + 1
is prime and 𝐾 = ℚ(𝜁2𝓁+1 + 𝜁−12𝓁+1), the maximal real subfield of the cyclotomic
fieldℚ(𝜁2𝓁+1), where Φ2𝓁+1(𝜁2𝓁+1) = 0.
Byproviding two examples, we illustrate howTheorem1.2 fits into the frame-

work of Theorem 1.1. Suppose first that 𝓁 = 7. Then, since 2 ⋅ 7 + 1 = 15 is
not prime, Theorem 1.2 tells us that no monogenic polynomial of degree 7 ex-
ists having Galois group 7T1 = 𝐶7. However, if 𝓁 = 5, then 2 ⋅ 5 + 1 = 11 is
prime, and we conclude from Theorem 1.2 that there exists a degree-5 mono-
genic polynomial 𝑓(𝑥) having Galois group 5T1 = 𝐶5. For example, if 𝑓(𝑥) =
𝑥5 + 𝑥4 − 4𝑥3 − 3𝑥2 + 3𝑥 + 1, which is the minimal polynomial over ℚ of
𝛼 = 𝜁11 + 𝜁−111 , where 𝜁11 is a primitive 11th root of unity, then 𝑓(𝑥) is mono-
genic andGal(𝑓) ≃ 5T1. Moreover, Theorem 1.2 says that𝑓(𝑥) is essentially the
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only such polynomial, in the sense that if 𝑔(𝑥) is a degree-5 monogenic polyno-
mial with 𝑔(𝑥) ≠ 𝑓(𝑥) and Gal(𝑔) ≃ 5T1, then ℚ(𝛽) = ℚ(𝛼), where 𝑔(𝛽) = 0.
Computer computations in this article were done using either Magma [4],

Maple [38] or Sage [40].

2. Preliminaries
When we refer to an expression as being a square, we mean a square in ℤ.

The next theorem follows from [37].

Theorem 2.1. Let 𝑁 ≥ 0 be an integer. Then 2𝑁 − 1 is a square if and only if
𝑁 ∈ {0, 1}.

The formula for the discriminant of an arbitrary monic trinomial, due to
Swan [44, Theorem 2], is given in the following theorem.

Theorem 2.2. Let 𝑓(𝑥) = 𝑥𝑛 + 𝐴𝑥𝑚 + 𝐵 ∈ ℚ[𝑥], where 0 < 𝑚 < 𝑛, and let
𝑑 = gcd(𝑛,𝑚). Then

∆(𝑓) = (−1)𝑛(𝑛−1)∕2𝐵𝑚−1
(
𝑛𝑛∕𝑑𝐵(𝑛−𝑚)∕𝑑 − (−1)𝑛∕𝑑(𝑛 − 𝑚)(𝑛−𝑚)∕𝑑𝑚𝑚∕𝑑𝐴𝑛∕𝑑)𝑑 .

The next two theorems are transcriptions due to Awtrey and Patane [3] of
the more-algorithmic classifications of ℱ(𝑥) given in [6].

Theorem2.3. Letℱ(𝑥) be as defined in (1.2). Suppose that𝑏 and
√
𝑏 are squares.

Then Gal(ℱ) is isomorphic to
(1) 8T2 if and only if −𝑎2 + 4𝑏 is a square,
(2) 8T3 if and only if 𝑎 + 2

√
𝑏 is a square,

(3) 8T4 if and only if 𝑎 − 2
√
𝑏 is a square,

(4) 8T9 if and only if none of −𝑎2 + 4𝑏, 𝑎 + 2
√
𝑏 and 𝑎 − 2

√
𝑏 is a square.

Theorem 2.4. Let ℱ(𝑥) be as defined in (1.2). Suppose that 𝑏 is a square and√
𝑏 is not a square. Then Gal(ℱ) is isomorphic to

(1) 8T2 if and only if 𝑎 + 2
√
𝑏 and 𝑎

√
𝑏 − 2𝑏 are both squares,

(2) 8T4 if and only if both quantities in one of the following pairs are squares:

(𝑎 + 2
√
𝑏,−𝑎

√
𝑏 + 2𝑏), (𝑎 − 2

√
𝑏, 𝑎

√
𝑏 + 2𝑏), (−𝑎

√
𝑏 + 2𝑏, 𝑎

√
𝑏 + 2𝑏).

(3) 8T9 if and only if (𝑎 − 4𝑏)
√
𝑏 is a not a square, and exactly one of

𝑎 + 2
√
𝑏, 𝑎 − 2

√
𝑏, −𝑎

√
𝑏 + 2𝑏, 𝑎

√
𝑏 + 2𝑏

is a square.
(4) 8T11 if and only if neither −𝑎

√
𝑏 + 2𝑏 nor 𝑎

√
𝑏 + 2𝑏 is a square, and

exactly one of

−𝑎2 + 4𝑏, −𝑎
√
𝑏 − 2𝑏, (𝑎2 − 4𝑏)

√
𝑏, 𝑎

√
𝑏 − 2𝑏, (4𝑏 − 𝑎2)

√
𝑏

is a square,
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(5) 8T22 if and only if none of

𝑎 + 2
√
𝑏, 𝑎 − 2

√
𝑏, −𝑎

√
𝑏 + 2𝑏, 𝑎

√
𝑏 + 2𝑏,

−𝑎2 + 4𝑏, −𝑎
√
𝑏 − 2𝑏, (𝑎2 − 4𝑏)

√
𝑏, 𝑎

√
𝑏 − 2𝑏, (4𝑏 − 𝑎2)

√
𝑏

is a square.

The next theorem is a compilation of the classifications given in [1] and [3].

Theorem 2.5. Letℱ(𝑥) be as defined in (1.2). Suppose that 𝑏 is not a square.
(1) Then Gal(ℱ) ≃ 8T16 if and only if 𝑏(𝑎2 − 4𝑏) is a square.
(2) Then Gal(ℱ) ≃ 8T17 if and only if 𝑏(𝑎2−4𝑏) is not a square and 4𝑏−𝑎2

is a square.
(3) Suppose further that neither 𝑏(𝑎2 − 4𝑏) nor 4𝑏 − 𝑎2 is a square.

(a) Then Gal(ℱ) ≃ 8T6 if and only if one of

2
√
−𝑏, 4𝑏 + 2

√
−𝑏(𝑎2 − 4𝑏), 4𝑏 − 2

√
−𝑏(𝑎2 − 4𝑏)

is a nonzero square.
(b) Then Gal(ℱ) ≃ 8T8 if and only if

2(𝑎2 − 4𝑏)
√
−𝑏 or − 4𝑏 + 2

√
−𝑏(𝑎2 − 4𝑏)

is a nonzero square.
(c) Then Gal(ℱ) ≃ 8T15 if and only if −𝑏 or −𝑏(𝑎2 − 4𝑏) is a square,

and none of

2
√
−𝑏, 2(𝑎2 − 4𝑏)

√
−𝑏, 4𝑏 + 2

√
−𝑏(𝑎2 − 4𝑏),

4𝑏 − 2
√
−𝑏(𝑎2 − 4𝑏), −4𝑏 + 2

√
−𝑏(𝑎2 − 4𝑏)

is a nonzero square.
(d) Then Gal(ℱ) ≃ 8T26 if and only if neither −𝑏 nor −𝑏(𝑎2 − 4𝑏) is a

square.

The next two theorems present the classification of the Galois groups given
in [2] for 𝒢(𝑥), as defined in (1.3). We let

𝑊1 ∶= 𝑏 + 2 − 2𝑎, 𝑊2 ∶= 𝑏 + 2 + 2𝑎 and 𝑊3 ∶= 𝑎2 − 4𝑏 + 8. (2.1)

Theorem 2.6. Let 𝒢(𝑥) be as defined in (1.3). Then Gal(𝒢) ≃
(1) 8T2 if and only if exactly two of

𝑊1𝑊3, 𝑊2𝑊3 and 𝑊1𝑊2𝑊3 are squares,

(2) 8T3 if and only if all of
𝑊1, 𝑊2 and 𝑊1𝑊2 are squares,

(3) 8T10 if and only if exactly one of
𝑊1𝑊3, 𝑊2𝑊3 and 𝑊1𝑊2𝑊3 is a square,

(4) 8T18 if and only if none of
𝑊1, 𝑊2, 𝑊1𝑊2, 𝑊1𝑊3, 𝑊2𝑊3 and 𝑊1𝑊2𝑊3 is a square.
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Theorem 2.7. Gal(𝒢) ≃ 8T4 or 8T9 if and only if exactly one of

𝑊1, 𝑊2 and 𝑊1𝑊2 is a square,

and none of

𝑊1𝑊3, 𝑊2𝑊3 and 𝑊1𝑊2𝑊3 is a square.

Furthermore, if Gal(𝒢) ≃ 8T4 or 8T9, then Gal(𝒢) ≃ 8T4 if and only if
either exactly one of

𝑊2

(
−𝑎 + 4 − 2

√
𝑊1

)
and 𝑊2

(
−𝑎 + 4 + 2

√
𝑊1

)
is a square

when𝑊1 is a square,
or exactly one of

𝑊1

(
−𝑎 − 4 − 2

√
𝑊2

)
and 𝑊1

(
−𝑎 − 4 + 2

√
𝑊2

)
is a square

when𝑊2 is a square,
or exactly one of

𝑊2
(
(12 − 2𝑏 −𝑊3)2 − 4𝑊1𝑊2

)
, 𝑊2

(
2𝑏 +𝑊3 − 12 + 2

√
𝑊1𝑊2

)

and 𝑊2

(
2𝑏 +𝑊3 − 12 − 2

√
𝑊1𝑊2

)
is a square

when𝑊1𝑊2 is a square;
otherwise, Gal(𝒢) ≃ 8T9.

The following theorem, which is known as Dedekind’s Index Criterion, or
simply Dedekind’s Criterion if the context is clear, is a standard tool used in
determining the monogenicity of a polynomial.

Theorem 2.8 (Dedekind [7]). Let𝐾 = ℚ(𝜃) be a number field, 𝑇(𝑥) ∈ ℤ[𝑥] the
monicminimal polynomial of 𝜃, andℤ𝐾 the ring of integers of𝐾. Let 𝑞 be a prime
number and let ∗ denote reduction of ∗modulo 𝑞 (in ℤ, ℤ[𝑥] or ℤ[𝜃]). Let

𝑇(𝑥) =
𝑘∏

𝑖=1
𝜏𝑖(𝑥)𝑒𝑖

be the factorization of 𝑇(𝑥)modulo 𝑞 in 𝔽𝑞[𝑥], and set

ℎ1(𝑥) =
𝑘∏

𝑖=1
𝜏𝑖(𝑥),

where the 𝜏𝑖(𝑥) ∈ ℤ[𝑥] are arbitrary monic lifts of the 𝜏𝑖(𝑥). Let ℎ2(𝑥) ∈ ℤ[𝑥] be
a monic lift of 𝑇(𝑥)∕ℎ1(𝑥) and set

𝐹(𝑥) =
ℎ1(𝑥)ℎ2(𝑥) − 𝑇(𝑥)

𝑞 ∈ ℤ[𝑥].

Then

[ℤ𝐾 ∶ ℤ[𝜃]] ≢ 0 (mod 𝑞)⟺ gcd
(
𝐹, ℎ1, ℎ2

)
= 1 in 𝔽𝑞[𝑥].
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The next result is the specific case for our octic situation of a “streamlined"
version of Dedekind’s index criterion for trinomials that is due to Jakhar, Khan-
duja and Sangwan [15].

Theorem 2.9. [15] Let𝐾 = ℚ(𝜃) be an algebraic number field with 𝜃 ∈ ℤ𝐾 , the
ring of integers of 𝐾, having minimal polynomialℱ(𝑥) = 𝑥8 +𝑎𝑥4 +𝑏 overℚ. A
prime factor 𝑞 of∆(ℱ) = 216𝑏3(𝑎2−4𝑏)4 does not divide [ℤ𝐾 ∶ ℤ[𝜃]] if and only
if 𝑞 satisfies on of the following conditions:

(1) when 𝑞 ∣ 𝑎 and 𝑞 ∣ 𝑏, then 𝑞2 ∤ 𝑏;
(2) when 𝑞 ∣ 𝑎 and 𝑞 ∤ 𝑏, then

either 𝑞 ∣ 𝑎2 and 𝑞 ∤ 𝑏1 or 𝑞 ∤ 𝑎2
(
−𝑏𝑎22 − 𝑏21

)
,

where 𝑎2 = 𝑎∕𝑞 and 𝑏1 =
𝑏+(−𝑏)𝑞𝑗

𝑞
with 𝑞𝑗 ∣∣ 8;

(3) when 𝑞 ∤ 𝑎 and 𝑞 ∣ 𝑏, then
either 𝑞 ∣ 𝑎1 and 𝑞 ∤ 𝑏2 or 𝑞 ∤ 𝑎1𝑏32 (−𝑎𝑎1 + 𝑏2) ,

where 𝑎1 =
𝑎+(−𝑎)𝑞𝑒

𝑞
with 𝑞𝑒 ∣∣ 4, and 𝑏2 = 𝑏∕𝑞;

(4) when 𝑞 = 2 and 2 ∤ 𝑎𝑏, then the polynomials

𝐻1(𝑥) ∶= 𝑥2 + 𝑎𝑥 + 𝑏 and 𝐻2(𝑥) ∶=
𝑎𝑥4 + 𝑏 + (−𝑎𝑥 − 𝑏)4

2
are coprime modulo 2;

(5) when 𝑞 ∤ 2𝑎𝑏, then 𝑞2 ∤
(
𝑎2 − 4𝑏

)
.

Remark 2.10. We will find both Theorem 2.8 and Theorem 2.9 useful in our
investigations.

The remaining discussion and results in this section are crucial for the con-
struction of the infinite families described in the proof of Theoem 1.1. In partic-
ular, Corollary 2.14 and Lemma 2.15 provide guidelines as to how to guarantee
the existence of infinitely many values of the coefficients of ℱ(𝑥) and 𝒢(𝑥) in
order to ensure the monogenicity of ℱ(𝑥) and 𝒢(𝑥).

