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ABSTRACT. Let C denote the category of Hilbert modules which are similar to con-
tractive Hilbert modules. It is proved that if Hy, H € C and if H;j is similar to an
isometric Hilbert module, then the sequence

0—Hy—~H—H; —0

splits. Thus the isometric Hilbert modules are projective in C. It follows that
Extg (K, H) = 0, whenever n > 1, for H, K € C. In addition, it is proved that
(Hilbert modules similar to) unitary Hilbert modules are projective in the category
H of all Hilbert modules. Connections with the conjecture that C is a proper subset
of H are discussed.

1. Introduction.

A few years ago, Douglas and Paulsen [2] introduced the notion of a Hilbert
module as a Hilbert space together with the action of a function algebra A. The
category H of Hilbert A-modules is a natural setting for numerous questions in op-
erator theory. Some of these can be expressed in terms of homological constructions
such as extensions and the extension groups, Ext%{(—, —). However any attempt
to apply standard homological algebra methods to the category of Hilbert modules
immediately encounters some obstacles. One of the most formidable of the diffi-
culties is that the categories may not have enough projective and injective objects.
For example, in the case of the disk algebra A = A(D) it was not previously known
if there were any projective Hilbert A(D)-modules. As we shall see the lack of
projective modules seems intimately involved in some basic questions of operator
theory. But also it has an effect on even the definitions of some of the standard
homological constructions.

Douglas and Paulsen in [2, Chapter 4] avoid projective modules by introduc-
ing hypo-projective Hilbert modules. They succeed in characterizing the hypo-
projectives and in using them to give a new proof of the lifting theorem, but they
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do not produce projective modules, for any choice of the function algebra A except
for A = C(X), where every Hilbert module is projective.

One of the main purposes of this paper is to report some progress on the problem
of the existence of projective objects in the category of Hilbert A(D)-modules. We
show in Section 4 that if the operator of multiplication by z has a unitary action
on a Hilbert module H then H is both a projective and an injective module. This
answers Problem 4.6 of [2]. Moreover if we restrict ourselves to the subcategory of
Hilbert A(ID)-modules for which the action of z is similar to a contraction then any
isometric Hilbert module is projective. Its dual which is coisometric is injective.
The result settles several questions about the subcategory. For one thing, the
functional model [7] for any completely nonunitary contractive Hilbert module is
a projective resolution in the subcategory. This is called a Silov resolution in 2]
and the method is adaptable to get a projective resolution for any object in the
subcategory.

All of this appears to be connected to the well known question of the existence
of Hilbert modules not similar to contractive ones [2, Problem 2.4], which, in turn,
is equivalent to the question whether a polynomially bounded operator must be
similar to a contraction [3] . Indeed, it is a consequence of our results that if
isometric Hilbert modules are not projective then both the above questions have
negative answers.

In Section 2 we introduce some notation and some standard results which will
be needed later. Included is some homological machinery. Although the techniques
are well known some tedious care must be taken to avoid the peculiar pitfalls of
the categories in question. In Section 3 we consider only Hilbert modules similar
to contractions and show the projectivity in the isometric case. Some easy conse-
quences are derived. Section 4, contains the proof of general projectivity of unitary
Hilbert modules, and derives consequences for Exty; groups in the larger category.
In particular we show the impossibility of getting a Hilbert module not similar to
a contraction from certain types of extensions. We end in Section 5 with some
remarks and discussion on the problem of constructing a polynomially bounded
operator which is not similar to a contraction.

2. Notation and Preliminaries.

Suppose that A = A(D) is the disk algebra; that is, the set of all f(z) analytic
in the unit disk D and continuous in D, with the sup norm, ||f|| = sup|,<1 | f(2)]-
A Hilbert module over A is a Hilbert space H, which is equipped with the structure
of an A-module in such a way that the multiplication (a, f) — af from A x H to
H is continuous in both variables; see Douglas and Paulsen [2] for more details.

A Hilbert module map between Hilbert modules H and K is a linear function
L : H — K which is continuous and which commutes with the action of A (L(af) =
aL(f) for a € A and f € H). We denote by H the category of Hilbert modules
over A, with Hilbert-module maps.

