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A fixed point theorem for random
asymptotically nonexpansive mappings

Yuanyuan Sun, Tiexin Guo* and Qiang Tu

Abstract. In this paper, we first establish the following fixed point theorem
for a random asymptotically nonexpansive mapping, which can be regarded
as a random generalization of the classical Goebel-Kirk fixed point theorem:
let (𝐸, ‖ ⋅ ‖) be a complete random uniformly convex random normed mod-
ule and 𝐺 be an almost surely bounded closed 𝐿0-convex subset of 𝐸, then
every random asymptotically nonexpansive mapping 𝑓 from 𝐺 to 𝐺 has a
fixed point in 𝐺. Second, we prove that the set 𝑌 of fixed points of 𝑓 is closed
and 𝐿0-convex. Finally, we show that every eventually random asymptot-
ically nonexpansive mapping 𝑓 also has a fixed point. Since the classical
method used to prove the Goebel-Kirk fixed point theorem for an asymptot-
ically nonexpansive mapping does not work directly for the current random
setting, we are forced to make use of the connection between the random
uniform convexity of the complete random normed module (𝐸, ‖ ⋅ ‖) and the
uniform convexity of the abstract 𝐿𝑝(𝐸)-space generated by 𝐸, where 𝑝 is a
given positive number with 1 < 𝑝 < +∞. Specifically, we decompose a ran-
dom asymptotically nonexpansive operator on 𝐺 into a sequence of smaller
operators on a bounded closed convex subset of 𝐿𝑝(𝐸) such that each smaller
operator is a classical eventually asymptotically nonexpansive mapping on
the corresponding bounded closed convex subset. Consequently, by using
the 𝜎-stability of 𝑓 and 𝐺, we can establish a precise relation between the
fixed point set of 𝑓 and the fixed point sets of these smaller operators, which
makes us finally complete the proofs of the above mentioned main results.
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1. Introduction and the main results
In 1965, Browder and Kirk established a remarkable fixed point theorem in

[1, 18] for a nonexpansive mapping, which states that, for a weakly compact
convex subset 𝐺 with normal structure of a Banach space, every nonexpansive
mapping 𝑓 from 𝐺 to 𝐺 has a fixed point. Browder-Kirk fixed point theorem
shows the strong intersection of fixed point theory with geometry of Banach
spaces.
In 1972, Goebel andKirk generalized Browder’s work [1] fromnonexpansive

mappings to asymptotically nonexpansive mappings. Precisely, they gave the
following famous fixed point theorem in [4]: let (𝐵, ‖ ⋅ ‖) be a uniformly convex
Banach space, 𝐶 a nonempty bounded closed convex subset of 𝐵 and 𝑓 ∶ 𝐶 →
𝐶 an asymptotically nonexpansive mapping, namely, there exists a sequence
{𝑘𝑚, 𝑚 ∈ ℕ} of nonnegative real numbers such that lim𝑚→∞ 𝑘𝑚 = 1 and ‖𝑓𝑚𝑥−
𝑓𝑚𝑦‖ ≤ 𝑘𝑚‖𝑥 − 𝑦‖ for any 𝑥, 𝑦 ∈ 𝐶 and 𝑚 ∈ ℕ, then 𝑓 has a fixed point in
𝐶, where 𝑓𝑚 denotes the 𝑚-th iteration of 𝑓. Since then, the work in [4] has
attracted the attention of many scholars in the field of nonlinear analysis, see,
for example, [17, 19, 23, 24, 27]. The purpose of this paper is to extend the
Goebel-Kirk fixed point theorem from asymptotically nonexpansive mappings
in a uniformly convex Banach space to random asymptotically nonexpansive
mappings in a complete random uniformly convex random normed module.
Random normed modules(briefly, 𝑅𝑁 modules) are a random generaliza-

tion of ordinary normed spaces, which were independently introduced by Guo
in [6, 7] and Gigli in [3] and have been one of basic frameworks in random
functional analysis. Just based on such an idea of randomizing the traditional
space theory, random functional analysis has been deeply and widely devel-
oped [7, 10], in particular random functional analysis has also been successfully
applied to dynamic risk measures [8, 9] and nonsmooth differential geometry
[3, 20, 21].
With the deep development of random functional analysis in financial appli-

cations, the current central task of random functional analysis is to extend fixed
point theory from Banach spaces or locally convex spaces to complete random
normed modules and random locally convex modules. In 2020, the notion of
𝐿0-convex compactness for an 𝐿0-convex set was introduced byGuo [15], where
a characterization theorem for a closed 𝐿0-convex set in a complete 𝑅𝑁 mod-
ule to have 𝐿0-convex compactness was established, which can be regarded as a
generalization of the famous James characterization theorem for a closed con-
vex subset of a Banach space to be weakly compact. Furthermore, the notion
of random normal structure was introduced in [16], the authors of [14] suc-
cessfully generalized Kirk’s fixed point theorem [18] from a Banach space to
a complete 𝑅𝑁 module, which states that, for an 𝐿0-convexly compact closed
𝐿0-convex subset 𝐺 with random normal structure of a complete 𝑅𝑁 module
(𝐸, ‖ ⋅ ‖) over 𝕂 with base (Ω,ℱ, 𝑃), every nonexpansive mapping 𝑓 from 𝐺
to 𝐺 has a fixed point. Recently, Mu, et.al further established several common
fixed point theorems for a commutative family of nonexpansive mappings in