Theorem 2.11. Let 𝐺(𝑡) ∈ ℤ[𝑡], and suppose that 𝐺(𝑡) factors into a product of
distinct non-constant polynomials 𝛾𝑖(𝑡) ∈ ℤ[𝑡] that are irreducible over ℤ, such
that the degree of each 𝛾𝑖(𝑡) is at most 3. Define

𝑁𝐺 (𝑋) = |||{𝑝 ≤ 𝑋 ∶ 𝑝 is prime and 𝐺(𝑝) is squarefree}||| .
Then,

𝑁𝐺(𝑋) ∼ 𝐶𝐺
𝑋

log(𝑋)
, (2.2)

where

𝐶𝐺 =
∏

𝓁 prime

(1 −
𝜌𝐺

(
𝓁2
)

𝓁(𝓁 − 1)
) (2.3)

and 𝜌𝐺
(
𝓁2
)
is the number of 𝑧 ∈

(
ℤ∕𝓁2ℤ

)∗
such that 𝐺(𝑧) ≡ 0 (mod 𝓁2).
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Remark 2.12. Theorem 2.11 follows fromwork of Helfgott, Hooley and Pasten
[13, 14, 39]. For more details, see the discussion following [20, Theorem 2.11].

Definition 2.13. In the context of Theorem2.11, for𝐺(𝑡) ∈ ℤ[𝑡] and a prime𝓁,
if𝐺(𝑧) ≡ 0 (mod 𝓁2) for all 𝑧 ∈

(
ℤ∕𝓁2ℤ

)∗
, we say that𝐺(𝑡) has a local obstruc-

tion at 𝓁. A polynomial 𝐺(𝑡) ∈ ℤ[𝑡] is said to have no local obstructions, if for
every prime 𝓁 there exists some 𝑧 ∈

(
ℤ∕𝓁2ℤ

)∗
such that 𝐺(𝑧) ≢ 0 (mod 𝓁2).

Note that 𝐶𝐺 > 0 in (2.3) if and only if𝐺(𝑡) has no local obstructions. Conse-
quently, it follows that 𝑁𝐺(𝑋) → ∞ as 𝑋 → ∞ in (2.2), when 𝐺(𝑡) has no local
obstructions. Hence, we have the following immediate corollary of Theorem
2.11.

Corollary 2.14. Let 𝐺(𝑡) ∈ ℤ[𝑡], and suppose that 𝐺(𝑡) factors into a product of
distinct non-constant polynomials 𝛾𝑖(𝑡) ∈ ℤ[𝑥] that are irreducible over ℤ, such
that the degree of each 𝛾𝑖(𝑡) is at most 3. To avoid the situation when 𝐶𝐺 = 0
(in (2.3)), we suppose further that 𝐺(𝑡) has no local obstructions. Then there exist
infinitely many primes 𝑝 such that 𝐺(𝑝) is squarefree.

The following lemma, which generalizes a discussion found in [27], will be
useful in the proof of Theorem 1.1.

Lemma 2.15. Let 𝐺(𝑡) ∈ ℤ[𝑡] with deg(𝐺) = 𝑁, and suppose that 𝐺(𝑡) factors
into a product of distinct non-constant polynomials that are irreducible over ℤ,
such that the degree of each factor is at most 3. If 𝐺(𝑡) has an obstruction at the
prime 𝓁, then 𝓁 ≤ (𝑁𝓁 + 2)∕2, where𝑁𝓁 is the number of not-necessarily distinct
non-constant linear factors of 𝐺(𝑡) in 𝔽𝓁[𝑡].

Proof. Since no factors of 𝐺(𝑡) in ℤ[𝑡] are constant, we can assume that the
content of every factor of 𝐺(𝑡) is 1. Furthermore, since a nonlinear factor of
𝐺(𝑡) (mod 𝓁) never has a zero in

(
ℤ∕𝓁2ℤ

)∗
, we can also assume, without loss

of generality, that 𝐺(𝑡) factors completely into𝑁, not-necessarily distinct, non-
constant linear factors in ℤ[𝑡]. Thus,

𝐺(𝑡) ≡ 𝑐
𝓁−1∏

𝑗=0
(𝑡 − 𝑗)𝑒𝑗 (mod 𝓁), (2.4)

where 𝑐 ≢ 0 (mod 𝓁), 𝑒𝑗 ≥ 0 for each 𝑗 and 𝑁 =
∑𝓁−1

𝑗=0 𝑒𝑗. Observe that if
𝑒𝑗 = 0 for some 𝑗 ≠ 0 in (2.4), then 𝐺(𝑗) ≢ 0 (mod 𝓁2), contradicting the fact
that 𝐺(𝑡) has an obstruction at the prime 𝓁. If 𝑒𝑗 = 1 for some 𝑗 ≠ 0 in (2.4),
then the zero 𝑗 of 𝑥 − 𝑗 (mod 𝓁) lifts to the unique zero 𝑗 of 𝑥 − 𝑗 (mod 𝓁2).
Thus, 𝐺(𝑗 + 𝓁) ≢ 0 (mod 𝓁2), again contradicting the fact that 𝐺(𝑡) has an
obstruction at the prime 𝓁. Hence, 𝑒𝑗 ≥ 2 for all 𝑗 ∈ {1, 2, … , 𝓁 − 1}. Assume,
by way of contradiction, that 𝓁 > (𝑁 + 2)∕2. Then

2(𝓁 − 1) > 𝑁 =
𝓁−1∑

𝑗=0
𝑒𝑗 = 𝑒0 +

𝓁−1∑

𝑗=1
𝑒𝑗 ≥ 𝑒0 + 2(𝓁 − 1),
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which is impossible, and the proof is complete. □

3. The Proof of Theorem 1.1
In certain situations of the proof of item (2) of Theorem 1.1, it will be conve-

nient to examine the monogenicity of

𝑔(𝑥) ∶= 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑎𝑥 + 1, (3.1)

in light of the fact that

if 𝑔(𝑥) is not monogenic, then 𝒢(𝑥) = 𝑔(𝑥2) is not monogenic. (3.2)

Throughout this section, we let 𝒢(𝑥) be as defined in (1.3), and we let𝑊1,𝑊2
and𝑊3 be as defined in (2.1). Straightforward computations reveal that

∆(𝑔) = (𝑏+2−2𝑎)(𝑏+2+2𝑎)(𝑎2−4𝑏+8)2 = 𝑊1𝑊2𝑊2
3 and ∆(𝒢) = 28∆(𝑔)2.

Before we present the proof of Theorem 1.1, we prove some lemmas that
will be useful for the proof of item (2) of Theorem 1.1. The first lemma follows
from [27, Theorem 1.1].

Lemma 3.1. If

(𝑎 mod 4, 𝑏 mod 4) ∈ {(1, 3), (3, 1), (3, 3)},

and𝑊1𝑊2𝑊3 is squarefree, then 𝒢(𝑥) is monogenic.

Lemma 3.2.
(1) If there exists a prime 𝑞, such that 𝑞2 ∣ 𝑊1 or 𝑞2 ∣ 𝑊2, then 𝒢(𝑥) is not

monogenic.
(2) If 𝑊1 and 𝑊2 are squarefree and there exists a prime 𝑞 ≥ 3 such that

𝑞2 ∣ 𝑊3, then 𝒢(𝑥) is not monogenic.
(3) Suppose that𝑊1 and𝑊2 are squarefree, and that𝑊3 is not divisible by

the square of an odd prime. If (𝑎 mod 4, 𝑏 mod 4) ∈ {(0, 1), (2, 3)}, then
𝒢(𝑥) is not monogenic.

Proof. For all items of the lemma, it is enough, by (3.2), to show that 𝑔(𝑥), as
defined in (3.1), is not monogenic.
We begin with item (1), and we assume that 𝑞2 ∣ 𝑊1. We present details only

in this case since the case 𝑞2 ∣ 𝑊2 is similar. Because 𝑞2 ∣ 𝑊1, it follows that
𝑏 ≡ 2𝑎 − 2 (mod 𝑞) and

𝑔(𝑥) ≡ 𝑥4 + 𝑎𝑥3 + (2𝑎 − 2)𝑥2 + 𝑎𝑥 + 1 ≡ (𝑥 + 1)2𝑔1(𝑥) (mod 𝑞),

where 𝑔1(𝑥) = 𝑥2 + (𝑎 − 2)𝑥 + 1 with ∆(𝑔1) = 𝑎(𝑎 − 4). The three possibilities
for the quadratic polynomial 𝑔1(𝑥) over 𝔽𝑞 are:

𝑔1(𝑥) is irreducible, (3.3)
𝑔1(𝑥) has a double zero, (3.4)
𝑔1(𝑥) has two distinct zeros. (3.5)
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We use Theorem 2.8 with the prime 𝑞 and 𝑇(𝑥) ∶= 𝑔(𝑥) to show in each of
these possibilities that 𝑥 + 1 divides gcd(𝐹, ℎ1, ℎ2).
For possibility (3.3), we can let

ℎ1(𝑥) = (𝑥 + 1)𝑔1(𝑥) and ℎ2(𝑥) = 𝑥 + 1.

Then

𝑞𝐹(𝑥) = ℎ1(𝑥)ℎ2(𝑥) − 𝑇(𝑥) = (𝑥 + 1)2𝑔1(𝑥) − 𝑔(𝑥)
= −(𝑏 + 2 − 2𝑎)𝑥2 ≡ 0 (mod 𝑞2),

from which we conclude that 𝑔(𝑥) is not monogenic.
For possibility (3.4), we have that

𝑔1(𝑥) ≡ { (𝑥 + 1)2 (mod 𝑞) if and only if 𝑞 ∣ (𝑎 − 4)
(𝑥 − 1)2 (mod 𝑞) if and only if 𝑞 ∣ 𝑎.

Thus, we can choose ℎ1(𝑥) and ℎ2(𝑥) so that

ℎ1(𝑥)ℎ2(𝑥) = { (𝑥 + 1)4 if and only if 𝑞 ∣ (𝑎 − 4),
(𝑥 + 1)2(𝑥 − 1)2 if and only if 𝑞 ∣ 𝑎,

and

𝑞𝐹(𝑥) = { −((𝑎 − 4)𝑥2 + (𝑏 − 6)𝑥 + 𝑎 − 4) if and only if 𝑞 ∣ (𝑎 − 4)
−(𝑎𝑥2 + (𝑏 + 2)𝑥 + 𝑎) if and only if 𝑞 ∣ 𝑎.

Since, for both of these cases, we have that

𝑞𝐹(−1) = 𝑏 + 2 − 2𝑎 ≡ 0 (mod 𝑞2),

it follows that 𝑔(𝑥) is not monogenic for this possibility.
Finally, for possibility (3.5), suppose that 𝑔1(𝑥) ≡ (𝑥 − 𝑐)(𝑥 − 𝑑) (mod 𝑞),

with 𝑐 ≢ 𝑑 (mod 𝑞). Note that

𝑔1(−1) = (−1)2 + (𝑎 − 2)(−1) + 1 = −(𝑎 − 4) ≢ 0 (mod 𝑞),

so that 𝑐 ≢ −1 (mod 𝑞) and 𝑑 ≢ −1 (mod 𝑞). Then, we can let

ℎ1(𝑥) = (𝑥 + 1)(𝑥 − 𝑐)(𝑥 − 𝑑) and ℎ2(𝑥) = 𝑥 + 1.

Then,
ℎ1(𝑥)ℎ2(𝑥) = (𝑥 + 1)2(𝑥 − 𝑐)(𝑥 − 𝑑),

so that

𝑞𝐹(𝑥) = (𝑥 + 1)2(𝑥 − 𝑐)(𝑥 − 𝑑) − 𝑔(𝑥)
= (−𝑐 + 2 − 𝑎 − 𝑑)𝑥3 + (−2𝑐 + 1 + 𝑑𝑐 − 2𝑑 − 𝑏)𝑥2

+ (−𝑑 + 2𝑑𝑐 − 𝑎 − 𝑐)𝑥 + 𝑑𝑐 − 1.

Observe then that

𝑞𝐹(−1) = −(𝑏 + 2 − 2𝑎) ≡ 0 (mod 𝑞2).

Hence, 𝑔(𝑥) is not monogenic in this possibility as well, and the proof of item
(1) is complete.
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We turn next to item (2), and we let 𝑞 ≥ 3 be a prime divisor of𝑊3 = 𝑎2 −
4𝑏 + 8 such that 𝑞2 ∣ 𝑊3. Then 𝑏 ≡ (𝑎2 + 8)∕4 (mod 𝑞) and

𝑔(𝑥) ≡ (𝑥2 + (𝑎∕2)𝑥 + 1)2 (mod 𝑞).

We consider the three possibilities for the polynomial

𝑔1(𝑥) ∶= 𝑥2 + (𝑎∕2)𝑥 + 1 ∈ 𝔽𝑞[𝑥] ∶ (3.6)

(1) 𝑔1(𝑥) is irreducible,
(2) 𝑔1(𝑥) has a double zero,
(3) 𝑔1(𝑥) has two distinct zeros.

We use Theorem 2.8 with the prime 𝑞 and 𝑇(𝑥) ∶= 𝑔(𝑥) to examine each of
these possibilities.
If 𝑔1(𝑥) is irreducible in 𝔽𝑞[𝑥], then we can let

ℎ1(𝑥) = ℎ2(𝑥) = 𝑥2 + (
𝑞2 + 1
2 ) 𝑎𝑥 + 1 ∈ ℤ[𝑥],

so that

𝑞𝐹(𝑥) = ℎ1(𝑥)ℎ2(𝑥) − 𝑇(𝑥)

= (𝑥2 + (
𝑞2 + 1
2 ) 𝑎𝑥 + 1)

2

− 𝑔(𝑥)

= −𝑥 (−𝑎𝑞2𝑥2 + (𝑏 − 2 −
(𝑞 + 1)2

4 𝑎2)𝑥 − 𝑎𝑞2)

≡ (
𝑎2 − 4𝑏 + 8

4 ) 𝑥2 (mod 𝑞2)

≡ 0 (mod 𝑞2).