The operator of multiplication by z must be bounded on the Hilbert module
H. Indeed, multiplication by any a € A must be bounded on H. The subcategory
C of H is defined to be the subcategory of all Hilbert modules H over A with the
property that multiplication by z on H is similar to a contraction (||LzL~Lf|| < || f]|
for some bounded invertible Hilbert space operator L : H — H’). We shall call
such a Hilbert module a cramped Hilbert module. The statement that C is full in
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H means that, if H, K € C then the set of homomorphisms from H to K in C is
the same as in . Thus

Hom¢ (H, K) = Homy (H, K)

for all H, K € C.
In [1] , the first two authors studied the Ext! functor in the category H. Briefly,
an element in Exty (K, H) is an equivalence class of exact sequences

E: 0 H—2s7 LK 0
of Hilbert modules and maps. A sequence
E: 0 7 (LN (RN 0
is equivalent to E if there exists ¥ : J — J’ such that the diagram
0 H—"5J L5 K 0
Il
0 " J K’ 0

commutes. It can be seen that v is an isomorphism. It is one-to-one and onto
and hence is invertible. Additionally, if we write the orthogonal decomposition
J = a(H) @ a(H)* of the Hilbert space J, then the operator T : J — J of
multiplication by z, has the decomposition

(2.1) T = [7(;0 ;/1]

where Ty and T; are the operators of multiplication by z on a(H) and o(H)?t,

respectively.
In [1], the following theorem was proved.

Theorem 2.2. Suppose that H and K are Hilbert modules over A. Then
EXtH(K, H) = Ql/%,

where A = A(K, H) is the set of all continuous, bilinear functions o : A x K — H
satisfying the condition

ao(b, k) + o(a,bk) = o(ab, k),

fora,b e AJk € K, and B is the subspace of A consisting of those o which have
the form
o(a,h) = aL(h) — L(ah)

for all a € A and h € K and for some bounded, linear (Hilbert space) operator
L:K—H.

In the representation (2.1) of the operator of multiplication by z on the middle
term of an extension, the operator V : K — H is, in fact, o(z, ).

One of our main concerns in this paper is with the projectives of the functor
Extc of extensions which take place in the category C. The first thing we need to
verify is that Ext¢ is a functor. For this we need the following.
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Lemma 2.3. Pushouts and pullbacks exist in the category C.

Proof. We refer to [4] for a more complete description of pushouts and pullbacks.
We need to recall that if we have a pullback diagram

Hy

[

H — K

then the pullback J (with maps v : J — Hy and v, : J — Hj, satisfying agog =
ay07) is isomorphic to the following subset of Hy & H;

J = {(ho,h1) € Hy ® Hy|og(ho) = o1(h1)} € Ho & H,.

Now if the operators T; of multiplication by z on H; are both similar to contractions
(i =0,1) then so is the operator T' of multiplication by z on Hy @ H;. As a result,
the same is true for the restriction of T to any Hilbert submodule of Hy @ H;. This
proves the existence of pullbacks in C. For pushouts, it is only necessary to take
duals Hy, H; of the Hilbert modules Hy, H;. For the dual of the pushout, consider
the dual of the diagram

K —*— H,

«aq l
H,
which is the pullback diagram

and observe that H; is in C if and only if H; € C, k =0, 1. a

Lemma 2.3 yields the functoriality of Exte. Indeed, if cls(E) € Exte (K, H) is
the class of an exact sequence

E: 0 H 25 J K 0

and if ( : H — H’ is a homomorphism of Hilbert modules with H' € C, then let
CFE be the sequence obtained from the pushout

E:0 H—>, g ., gk 4o

CE:0 H 2y 2K 0



30 J.F. Carlson, D.N. Clark, C. Foias, and J.P. Williams

(J' being the pushout of the diagram of H, H', J, « and (). Likewise, ify: K/ — K,
then E- is obtained by taking the pullback along v of E. Then we get homomor-
phisms

¢t Exte(K, H) — Exte(K, H')
and

vk : Exte(K, H) — Exte(K', H)
where (. (cls(E)) = cls(CE),v*(cls(E)) = cls(Ev).
Theorem 2.4. Extc(-,:) is a bifunctor on the category C to the category of A
modules.

