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Cohomology, Part I:
Generalized modular forms and

the cooperation algebra

Andrew Baker

Abstract. This is the first of two interconnected parts: Part I contains the
geometric theory of generalized modular forms and their connections with the
cooperation algebra for elliptic cohomology, E��∗E��, while Part II is devoted
to the more algebraic theory associated with Hecke algebras and stable oper-
ations in elliptic cohomology.

We investigate the structure of the stable operation algebra E��∗E�� by
first determining the dual cooperation algebra E��∗E��. A major ingredient
is our identification of the cooperation algebra E��∗E�� with a ring of general-
ized modular forms whoses exact determination involves understanding certain
integrality conditions; this is closely related to a calculation by N. Katz of the
ring of all ‘divided congruences’ amongst modular forms. We relate our present
work to previous constructions of Hecke operators in elliptic cohomology. We
also show that a well known operator on modular forms used by Ramanujan,
Swinnerton-Dyer, Serre and Katz cannot extend to a stable operation.

Introduction

This paper is in two interelated parts: Part I contains the geometric theory
of generalized modular forms and their connections with the cooperation algebra
E��∗E��, while Part II will be devoted to the more algebraic theory associated with
Hecke algebras and operations in elliptic cohomology.

In our earlier paper [6], we defined operations in the ‘level 1’ version of ellip-
tic cohomology E��∗( ) which restricted to the classical Hecke operators on the
coefficient ring E��∗ (defined to be a ring of modular forms for the full modular
group SL2(Z)). In the present paper we investigate the structure of the operation
algebra E��∗E�� by determining the dual cooperation algebra E��∗E��, thus fol-
lowing the pattern established in the case of K-theory; we also describe a category
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of modules (dually comodules) over these which are closely related to modules over
Hecke algebras associated to the group SL2(Z); this points to a generalization from
K-theory to elliptic cohomology of work by A. K. Bousfield in [12], [13]. A recent
paper of F. Clarke and K. Johnson [14] has also considered the analogous cooper-
ation algebra for the level 2 version of elliptic cohomology, and we in effect prove
their conjecture on the structure of their analogue of E��∗E��.

A particular ingredient is our identification of the cooperation algebra E��∗E��
with a ring of ‘generalized modular forms’. The most significant aspect of this
involves understanding certain integrality conditions, and this is closely related to
the calculation by N. Katz in [23] of the ring of all ‘divided congruences’ amongst
modular forms (in 1 variable). Indeed, Katz’s work amounts to a calculation of
the topological gadget KU∗E�� rather than E��∗E��; however, we use his re-
sults to determine the latter. We also wish to point out that the construction
by G. Nishida [32] of Hecke operators appears to be closely related to the ideas of
the present work.

We will assume the reader is familiar with the apparatus of algebraic topology
contained in [1] and [33], to which the reader is referred for all basic ideas on
complex oriented cohomology theories and their associated formal group laws. As
basic references on elliptic cohomology theories, P. S. Landweber’s two articles [28]
and [29] are highly recommended although their main emphasis is on level 2 theories.
A more recent reference is that of J. Francke [15]. A convenient source for all the
basic notions of Hecke algebras is [26].

In detail, Part I is structured as follows. §1 contains a brief resumé of modular
forms and elliptic cohomology. §2 gives details of the formal group law associated to
elliptic curves in Weierstrass form and the canonical complex orientation of elliptic
cohomology. §3 introduces the cooperation Hopf algebroid E��∗E��. §4 introduces
our notion of generalized modular form. In §5 and §6 we describe certain categories
of isogenies and their realisation as stable operations on elliptic cohomology. §7
recalls the properties of the classical rings of stably numerical polynomials, familiar
in the context of the stable cooperation Hopf algebroid for K-theory, KU∗KU . In
§8 and §9 we describe a major result of N. Katz and apply it to the calculation of our
ring of generalized modular forms which is isomorphic to E��∗E��. In §10 and §11
we complete the description of E��∗E�� by considering its coproduct structure and
use duality to construct stable operations, particularly operations which generalize
the classical Hecke operators. Finally, in §12 we discuss an important operation ∂
on modular forms which is a derivation and plays a major rôle in the arithmetic
theory of Swinnerton-Dyer, Serre and Katz; we show this cannot extend to a stable
operation in elliptic cohomology.

I would like to thank the following for help and advice on this work and related
topics over many years: Francis Clarke, Mark Hovey, John Hunton, Keith Johnson,
Peter Landweber, Jack Morava, Goro Nishida, Serge Ochanine, Doug Ravenel, Nigel
Ray, Robert Stong and Charles Thomas.

1. Modular forms and elliptic cohomology

Let L denote the set of all oriented lattices in C, i.e., discrete free subgroups
L ⊆ C such R ⊗ L = C as oriented real vector spaces. This set can be identified
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with the coset space
SL2(Z)\V ,

where V is the set of all oriented bases {ω1, ω2} in the real vector space C and we
use the convention that for an oriented (ordered) basis {ω1, ω2},

ω1/ω2 ∈ H = {τ ∈ C : im τ > 0}.