Hence, 𝑔(𝑥) is not monogenic.
Suppose next that 𝑔1(𝑥) has a double zero in 𝔽𝑞[𝑥]. Then 𝑞 ∣ (𝑎2 −16), since

∆(𝑔1) = (𝑎2 − 16)∕4. Thus, 𝑞 ∣ (𝑏 − 6) since 𝑎2 − 16 − (𝑎2 − 4𝑏 + 8) = 4(𝑏 − 6)
and 𝑞 ≥ 3. Consequently,

𝑊1𝑊2 = (𝑏 + 2)2 − 4𝑎2 ≡ (𝑏 + 2)2 − 4(4𝑏 − 𝑏) ≡ (𝑏 − 6)2 ≡ 0 (mod 𝑞2).

Hence, since𝑊1 and𝑊2 are squarefree, it follows that 𝑞 ∣ gcd(𝑊1,𝑊2). Then
𝑞 ∣ 𝑎, since 𝑞 divides𝑊1−𝑊2 = −4𝑎, and 𝑞 ≥ 3. Thus, 𝑞 divides 𝑎2−(𝑎2−16) =
16, which contradicts the fact that 𝑞 ≥ 3. Therefore, 𝑔1(𝑥) never has a double
zero in 𝔽𝑞[𝑥] when 𝑞 ≥ 3.
Next, with 𝑔1(𝑥) as defined in (3.6), suppose that 𝑔1(𝑥) ≡ (𝑥 − 𝑐)(𝑥 − 𝑑)

(mod 𝑞), where 𝑐 ≢ 𝑑 (mod 𝑞). Then

𝑥2 + (
𝑞2 + 1
2 ) 𝑎𝑥 + 1 = (𝑥 − 𝑐)(𝑥 − 𝑑) − 𝑞𝑟(𝑥),
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for some linear polynomial 𝑟(𝑥) ∈ ℤ[𝑥]. Thus, with 𝑇(𝑥) = 𝑔(𝑥) and

ℎ1(𝑥) = ℎ2(𝑥) = (𝑥 − 𝑐)(𝑥 − 𝑑) = 𝑥2 + (
𝑞2 + 1
2 ) 𝑎𝑥 + 1 + 𝑞𝑟(𝑥),

a straightforward computation reveals that

𝐹(𝑥) =
ℎ1(𝑥)ℎ2(𝑥) − 𝑇(𝑥)

𝑞

= 𝑎𝑞𝑥3 + (
𝑎2 − 4𝑏 + 8

𝑞 +
𝑎2(𝑞3 + 2𝑞)

4 + 2𝑟(𝑥)) 𝑥2

+ (𝑎𝑞2𝑟(𝑥) + 𝑎𝑞 + 𝑎𝑟(𝑥))𝑥 + 𝑞𝑟(𝑥)2 + 2𝑟(𝑥)

≡ 2𝑟(𝑥)
(
𝑥2 +

(𝑎
2

)
𝑥 + 1

)
(mod 𝑞)

≡ 2𝑟(𝑥)(𝑥 − 𝑐)(𝑥 − 𝑑) (mod 𝑞),

which implies that gcd(𝐹, ℎ1) ≠ 1. Hence, again, 𝑔(𝑥) is not monogenic, and
the proof of item (2) is complete.
Finally, we consider item (3). Since 2 ∣ 𝑎, it follows that 2 ∣ 𝑊3, so that

2 ∣ ∆(𝑔). Then, we apply Theorem 2.8 with 𝑇(𝑥) ∶= 𝑔(𝑥) and 𝑞 = 2. Since
(𝑎 mod 4, 𝑏 mod 4) ∈ {(0, 1), (2, 3)}, we have that 𝑇(𝑥) = (𝑥2+𝑥+1)2. There-
fore, we can let ℎ1(𝑥) = ℎ2(𝑥) = 𝑥2 + 𝑥 + 1 since 𝑥2 + 𝑥 + 1 is irreducible in
𝔽2[𝑥]. Hence,

𝐹(𝑥) =
ℎ1(𝑥)ℎ2(𝑥) − 𝑇(𝑥)

𝑞

=
(𝑥2 + 𝑥 + 1)2 − 𝑔(𝑥)

2

= −𝑥 (
(𝑎
2

)
𝑥2 + (𝑏 − 1

2 ) 𝑥 + 𝑎
2)

≡ {
0 (mod 2) if (𝑎 mod 4, 𝑏 mod 4) = (0, 1)

𝑥(𝑥2 + 𝑥 + 1) (mod 2) if (𝑎 mod 4, 𝑏 mod 4) = (2, 3).

Thus, we see in either case, that gcd(𝐹, ℎ1) ≠ 1 so that 𝑔(𝑥) is not monogenic,
and the proof of the lemma is complete. □

Proof of Theorem 1.1. We follow closely the classifications given inTheorems
2.3, 2.4, 2.5, 2.6 and 2.7. To determine themonogenic polynomials, we use The-
orem 2.9 for the proof of item (1), and Theorem 2.8 for the proof of item (2).
We begin with the proof of item (1). From Theorem 2.2, we have that

∆(ℱ) = 216𝑏3(𝑎2 − 4𝑏)4. (3.7)

We see from the classification forℱ(𝑥) given in Theorem 2.3, Theorem 2.4 and
Theorem 2.5 that 𝑋ℱ in (1.4) can be partitioned into the two sets

𝑋□
ℱ = {2, 3, 4, 9, 11, 22} and 𝑋 ̸□

ℱ = {6, 8, 15, 16, 17, 26}, (3.8)
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where each element in𝑋□
ℱ arises from polynomialsℱ(𝑥)with 𝑏 a square, while

each element in 𝑋 ̸□
ℱ arises from polynomials ℱ(𝑥) with 𝑏 not a square. This

partitioning is useful for the following reason. Suppose that 𝑏 is a square, and 𝑞
is a prime that divides 𝑏. We see then that condition (1) of Theorem 2.9 is false if
𝑞 ∣ 𝑎, while condition (3) of Theorem 2.9 is false if 𝑞 ∤ 𝑎. Thus, the only possible
monogenic polynomials in these casesmust have 𝑏 = 1. Consequently, we have
immediately that the situations in the classification where 𝑏 is a square and

√
𝑏

is not a square (see Theorem 2.4) have no monogenic polynomials ℱ(𝑥). In
particular, there are nomonogenic polynomialsℱ(𝑥) havingGalois group 8T11
or 8T22.
We systematically proceed through the values of X in𝑋ℱ⧵{11, 22}, beginning

with the values of X in 𝑋□
ℱ ⧵ {11, 22} given in (3.8).

3.1. Values of X in𝑿□
ℱ ⧵{𝟏𝟏, 𝟐𝟐}. We assume that 𝑏 = 1, and we use Theorem

2.3.

X=2. We assume that Gal(ℱ) ≃ 8T2. Then, from Theorem 2.3, we have that
−𝑎2 + 4 is a square. If 𝑞 is an odd prime prime dividing −𝑎2 + 4, we have that
𝑞 ∤ 2𝑎, and we conclude that condition (5) of Theorem 2.9 is false since−𝑎2+4
is a square. Thus, we must have that −𝑎2 + 4 = 22𝑚, for some integer 𝑚 ≥ 0.
Therefore,

4 − 22𝑚 = 𝑎2 ≥ 0,

which implies that 𝑚 = 1 and 𝑎 = 0. Hence, the only monogenic polynomial
is this case is the cyclotomic polynomial Φ16(𝑥) = 𝑥8 + 1.

X=3. We assume that Gal(ℱ) ≃ 8T3. By Theorem 2.3, we have that 𝑎 + 2 is a
square. Suppose that 𝑞 is an odd prime dividing 𝑎 + 2. Then 𝑞 ∤ 2𝑎, and since
𝑎+2 is a square, we deduce that 𝑞2 ∣ (𝑎2−4), making condition (5) of Theorem
2.9 false.
Hence, 𝑎 + 2 = 22𝑚, for some integer𝑚 ≥ 0. If𝑚 ≥ 1, then 2 ∣ 𝑎, but 4 ∤ 𝑎.

Thus, 2 ∤ 𝑎2 and 𝑏1 = 1. Since

𝑎2
(
𝑎22 − (−1)2

)
≡ 0 (mod 2),

we conclude that condition (2) of Theorem 2.9 is false. If𝑚 = 0, then 𝑎 = −1,
and it is easy to check thatℱ(𝑥) = 𝑥8−𝑥4+1 is indeed monogenic. Therefore,
there is exactly one monogenic polynomial in this situation.

X=4. We assume that Gal(ℱ) ≃ 8T4. Using Theorem 2.3, the approach is sim-
ilar to X=3, and so we omit the details. The only monogenic in this case is
ℱ(𝑥) = 𝑥8 + 3𝑥4 + 1.
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X=9. We employ a slightly different strategy here. Let 𝐺(𝑡) = (4𝑡 + 1)(4𝑡 + 5).
We claim that 𝐺(𝑡) has no obstructions. By Lemma 2.15, we only have to check
for obstructions at the prime 𝓁 = 2, which is easily confirmed since 𝐺(1) ≢ 0
(mod 4). Hence, by Corollary 2.14, there exist infinitely many primes 𝑝 such
that 𝐺(𝑝) is squarefree. Let 𝑝 be such a prime. We claim that ℱ(𝑥) = 𝑥8 +
(4𝑝 + 3)𝑥4 + 1 is monogenic with Gal(ℱ) ≃ 8T9. We see from [27, Lemma 3.1]
that ℱ(𝑥) is irreducible. Since (4𝑝 + 1)(4𝑝 + 5) is squarefree, it follows from
Theorem 2.3 that Gal(ℱ) ≃ 8T9. We use Theorem 2.9 to verify that ℱ(𝑥) is
monogenic. Note that

∆(ℱ) = 216(4𝑝 + 1)4(4𝑝 + 5)4

from (3.7). If 𝑞 is an odd prime dividing ∆(ℱ), then 𝑞 ∤ 2(4𝑝 + 3); and every
condition of Theorem 2.9 is true, including condition (5) since (4𝑝+1)(4𝑝+5)
is squarefree. If 𝑞 = 2, then 2 ∤ (4𝑝 + 3) and we need to check condition (4) of
Theorem 2.9. An easy calculation reveals that

𝐻2(𝑥) =
(4𝑝 + 3)𝑥4 + 1 + (−(4𝑝 + 3)𝑥 − 1)4

2 ≡ (𝑥 + 1)2 (mod 2).

Since𝐻1(𝑥) = 𝑥2 + (4𝑝 + 3)𝑥 + 1 ≡ 𝑥2 +𝑥 + 1 (mod 2) is irreducible in 𝔽2[𝑥],
we deduce that condition (4) of Theorem 2.9 is true. Thus,ℱ(𝑥) is monogenic.
By equating discriminants, Maple confirms that there does not exist a prime 𝑝′
such that the octic field generated by 𝑥8 + (4𝑝′ + 3)𝑥4 + 1 is isomorphic to the
octic field generated by ℱ(𝑥) = 𝑥8 + (4𝑝 + 3)𝑥4 + 1. Thus, the set of all such
ℱ(𝑥), where (4𝑝 + 1)(4𝑝 + 5) is squarefree does indeed represent an infinite
family of distinct monogenic 8T9-octic trinomials.

Remark 3.3. We point out to the reader that the family of monogenic polyno-
mials described above does not constitute all monogenic polynomials ℱ(𝑥) =
𝑥8+𝑎𝑥4+𝑏with Gal(ℱ) ≃ 8T9. Indeed, if 𝑡 ≠ 0 and 4𝑡2−1 is squarefree, it can
be shown via the techniques used here that the polynomial𝑓𝑡(𝑥) = 𝑥8+4𝑡𝑥4+1
is monogenic with Gal(𝑓𝑡) ≃ 8T9, yielding another such infinite family.

3.2. Values of X in 𝑿 ̸□
ℱ . We turn now to values of X in 𝑋 ̸□

ℱ given in (3.8). We
assume that 𝑏 is not a square, and we use Theorem 2.5.

X=6. Following Theorem 2.5, we suppose that neither 𝑏(𝑎2 − 4𝑏) nor 4𝑏 − 𝑎2
is a square, and that Gal(ℱ) ≃ 8T6. Then one of

2
√
−𝑏, 4𝑏 + 2

√
−𝑏(𝑎2 − 4𝑏), 4𝑏 − 2

√
−𝑏(𝑎2 − 4𝑏) (3.9)

is a nonzero square.
We consider the three possibilities in (3.9) one at a time, but first we make

the following useful observation. Suppose that 𝑞 is a prime such that 𝑞2 ∣ 𝑏. If
𝑞 ∣ 𝑎, then condition (1) of Theorem 2.9 is false. If 𝑞 ∤ 𝑎, then 𝑏2 = 𝑏∕𝑞 ≡ 0
(mod 𝑞), which implies that condition (3) of Theorem 2.9 is false. Hence, if
ℱ(𝑥) is monogenic, then 𝑏 must be squarefree. Thus, since −𝑏 is squarefree,
we see easily that the first possibility in (3.9) is impossible.
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Suppose next that 4𝑏 + 2
√
−𝑏(𝑎2 − 4𝑏) is a nonzero square, which implies

that −𝑏(𝑎2 − 4𝑏) is a square. Let

𝑑 ∶= gcd(−𝑏, 𝑎2 − 4𝑏).

Consider first the case when−𝑏 > 0. If 𝑑 = 1, then 𝑎2−4𝑏 is a square, since
−𝑏(𝑎2 − 4𝑏) is a square, which yields the contradiction that ℱ(𝑥) = (𝑥4)2 +
𝑎(𝑥4) + 𝑏 is reducible. Thus, 𝑑 > 1. Suppose that 𝑑 has exactly 𝑛 ≥ 1 distinct
prime divisors 𝑟1 < 𝑟2 < ⋯ < 𝑟𝑛. Then 𝑑 =

∏𝑛
𝑖=1 𝑟𝑖 since 𝑏 is squarefree.