184 YUANYUAN SUN, TIEXIN GUO AND QIANG TU

complete random normed modules in [22], which is an important advance in
the fixed point theory of nonexpansive mappings in complete random normed
modules. In 2024, the two notions of random sequentially compact sets and
random sequentially continuous mappings were introduced by Guo, et.al. in
[10], where they successfully generalized the Schauder fixed point theorem [5]
to 𝑅𝑁 modules. In 2024, by utilizing the theory of random sequential com-
pactness in random normed modules, Wang, et.al. established a noncompact
Dotson fixed point theorem in [26]. Shortly afterwards, based on the notion of
stable compactness, Tu, et.al. established the random Markov-Kakutani fixed
point theorem togetherwith its connectionwith the randomHahn-Banach the-
orem in [25].
The work of this paper depends on geometry of 𝑅𝑁 modules, which began

with Guo and Zeng’s work in [12], where the notions of random strict and uni-
form convexities were introduced and the equivalence between random uni-
form convexity of an𝑅𝑁module𝐸 and uniform convexity of the abstract 𝐿𝑝(𝐸)-
space generated by 𝐸 was established when 1 < 𝑝 < +∞. Besides the impor-
tant advance on random uniform convexity, this paper is also considerably mo-
tivated by work in [10]. The authors in [10] provided a good idea when they
studied the fixed point problem for a 𝜎-stable mapping 𝑓, namely, first decom-
posing 𝑓 to countably many smaller operators, then considering the fixed point
problem for each smaller operator and eventually obtaining a fixed point of𝑓 by
countably concatenating the fixed points of these smaller operators. Compared
with the theory of classical uniformly convex spaces, the theory of random uni-
formly convex spaces has not developed so fully that we can adopt a similar
method used to prove the Goebel-Kirk fixed point theorem for an asymptoti-
cally nonexpansivemapping, for example, we do not know if random convexity
modulus is continuous, which forces us to adopt a new method different from
that used in [4]. Just motivated by the idea of [10], in this paper we first de-
compose a random asymptotically nonexpansive operator on an almost surely
(briefly, a.s.) bounded closed 𝐿0-convex subset of a complete randomuniformly
convex random normed module 𝐸 into a sequence of smaller operators on a
bounded closed convex subset of 𝐿𝑝(𝐸) such that each smaller operator is a
classical eventually asymptotically nonexpansive mapping on the correspond-
ing bounded closed convex subset. Consequently, by using the 𝜎-stability of 𝑓
and 𝐺, we can establish a precise relation between the fixed point set of 𝑓 and
the fixed point sets of these smaller operators, whichmakes us finally complete
the proofs of the main results of this paper.
To present the main results of this paper, we need to introduce some neces-

sary preliminaries in random functional analysis.
Throughout this paper, (Ω,ℱ, 𝑃) denotes a given probability space, ℕ the set

of positive integers, 𝕂 the scalar field ℝ of real numbers or ℂ of complex num-
bers, 𝐿0(ℱ,𝕂) the algebra of equivalence classes of𝕂-valuedℱ-measurable ran-
dom variables on (Ω,ℱ, 𝑃) (as usual, two random variables equal a.s. are said
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to be equivalent). Specially, 𝐿0(ℱ) ∶= 𝐿0(ℱ,ℝ) and 𝐿̄0 the set of equivalence
classes of extended real valued ℱ-measurable random variables on (Ω,ℱ, 𝑃).
Proposition 1.1 can be regarded as a random version of the classical supre-

mum and infimum principle. The partial order ≤ on 𝐿̄0(ℱ) is defined by 𝜉 ≤ 𝜂
iff 𝜉0(𝜔) ≤ 𝜂0(𝜔) for 𝑃-almost surely all 𝜔 ∈ Ω, where 𝜉0 and 𝜂0 are arbitrarily
chosen representatives of 𝜉 and 𝜂 respectively.

Proposition 1.1 ([2]). (𝐿̄0(ℱ), ≤) is a complete lattice, for any nonempty subset
𝐻 of 𝐿̄0(ℱ), ∨𝐻 and ∧𝐻 denote the supremum and infimum of 𝐻, respectively.
Also, the following statements hold:
(1) There are two sequences {𝑎𝑛, 𝑛 ∈ ℕ} and {𝑏𝑛, 𝑛 ∈ ℕ} in𝐻 such that∨𝑛≥1𝑎𝑛 =

∨𝐻 and ∧𝑛≥1𝑏𝑛 = ∧𝐻.
(2) If 𝐻 in (1) is directed upwards (resp., downwards), i.e., there exists ℎ3 ∈ 𝐻

for any two elements ℎ1 and ℎ2 in 𝐻 such that ℎ1 ∨ ℎ2 ≤ ℎ3 (ℎ3 ≤ ℎ1 ∧ ℎ2),
then {𝑎𝑛, 𝑛 ∈ ℕ} (resp., {𝑏𝑛, 𝑛 ∈ ℕ}) can be chosen as nondecreasing (resp.,
nonincreasing).

(3) (𝐿0(ℱ), ≤) is a Dedekind complete lattice, i.e., every nonempty subset with an
upper bound has a supremum.