To finish the proof, one needs only to observe that
((E+) is in the same class as (CE)y.

Also, we may note that Extc and Exty; are naturally A modules (although not
Hilbert modules over A). The module action of A on Ext¢(K, H) is given by the
diagram for (FE with ( = L, : H — H, and

a-cls(E) = cls(CE)
where ¢ : H — H is multiplication by a € A. Tt is easy to check that cls(CE) =

cls(E¢") where ¢’ is left multiplication by a on K.
Following Theorem 2.4, we may use standard techniques to prove the following.

Proposition 2.5. IfE:0 - A3 B % ¢ =0 is an ezact sequence of objects in
C and if D is in C, then we have exact sequences

0 — Home(D, A) —%— Home(D, B) —2— Home(D,C) —— Ext}(C,D)

P Exty(B,D) —“— Ext}(A4,D).

We conclude this section with the construction of an exact sequence we will
need later. The term isometric [resp., unitary] Hilbert module, below, will refer
to a Hilbert module H such that the operator of multiplication by z on H is an
isometry [respectively, a unitary operator].

Theorem 2.6. Suppose that K is an object in C. Then there exist isometric Hilbert
modules H and J and maps o : H — J, B :J — K such that

B

0 H 25 J K 0

is exact.

The theorem is certainly not new and is nothing more than a restatement of
the orthogonal splitting of a contraction into its unitary and completely nonunitary
parts as well as of the unitary equivalence of the latter to its functional model.
The sequence is called a Silov resolution in [2] where even more general things are
done. The point is that if K is a contractive Hilbert module and if K’ is a unitary
submodule, then K’ is invariant under the operator of multiplication by z on K
and also under its adjoint. Thus K = Ky® K;, with K unitary and K; completely
nonunitary, and we have a sequence

0 H KypJ —— KooKy —— 0

where the subsequence 0 — H — J' — K; — 0 is the functional model [7] of K;
(see also [2] ).




Projective Hilbert A(D)-Modules 31

3. Extensions of isometric modules.

The main purpose of this section is to establish the existence of projective objects
in the category C of cramped Hilbert A(D)-modules. For notation, we let & denote
the direct sum operation for Hilbert spaces. So in any short exact sequence 0 —
H — J — K — 0 of Hilbert modules the middle term J = HOK though it is not
necessarily the direct sum of H and K as Hilbert modules.

Theorem 3.1. Let Hy and Hy be Hilbert modules and denote
Tof = zf for f € Hy

and
Tlf:Zf fOI‘fEHl,

and let
Tf = zf on H()@Hl
be defined by
T(f, f1) = (Tof +o(z, f1), T1 f1)-

Under these definitions, suppose H; is similar to an isometric Hilbert module and
Ho®H, is cramped. Then the sequence

E:0 —— Hy —— HydH, H, 0

splits, i.e. cls(E) = 0.

Proof. Suppose that [|[ZTZ71|| < 1, where Z : Hy®&H; — J. Give J the structure
of a contractive Hilbert module with zf = ZTZ~1f, for f € J. The commutative
diagram

0 H, HodbH, H,y 0
H 7 |
0 Hy J H 0

shows that it suffices to prove the theorem in case T is contractive.
Since Hy®H, is contractive if and only if the operator matrix

TO U('Z) )

0 T
is a contraction, we can apply [6] to conclude that o(z, f) has the form o(z, f) =
(I — ToTg)2 LI — TFTy) 2, where ||L]] < 1.