Futhermore, since −𝑏(𝑎2 − 4𝑏) is a square and gcd(−𝑏∕𝑑, (𝑎2 − 4𝑏)∕𝑑) = 1, it
follows that

−𝑏 = 𝑑 and 𝑎2 − 4𝑏 = 𝑆𝑑,
where 𝑆 is a square. Thus,

𝑎2 = (𝑆 − 4)𝑑, (3.10)
which implies that 𝑆 ≥ 4. Let 𝑞 be a prime divisor of 𝑆, so that 𝑞2 ∣ (𝑎2 − 4𝑏)
since 𝑆 is a square. Suppose that 𝑞 ≥ 3. Observe that if 𝑞 ∣ 𝑎 or 𝑞 ∣ 𝑏, then
𝑞2 ∣ 𝑏, which contradicts the fact that 𝑏 is squarefree. Therefore, it must be that
𝑞 = 2, and we can assume that 𝑆 = 22𝑘, for some integer 𝑘 ≥ 1. Thus, 2 ∣ 𝑎,
and we have from (3.10) that

(𝑎∕2)2 = 𝑑(4𝑘−1 − 1). (3.11)

Suppose that 2 ∣ 𝑏. Then 𝑟1 = 2 and

(𝑎∕2)2 = 2(
𝑛∏

𝑖=2
𝑟𝑖)

(
4𝑘−1 − 1

)
. (3.12)

If 𝑘 > 1, then 4𝑘−1 − 1 ≢ 0 (mod 2) which implies that (3.12) is impossible,
since the right-hand side of (3.12) is not a square. If 𝑘 = 1, then 𝑎 = 0,−𝑏(𝑎2−
4𝑏) = 4𝑑2 and

4𝑏 + 2
√
−𝑏(𝑎2 − 4𝑏) = −4𝑑 + 2(2𝑑) = 0, (3.13)

contradicting the fact that 4𝑏 + 2
√
−𝑏(𝑎2 − 4𝑏) is a nonzero square.

We conclude therefore that 2 ∤ 𝑏. It 𝑘 > 1, then we see from (3.34) that 2 ∣∣ 𝑎
and (𝑎∕2)2 ≡ 𝑏 ≡ 1 (mod 4). Thus, condition (3) of Theorem 2.9 is false since

𝑎
2 ≡ 1 (mod 2) and − 𝑏

(𝑎
2

)2
− (−

𝑏 + 𝑏8

2 )
2

≡ 0 (mod 2).

It follows that there are nomonogenic polynomialsℱ(𝑥) in the casewhen−𝑏 >
0.
Consider next the case that 𝑏 > 0. Then 4𝑏−𝑎2 > 0, and since−𝑏(𝑎2−4𝑏) =

𝑏(4𝑏−𝑎2) is a square, we get the contradiction that 𝑏 is a square if 𝑑 = 1. Hence,
𝑑 > 1. Arguing as in the case −𝑏 > 0, we arrive at

(𝑎∕2)2 = (1 − 4𝑘−1)𝑑. (3.14)



106 LENNY JONES

Thus, 𝑘 = 1 and 𝑎 = 0. Then

4𝑏 + 2
√
𝑏(4𝑏 − 𝑎2) = 8𝑏,

which implies that 𝑏 = 2 since 8𝑏 is a nonzero square and 𝑏 is squarefree. It is
straightforward to verify that ℱ(𝑥) = 𝑥8 + 2 is monogenic and Gal(ℱ) ≃8T6.
Thus, there is only one mongenic polynomial ℱ(𝑥) in this case.
The arguments for the final possibility from (3.9) are similar to the previous

possibility, and so we omit the details. No further monogenic polynomials exist
for this possibility.

X=8. Following Theorem 2.5, we assume that none of 𝑏, 𝑏(𝑎2−4𝑏) and 4𝑏−𝑎2
is a square, that either −𝑏 or −𝑏(𝑎2 − 4𝑏) is a square, and that Gal(ℱ) ≃ 8T8.
Then either

2(𝑎2 − 4𝑏)
√
−𝑏 or − 4𝑏 + 2

√
−𝑏(𝑎2 − 4𝑏)

is a nonzero square.
We assume first that 2(𝑎2−4𝑏)

√
−𝑏 is a nonzero square. Then−𝑏 is a square.

Suppose that 𝑞 is a prime dividing 𝑏. Then 𝑞2 ∣ 𝑏. Thus, condition (1) of The-
orem 2.9 is false if 𝑞 ∣ 𝑎, while condition (3) of Theorem 2.9 is false if 𝑞 ∤ 𝑎.
Hence, 𝑏 = −1, and 2(𝑎2 + 4) is a square. Suppose that 𝑞 ≥ 3 is a prime divisor
of 𝑎2 + 4. Then 𝑞2 ∣ (𝑎2 + 4) and 𝑞 ∤ 2𝑎, which implies that condition (5) of
Theorem 2.9 is false. Therefore, we may assume that 𝑎2+4 = 2𝑘, for some odd
integer 𝑘 ≥ 3. Then, if 𝑘 > 3, we have that

(𝑎∕2)2 = 2𝑘−2 − 1 ≡ 3 (mod 4),

which is impossible. Hence, 𝑘 = 3 and 𝑎 = ±2. It is easy to verify that the
two trinomials ℱ(𝑥) = 𝑥8 ± 2𝑥4 − 1 are indeed monogenic and Gal(ℱ) ≃ 8T8.
However, Magma confirms that they generate isomorphic octic fields, distinct
from the octic field generated by ℱ(𝑥) = 𝑥8 − 2.
Next, we assume that −4𝑏 + 2

√
−𝑏(𝑎2 − 4𝑏) is a nonzero square. It follows

that−𝑏(𝑎2−4𝑏) is a square. Suppose that 𝑞 is a prime divisor of 𝑏. If 𝑞2 ∣ 𝑏, then
condition (1) of Theorem 2.9 is false if 𝑞 ∣ 𝑎, while condition (3) of Theorem
2.9 is false if 𝑞 ∤ 𝑎. Hence, we assume that 𝑏 is squarefree. Thus, if 2 ∣ 𝑏, then
2 ∣ (𝑎2 − 4𝑏) since −𝑏(𝑎2 − 4𝑏) is a square. Hence, 2 ∣ 𝑎. Suppose that 2 ∤ 𝑏. If
2 ∤ 𝑎, then −𝑏(𝑎2 − 4𝑏) ≡ 1 (mod 4), so that

−4𝑏 + 2
√
−𝑏(𝑎2 − 4𝑏) ≡ 2 (mod 4),

which is impossible since −4𝑏 + 2
√
−𝑏(𝑎2 − 4𝑏) is a square. Hence, 2 ∣ 𝑎 for

any value of 𝑏. Also, if 𝑏 > 0, then 4𝑏2 − 𝑎2𝑏 < 4𝑏2, so that

−4𝑏 + 2
√
−𝑏(𝑎2 − 4𝑏) < −4𝑏 + 2

√
4𝑏2 = 0,

which is impossible since −4𝑏 + 2
√
−𝑏(𝑎2 − 4𝑏) is a square. Thus, 𝑏 < 0.

Next, let 𝑞 ≥ 3 be a prime divisor of 𝑎2 −4𝑏, and suppose that 𝑞2 ∣ (𝑎2 −4𝑏).
Observe that if 𝑞 ∣ 𝑎 or 𝑞 ∣ 𝑏, then 𝑞2 ∣ 𝑏, which contradicts the fact that 𝑏 is
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squarefree. Hence, since 2 ∣ 𝑎, we have that

𝑎2 − 4𝑏 = 2𝑘 or 𝑎2 − 4𝑏 = 2𝑘
𝑛∏

𝑖=1
𝑟𝑖,

where 𝑘 ≥ 2, 𝑛 ≥ 1 and the 𝑟𝑖 are distinct odd primes. Note that if 𝑎2−4𝑏 = 2𝑘
with 2 ∣ 𝑘, then−𝑏 = 1 since 𝑏 is squarefree and−𝑏(𝑎2−4𝑏) is a square, which
contradicts the fact that −𝑏 is not a square. Therefore, we have that 2 ∤ 𝑘 for
the possibility 𝑎2 − 4𝑏 = 2𝑘. Hence, since

−𝑏(𝑎2 − 4𝑏) = −𝑏 (2𝑘
𝑛∏

𝑖=1
𝑟𝑖) ,

is a square, it follows that the possibilities for −𝑏 are

−𝑏 ∈ {2, 2
𝑛∏

𝑖=1
𝑟𝑖,

𝑛∏

𝑖=1
𝑟𝑖} .

The possibility −𝑏 = 2 occurs if 𝑎2 − 4𝑏 = 2𝑘, where 2 ∤ 𝑘. That is, we have
𝑎2 = 23(2𝑘−3 − 1), which implies that 𝑘 = 3, 𝑎 = 0 and ℱ(𝑥) = 𝑥8 − 2. It is
easily verified that ℱ(𝑥) is monogenic with Gal(ℱ) ≃ 8T8.
The next possibility is −𝑏 = 2

∏𝑛
𝑖=1 𝑟𝑖 yields

𝑎2 = 22 (−2𝑏)
(
2𝑘−3 − 1

)
,

which implies that 𝑘 = 3 and 𝑎 = 0. But then,

−4𝑏 + 2
√
−𝑏(𝑎2 − 4𝑏) = 23(−2𝑏),

which contradicts the fact that −4𝑏 + 2
√
−𝑏(𝑎2 − 4𝑏) is a square. Hence, there

are no monogenic polynomials for this possibility.
The last possibility is −𝑏 =

∏𝑛
𝑖=1 𝑟𝑖. In this case, we have that

𝑎2 = 22(−𝑏)
(
2𝑘−2 − 1

)

and
−4𝑏 + 2

√
−𝑏(𝑎2 − 4𝑏) = 22(−𝑏)

(
2(𝑘−2)∕2 + 1

)
.

Hence,

𝐴 ∶= (−𝑏)
(
2𝑘−2 − 1

)
and 𝐵 ∶= (−𝑏)

(
2(𝑘−2)∕2 + 1

)
,

are squares. Thus, 𝐴𝐵 is a square, which implies that
(
2𝑘−2 − 1

) (
2(𝑘−2)∕2 + 1

)
=
(
2(𝑘−2)∕2 − 1

) (
2(𝑘−2)∕2 + 1

)2
,

is a square, which in turn implies that 2(𝑘−2)∕2 − 1 is a square. By Theorem 2.1,
it follows that 𝑘 ∈ {2, 4}. When 𝑘 = 2, we get that 𝐵 = −2𝑏, which contradicts
the fact that 𝐵 is a square. When 𝑘 = 4, we get that 𝑏 = −3, 𝑎 = ±6 and
ℱ(𝑥) = 𝑥8 ± 6𝑥4 − 3. Although Gal(ℱ) ≃ 8T8 for both of these polynomials,
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neither one is monogenic, which can be seen in the following way. Observe
that 2 ∣ 𝑎 and 2 ∤ 𝑏. Hence, since

𝑎2 = 𝑎∕2 ≡ 1 (mod 2) and 𝑏1 =
−𝑏 + (−𝑏)8

2 =
−3 + (−3)8

2 ≡ 1 (mod 2),

we see that −𝑏𝑎22 − 𝑏21 ≡ 0 (mod 2), and therefore, condition (2) of Theorem
2.9 is false with 𝑞 = 2.
In conclusion, there are exactly two monogenic polynomials

ℱ(𝑥) ∈ {𝑥8 − 2𝑥4 − 1, 𝑥8 − 2}

with Gal(ℱ) ≃ 8T8.

X=15. FollowingTheorem2.5, we assume that none of 𝑏, 𝑏(𝑎2−4𝑏) and 4𝑏−𝑎2
is a square, and that Gal(ℱ) ≃ 8T15. Then, either−𝑏 or−𝑏(𝑎2−4𝑏) is a square,
and none of

2
√
−𝑏, 2(𝑎2 − 4𝑏)

√
−𝑏, 4𝑏 + 2

√
−𝑏(𝑎2 − 4𝑏),

4𝑏 − 2
√
−𝑏(𝑎2 − 4𝑏), −4𝑏 + 2

√
−𝑏(𝑎2 − 4𝑏)

is a nonzero square.
We assume first that −𝑏 is a square. Suppose that 𝑞 is a prime dividing 𝑏.

Then 𝑞2 ∣ 𝑏. Thus, condition (1) of Theorem 2.9 is false if 𝑞 ∣ 𝑎, while condition
(3) of Theorem 2.9 is false if 𝑞 ∤ 𝑎. Hence, 𝑏 = −1. Let 𝐷 ∶= 𝑎2 + 4, and let
𝑞 ≥ 3 be a prime divisor of 𝐷. Note that 𝑞 ∤ 2𝑎. If 𝑞2 ∣ 𝐷, then condition (5) of
Theorem 2.9 is false. Thus, we may assume that 𝐷∕2𝜈2(𝐷) is squarefree. If 4 ∣ 𝑎,
then 𝑎2 ≡ 0 (mod 2), and since 𝑏1 = 0, we see that condition (2) of Theorem
2.9 is false with 𝑞 = 2. Hence, we can also assume that 4 ∤ 𝑎. Thus,

𝐷 =
⎧

⎨
⎩

∏𝑛
𝑖=1 𝑟𝑖 if 𝑎 ≡ 1 (mod 2)

23
∏𝑛

𝑖=1 𝑟𝑖 if 𝑎 ≡ 2 (mod 4),
(3.15)

where 𝑛 ≥ 1 and the 𝑟𝑖 are distinct odd primes. Define

𝐺(𝑡) ∶=
⎧

⎨
⎩

𝑡2 + 4 if 𝑎 ≡ 1 (mod 2)

𝑡2 + 1 if 𝑎 ≡ 2 (mod 4).
(3.16)

By Lemma 2.15, we only have to check for obstructions at the prime 𝓁 = 2.
Since 𝐺(1) ≢ 0 (mod 4) in each case of 𝐺(𝑡) in (3.16), we deduce that 𝐺(𝑡) has
no obstructions. Hence, fromCorollary 2.14, it follows that there exist infinitely
many values of 𝑎, in each case of 𝑎 in (3.15), for which such a value of 𝐷 exists.
We claim if 4 ∤ 𝑎, 𝑏 = −1 and 𝐷 is as defined in (3.15), together with the

restrictions set forth above from Theorem 2.5, then ℱ(𝑥) = 𝑥8 + 𝑎𝑥4 − 1 is
monogenic with Gal(ℱ) ≃ 8T15. From (3.7), we have that ∆(ℱ) = −216𝐷4.
To establish the claim, suppose first that 𝑞 is a prime divisor of 𝐷. If 𝑞 ≥ 3,
then 𝑞 ∤ 2𝑎𝑏, and it is easy to see that condition (5) and, consequently, all other
conditions of Theorem 2.9 are true for 𝑞. If 𝑞 = 2, then 2 ∣ 𝑎 and we see that
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2 ∤ 𝑎2 and 2 ∤ (𝑎22 − 𝑏21) since 𝑏1 = 0. Hence, in particular, condition (2)
of Theorem 2.9 is true, and so all conditions of Theorem 2.9 are true. Finally,
suppose that 𝑞 = 2 and 2 ∤ 𝐷. Then 2 ∤ 𝑎 and we examine condition (4) of
Theorem 2.9, where

𝐻1(𝑥) ∶= 𝑥2 + 𝑎𝑥 − 1 and 𝐻2(𝑥) ∶=
𝑎𝑥4 − 1 + (−𝑎𝑥 + 1)4

2 .