As usual, 𝜉 < 𝜂 means 𝜉 ≤ 𝜂 and 𝜉 ≠ 𝜂 for any 𝜉 and 𝜂 in 𝐿̄0(ℱ), whereas,
for any 𝐴 ∈ ℱ, 𝜉 < 𝜂 on 𝐴 (𝜉 ≤ 𝜂 on 𝐴) means 𝜉0(𝜔) < 𝜂0(𝜔) (𝜉0(𝜔) ≤
𝜂0(𝜔)) for almost all 𝜔 in𝐴, where 𝜉0 and 𝜂0 are respectively arbitrarily chosen
representatives of 𝜉 and 𝜂.
In this paper, the following notation are always employed:
𝐿0+(ℱ) = {𝜉 ∈ 𝐿0(ℱ) | 𝜉 ≥ 0};
𝐿0++(ℱ) = {𝜉 ∈ 𝐿0(ℱ) | 𝜉 > 0 𝑜𝑛 Ω};
𝐿̄0+(ℱ) = {𝜉 ∈ 𝐿̄0(ℱ) | 𝜉 ≥ 0}.
For any𝐴 ∈ ℱ, 𝐼𝐴 stands for the equivalence class of 𝐼𝐴, where 𝐼𝐴 stands for

the characteristic function of 𝐴, namely 𝐼𝐴(𝜔) = 1 if 𝜔 ∈ 𝐴 and 0 otherwise.

Definition 1.2 ([6]). An ordered pair (𝐸, ‖ ⋅ ‖) is called a random normed mod-
ule(briefly, an 𝑅𝑁 module) over 𝕂 with base (Ω,ℱ, 𝑃) if 𝐸 is a left module over
the algebra 𝐿0(ℱ,𝕂) (briefly, an 𝐿0(ℱ,𝕂)-module) and ‖ ⋅ ‖ is a mapping from 𝐸
to 𝐿0+ such that the following are satisfied:
(RNM-1) ‖𝑥‖ = 0 implies 𝑥 = 𝜃 (the null in 𝐸);
(RNM-2) ‖𝜉 ⋅ 𝑥‖ = |𝜉| ⋅ ‖𝑥‖ for any (𝜉, 𝑥) ∈ 𝐿0(ℱ,𝕂) × 𝐸;
(RNM-3) ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ for all 𝑥 and 𝑦 ∈ 𝐸.
As usual, ‖ ⋅ ‖ is called the 𝐿0-norm on 𝐸.

(𝐿0(ℱ,𝕂), | ⋅ |) is a simplest 𝑅𝑁 module, where | ⋅ | is the usual absolute
value mapping on 𝐿0(ℱ,𝕂). In this paper, an 𝑅𝑁 module is always endowed
with the (𝜀, 𝜆)-topology as follows. It is easy to see that the (𝜀, 𝜆)-topology for
(𝐿0(ℱ,𝕂), | ⋅ |) is exactly the topology of convergence in probability 𝑃.

Proposition 1.3 ([7]). Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁module over𝕂with base (Ω,ℱ, 𝑃).
For any 𝜀 > 0 and 0 < 𝜆 < 1, let 𝑁𝜃(𝜀, 𝜆) = {𝑥 ∈ 𝐸|𝑃{𝜔 ∈ Ω ∶ ‖𝑥‖(𝜔) <
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𝜀} > 1 − 𝜆}, called the (𝜀, 𝜆)-neighborhood of 𝜃. Then 𝒰𝜃 = {𝑁𝜃(𝜀, 𝜆), 𝜀 > 0, 0 <
𝜆 < 1} forms a local base for some metrizable linear topology on 𝐸, called the
(𝜀, 𝜆)-topology, denoted by𝒯𝜀,𝜆. Furthermore, the following statements hold:
(1) 𝐿0(ℱ,𝕂) is a topological algebra over𝕂;
(2) 𝐸 is a topological module over the topological algebra 𝐿0(ℱ,𝕂);
(3) A sequence {𝑥𝑛, 𝑛 ≥ 1} in 𝐸 converges to 𝑥 ∈ 𝐸 in the (𝜀, 𝜆)-topology iff {‖𝑥𝑛−

𝑥‖, 𝑛 ∈ ℕ} converges to 0 in probability 𝑃.
Let (𝐸, ‖⋅‖) be an𝑅𝑁module over𝕂with base (Ω,ℱ, 𝑃). A nonempty subset

𝐺 of 𝐸 is said to be 𝐿0-convex if 𝜉𝑥 + 𝜂𝑦 ∈ 𝐺 for any 𝑥 and 𝑦 ∈ 𝐺 and any
𝜉 and 𝜂 ∈ 𝐿0+(ℱ) such that 𝜉 + 𝜂 = 1, and 𝐚.𝐬. bounded or 𝐿0-bounded if⋁{‖𝑥‖ ∶ 𝑥 ∈ 𝐺} ∈ 𝐿0+(ℱ). The set 𝑠𝑢𝑝𝑝(𝐸) = {𝜔 ∈ 𝐸 |𝜉0(𝜔) = +∞} is called
the support of 𝐸 (𝑠𝑢𝑝𝑝(𝐸) is unique 𝐚.𝐬.), where 𝜉 = ⋁{‖𝑥‖ ∶ 𝑥 ∈ 𝐸} and 𝜉0
is an arbitrarily chosen representative of 𝜉. If 𝑃(𝑠𝑢𝑝𝑝(𝐸)) = 1, then 𝐸 is said to
have full support. In the remainder of this paper, it is always assumed that all
𝑅𝑁 modules mentioned have full support.
Further, we employ the following notation for a brief introduction to random

uniformly convex 𝑅𝑁 modules:
𝜀ℱ[0, 2] = {𝜀 ∈ 𝐿0++(ℱ) ∶ there exists a positive number 𝜆 such that 𝜆 ≤ 𝜀 ≤ 2}.
𝛿ℱ[0, 1] = {𝛿 ∈ 𝐿0++(ℱ) ∶ there exists a positive number 𝜂 such that 𝜂 ≤ 𝛿 ≤ 1}.
For any 𝑥, 𝑦 in 𝐸, denote the equivalence class of ℱ-measurable set {𝜔 ∈

Ω ∶ ‖𝑥‖0(𝜔) ≠ 0} by 𝐴𝑥, called the support of 𝑥, where ‖𝑥‖0 is an arbitrarily
chosen representative of ‖𝑥‖; and we briefly write 𝐴𝑥,𝑦 = 𝐴𝑥 ∩ 𝐴𝑦 and 𝐵𝑥,𝑦 =
𝐴𝑥 ∩ 𝐴𝑦 ∩ 𝐴𝑥−𝑦.