Consider the isometric dilation Uy of T7 actingon H = HH $ DD & ---
(D - (I - Tle)%Hl) by

Ui (ho, hi,---) = (T1ho,(I—Tle)%hmhl,hz,“')

By the Lifting Theorem [7, Proposition 11.2.2], if T} is similar to an isometry V,
say Ty = XV X!, there is an operator M : H; — H satisfying MT, = U, M and
having the form

Mh = (h, Woh, W1h,---).
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Indeed in the notation of [7, §11.2.2], let Y be the dilation of X to H such that
YV =U,Y, ||Y]| =||X]|| then M = Y X! and this accounts for the fact that M
compresses to the identity on Hy. Each W; : Hy — H; is bounded and

(3.2) AP+ D IW AP < IXIPIXTHPIAIR, f € Hy

3=0
We have
U, Mh = (Tyh, (I — TFTy)2h, Woh, Wih---)
MTih = (Tih, WoTyh, W1 T1h, WoT1h, - - )
and it follows that
W,Ty =W,y j=1,2,--
WoT, = (I — T}Ty)*.
Define -
Bf =Y T3 —ToTy)s LW, f
n=0

for f € H;. We will prove that the sum converges in the weak operator topology
on H; to a bounded operator B. Once we prove this, we will have, for f € Hy,

(BT — ToB)f = > Tg(I = ToTy)* LW, Ti f — Y Ty (I = ToTy) 2 LW, f
n=0 n=0

= (I - ToTy) LI -~ TyT)3 f + > To (I — ToTg) 2 LW, 1 f

n=1

=N TN - ToTy) P LW f
n=0

= (I - ToTy)*L(I - T{Th)* f = o(z, f)

and it remains to show that the series defining B is weakly convergent.
For weak convergence in the definition of B, we have

ST — ToTy) LW, fo )| = > (LW f, (I — ToTy )2 T3 "g)]

n=0 n=0
s 1 s 1 e 1
<YWl = ToTg) * Tamgll < (D W fIP) 2 (D I = ToT5) 2 T5 gl ) ?
n=0 n=0 n=0
N 1
< XX AN le (I - ToTy) TS‘"9H2)2
n:O

=

1
= XX AN Jim > [IT5 gl — [1T5" gll*])
n 0

1
= [[XIIIIXHIIA( Jim[llg]* — TN glP]) 2 < XX 1A gl

By [1, Theorem 2.2.2], this completes the proof that E splits. a
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Corollary 3.3. In the category C any isometric Hilbert module is projective.

Proof. Suppose K is an isometric Hilbert module. The theorem shows that if
0 — H— J — K — 0 is a short exact sequence in C then it splits. This condition
is well known to be equivalent to the definition of projectivity for K. O

Corollary 3.4. The category C has enough projective objects and enough injective
objects. That is, every cramped Hilbert module is a homomorphic image of a pro-
jective (in C) Hilbert module, and is also isomorphic to a closed submodule of an
injective Hilbert module. In particular the exact sequence, derived from the func-
tional model in Theorem 2.6, is a projective resolution in C of the Hilbert module
K.

Proof. In view of Corollary 3.3, the last statement is obvious, and the existence of
enough projective in C is clear. For injectives, we need only note that the dual of
a projective Hilbert module is injective, and hence any coisometric Hilbert module
is an injective object in C. Thus the embedding of any cramped Hilbert module U
into an injective Hilbert module is achieved by taking the dual of the sequence in
Theorem 2.6 for K = U*. ]

Corollary 3.5. For any cramped Hilbert modules H and K, Extg(K,H) = 0
whenever n > 2.

Proof. It was shown in the last corollary that every cramped Hilbert module K
has a projective resolution

0 225 p —2, Py K 0

Hence Extg can be defined as the nth-derived functor of Home.
For if we apply the functor Home( , H) to the projective resolution (P, d) we
get a complex

*
Qg

0 —— Hom¢(Py, H) —2— Home (P, H) —2—
whose homology is the Ext¢ functor,
Exte (K, H) = H"(Home (P, H)) = kerd;,  ; /Image;,

in the traditional definition [4]. But because P, = 0 for n > 2 we have that
Extg =0 for n > 2. O

4. Projectives in the category H.

In this section we return to the category H of all Hilbert A(ID)-modules. Our
first result shows that the category does have projective objects. This gives an
affirmative answer to [2, Problem 4.6], though it is still an open question whether
there are enough projectives.