Since𝐻1(𝑥) ≡ 𝑥2 + 𝑥 + 1 (mod 2) is irreducible in 𝔽2[𝑥] and

𝐻2(𝑥) ≡
⎧

⎨
⎩

𝑥2(𝑥 + 1)2 (mod 2) if 𝑎 ≡ 1 (mod 4)

𝑥2 (mod 2) if 𝑎 ≡ 3 (mod 4),

it follows that 𝐻1(𝑥) and 𝐻2(𝑥) are coprime in 𝔽2[𝑥], which establishes the
claim. Moreover, this argument proves that these polynomials account for all
monogenics ℱ(𝑥) with Gal(ℱ) ≃ 8T15.
Finally, with 𝑎 > 0, together with the restrictions on 𝑎 set forth above, we

claim that the set 𝒮 ∶= {ℱ(𝑥) = 𝑥8+𝑎𝑥4−1} is an infinite family of monogenic
8T15-octic trinomials. The additional restriction of 𝑎 > 0 is due to the fact
that the octic field generated by 𝑥8 − 𝑎𝑥4 − 1 is isomorphic to the octic field
generated by 𝑥8 + 𝑎𝑥4 − 1. Then, comparing discriminants using Maple, it is
easy to confirm that the trinomials in 𝒮 generate distinct octic fields.

X=16. Following Theorem 2.5, we assume that 𝑏 is not a square and Gal(ℱ) ≃
8T16, so that 𝑏(𝑎2 − 4𝑏) is a square. Let 𝑑 = gcd(𝑏, 𝑎2 − 4𝑏), and let 𝑞 be a
prime divisor of 𝑑. Then 𝑞 ∣ 𝑎. If 𝑞2 ∣ 𝑏, then condition (1) of Theorem 2.9 is
false. Hence, we can assume that 𝑞 ∣∣ 𝑏 so that 𝑑 is squarefree. Next, suppose
that 𝑞 ≥ 3 is a prime dividing 𝑏 ∶= 𝑏∕𝑑, so that 𝑞 ∤ 𝑎. If 𝑞2 ∣ 𝑏, then we see that
condition (3) of Theorem 2.9 is false since 𝑎1 = 0 and 𝑏2 = 𝑏∕𝑞 ≡ 0 (mod 𝑞).
Thus, we may assume that 𝑏∕2𝜈2(𝑏) is squarefree. Next, suppose that 𝑞 ≥ 3 is
a prime divisor of 𝑑 ∶= (𝑎2 − 4𝑏)∕𝑑. Then 𝑞 ∤ 𝑎 and so 𝑞 ∤ 2𝑎𝑏. Hence, if
𝑞2 ∣ 𝑑, then condition (5) of Theorem 2.9 is false. Therefore, we can assume
that 𝑑∕2𝜈2(𝑑) is squarefree. Thus, since 𝑏(𝑎2 − 4𝑏) is a square, it follows that

𝑏 = 𝑑𝑏 = 2𝑐𝑑 and 𝑎2 − 4𝑏 = 𝑑𝑑 = 2𝑒𝑑 (3.17)

for some nonegative integers 𝑐 and 𝑒 with 𝑐 ≡ 𝑒 (mod 2).
If 2 ∣ 𝑑, then 2 ∣ 𝑎 so that 22 ∣ (𝑎2 − 4𝑏). Note then that 22 ∤ 𝑏, since 𝑑 is

squarefree. Thus, 2 ∣∣ 𝑏 and 𝑏 = 𝑑. Hence, since 𝑏(𝑎2−4𝑏) is a square, we have
that 23 ∣ (𝑎2 − 4𝑏), which implies that 24 ∣ 𝑎2. However, 24 ∤ (𝑎2 − 4𝑏) since
2 ∣∣ 𝑏. Thus, 23 ∣∣ (𝑎2 − 4𝑏). Therefore, in this case, we have that 𝑐 = 0, 𝑒 = 2
and 𝑎2 = 8𝑑, which implies that 𝑏 = 𝑑 = 2 and 𝑎 = ±4. It is straightforward to
verify that the two polynomials ℱ(𝑥) = 𝑥8 ± 4𝑥4 + 2 are both monogenic with
Gal(ℱ) ≃ 8T16.
Suppose next that 2 ∤ 𝑑. There are three cases to consider:
(1) 2 ∣ 𝑎 and 2 ∤ 𝑏,
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(2) 2 ∤ 𝑎 and 2 ∣ 𝑏,
(3) 2 ∤ 𝑎 and 2 ∤ 𝑏.
For case (1), we have from (3.17) that 𝑏 = 𝑑 and

𝑎2 = 22(2𝑒−2 + 1)𝑑, (3.18)
where 𝑒 ≥ 2. Observe that the right-hand side of (3.18) is not a square if 𝑒 = 2. If
𝑒 = 3 in (3.18), then 𝑑 = 3 = 𝑏, 𝑎 = ±6, and 𝑏(𝑎2 − 4𝑏) = 72, contradicting the
fact that 𝑏(𝑎2−4𝑏) is a square. If 𝑒 ≥ 4 in (3.18), then 4 ∤ 𝑎 and 𝑏 ≡ 1 (mod 4).
An examination of condition (2) of Theorem 2.9 reveals then that 2 ∤ 𝑎2 and
2 ∤ 𝑏1, so that 2 ∣ (𝑎2((−𝑏)𝑎22 − 𝑏21), which implies that condition (2) is false.
Thus, there are no monogenic polynomials in this case.
For case (2), we see that 2 ∤ (𝑎2 − 4𝑏). Hence, from (3.17), we have that 𝑏 =

2𝑐𝑑, for some 𝑐 ≥ 1, and 𝑎2 − 4𝑏 = 𝑑. Then, since 2 ∤ 𝑑 and 𝑏(𝑎2 − 4𝑏) = 2𝑐𝑑2
is a square, we deduce that 𝑐 ≡ 0 (mod 2) with 𝑐 ≥ 2. Thus, 2 ∣ 𝑏∕2, which
implies that condition (3) of Theorem 2.9 is false, and there are no monogenic
polynomials in this case.
Finally, for case (3), we see from (3.17) that 𝑏 = 𝑑 = 𝑎2 − 4𝑏. Hence, 𝑎2 =

5𝑑, which implies that 𝑑 = 𝑏 = 5, since 𝑑 is squarefree, and 𝑎 = ±5. Since
2 ∤ 𝑎𝑏, we examine condition (4) of Theorem 2.9 with 𝑞 = 2 for each of the two
polynomials ℱ(𝑥) = 𝑥8 ± 5𝑥4 + 5. For ℱ(𝑥) = 𝑥8 + 5𝑥4 + 5, we get

𝐻1(𝑥) ≡ 𝑥2 + 𝑥 + 1 (mod 2) and 𝐻2(𝑥) ≡ (𝑥2 + 𝑥 + 1)2 (mod 2),
so that𝐻1(𝑥) and𝐻2(𝑥) are not coprime in 𝔽2[𝑥]. Hence,ℱ(𝑥) = 𝑥8 + 5𝑥4 + 5
is not monogenic. For ℱ(𝑥) = 𝑥8 − 5𝑥4 + 5, we get

𝐻1(𝑥) ≡ 𝑥2 + 𝑥 + 1 (mod 2) and 𝐻2(𝑥) ≡ (𝑥 + 1)2 (mod 2),
so that 𝐻1(𝑥) and 𝐻2(𝑥) are coprime in 𝔽2[𝑥]. Hence, ℱ(𝑥) = 𝑥8 − 5𝑥4 + 5 is
monogenic with Gal(ℱ) ≃ 8T16.
Note that

∆(𝑥8 − 4𝑥4 + 2) = 231 = ∆(𝑥8 + 4𝑥4 + 2),
and ∆(𝑥8 − 5𝑥4 + 5) = 21657, so that the octic field generated by 𝑥8 − 5𝑥4 + 5 is
distinct from the other two. All zeros of 𝑥8 − 4𝑥4 + 2 are real, while all zeros of
𝑥8 + 4𝑥4 + 2 are non-real, and Magma confirms that the respective octic fields
are not isomorphic. Therefore, in summary, there are exactly three monogenic
polynomials

ℱ(𝑥) ∈ {𝑥8 − 4𝑥4 + 2, 𝑥8 + 4𝑥4 + 2, 𝑥8 − 5𝑥4 + 5}
with Gal(ℱ) ≃ 8T16.

X=17. Following Theorem 2.5, we assume that 𝑏 is not a square and Gal(ℱ) ≃
8T17, so that 𝑏(𝑎2 − 4𝑏) is not a square and 4𝑏 − 𝑎2 is a square. Note then that
𝑎 ≠ 0 since 𝑏 is not a square. Let 𝑑 = gcd(𝑏, 4𝑏 − 𝑎2). Suppose that 𝑑 > 1
and let 𝑞 be a prime divisor of 𝑑. Then 𝑞 ∣ 𝑎. If 𝑞2 ∣ 𝑏, then condition (1) of
Theorem 2.9 is false. Hence, we can assume that 𝑞 ∣∣ 𝑏, so that 𝑑 is squarefree.
Furthermore, if 𝑞 ≥ 3, then since 𝑞2 ∣ 𝑎2 and 𝑞 ∣∣ 𝑏, it follows that 𝑞2 ∤ (4𝑏−𝑎2),
contradicting the fact that 4𝑏 − 𝑎2 is a square. Thus, 𝑑 ∈ {1, 2}.
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Since
4𝑏 − 𝑎2 ≡ −𝑎2 (mod 4),

and 4𝑏 −𝑎2 is a square, it follows that 2 ∣ 𝑎 and 𝑏 − (𝑎∕2)2 is a square. Suppose
that 2 ∣ (𝑏 − (𝑎∕2)2). If 2 ∣ (𝑎∕2), then 22 ∣ (𝑎∕2)2. But 22 ∤ 𝑏 so that 22 ∤
(𝑏 − (𝑎∕2)2), contradicting the fact that 𝑏 − (𝑎∕2)2 is a square. Thus, 2 ∤ (𝑎∕2)
and 2 ∤ 𝑏. Then, (𝑎∕2)2 ≡ 1 (mod 4), and since 2 ∣ (𝑏 − (𝑎∕2)2) and 𝑏 − (𝑎∕2)2
is a square, we deduce that 22 ∣ (𝑏 − (𝑎∕2)2) so that 𝑏 ≡ 1 (mod 4). Then,

𝑏1 =
𝑏 + (−𝑏)8

2 ≡ 1 (mod 4)

and
(−𝑏)(𝑎∕2)2 − 𝑏21 ≡ 0 (mod 2),

which implies that condition (2) of Theorem 2.9 is false. Hence, we can assume
that 2 ∤ (𝑏 − (𝑎∕2)2), and therefore, 22 ∣∣ (4𝑏 − 𝑎2).
Next, suppose that 𝑞 ≥ 3 is a prime divisor of 4𝑏 −𝑎2. We have shown above

that 𝑞 ∤ 𝑏, and therefore 𝑞 ∤ 𝑎. Thus 𝑞 ∤ 2𝑎𝑏. However, since 4𝑏 − 𝑎2 is a
square, we have that 𝑞2 ∣ (4𝑏 − 𝑎2). Thus, condition (5) of Theorem 2.9 is false.
Hence, for the monogenicity of ℱ(𝑥), we must have that 4𝑏 − 𝑎2 = 4.
Consequently, we have shown that ifℱ(𝑥) = 𝑥8+𝑎𝑥4+𝑏 is monogenic with

Gal(ℱ) ≃ 8T17, then 𝑎 = 2𝑡 and 𝑏 = 𝑡2+1, for some integer 𝑡 ≠ 0. In fact, with
𝑡 ≠ 0, we claim that

ℱ(𝑥) = 𝑥8 + 2𝑡𝑥4 + 𝑡2 + 1 is monogenic if and only if 𝑡2 + 1 is squarefree.
(3.19)

To establish (3.19), we begin by noting that ℱ(𝑥) = 𝑥8 + 2𝑡𝑥4 + 𝑡2 + 1 is irre-
ducible by [12, Lemma 3.4] if 𝑡2 + 1 is squarefree, since

(2𝑡 mod 4, 𝑡2 + 1 mod 4) ∈ {(0, 1), (2, 2)}

and 𝑡2 + 1 ≥ 2. Note, by (3.7), that

∆(ℱ) = 224(𝑡2 + 1)3. (3.20)

Observe that if 𝑞 = 2 is a divisor of 𝑡2 + 1, then, since 𝑞 ∣ 2𝑡, condition (1) of
Theorem 2.9 is false if and only if 4 ∣ (𝑡2 + 1). If 𝑞 = 2 does not divide 𝑡2 + 1,
then 𝑡2 ≡ 0 (mod 4), and in this case, we examine condition (2) of Theorem
2.9. We see that

𝑎2 = 𝑡 ≡ 0 (mod 2) and 𝑏1 =
𝑡2 + 1 + (−(𝑡2 + 1))8

2 ≡ 1 (mod 2).