Definition 1.4 ([12]). Let (𝐸, ‖ ⋅ ‖) be a complete 𝑅𝑁 module over 𝕂 with base
(Ω,ℱ, 𝑃). 𝐸 is said to be random uniformly convex if for each 𝜀 ∈ 𝜀ℱ[0, 2] there
exists 𝛿 ∈ 𝛿ℱ[0, 1] such that ‖𝑥 − 𝑦‖ ≥ 𝜀 on𝐷 always implies ‖𝑥 + 𝑦‖ ≤ 2(1− 𝛿)
on 𝐷 for any 𝑥 and 𝑦 ∈ 𝑈(1) and any 𝐷 ∈ ℱ such that 𝐷 ⊂ 𝐵𝑥,𝑦 and 𝑃(𝐷) > 0,
where𝑈(1) = {𝑧 ∈ 𝐸| ‖𝑧‖ ≤ 1}, called the random closed unit ball of 𝐸.
Definition 1.5. Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁 module over 𝕂 with base (Ω,ℱ, 𝑃) and
𝐺 be a nonempty subset of 𝐸. A mapping 𝑓 ∶ 𝐺 → 𝐺 is said to be random
asymptotically nonexpansive if there exists a sequence {𝜉𝑚, 𝑚 ∈ ℕ} in 𝐿0+(ℱ)with
{𝜉𝑚, 𝑚 ∈ ℕ} convergent a.s. to 1, such that

‖𝑓𝑚𝑥 − 𝑓𝑚𝑦‖ ≤ 𝜉𝑚‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝐺 𝑎𝑛𝑑 𝑚 ∈ ℕ.
Amapping 𝑓 ∶ 𝐺 → 𝐺 is called an eventually random asymptotically nonexpan-
sive mapping if there exist some 𝑙 ∈ ℕ and a sequence {𝜉𝑚, 𝑚 ≥ 𝑙} in 𝐿0+(ℱ) with
{𝜉𝑚, 𝑚 ≥ 𝑙} convergent a.s. to 1, such that

‖𝑓𝑚(𝑥) − 𝑓𝑚(𝑦)‖ ≤ 𝜉𝑚‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝐺 𝑎𝑛𝑑 𝑚 ≥ 𝑙.
Theorems 1.6, 1.7 and 1.8 below are themain results of this paper, as random

generalizations of Theorems 1, 2 and 3 in [4], respectively.

Theorem 1.6. Let (𝐸, ‖ ⋅ ‖) be a complete random uniformly convex 𝑅𝑁 module
over 𝕂 with base (Ω,ℱ, 𝑃) and 𝐺 be an 𝐚.𝐬. bounded closed 𝐿0-convex subset of



A FIXED POINT THEOREM 187

𝐸, then every random asymptotically nonexpansive mapping 𝑓 ∶ 𝐺 → 𝐺 has a
fixed point.

Theorem 1.7. Under the same assumptions as in Theorem 1.6, then the set 𝑌 of
fixed points of 𝑓 is closed and 𝐿0-convex.

Theorem 1.8 below shows that 𝑓 in Theorem 1.6 only needs to be eventually
random asymptotically nonexpansive.

Theorem 1.8. Let (𝐸, ‖ ⋅ ‖) be a complete random uniformly convex 𝑅𝑁 module
over 𝕂 with base (Ω,ℱ, 𝑃) and 𝐺 be an 𝐚.𝐬. bounded closed 𝐿0-convex subset of
𝐸. Further suppose that 𝑓 ∶ 𝐺 → 𝐺 is an eventually random asymptotically
nonexpansive mapping, then 𝑓 has a fixed point.

2. Proofs of the main results
Proposition 2.1 below is Theorem 3 of [4], which will be used in the proof of

Theorem 1.6.

Proposition 2.1. Suppose 𝐶 is a nonempty, closed, bounded and convex subset
of a uniformly convex Banach space (𝐵, ‖⋅‖) and𝐹 ∶ 𝐶 → 𝐶 is an arbitrary (even
noncontinuous) transformation such that for some positive integer 𝑛,

‖𝐹𝑖𝑥 − 𝐹𝑖𝑦‖ ≤ 𝑘𝑖‖𝑥 − 𝑦‖, 𝑖 ≥ 𝑛,

where {𝑘𝑖, 𝑖 ≥ 𝑛} is a sequence of nonnegative real numbers with lim𝑖→∞ 𝑘𝑖 = 1.
Then 𝐹 has a fixed point.

Remark 2.2. It is easy to see from the proof of Theorem 3 of [4] that the set of
fixed points of 𝐹 in Proposition 2.1 is also closed and convex.

Lemma 2.3 below is crucial for the proofs of the main results of this paper,
as it establishes a connection between 𝑅𝑁modules and normed spaces (see [7]
for details).