Theorem 4.1. If K is a unitary Hilbert module, then

0 H J K 0

splits. Hence any unitary Hilbert module is both projective and injective.
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Proof. As usual we write J = HOK with

a(z)(f,9) = (af + o(a,g),ag)

for (f,g9) € J, a € A.
By [1] , o(a, f) satisfies

n n

o("TL ) =) 2oz, f) = 2oz, UM f)

Jj=0 Jj=0

where U : K — K represents multiplication by z in K. Since U is unitary, we have,
setting g = U™ 1 f,

n
(4.2) ozt umTlg) = Z da(z,UTg), gcK,
7=0
s0,
n
13 2oz Ut g <Cllgll, geK, n=1,2-,
7=0

with an appropriate constant C. Now suppose lim is a translation invariant Banach
limit on H. We may conclude that L : K — H, defined by

Lg:Iimsza(z,U*j“g), geEK
=0

exists in the weak operator topology.
We compute in the weak topology (of H)

LZf — ZLf = hmi [Z‘jd(z’ U*]f) _ Zj+10'(z7 U*‘H_lfﬂ
=0

=o(z,f)— lirrln 2" (z, U f)

n+1

=o(z f)+ liin [zn:zja(z’ Ui f) — Z Hol(z, U*jf>]
Jj=0 =0

and, by translation invariance of the Banach limit, we have

Lzf —zLf = o(2, [)

and this proves that the sequence splits.
The condition implies the projectivity of K. The injectivity is a consequence of
the fact that K is the dual of K* which is also unitary and hence also projective.
The theorem provides us with some information about the functor Ext}, for
certain modules. For example, we can show the following. O
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Corollary 4.2. Let H and K be cramped Hilbert modules and suppose that ei-
ther H is an isometric Hilbert module or K is coisometric. Then Ext}(K,H) =
Ext%{ (K, H) and, in particular, the middle term, J, of any exact sequence

0 H J K 0

is cramped (an object in C).

Proof. It is clear from the Wold decomposition of an isometry that H is isomorphic
to a submodule of a unitary Hilbert module U. So let § : H — U be the inclusion
with 0(H) closed in U. Let W = U/0(H) be the quotient. If J is any extension of
K by H then we have a commutative diagram

E:0 H J K 0
| [ I
0 H-—su 2w 0

with exact rows. The map o exists because U is injective and the homomorphism 7
is induced by ¢ on the quotients. Now notice that J is the pullback of the diagram

U—tsw+ I K

and hence is a cramped module by Lemma 2.3. The case that K is a coisometric
Hilbert module follows similarly by duality. O

5. Polynomially bounded operators.

Some of the results of this paper may have a bearing on the well known problem
of the existence of Hilbert modules over A(D) not similar to contractive Hilbert
modules; i.e. of Hilbert modules in H but not in C. Phrased another way, this
problem asks: if T' is a polynomially bounded operator on a Hilbert space J,

Ip(T)z|| < Kllpllsol|]],

for p a polynomial and = € J, is T similar to a contraction? See [3, Problem 6].
Indeed, Theorem 3.1 had its origin in an attempt, by the third and fourth authors,
to construct a counter example to the conjecture in the form

(5.1) T = <€° 1)“(1)

where Ty : H — H and T} : K — K are contraction operators.
The operator T defined by (5.1) is polynomially bounded if and only if the Hilbert
space J = HOK is a Hilbert module under the multiplication (by z) defined by

2(f,9) =T(f,9) = (Tof + Xg,T19).

If multiplication by z on H and K is given, respectively, by the action of T and
T1, then we have an exact sequence of Hilbert modules

B

(5.2) 0 H %7 K 0
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where a(h) = (h,0) and B(h, k) = k.

It is a consequence of Theorem 3.1, that if T} is an isometry [or T§ is an isometry)
then T is similar to a contraction if and only (5.2) splits. For sufficiency, note that
the splitting of (5.2) implies that T is similar to the diagonal operator Ty & T} on
J; substitution of the bracketed clause comes from taking the adjoint of T', and
noticing that 7™ is unitarily equivalent to

Ty X~
0o T; )

Evidence suggests that a good place to start looking for a counterexample to the
conjecture would be a polynomially bounded operator (5.1), where Tf = T is the
unilateral shift and X is a Hankel matrix.