Thus, condition (2) of Theorem 2.9 is true. Suppose next that 𝑞 ≥ 3 is a prime
divisor of 𝑡2 + 1. Then 𝑞 ∤ 2𝑡. Thus, we examine condition (3) of Theorem 2.9.
Since 𝑞 is odd, we see that 𝑎1 = 0 and therefore, the second statement under
condition (3) is false. So, to determine whether condition (3) of Theorem 2.9 is
true or false, we need to examine the first statement under condition (3). Thus,
since 𝑏2 = (𝑡2 + 1)∕𝑞, we see that condition (3) of Theorem 2.9 is false if and
only if 𝑞2 ∣ (𝑡2 + 1), which establishes the claim (3.19).
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Since, 𝐺(1) ≢ 0 (mod 4) for 𝐺(𝑡) = 𝑡2 + 1, we conclude from Lemma 2.15
that 𝐺(𝑡) has no local obstructions, and therefore, from Corollary 2.14, we have
that there exist infinitely many values of 𝑡 such that 𝐺(𝑡) is squarefree. Thus,
we have shown that there exist infinitely many monogenic trinomials ℱ(𝑥) =
𝑥8 + 2𝑡𝑥4 + 𝑡2 + 1 with Gal(ℱ) ≃ 8T17. Moreover, comparing discriminants
(3.20) for all such 𝑡 > 0, we see that the octic fields they generate are distinct.

X=26. Computer evidence suggests that there is an abundance of monogenic
polynomialsℱ(𝑥) with Gal(ℱ) ≃ 8T26. We use a strategy similar to the case of
8T9 to construct one infinite family. Letℱ(𝑥) = 𝑥8 + 𝑡𝑥4 +3. By (3.7), we have
that

∆(ℱ) = 21633(𝑡2 − 12)4. (3.21)
Let 𝐺(𝑡) = 𝑡2−12. Since 𝐺(1) ≡ 1 (mod 4), we see from Lemma 2.15 that 𝐺(𝑡)
has no local obstructions. Hence, by Corollary 2.14, there exist infinitely many
primes 𝑝 such that 𝐺(𝑝) is squarefree. Let 𝑝 ≥ 5 be such a prime. We claim
that

ℱ(𝑥) = 𝑥8 + 𝑝𝑥4 + 3 is monogenic with Gal(ℱ) ≃ 8T26. (3.22)
Since

(𝑝 (mod 4), 3 (mod 4)) ∈ {(1, 3), (3, 3)},
we have thatℱ(𝑥) is irreducible by [12, Lemma 3.4]. With 𝑎 = 𝑝 and 𝑏 = 3, we
have that

𝑏 = 3,
𝑏(𝑎2 − 4𝑏) = 3(𝑝2 − 12) ≢ 0 (mod 9),

4𝑏 − 𝑎2 = −(𝑝2 − 12) < 0,
−𝑏 = −3 < 0 and

−𝑏(𝑎2 − 4𝑏) = −3(𝑝2 − 12) < 0.

Hence, it follows from Theorem 2.5 that Gal(ℱ) ≃ 8T26.
To see that ℱ(𝑥) is monogenic, first let 𝑞 = 2. Since 2 ∤ 𝑝, we examine

condition (4) of Theorem 2.9. Then
𝐻1(𝑥) ≡ 𝑥2 + 𝑥 + 1 (mod 2) and

𝐻2(𝑥) = 𝑝(𝑝2 − 𝑝 + 1) (
𝑝 + 1
2 ) 𝑥4 + 6𝑝3𝑥3 + 27𝑝2𝑥2 + 54𝑝𝑥 + 42

≡ 𝑥2 ((
𝑝 + 1
2 )𝑥 + 1)

2

(mod 2).

Hence,𝐻1(𝑥) and𝐻2(𝑥) are coprime in 𝔽2[𝑥].
Next, let 𝑞 = 3. We examine condition (3) of Theorem 2.9. Since 𝑎1 = 0 and

𝑏2 = 1, we see that the first statement under condition (3) is true.
Finally, let 𝑞 be a prime divisor of 𝑝2 − 12. Then, 𝑞 ∤ 6𝑝, and we see that

condition (5) of Theorem 2.9 is true since 𝑝2 − 12 is squarefree. Therefore, the
claim (3.22) is established.
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Suppose now that 𝑝1 and 𝑝2 are primes with 5 ≤ 𝑝1 < 𝑝2 such that 𝐺(𝑝1)
and𝐺(𝑝2) are squarefree, and thatℱ𝑝1(𝑥) andℱ𝑝2(𝑥) generate isomorphic octic
fields. Then, since ℱ𝑝1(𝑥) and ℱ𝑝2(𝑥) are both monogenic, we must have that

21633(𝑝21 − 12)4 = ∆(ℱ𝑝1) = ∆(ℱ𝑝2) = 21633(𝑝22 − 12)4, (3.23)
which contradicts the fact that 5 ≤ 𝑝1 < 𝑝2. We deduce that the set

{ℱ(𝑥) = 𝑥8 + 𝑝𝑥4 + 3 ∶ 𝑝 ≥ 5 is prime with 𝑝2 − 12 squarefree},
is an infinite family ofmonogenic 8T26-octic trinomialsℱ(𝑥), which completes
the proof of item (1).
We turn now to the proof of item (2). We recall the definition of𝑊1,𝑊2 and

𝑊3 given in (2.1). Straightforward computations reveal that
∆(𝑔) = (𝑏+2−2𝑎)(𝑏+2+2𝑎)(𝑎2−4𝑏+8)2 = 𝑊1𝑊2𝑊2

3 and ∆(𝒢) = 28∆(𝑔)2.

X=2. We assume that Gal(𝒢) ≃ 8T2. Following Theorem 2.6, we see that there
are three possibilities.
Suppose first that 𝑊1𝑊3 and 𝑊2𝑊3 are squares, while 𝑊1𝑊2𝑊3 is not a

square. Then𝑊1𝑊3𝑊2𝑊3 = 𝑊1𝑊2𝑊2
3 is a square, which implies that𝑊1𝑊2

is a square. Note that𝑊1𝑊2 ≠ 0 since 𝒢(𝑥) is irreducible. Furthermore,𝑊1 ≠
𝑊2, since if 𝑊1 = 𝑊2, then 𝑎 = 0, which contradicts our assumption that
𝑎 ≠ 0 from (1.3). Hence, since𝑊1𝑊2 is a square, we conclude that𝑊1𝑊2 > 1
and that there exists a prime divisor 𝑞 of𝑊1𝑊2, such that 𝑞2 ∣ 𝑊1 or 𝑞2 ∣ 𝑊2.
Hence, by Lemma 3.2, it follows that 𝒢(𝑥) is not monogenic.
The secondpossibility inTheorem2.6 is that𝑊1𝑊3 and𝑊1𝑊2𝑊3 are squares,

while 𝑊2𝑊3 is not a square. Then 𝑊1𝑊3𝑊1𝑊2𝑊3 = 𝑊2
1𝑊2𝑊2

3 is a square,
which implies that𝑊2 is a square. If𝑊2 > 1, then 𝑞2 ∣ 𝑊2 for some prime 𝑞,
and𝒢(𝑥) is notmonogenic byLemma3.2. Therefore, suppose then that𝑊2 = 1.
Hence, 𝑏 = −2𝑎 − 1 and

𝑊1𝑊3 = −4𝑎3 − 31𝑎2 − 40𝑎 + 12.
Since𝑊1𝑊3 is a square, say𝑚2, we consider the elliptic curve

𝑦2 = 𝑥3 − 32𝑥2 + 160𝑥 + 192, (3.24)
where 𝑥 ∶= −4𝑎 and 𝑦 ∶= 4𝑚. Using Sage to find all integral points (𝑥, 𝑦),
with 𝑦 ≥ 0, on (3.24) yields

(𝑥, 𝑦) ∈ {(−1, 0), (4, 20), (8, 0), (24, 0), (44, 180)}.
Checking the points (𝑥, 𝑦) where 𝑥 ≡ 0 (mod 4) reveals that all such points,
with the exception of (𝑥, 𝑦) = (4, 20), produce values (𝑎, 𝑏) such that 𝒢(𝑥) is
reducible. The lone point (4, 20) implies that (𝑎, 𝑏) = (−1, 1), and it is straight-
forward to verify that 𝒢(𝑥) = 𝑥8 − 𝑥6 + 𝑥4 − 𝑥2 + 1 is indeed monogenic.
The third and final possibility in Theorem 2.6 is that𝑊2𝑊3 and𝑊1𝑊2𝑊3

are squares, while 𝑊1𝑊3 is not a square. Arguing as before, we see that 𝑊1
is a square, and if𝑊1 > 1, we achieve no monogenic polynomials by Lemma
3.2. If𝑊1 = 1, then we arrive at the same elliptic curve (3.24), where 𝑥 ∶= 4𝑎
and 𝑦 ∶= 4𝑚. In this case, the integral points with 𝑥 ≡ 0 (mod 4) produce
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reducible polynomials 𝒢(𝑥), except when (𝑥, 𝑦) = (44, 180). For this particular
point, we get that (𝑎, 𝑏) = (11, 21). However, is is easy to verify that, while the
polynomial

𝒢(𝑥) = 𝑥8 + 11𝑥6 + 21𝑥4 + 11𝑥2 + 1
is irreducible with Gal(𝒢) ≃ 8T2, it is not monogenic.
In conclusion, there is exactly one monogenic polynomial

𝒢(𝑥) = Φ10(𝑥2) = 𝑥8 − 𝑥6 + 𝑥4 − 𝑥2 + 1,
where Gal(𝒢) ≃ 8T2.

X=3. We assume that Gal(𝒢) ≃ 8T3. Then,𝑊1,𝑊2 and𝑊1𝑊2 are all squares
from Theorem 2.6. If 𝑊1 = 𝑊2, then 𝑎 = 0, which contradicts the fact that
𝑎 ≠ 0 from (1.3). Hence, without loss of generality, suppose that𝑊1 > 1. Then
there exists a prime 𝑞 with 𝑞2 ∣ 𝑊1, and we can argue as in the case X=2 to
deduce that no monogenic polynomials 𝒢(𝑥) exist in this case.

X=4. We assume that Gal(𝒢) ≃ 8T4. From Theorem 2.7, we have that exactly
one of

𝑊1, 𝑊2 and 𝑊1𝑊2 is a square,
and none of

𝑊1𝑊3, 𝑊2𝑊3 and 𝑊1𝑊2𝑊3 is a square.

Suppose first that𝑊1 is a square. We deduce from Lemma 3.2 that𝑊1 = 1, so
that 𝑏 = 2𝑎 − 1. Then, it is easy to see that

𝑊2

(
−𝑎 + 4 − 2

√
𝑊1

)
= (4𝑎 + 1)(−𝑎 + 2) = −4𝑎2 + 7𝑎 + 2

is a square if and only if 𝑎 = 2. But then𝑊3 = 𝑎2 −4𝑏 + 8 = 𝑎2 −4 = 0, which
contradicts the fact that𝑊1𝑊3 = 𝑊3 is not a square. Also, it is easy to see that

𝑊2

(
−𝑎 + 4 + 2

√
𝑊1

)
= (4𝑎 + 1)(−𝑎 + 6)

is a square if and only if 𝑎 ∈ {1, 2, 6}. With the corresponding values of 𝑏, we
observe that 𝑊3 = 0 when 𝑎 ∈ {2, 6}, which again contradicts the fact that
𝑊1𝑊3 is not a square. For 𝑎 = 1, we have that 𝒢(𝑥) = 𝑥8 + 𝑥6 + 𝑥4 + 𝑥2 + 1,
which is reducible. Hence, there are no monogenics when𝑊1 is a square.
The case when 𝑊2 is a square is similar. We can assume that 𝑊2 = 1 by

Lemma 3.2, so that 𝑏 = −2𝑎−1. Then, usingMaple (the isolve command), we
see that

𝑊1

(
−𝑎 − 4 − 2

√
𝑊2

)
= (4𝑎 − 1)(𝑎 + 6)

is a square if and only if 𝑎 ∈ {−42, −11, −6}, while

𝑊1

(
−𝑎 − 4 + 2

√
𝑊2

)
= (4𝑎 − 1)(𝑎 + 2)

is a square if and only if 𝑎 ∈ {−6,−2, 1}. Checking these values yields the
contradictions that𝑊3 is a square when 𝑎 ∈ {−6,−2}, while 𝒢(𝑥) is reducible
when 𝑎 ∈ {−42, −11}. Although, 𝒢(𝑥) is irreducible when 𝑎 = 1, it is not
monogenic. Thus, there are no monogenics arising in this situation.
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Finally, suppose that𝑊1𝑊2 is a square, and neither𝑊1 nor𝑊2 is a square.
By Lemma 3.2, we deduce that 𝑊1 and 𝑊2 are squarefree. Since 𝑊1𝑊2 is a
square, it follows that𝑊1 = 𝑊2, contradicting our assumption that 𝑎 ≠ 0 in
(1.3). Hence, there are no monogenic polynomials 𝒢(𝑥) when X=4.

X=9. Let

𝒢𝑡(𝑥) ∶= 𝑥8 + (4𝑡 + 3)𝑥6 + (8𝑡 + 5)𝑥4 + (4𝑡 + 3)𝑥2 + 1.

Then ∆(𝒢) = 256(16𝑡 + 13)2(4𝑡 + 1)4(4𝑡 − 3)4. Let 𝐺(𝑡) ∶= (16𝑡 + 13)(4𝑡 +
1)(4𝑡 − 3). Since 𝐺(1) ≡ 1 (mod 4), we deduce from Lemma 2.15 that 𝐺(𝑡) has
no local obstructions. Hence, from Corollary 2.14, there exist infinitely many
primes 𝑝 such that 𝐺(𝑝) is squarefree. Let 𝑝 be such a prime. Note, for 𝒢𝑝(𝑥),
with 𝑎 ∶= 4𝑝 + 3, 𝑏 ∶= 8𝑝 + 5 and𝑊𝑖 as defined in (2.1), we have

𝑊1 = 1, 𝑊2 = 16𝑝 + 13 and 𝑊3 = (4𝑝 + 1)(4𝑝 − 3),

so that
𝑊1𝑊2𝑊3 = (16𝑝 + 13)(4𝑝 + 1)(4𝑝 − 3) = 𝐺(𝑝).