Lemma 2.3. Let (𝐸, ‖ ⋅ ‖) be an 𝑅𝑁 module over 𝕂 with base (Ω,ℱ, 𝑃), and
1 ≤ 𝑝 ≤ +∞. Let 𝐿𝑝(𝐸) = {𝑥 ∈ 𝐸| ‖𝑥‖𝑝 < +∞}, where ‖ ⋅ ‖𝑝 ∶ 𝐸 → [0, +∞] is
defined by:

‖𝑥‖𝑝 = { (∫Ω(‖𝑥‖𝑝)𝑑𝑃)
1
𝑝 , when 1 ≤ 𝑝 < +∞;

i𝑛𝑓{𝑀 ∈ [0, +∞] | ‖𝑥‖ ≤ 𝑀}, when 𝑝 = +∞

for all 𝑥 ∈ 𝐸. Then (𝐿𝑝(𝐸), ‖ ⋅ ‖𝑝) is a normed space and 𝐿𝑝(𝐸) is 𝒯𝜀,𝜆-dense in
𝐸.

Remark 2.4. For 1 ≤ 𝑝 ≤ +∞, if (𝐸, ‖ ⋅ ‖) is a complete 𝑅𝑁 module, then
(𝐿𝑝(𝐸), ‖ ⋅ ‖𝑝) is a Banach space (see [11]). For 1 < 𝑝 < +∞, if (𝐸, ‖ ⋅ ‖) is
a complete 𝑅𝑁 module, then (𝐿𝑝(𝐸), ‖ ⋅ ‖𝑝) is uniformly convex iff 𝐸 is random
uniformly convex (see [12, 13]).
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Definitions 2.5 and 2.6 below provide the notions of stability of sets andmap-
pings, and they have played an important role in random functional analysis
(see [7, 10, 14, 15, 16, 22, 25, 26]), particularly in the proofs of the main results
of this paper.

Definition 2.5. Let 𝐸 be an 𝐿0(ℱ,𝕂)-module and 𝐺 be a nonempty subset of 𝐸.
𝐺 is said to be stable if 𝐼𝐴𝑥 + 𝐼𝐴𝑐𝑦 ∈ 𝐺 for any 𝑥, 𝑦 ∈ 𝐺 and any 𝐴 ∈ ℱ, where
𝐴𝑐 = Ω ⧵ 𝐴. 𝐺 is said to be 𝜎-stable (or, to have the countable concatenation
property in the original terminology of [7]) if for any sequence {𝑥𝑛, 𝑛 ∈ ℕ} in
𝐺 and any countable partition {𝐴𝑛, 𝑛 ∈ ℕ} of Ω to ℱ (namely, each 𝐴𝑛 ∈ ℱ,
𝐴𝑖
⋂𝐴𝑗 = ∅ for any 𝑖 ≠ 𝑗, and ⋃∞

𝑛=1𝐴𝑛 = Ω) there exists 𝑥 ∈ 𝐺 such that
𝐼𝐴𝑛𝑥 = 𝐼𝐴𝑛𝑥𝑛 for each 𝑛 ∈ ℕ.
It is known from [7] that when (𝐸, ‖ ⋅ ‖) is an 𝑅𝑁 module or a more general

regular 𝐿0-module (see [10] for the notion of a regular 𝐿0-module), 𝑥 in Defini-
tion 2.5 is unique and can be written as

∑∞
𝑛=1 𝐼𝐴𝑛𝑥𝑛. Also, any closed 𝐿

0-convex
subset of a complete 𝑅𝑁 module is always 𝜎-stable.
Definition 2.6. Let𝐸 be a regular 𝐿0(ℱ, 𝐾)-module and𝐺 be a nonempty subset
of 𝐸. The mapping 𝑓 ∶ 𝐺 → 𝐺 is said to be
(1) 𝜎-stable, if 𝐺 is 𝜎-stable and

𝑓(
∞∑

𝑛=1
𝐼𝐴𝑛𝑥𝑛) =

∞∑

𝑛=1
𝐼𝐴𝑛𝑓(𝑥𝑛)

for every sequence {𝑥𝑛, 𝑛 ∈ ℕ} in𝐺 and every countable partition {𝐴𝑛, 𝑛 ∈ ℕ}
ofΩ toℱ;

(2) have the local property if 𝐺 is stable, 𝜃 ∈ 𝐺 and

𝐼𝐴𝑓(𝑥) = 𝐼𝐴𝑓(𝐼𝐴𝑥)
for any 𝐴 ∈ ℱ and any 𝑥 ∈ 𝐺 (Here, we should like to remind the reader of
the fact that 𝐼𝐴𝑥 ∈ 𝐺 for any 𝐴 ∈ ℱ and any 𝑥 ∈ 𝐺 when 𝐺 is stable and
𝜃 ∈ 𝐺 ).

By Lemma 2.11 of [14], any 𝐿0-Lipschitzian mapping defined on a 𝜎-stable
set of an 𝑅𝑁 module is 𝜎-stable. So, if 𝑓 is a random asymptotically nonexpan-
sivemapping defined on a 𝜎-stable set, then 𝑓 is 𝜎-stable. According to Remark
3.2 of [15], if 𝐺 is a 𝜎-stable set with 𝜃 ∈ 𝐺, then 𝑓 is 𝜎-stable iff 𝑓 has the local
property.
With the above preparations, we are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. Without loss of generality, we can assume that 𝜃 ∈
𝐺(otherwise, take an arbitrary 𝑝0 ∈ 𝐺, and replace 𝐺 and 𝑓 with 𝐺′ = 𝐺 − 𝑝0
and 𝑓′ ∶ 𝐺′ → 𝐺′ defined by 𝑓′(𝑝) = 𝑓(𝑝 + 𝑝0) − 𝑝0, ∀𝑝 ∈ 𝐺′).
Since 𝑓 ∶ 𝐺 → 𝐺 is a random asymptotically nonexpansive mapping, there

exists a sequence {𝜉𝑚, 𝑚 ∈ ℕ} in 𝐿0+(ℱ) with {𝜉𝑚, 𝑚 ∈ ℕ} convergent a.s. to
1, such that ‖𝑓𝑚𝑥 − 𝑓𝑚𝑦 ∥≤ 𝜉𝑚‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝐺, 𝑚 ∈ ℕ. By Egoroff’s
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theorem, there exists 𝐸𝑘 ∈ ℱ for each 𝑘 ∈ ℕ such that 𝑃(Ω ⧵ 𝐸𝑘) <
1
𝑘
and