We conclude by indicating some results which give necessary and sufficient con-
ditions for an operator T' of the form (5.1), where 7§ = T3 is the unilateral shift
S, to be polynomially bounded or similar to a contraction. The first of these con-
ditions is an L condition, while the second is roughly its L2 analogue. This is
further evidence that an example of a non-cramped Hilbert module may lie here.

Let X : H? — H? be a bounded operator, let S be the shift on H? and, for
n=20,1,2,---, let

n—1
Ay =) ST xS,

Jj=0

Theorem 5.3. Let T denote the operator
S* X
(% §)
on H> @ H?. Then

a) T is polynomially bounded if and only if, for each &,n € H? there is a
constant K such that

(5.4) sup |Zan<An§,7]>z”| < K|l Zanznnoo'

lz|<1 5

b) T is similar to a contraction if and only if there exists f € H? such that the
operator W defined on polynomials by

Wz =85"(Apt1-1—5"f) n=0,1,---
extends to a bounded linear operator on H?2.

Proof. (a) The operator A, is the (1, 2) entry in the matrix for 7™ and, by virtue
of the Banach-Steinhaus theorem, the condition in (5.4) implies, with a suitable
constant M,

(5.5) 1D anAnll < Ml|pll
1
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for any polynomial p, which implies T' is polynomially bounded.

Conversely, polynomial boundedness of T', that is (5.5), implies, by the Hahn-
Banach and Riesz representation theorems, the existence of a measure p = p¢ , on
|z| = 1 such that

i) = [ 0au(®)  m=o,1.

Thus

(oo}

S anldnbenz” = [ (Y aneme e du(o)

1
and (5.4) follows.

(b) For a bounded operator B on H? denote A(B) = BS — S*B. If a bounded
operator W, as in b, exists, then it follows directly that S*X.S = A(W). We must
show that this implies X = A(B), for some B.

Denote

D(Y,A)=S(Y*+ A*)(I — SS*) + A*S".
Another direct computation shows that
(5.6) S*Y = A(A) implies Y* = A(D(Y, A))
Thus from S*X S = A(W), it follows that

S*X*=(XS)" = A(D(XS,-W))
and then, again from (5.6), it follows that
X = A(D(X*,-D(XS,—-W))).
For the converse statement, if T is similar to a contraction, then X = $*Y —Y'S|

for some bounded Y : H? — H?, by Theorem 3.1. But then X = WS* — SW +1®
g — f ® 1. We omit the remaining details, which use this W and this f. ]

We conclude with a corollary of Theorem 5.3 in which the operator T' acts on
L2 and X is replaced by a Hankel operator from H? to H?+ = .2 6 H2. We believe
this variant of Theorem 5.3 may be helpful in the search for a noncramped Hilbert
module.

Corollary 5.7. Let T denote the operator
/
(3 %)
on L2 = H*- @ H?, where S’ is the compression of multiplication by z on L2 to
H?* and X is the Hankel operator
Xh = (I — Pg2)(vh), h € H?
with symbol ¢ € L>°(T). Then
a) T is polynomially bounded if and only if
(5-8) distre (Y3, H?) < M|lglloc ¢ € A.
b) T is similar to a contraction if and only if there exists € H?* such that

(5.9) distyz (g’ + 0, H?) < Mllglls ¢ € H?,¢(0) = 0.
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Proof. In this case, we have
Ay =nS"'X =nXS"'  n=12

and for a polynomial ¢ = " a,2"™ we have

(Z anAn) h=(I-Po)(¥g)h]  heH

Condition (5.5) means that the Hankel operator with symbol ¥y’ is of norm <
M]|¢||so, or equivalently, that (5.8) holds. This proves (a).

For (b), we deduce from Theorem 3.1 that 7' is similar to a contraction if and
only if there exists an operator L : H? — H?* satisfying

(5.10) LS—-SL=X
whence (by direct computation)

LS™ - S™L = A,.
Therefore, with 8 = L1, we have

Lz" =A,1+ 5™

so that for a polynomial ¢ = )" a,,2", we have

(5.11) Lo = (I = Pae2) (1" + ).

Thus the operator L satisfying (5.10) exists if and only if the operator defined by
(5.11) is bounded, that is, if and only if (5.9) holds. O
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