Since𝑊1𝑊2𝑊3 is squarefree and

(𝑎 mod 4, 𝑏 mod 4) = (3, 1),

it follows from Proposition 3.1 that 𝒢𝑝(𝑥) is monogenic. Moreover, since𝑊1 =
1 is a square and 𝐺(𝑝) is squarefree, it is easy to see that none of

𝑊2, 𝑊1𝑊2, 𝑊1𝑊3, 𝑊2𝑊3, 𝑊1𝑊2𝑊3,

𝑊2

(
−𝑎 + 4 − 2

√
𝑊1

)
= −(16𝑝 + 3)(4𝑝 + 1) and

𝑊2

(
−𝑎 + 4 + 2

√
𝑊1

)
= −(16𝑝 + 3)(4𝑝 − 3)

is a square. Hence, we deduce from Theorem 2.7 that Gal(𝒢𝑝) ≃ 8T9.
Suppose that, for some primes 𝑝 < 𝑞, with 𝐺(𝑝) and 𝐺(𝑞) both squarefree,

we have that 𝒢𝑝(𝑥) and 𝒢𝑞(𝑥) generate the same octic field. Then, since 𝒢𝑝(𝑥)
and 𝒢𝑞(𝑥) are both monogenic, it must be that ∆(𝒢𝑝) = ∆(𝒢𝑞), which implies
that

256(16𝑝 + 13)2(4𝑝 + 1)4(4𝑝 − 3)8 = 256(16𝑞 + 13)2(4𝑞 + 1)4(4𝑞 − 3)4,

contradicting the fact that 𝑝 < 𝑞. Thus, {𝒢𝑝(𝑥) ∶ 𝐺(𝑝) is squarefree} is an
infinite family of monogenic even octic 8T9-polynomials.

X=10. We assume that Gal(𝒢) ≃ 8T10. Then, following Theorem 2.6, we have
that exactly one of

𝑊1𝑊3, 𝑊2𝑊3 and 𝑊1𝑊2𝑊3 is a square.

Note then that 𝑊1 ≠ 1, 𝑊2 ≠ 1 and 𝑊1 ≠ 𝑊2. Since we are searching for
monogenic polynomials, we can also assume that𝑊1 and𝑊2 are squarefree,
by Lemma 3.2.
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Suppose first that

𝑊1𝑊3 is a square
while neither 𝑊2𝑊3 nor 𝑊1𝑊2𝑊3 is a square. (3.25)

Note that 𝑊1 ∣ 𝑊3 since 𝑊1 is squarefree and 𝑊1𝑊3 is a square. If 𝑊1 =
𝑊3 = −1, then 𝑎 = 4 ±

√
−5, while if 𝑊1 = 𝑊3 = 1, then 𝑎 = 4 ±

√
5.

Hence,𝑊1𝑊3 > 1. Suppose that 𝑞 is a prime divisor of𝑊3 such that 𝑞 ∤ 𝑊1.
Since𝑊1𝑊3 is a square, and𝑊1 is squarefree, it follows that 𝑞2 ∣ 𝑊3. Thus,
by Lemma 3.2, we can assume that 𝑞 = 2. Then, since 2 ∣ 𝑊3 and 2 ∤ 𝑊1, it
follows that 2 ∣ 𝑎 and 2 ∤ 𝑏. Thus,

(𝑎 mod 4, 𝑏 mod 4) ∈ {(0, 1), (0, 3), (2, 1), (2, 3)}.

A closer examination reveals that 23 ∣∣ 𝑊3 when (𝑎 mod 4, 𝑏 mod 4) = (2, 1),
which contradicts the fact that 𝑊1𝑊3 is a square. Invoking Lemma 3.2 once
again narrows it down to (𝑎 mod 4, 𝑏 mod 4) = (0, 3). However, in this case, it
is easy to see that𝑊1 ≡ 1 (mod 4) and𝑊3∕4 ≡ 3 (mod 4) so that𝑊1𝑊3∕4 ≡ 3
(mod 4), which contradicts the fact that𝑊1𝑊3∕4 is a square. Consequently, we
have shown that the prime divisors of𝑊3 are exactly the prime divisors of𝑊1,
and furthermore,

either 𝑊3 = 𝑊1 or 𝑊3 = 22𝑘𝑊1 for some integer 𝑘 ≥ 1.

If 𝑊3 = 𝑊1, then 𝑏 = ((𝑎 + 1)2 + 5)∕5 so that 𝑊1 = (𝑎 − 4)2∕5. Since
𝑊1 is squarefree, it follows that 𝑎 ∈ {−1, 9}. If 𝑎 = −1, then𝑊2 = 1, which
contradicts the fact that 𝑊2 is squarefree. Thus, 𝑎 = 9, 𝑏 = 21 and 𝒢(𝑥) =
𝑥8 + 9𝑥6 + 21𝑥4 + 9𝑥2 + 1. We use Theorem 2.8 with 𝑇(𝑥) ∶= 𝒢(𝑥) and 𝑞 = 2
to investigate the monogenicity of 𝒢(𝑥). Since 𝑇(𝑥) = (𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1)2,
we can let ℎ1(𝑥) = ℎ2(𝑥) = 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1. Then

𝐹(𝑥) =
(𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1)2 − (𝑥8 + 9𝑥6 + 21𝑥4 + 9𝑥2 + 1)

2
= 𝑥7 − 3𝑥6 + 2𝑥5 − 8𝑥4 + 2𝑥3 − 3𝑥2 + 𝑥
≡ 𝑥7 + 𝑥6 + 𝑥2 + 𝑥 (mod 2)
≡ 𝑥(𝑥 + 1)2(𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1).

Hence, gcd(𝐹, ℎ1) = 𝑥4+𝑥3+𝑥2+𝑥+1 and 𝒢(𝑥) is not monogenic by Theorem
2.8. Thus, there are no monogenic 8T10-polynomials 𝒢(𝑥) when conditions
(3.25) hold with𝑊1 = 𝑊3.
Suppose then that𝑊3 = 22𝑘𝑊1 for some integer 𝑘 ≥ 1. Then

𝑏 = 𝑎2 + 22𝑘+1𝑎 − 22𝑘+1 + 8
22𝑘 + 4

,
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and since 𝑏 is an integer, we see that 2 ∣ 𝑎. Suppose that 𝑘 ≥ 2. Since 22 ∣∣
(22𝑘 + 4), it follows that

𝑏 ≡ {
1 (mod 2) if 𝑎 ≡ 2 (mod 4)

0 (mod 2) if 𝑎 ≡ 0 (mod 4).
(3.26)

We use Theorem 2.8with𝑇(𝑥) ∶= 𝒢(𝑥) and 𝑞 = 2 to examine themonogenicity
of 𝒢(𝑥). From (3.26), we get that

𝒢(𝑥) ≡ {
(𝑥2 + 𝑥 + 1)4 (mod 2) if 𝑎 ≡ 2 (mod 4)

(𝑥 + 1)8 (mod 2) if 𝑎 ≡ 0 (mod 4).

Hence, if 𝑎 ≡ 2 (mod 4), then 𝑎2+22𝑘+1𝑎−21 ⋅ 22𝑘 −68 ≡ 0 (mod 16), and
therefore

𝐹(𝑥) = 2𝑥7 + (10 − 𝑎
2 ) 𝑥6 + 8𝑥5 − (

𝑎2 + 22𝑘+1𝑎 − 21 ⋅ 22𝑘 − 68
2(22𝑘 + 4)

) 𝑥4

+ 8𝑥3 + (10 − 𝑎
2 ) 𝑥2 + 2𝑥 ≡ 0 (mod 2).

Thus, gcd(𝐹, 𝑥2 + 𝑥 + 1) ≠ 1 and 𝒢(𝑥) is not monogenic.
If 𝑎 ≡ 0 (mod 4), then 𝑎2+22𝑘+1𝑎−72 ⋅ 22𝑘−272 ≡ 0 (mod 16), and hence

𝐹(𝑥) = (
4𝑘+1 + 16
22𝑘 + 4

)𝑥7+(
28 − 𝑎
2 ) 𝑥6+28𝑥5−(

𝑎2 + 22𝑘+1𝑎 − 72 ⋅ 22𝑘 − 272
2(22𝑘 + 4)

) 𝑥4

+ 28𝑥3 + (28 − 𝑎
2 ) 𝑥2 + (

4𝑘+1 + 16
22𝑘 + 4

)𝑥 ≡ 0 (mod 2).

Thus, gcd(𝐹, 𝑥 + 1) ≠ 1 and 𝒢(𝑥) is not monogenic.
Therefore, 𝒢(𝑥) is not monogenic when 𝑘 ≥ 2. So, suppose now that 𝑘 = 1.

Then 𝑏 = 𝑎2∕8 + 𝑎 so that 4 ∣ 𝑎. Then

𝒢(𝑥) = 𝑥8 + 𝑎𝑥6 + (𝑎2∕8 + 𝑎)𝑥4 + 𝑎𝑥2 + 1 ≡ (𝑥 + 1)8 (mod 2).

Hence, applying Theorem 2.8 with 𝑇(𝑥) ∶= 𝒢(𝑥) and 𝑞 = 2, we get that

𝐹(𝑥) = 4𝑥7 + (14 − 𝑎∕2) 𝑥6 + 28𝑥5 −
(
𝑎2∕16 + 𝑎∕2 − 35

)
𝑥4

+ 28𝑥3 + (14 − 𝑎∕2) 𝑥2 + 4𝑥 ≡ 0 (mod 2)

if 22 ∣∣ 𝑎. Thus, suppose that 𝑎 = 8𝑚, for some integer𝑚 ≠ 0. Then 𝐹(𝑥) = 𝑥4

and gcd(𝐹, 𝑥 + 1) = 1. Since𝑊1 = (𝑎 − 4)2∕8 = 2(2𝑚 − 1)2 is squarefree, it
follows that 𝑚 = 1 so that 𝑎 = 8 and 𝑏 = 16. It is straightforward to confirm
that

𝒢(𝑥) = 𝑥8 + 8𝑥6 + 16𝑥4 + 8𝑥2 + 1 with ∆(𝒢) = 224272

is indeed monogenic with Gal(𝒢) ≃ 8T10.
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The second case to examine is
𝑊2𝑊3 is a square

while neither 𝑊1𝑊3 nor 𝑊1𝑊2𝑊3 is a square. (3.27)

Since this case is similar to the first case, we give only a summary of the results.
In this case, we found exactly two monogenic 8T10-polynomials:

𝒢(𝑥) = 𝑥8 − 9𝑥6 + 21𝑥4 − 9𝑥2 + 1 with ∆(𝒢) = 2856412 and

𝒢(𝑥) = 𝑥8 − 8𝑥6 + 16𝑥4 − 8𝑥2 + 1 with ∆(𝒢) = 224172.

The third, and final, case to examine is
𝑊1𝑊2𝑊3 is a square

while neither 𝑊1𝑊3 nor 𝑊2𝑊3 is a square. (3.28)

If𝑊1𝑊2𝑊3 = 1, then using Maple to solve this equation yields four solutions,
all of which require

𝑏4 − 24𝑏3 + 216𝑏2 − 864𝑏 + 1280 = (𝑏 − 8)(𝑏 − 4)(𝑏2 − 12𝑏 + 40)

to be a square.
UsingMagma (IntegralQuarticPoints([1,-24,216,-864,1280],[4,0]);), we see

that the only integral points on the curve 𝑦2 = 𝑏4−24𝑏3+216𝑏2−864𝑏+1280
are (𝑏, 𝑦) ∈ {(4, 0), (8, 0)}. However, each of these values of 𝑏 produces only
irrational values for 𝑎. Hence,𝑊1𝑊2𝑊3 > 1 since𝑊1𝑊2𝑊3 is a square.
If 2 ∣ 𝑊3 then 2 ∣ 𝑎, and so 4 ∣ 𝑊3. We claim that 2 ∤ 𝑏. Assume, by

way of contradiction, that 2 ∣ 𝑏. Note that if 𝑏 ≡ 2 (mod 4), then 4 ∣ 𝑊1,
contradicting the fact that𝑊1 is squarefree. Hence, 4 ∣ 𝑏, 2 ∣ 𝑊1 and 2 ∣ 𝑊2.
Thus, 16 ∣ 𝑊1𝑊2𝑊3, so that𝑀 ∶= 𝑊1𝑊2𝑊3∕16 is a square and

𝑀 = ((𝑏∕2) + 1 − 𝑎)((𝑏∕2) + 1 + 𝑎)((𝑎∕2)2 + 𝑏 − 2)

≡

⎧
⎪

⎨
⎪
⎩

(1)(1)(3) ≡ 3 (mod 4) if 𝑎 ≡ 2 (mod 4) and 𝑏 ≡ 4 (mod 8),
(3)(3)(3) ≡ 3 (mod 4) if 𝑎 ≡ 2 (mod 4) and 𝑏 ≡ 0 (mod 8),
(3)(3)(2) ≡ 2 (mod 4) if 𝑎 ≡ 0 (mod 4) and 𝑏 ≡ 4 (mod 8),
(1)(1)(2) ≡ 2 (mod 4) if 𝑎 ≡ 0 (mod 4) and 𝑏 ≡ 0 (mod 8),

which is impossible in any case. Thus, the claim that 2 ∤ 𝑏 is established, and
therefore,

𝑔(𝑥) ≡ (𝑥2 + 𝑥 + 1)2 (mod 2).

Note that 𝑥2 + 𝑥 + 1 is irreducible in 𝔽2[𝑥]. Then, applying Theorem 2.8 with
𝑇(𝑥) ∶= 𝑔(𝑥) and 𝑞 = 2, we can let

ℎ1(𝑥) = ℎ2(𝑥) = 𝑥2 + 𝑥 + 1, (3.29)

so that

𝐹(𝑥) = −𝑥 ((𝑎 − 2
2 ) 𝑥2 + (𝑏 − 3

2 ) 𝑥 + (𝑎 − 2
2 )) . (3.30)
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Next, we determine the possible values of (𝑎 mod 4, 𝑏 mod 4). Since 4 ∣
𝑊1𝑊2𝑊3, then 𝑁 ∶= 𝑊1𝑊2𝑊3∕4 is a square with

𝑁 =
(𝑏 + 2 − 2𝑎)(𝑏 + 2 + 2𝑎)(𝑏2 − 4𝑏 + 8)

4 (3.31)

= (𝑏 + 2 − 2𝑎)(𝑏 + 2 − 2𝑎)((𝑎∕2)2 − 𝑏 + 2).