{𝜉𝑚, 𝑚 ∈ ℕ} converges uniformly to 1 on 𝐸𝑘. Since 𝑃(
⋃∞

𝑘=1 𝐸𝑘) = 1, without
loss of generality, we can assume that Ω = ∪∞𝑘=1𝐸𝑘. Furthermore, let Ω1 = 𝐸1
and Ω𝑘 = 𝐸𝑘 ⧵ ∪𝑘−1𝑖=1 𝐸𝑖−1 for any 𝑘 ∈ ℕ with 𝑘 ≥ 2, then {Ω𝑘, 𝑘 ∈ ℕ} is a
countable partition of Ω to ℱ and {𝜉𝑚, 𝑚 ∈ ℕ} converges uniformly to 1 on Ω𝑘
for any 𝑘 ∈ ℕ.
Since 𝐺 is an a.s bounded subset of 𝐸, there exists 𝜂 ∈ 𝐿0+(ℱ) such that

‖𝑔‖ ≤ 𝜂 for all 𝑔 ∈ 𝐺. Let
𝐴𝑛 = {𝜔 ∈ Ω|𝑛 − 1 ≤ 𝜂0(𝜔) < 𝑛}

for any 𝑛 ∈ ℕ, where 𝜂0 is an arbitrarily chosen representative of 𝜂. Then
{𝐴𝑛, 𝑛 ∈ ℕ} is a countable partition of Ω to ℱ.
It is clear that {𝐴𝑛 ∩Ω𝑘, 𝑛, 𝑘 ∈ ℕ} is a countable partition ofΩ toℱ. For any

𝑘 ∈ ℕ and 𝑛 ∈ ℕ, define 𝑓𝑛,𝑘 ∶ 𝐼𝐴𝑛∩Ω𝑘𝐺 → 𝐼𝐴𝑛∩Ω𝑘𝐺 by

𝑓𝑛,𝑘(𝑥) = 𝐼𝐴𝑛∩Ω𝑘𝑓(𝑥), ∀𝑥 ∈ 𝐼𝐴𝑛∩Ω𝑘𝐺.
One can easily check that 𝑓𝑛,𝑘(𝐼𝐴𝑛∩Ω𝑘𝑔) = 𝐼𝐴𝑛∩Ω𝑘𝑓(𝑔) for any 𝑔 ∈ 𝐺 by the local
property of 𝑓.
The remainder of the proof is divided into two steps.

𝐒𝐭𝐞𝐩 𝟏. We prove that each 𝑓𝑛,𝑘 has a fixed point in 𝐼𝐴𝑛∩Ω𝑘𝐺.
By Proposition 2.1, it suffices to prove 𝐼𝐴𝑛∩Ω𝑘𝐺 is a bounded ‖ ⋅ ‖𝑝-closed

convex subset of (𝐿𝑝(𝐸), ‖ ⋅ ‖𝑝), where 𝑝 is any fixed number such that 1 < 𝑝 <
+∞, and 𝑓𝑛,𝑘 is an eventually asymptotically nonexpansive mapping.
First, for any ℎ ∈ 𝐼𝐴𝑛∩Ω𝑘𝐺, since

‖ℎ‖𝑝 = (∫
Ω
‖𝐼𝐴𝑛∩Ω𝑘ℎ‖

𝑝𝑑𝑃)
1
𝑝 ≤ 𝑛,

then 𝐼𝐴𝑛∩Ω𝑘𝐺 is a bounded subset of (𝐿𝑝(𝐸), ‖ ⋅ ‖𝑝).
Second, since 𝐼𝐴𝑛∩Ω𝑘𝐺 is a 𝒯𝜀,𝜆-closed subset of 𝐸, by the Lebesgue domi-

nance convergence theorem it is easy to see that 𝐼𝐴𝑛∩Ω𝑘𝐺 is a ‖⋅‖𝑝-closed subset
of (𝐿𝑝(𝐸), ‖ ⋅ ‖𝑝).
Third, since 𝐺 is 𝐿0-convex, it is naturally convex, it is obvious that 𝐼𝐴𝑛∩Ω𝑘𝐺

is also convex.
Finally, for any 𝑔 ∈ 𝐼𝐴𝑛∩Ω𝑘𝐺, we have

𝑓𝑚𝑛,𝑘(𝑔) = 𝑓𝑛,𝑘(𝑓𝑚−1𝑛,𝑘 (𝑔))
= 𝐼𝐴𝑛∩Ω𝑘𝑓(𝑓

𝑚−1
𝑛,𝑘 (𝑔))

= 𝐼𝐴𝑛∩Ω𝑘𝑓(𝐼𝐴𝑛∩Ω𝑘𝑓(𝑓
𝑚−2
𝑛,𝑘 (𝑔)))