Hence, since 2 ∣ 𝑎 and 2 ∤ 𝑏, we see that (𝑏 + 2 − 2𝑎)(𝑏 + 2 + 2𝑎) ≡ 1 (mod 4)
and

𝑁 ≡ (𝑎∕2)2 − 𝑏 − 2 ≡ { −𝑏 − 1 (mod 4) if 𝑎 ≡ 2 (mod 4)
−𝑏 − 2 (mod 4) if 𝑎 ≡ 0 (mod 4).

Thus, it follows that

𝑏 ≡ { 3 (mod 4) if 𝑎 ≡ 2 (mod 4)
1 (mod 4) if 𝑎 ≡ 0 (mod 4).

Hence, 𝑔(𝑥) and 𝒢(𝑥) are not monogenic by Lemma 3.2.
Thus, we can assume additionally that 2 ∤ 𝑎 and𝑊3 is squarefree. We claim

that 2 ∤ 𝑏. To see this, we proceed by way of contradiction and consider the
two cases: 𝑏 ≡ 0 (mod 4) and 𝑏 ≡ 2 (mod 4). If 𝑏 ≡ 0 (mod 4), then𝑊1 ≡ 0
(mod 4), contradicting the fact that 𝑊1 is squarefee. If 𝑏 ≡ 2 (mod 4), then
4 ∣ 𝑊1𝑊2𝑊3 and 𝑁, as given in (3.31), is a square with

𝑁 = ((𝑏∕2) + 1 − 𝑎)((𝑏∕2) + 1 + 𝑎)(𝑎2 − 4𝑏 + 8)
≡ (2 − 𝑎)(2 + 𝑎)(1) ≡ −𝑎2 ≡ 3 (mod 4),

which is impossible. Hence, 2 ∤ 𝑏 and𝑊1𝑊2𝑊3 ≢ 0 (mod 2).
Note that𝑊1𝑊2 and𝑊3 are either both positive or bothnegative since𝑊1𝑊2𝑊3

is a square. If
𝑊1𝑊2 = (𝑏 + 2)2 − 4𝑎2 < 0 and 𝑊3 = 𝑎2 − 4𝑏 + 8 < 0,

then
(𝑏 + 2)2 < 4𝑎2 < 16𝑏 − 32,

which yields the contradiction
(𝑏 + 2)2 − 16𝑏 + 32 = (𝑏 − 6)2 < 0.

Hence,
𝑊1𝑊2 > 0 and 𝑊3 > 0. (3.32)

Let
𝑃 = gcd(𝑊1,𝑊3), 𝑄 = gcd(𝑊1,𝑊2) and 𝑅 = gcd(𝑊2,𝑊3).

Then,
|𝑊1| = |𝑏 + 2 − 2𝑎| = 𝑃𝑄
|𝑊2| = |𝑏 + 2 + 2𝑎| = 𝑄𝑅
𝑊3 = 𝑎2 − 4𝑏 + 8 = 𝑃𝑅,

(3.33)

where𝑃𝑄𝑅 is squarefree. Thus, either𝑃𝑄𝑅 = 1 or𝑃𝑄𝑅 is the product of distinct
odd primes.
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We claim that 𝑄 ≠ 1. To see this, we assume that 𝑄 = 1 and proceed by way
of contradiction. Then, we deduce from (3.32) and (3.33) that

(𝑏 + 2)2 − 4𝑎2 = 𝑎2 − 4𝑏 + 8,

so that

𝑎2 = 𝑏2 + 8𝑏 − 4
5 . (3.34)

Thus,

𝑊1𝑊2 = (𝑏 + 2)2 − 4𝑎2 = (𝑏 + 2)2 − 4(
𝑏2 + 8𝑏 − 4

5 ) =
(𝑏 − 6)2

5 . (3.35)

Since 𝑄 = 1, it follows that𝑊1𝑊2 is squarefree. Hence, from (3.35), we con-
clude that 𝑏 ∈ {1, 11}. If 𝑏 = 1, then 𝑎 = ±1 from (3.34). However, if 𝑎 = 1, we
arrive at the contradiction that𝑊1 = 1, while if 𝑎 = −1, we get the contradic-
tion that𝑊2 = 1. If 𝑏 = 11, then 𝑎2 = 41 from (3.34). Therefore, the claim is
established, and 𝑄 ≥ 3, since 𝑄 is odd.
Note that if 𝑃 = 𝑅 ≠ 1, then𝑊3 = 𝑅2 > 1, which contradicts the fact that

𝑊3 is squarefree. If 𝑃 = 𝑅 = 1, then𝑊1𝑊2 = |𝑊1𝑊2| = 𝑄2, which contradicts
the fact that𝑊1𝑊2 is not a square. Therefore, 𝑃 ≠ 𝑅. Similar arguments show
that 𝑃 ≠ 𝑄 and 𝑄 ≠ 𝑅.
We proceed by providing details in the situation when𝑊1 > 0 and𝑊2 > 0.

We omit details when 𝑊1 < 0 and 𝑊2 < 0 since the arguments are similar,
and no new solutions arise (see [31, p.10]). Invoking Maple to solve the system
(3.33), we get that

𝑃2𝑄2 − 2𝑃𝑄2𝑅 + 𝑄2𝑅2 − 32𝑃𝑄 − 32𝑄𝑅 − 16𝑃𝑅 + 256 = 0. (3.36)

It follows from (3.36) that

𝑃 ∣ (𝑄𝑅 − 16), 𝑄 ∣ (𝑃𝑅 − 16) and 𝑅 ∣ (𝑃𝑄 − 16). (3.37)

Thus, since 𝑃𝑄𝑅 is squarefree, we deduce from (3.37) that 𝑃𝑄𝑅 divides

𝑍 ∶ =
(𝑄𝑅 − 16)(𝑃𝑅 − 16)(𝑃𝑄 − 16) − 𝑃𝑄𝑅(𝑃𝑄𝑅 − 16𝑃 − 16𝑄 − 16𝑅)

256
= 𝑃𝑄 + 𝑄𝑅 + 𝑃𝑅 − 16.

It is easy to see that 𝑍 ≥ 7 since 𝑃, 𝑄 and 𝑅 are distinct odd positive integers.
Hence, since 𝑃𝑄𝑅 divides 𝑍, we have that 𝐻 ∶= 𝑃𝑄𝑅 − 𝑍 ≤ 0. On the other
hand, using Maple, we see that the minimum value of 𝐻, subject to the con-
straints {𝑃 ≥ 3, 𝑄 ≥ 3, 𝑅 ≥ 3}, is 16. Thus, we deduce that 𝑃 = 1 or 𝑅 = 1.
Letting 𝑃 = 1 in (3.36), and solving for 𝑄 yields

𝑄 =
4(4𝑅 + 4 ±

√
𝑅3 − 2𝑅2 + 65𝑅)

(𝑅 − 1)2
, (3.38)

while solving for 𝑅 produces

𝑅 =
𝑄2 + 16𝑄 + 8 ± 4

√
4𝑄3 + 𝑄2 + 16𝑄 + 4
𝑄2 . (3.39)
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For 𝑄 to be a viable solution, we conclude from (3.38) that

𝑦2 = 𝑅3 − 2𝑅2 + 65𝑅, (3.40)

for some integer 𝑦. Using Sage to find all integral points (with 𝑦 ≥ 0) on the
elliptic curve (3.40) we get

(𝑅, 𝑦) ∈ {(0, 0), (1, 8), (5, 20), (13, 52), (16, 68), (45, 300), (65, 520), (1573, 62348)}.

In (3.38), we cannot have 𝑅 = 1, and since 𝑅 ≥ 1 is odd and squarefree, we
have that 𝑅 ∈ {5, 13, 65}. Plugging these values back into (3.38) reveals only the
two valid solution triples (𝑃, 𝑄, 𝑅) ∈ {(1, 11, 5), (1, 3, 13)}. Although the triple
(1, 1, 5) arises here, it is not legitimate since we know that 𝑃 ≠ 𝑄. Because
(3.36) is symmetric in 𝑃 and 𝑅, we can also derive the two additional solutions
(5, 11, 1) and (13, 3, 1). Using the same approach on (3.39) yields no additional
solutions. Also, the substitution of 𝑅 = 1 into (3.36) produces no additional
solutions as well. In summary, the only solutions are given by

(𝑃, 𝑄, 𝑅) ∈ {(1, 11, 5), (1, 3, 13), (5, 11, 1), (13, 3, 1)}. (3.41)

The corresponding values of (𝑎, 𝑏) can be found by using the values of 𝑃, 𝑄 and
𝑅 in (3.41), and solving the resulting systems in (3.33). These pairs are

(𝑎, 𝑏) ∈ {(11, 31), (9, 19), (−11, 31), (−9, 19)},

and the corresponding polynomials are

𝒢(𝑥) = 𝑥8 + 11𝑥6 + 31𝑥4 + 11𝑥2 + 1 with ∆(𝒢) = 2856114,
𝒢(𝑥) = 𝑥8 + 9𝑥6 + 19𝑥4 + 9𝑥2 + 1 with ∆(𝒢) = 2834136,
𝒢(𝑥) = 𝑥8 − 11𝑥6 + 31𝑥4 − 11𝑥2 + 1 with ∆(𝒢) = 2856114,
𝒢(𝑥) = 𝑥8 − 9𝑥6 + 31𝑥4 − 9𝑥2 + 1 with ∆(𝒢) = 2834136.

In summary, we have shown that there exist exactly seven distinct mono-
genic polynomials 𝒢(𝑥)with Gal(𝒢) ≃ 8T10 (see Table 2), andMagma confirms
that these polynomials generate distinct octic fields.

X=18. Let
𝒢𝑡(𝑥) ∶= 𝑥8 + 3𝑥6 + (2𝑡 + 1)𝑥4 + 3𝑥2 + 1.

Then∆(𝒢𝑡) = 256(2𝑡+9)2(2𝑡−3)2(8𝑡−13)4. Let𝐺(𝑡) ∶= (2𝑡+9)(2𝑡−3)(8𝑡−13).
Since 𝐺(1) ≡ 3 (mod 4), we deduce from Lemma 2.15 that 𝐺(𝑡) has no local
obstructions. Hence, from Corollary 2.14, there exist infinitely many primes 𝑝
such that𝐺(𝑝) is squarefree. Let 𝑝 ≥ 3 be such a prime. Observe then for 𝒢𝑝(𝑥)
we have

𝑊1 = 2𝑝 − 3, 𝑊2 = 2𝑝 + 9 and 𝑊3 = −8𝑝 + 13. (3.42)

Since 𝐺(𝑝) is squarefree, it follows that Gal(𝒢) ≃ 8T18 from Theorem 2.6, and
that 𝒢(𝑥) is monogenic from Lemma 3.1.
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Suppose that, for some primes 3 ≤ 𝑝 < 𝑞, with 𝐺(𝑝) and 𝐺(𝑞) both square-
free, we have that 𝒢𝑝(𝑥) and 𝒢𝑞(𝑥) generate the same octic field. Then, it must
be that ∆(𝒢𝑝) = ∆(𝒢𝑞), which implies that

256(2𝑝 + 9)2(2𝑝 − 3)2(8𝑝 − 13)4 = 256(2𝑞 + 9)2(2𝑞 − 3)2(8𝑞 − 13)4,
contradicting the fact that 𝑝 < 𝑞. Thus, {𝒢𝑝(𝑥) ∶ 𝐺(𝑝) is squarefree} is an
infinite family of monogenic even octic 8T18-polynomials, which completes
the proof of the theorem. □

We have summarized the results of Theorem 1.1 below in Tables 2 and 3.

X Distinct Monogenic 8TX-Trinomials ℱ(𝑥) #

2 𝑥8 + 1 1
3 𝑥8 − 𝑥4 + 1 1
4 𝑥8 + 3𝑥4 + 1 1
6 𝑥8 + 2 1
8 𝑥8 − 2𝑥4 − 1, 𝑥8 − 2 2
9 𝑥8 + (4𝑝 + 3)𝑥4 + 1 ∞

where 𝑝 is prime with (4𝑝 + 1)(4𝑝 + 5) squarefree
11 none 0
15 𝑥8 − 𝑎𝑥4 − 1 ∞

where 𝑎 > 0, 4 ∤ 𝑎 with (𝑎2 + 4)∕ gcd(𝑎2, 4) squarefree
16 𝑥8 − 4𝑥4 + 2, 𝑥8 + 4𝑥4 + 2, 𝑥8 − 5𝑥4 + 5 3
17 𝑥8 + 2𝑡𝑥4 + 𝑡2 + 1 ∞

where 𝑡 > 0 with 𝑡2 + 1 squarefree
22 none 0
26 𝑥8 + 𝑝𝑥4 + 3 ∞

where 𝑝 ≥ 5 is prime with 𝑝2 − 12 squarefree
Table 2. Monogenic 8TX-even-trinomials with X∈ 𝑋ℱ
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X Distinct Monogenic 8TX-Polynomials 𝒢(𝑥) #

2 𝑥8 − 𝑥6 + 𝑥4 − 𝑥2 + 1 1
3 none 0
4 none 0
9 𝑥8 + (4𝑝 + 3)𝑥6 + (8𝑝 + 5)𝑥4 + (4𝑝 + 3)𝑥2 + 1 ∞

where 𝑝 is prime with (16𝑝 + 13)(4𝑝 + 1)(4𝑝 − 3) squarefree
10 𝑥8 + 8𝑥6 + 16𝑥4 + 8𝑥2, 7

𝑥8 − 9𝑥6 + 21𝑥4 − 9𝑥2 + 1, 𝑥8 − 8𝑥6 + 16𝑥4 − 8𝑥2
𝑥8 + 11𝑥6 + 31𝑥4 + 11𝑥2 + 1, 𝑥8 + 9𝑥6 + 19𝑥4 + 9𝑥2 + 1
𝑥8 − 11𝑥6 + 31𝑥4 − 11𝑥2 + 1, 𝑥8 − 9𝑥6 + 19𝑥4 − 9𝑥2 + 1

18 𝑥8 + 3𝑥6 + (2𝑝 + 1)𝑥4 + 3𝑥2 + 1 ∞
where 𝑝 is prime with (2𝑝 + 9)(2𝑝 − 3)(8𝑝 − 13) squarefree

Table 3. Monogenic 8TX-even-reciprocal polynomials with
X∈ 𝑋𝒢
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