⋯
= 𝐼𝐴𝑛∩Ω𝑘𝑓(𝐼𝐴𝑛∩Ω𝑘𝑓(⋯ 𝐼𝐴𝑛∩Ω𝑘𝑓(𝐼𝐴𝑛∩Ω𝑘𝑓(𝑔)))
= 𝐼𝐴𝑛∩Ω𝑘𝑓

𝑚(𝑔) (𝑠𝑖𝑛𝑐𝑒 𝑓 ℎ𝑎𝑠 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑙 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦)
for any𝑚 ∈ ℕ, where 𝑓𝑚𝑛,𝑘 denotes the𝑚-th iteration of 𝑓𝑛,𝑘.
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For 𝑚 ∈ ℕ, let 𝛾𝑚 = ‖𝐼𝐴𝑛∩Ω𝑘𝜉𝑚‖∞, then lim𝑚→∞ 𝛾𝑚 = 1 since {𝜉𝑚, 𝑚 ∈ ℕ}
converges uniformly to 1 on Ω𝑘 for any 𝑘 ∈ ℕ. It follows that

‖𝑓𝑚𝑛,𝑘(𝑥) − 𝑓𝑚𝑛,𝑘(𝑦)‖𝑝 = (∫
Ω
‖𝑓𝑚𝑛,𝑘(𝑥) − 𝑓𝑚𝑛,𝑘(𝑦)‖

𝑝𝑑𝑃)
1
𝑝

= (∫
𝐴𝑛∩Ω𝑘

‖𝑓𝑚(𝑥) − 𝑓𝑚(𝑦)‖𝑝𝑑𝑃)
1
𝑝

≤ (∫
𝐴𝑛∩Ω𝑘

|𝜉𝑚|𝑝‖𝑥 − 𝑦‖𝑝𝑑𝑃)
1
𝑝

≤ 𝛾𝑚‖𝑥 − 𝑦‖𝑝
for any 𝑥, 𝑦 ∈ 𝐼𝐴𝑛∩Ω𝑘𝐺 and any 𝑚 ∈ ℕ, which implies that 𝑓𝑛,𝑘 is an eventu-
ally asymptotically nonexpansive mapping (Here, we can only assert 𝑓𝑛,𝑘 is an
eventually asymptotically nonexpansive mapping since it is possible that there
exists some𝑚0 ∈ ℕ such that 𝛾𝑚 = +∞ for some𝑚 ≤ 𝑚0 ).
Hence, there exists 𝑥𝑛,𝑘 ∈ 𝐼𝐴𝑛∩Ω𝑘𝐺 such that 𝑓𝑛,𝑘(𝑥𝑛,𝑘) = 𝑥𝑛,𝑘.

𝐒𝐭𝐞𝐩 𝟐. We prove that 𝑓 has a fixed point.
Let 𝑥 = ∑∞

𝑛=1
∑∞

𝑘=1 𝐼𝐴𝑛∩Ω𝑘𝑥𝑛,𝑘, then 𝑥 ∈ 𝐺. Since 𝑓 is 𝜎-stable, then 𝑓 has
the local property, we have

𝑓(𝑥) =
∞∑

𝑛=1

∞∑

𝑘=1
𝐼𝐴𝑛∩Ω𝑘𝑓(𝑥)

=
∞∑

𝑛=1

∞∑

𝑘=1
𝐼𝐴𝑛∩Ω𝑘𝑓(𝐼𝐴𝑛∩Ω𝑘𝑥)

=
∞∑

𝑛=1

∞∑

𝑘=1
𝐼𝐴𝑛∩Ω𝑘𝑓𝑛,𝑘(𝑥𝑛,𝑘)

=
∞∑

𝑛=1

∞∑

𝑘=1
𝐼𝐴𝑛∩Ω𝑘𝑥𝑛,𝑘

= 𝑥.

Thus, 𝑓 has a fixed point 𝑥 in 𝐺. □

Remark 2.7. When (Ω,ℱ, 𝑃) is trivial, namely ℱ = {Ω, ∅}, the complete ran-
domuniformly convex𝑅𝑁module (𝐸, ‖⋅‖) reduces to a uniformly convex Banach
space, 𝐺 to a bounded closed convex subset of 𝐸 and 𝑓 to an asymptotically non-
expansive mapping, and then the classical Goebel-Kirk fixed point theorem for an
asymptotically nonexpansive mapping, namely, Theorem 1 of [4] is a special case
of Theorem 1.6.

𝐿0(ℱ, [0, 1]) denotes the set of equivalence classes of random variables from
(Ω,ℱ, 𝑃) to [0, 1]. Before we give the proof of Theorem 1.7, we first prove
Lemma 2.8 below.
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Lemma 2.8. Let (𝐸, ‖ ⋅ ‖) be a complete 𝑅𝑁 module over 𝕂 with base (Ω,ℱ, 𝑃)
and 𝐺 be a stable closed convex subset of 𝐸. Then 𝐺 is 𝐿0-convex.

Proof. Since the set of simple elements in𝐿0(ℱ, [0, 1]) is𝒯𝜀,𝜆-dense in𝐿0(ℱ, [0, 1])
and 𝐺 is closed, it suffices to show that

𝜉𝑥 + (1 − 𝜉)𝑦 ∈ 𝐺
for any 𝑥, 𝑦 ∈ 𝐺 and any simple element 𝜉 in 𝐿0(ℱ, [0, 1]).
Let 𝜉 = ∑𝑛

𝑖=1 𝐼𝐴𝑖𝛼𝑖, where 𝛼𝑖 is a nonnegative number with 0 ≤ 𝛼𝑖 ≤ 1 for
any 𝑖 = 1 ∼ 𝑛 and {𝐴𝑖, 𝑖 = 1 ∼ 𝑛} is a finite partition ofΩ toℱ, since 𝐺 is stable
and convex, we have

𝜉𝑥 + (1 − 𝜉)𝑦 =
𝑛∑

𝑖=1
𝐼𝐴𝑖𝛼𝑖𝑥 +

𝑛∑

𝑖=1
𝐼𝐴𝑖 (1 − 𝛼𝑖)𝑦

=
𝑛∑

𝑖=1
𝐼𝐴𝑖 (𝛼𝑖𝑥 + (1 − 𝛼𝑖)𝑦)

∈
𝑛∑

𝑖=1
𝐼𝐴𝑖𝐺

⊂ 𝐺

for any 𝑥, 𝑦 ∈ 𝐺. Hence 𝐺 is 𝐿0-convex. □

Let us first recall that, for any countable partition {𝐵𝑚, 𝑚 ∈ ℕ} ofΩ toℱ and
any sequence {𝐺𝑚, 𝑚 ∈ ℕ} of nonempty subsets of 𝐸,

∞∑

𝑚=1
𝐼𝐵𝑚𝐺𝑚 ∶= {

∞∑

𝑚=1
𝐼𝐵𝑚𝑔𝑚, 𝑔𝑚 ∈ 𝐺𝑚, ∀𝑚 ∈ ℕ}

is called the countable concatenation of {𝐺𝑚, 𝑚 ∈ ℕ} along {𝐵𝑚, 𝑚 ∈ ℕ}.
Now we can give the proof of Theorem 1.7.

Proof of Theorem 1.7. First, since 𝐺 is 𝜎-stable and closed, and since 𝑓 is 𝜎-
stable and continuous, then 𝑌 is 𝜎-stable and closed.
Second, we prove that 𝑌 = ∑∞

𝑛=1
∑∞

𝑘=1 𝐼𝐴𝑛∩Ω𝑘𝑌𝑛,𝑘, where 𝑌𝑛,𝑘 is the fixed
point set of 𝑓𝑛,𝑘 for any 𝑛, 𝑘 ∈ ℕ. Indeed, by the step 2 of the proof of Theorem
1.6, it is clear that

∑∞
𝑛=1

∑∞
𝑘=1 𝐼𝐴𝑛∩Ω𝑘𝑌𝑛,𝑘 ⊂ 𝑌. On the other hand, for any𝑥 ∈ 𝑌

and any 𝑛, 𝑘 ∈ ℕ, since
𝑓𝑛,𝑘(𝐼𝐴𝑛∩Ω𝑘𝑥) = 𝐼𝐴𝑛∩Ω𝑘𝑓(𝐼𝐴𝑛∩Ω𝑘𝑥)

= 𝐼𝐴𝑛∩Ω𝑘𝑓(𝑥)
= 𝐼𝐴𝑛∩Ω𝑘𝑥,

then 𝐼𝐴𝑛∩Ω𝑘𝑥 ∈ 𝑌𝑛,𝑘, and this implies that 𝑥 ∈ ∑∞
𝑛=1

∑∞
𝑘=1 𝐼𝐴𝑛∩Ω𝑘𝑌𝑛,𝑘. Hence

𝑌 = ∑∞
𝑛=1

∑∞
𝑘=1 𝐼𝐴𝑛∩Ω𝑘𝑌𝑛,𝑘.
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Finally, each 𝑌𝑛,𝑘 is convex by Remark 2.2, then 𝑌 = ∑∞
𝑛=1

∑∞
𝑘=1 𝐼𝐴𝑛∩Ω𝑘𝑌𝑛,𝑘

is convex.
To sum up, by Lemma 2.8, 𝑌 is 𝐿0-convex. □

The following proof of Theorem 1.8 is motivated by Proposition 2.1.

Proof of Theorem 1.8. Let 𝑓 ∶ 𝐺 → 𝐺 be an eventually random asymptot-
ically nonexpansive mapping as defined in Definition 1.5, then the mapping
𝑔 = 𝑓𝑙 is a random asymptotically nonexpansive mapping, which implies that
its set 𝑌 of fixed points is closed and 𝐿0-convex. For any 𝑥 ∈ 𝑌, we have

𝑓(𝑥) = 𝑓(𝑔(𝑥)) = 𝑓𝑙+1(𝑥) = 𝑔(𝑓(𝑥)),

thus 𝑓 maps 𝑌 into 𝑌. Moreover, 𝑓 = 𝑓𝑝𝑙+1 on 𝑌 for any 𝑝 ∈ ℕ. As a result,

‖𝑓(𝑥) − 𝑓(𝑦)‖ = ‖𝑓𝑝𝑙+1(𝑥) − 𝑓𝑝𝑙+1(𝑦)‖ ≤ 𝜉𝑝𝑙+1‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝑌,

which implies that ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ ‖𝑥 − 𝑦‖ for any 𝑥, 𝑦 ∈ 𝑌. Therefore, by
Corollary 3.9 in [14], 𝑓 has a fixed point in 𝑌. □

Remark 2.9. Let 𝑌 be the set of fixed points of 𝑔 as defined in the proof of The-
orem 1.8, then it is easy to see that the set Fix(f) of fixed points of 𝑓 is exactly
{𝑦 ∈ 𝑌|𝑓(𝑦) = 𝑦}, and thus Fix(f) is also a closed 𝐿0-convex subset of 𝐺 by
Theorem 1.7.
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