The action of SL2(Z) is the obvious one,(
a b
c d

)
· {ω1, ω2} = {aω1 + bω2, cω1 + dω2}.

This of course induces the usual action on the upper half plane H on passage from
{ω1, ω2} to ω1/ω2. Thus L possesses a natural 2-dimensional complex analytic
structure.

Notice that the group of non-zero complex numbers C× acts compatibly on both
V and L by

λ · {ω1, ω2} = {λω1, λω2}

and

λ · 〈ω1, ω2〉 = 〈λω1, λω2〉 ,

where 〈ω1, ω2〉 denotes the lattice spanned by the basis {ω1, ω2}.
We will follow [22] and [25] in defining a modular form of weight k to be a

holomorphic function F : L −→ C which satisfies the functional equation

F (λ · L) = λ−kF (L)

whenever λ ∈ C×. To avoid excessively elaborate notation, we will sometimes
regard such a function as having as its domain V and being invariant under the
action of SL2(Z). We can associate to such an F a function f : H −→ C defined by
f(τ) = F (〈τ, 1〉) for τ ∈ H the upper half plane. After setting q = e2πiτ , we say
that F is holomorphic at infinity (i.e., at i∞) if the Fourier series expansion

f(τ) =
∑

−∞<n<∞
anq

n

has an = 0 for n < 0; if also a0 = 0, then F is a cusp form. We say that F
is meromorphic at infinity if the Fourier series of F has an = 0 for n 	 0. If
the coefficients an lie in some subring K ⊆ C, then we say that F is defined over
K. Throughout this paper we will assume as we did in [6] that Z[1/6] ⊆ K,
the reader is referred to [22] and [42] for details on the reasons for this. We will
denote by S(K)k the set of all weight k modular forms holomorphic at infinity
and by M(K)k the set of all weight k modular forms meromorphic at infinity; of
course we have S(K)k ⊆ M(K)k. Thus there are two strictly commutative graded
rings S(K)∗ and M(K)∗ with a homomorphism of graded rings S(K)∗ −→ M(K)∗.
The following classical result describes the structure of such rings. Elementary
accounts of this result can be found in [25, 39]; for a discussion of rigidity under
base change, see [22].
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Theorem 1.1. If 1/6 ∈ K, then as graded rings we have

S(K)∗ = K[E4, E6],

and
M(K)∗ = S(K)∗[Δ−1] = K[E4, E6,Δ−1],

where E2n ∈ S(K)2n ⊆M(K)2n is the 2nth Eisenstein function and

Δ =
1

1728
(
E3

4 − E2
6

)
is the discriminant function.

We recall the following q-expansions defined over Q:

E2n(q) = 1− 4n
B2n

∑
k�1

σ2n−1(k)qk for n � 1(1.1)

Δ = q
∏
n�1

(1− qn)24(1.2)

where σm(k) =
∑

d|k d
m. Whenever n > 1, the q-expansion E2n(q) corresponds to

a modular form of weight 2n, which we will denote by E2n. Notice that for any
subring K ⊆ C, we have E4, E6 ∈ S(K)∗ ⊆ M(K)∗. Following [40, 41], we will use
the notation Q = E4 and R = E6.

For each n � 0, define a basis {Fn,a} of S(K)n overK as follows. For 0 � n � 14,
set

F0,0 = 1,
F4,0 = Q = E4,

F6,0 = R = E6,

F8,0 = Q2,

F10,0 = QR,

F12,0 = Q3,

F12,1 = Δ,

F14,0 = Q2R.

For n � 16, inductively define the basis so that Fn,0 = Q3Fn−12,0, and if a � 1,
Fn,a = ΔFn−12,a−1. Notice that we have

Fm,aFn,b =

{
Fm+n,0 + (cusp form) if a = b = 0,
(cusp form) otherwise.

(1.3)

We will refer to the basis {Fn,a} as the standard basis of the graded K-module
S(K)∗. We can lexicographically order this basis by the index (n, a).

We next introduce the following topologically motivated notation:

e��2n = S(Z[1/6])n,

E��2n = M(Z[1/6])n.
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We define elliptic cohomology to be the functor (on the category of finite CW
complexes or spectra)

E��∗( ) = E��∗ ⊗
MU∗

MU∗( ).(1.4)

In Landweber’s papers [28, 29] and also [6], it is shown that this a cohomology
theory. There is also a connective theory e��∗( ) whose coefficient ring is e��∗,
although we make no use of it in this paper. However, its representing spectrum
e�� is not the connective covering of E��, even if the notation may suggest this.

We end this section with some further remarks on elliptic cohomology, intended
to highlight its properties as a cohomology theory. In [8] we observed that after a
suitable completion, the spectrum E�� carries a unique topological A∞ ring struc-
ture (in unpublished work we have also shown that this is true for E�� itself). An
important consequence of this is that for any A∞ module spectrum M over E�� and
any spectrum X , there are Künneth and Universal Coefficient spectral sequences
for M∗(X) and M∗(X), This depends upon work of C. A. Robinson [35, 36, 37].
An alternative approach to such spectral sequences comes from recent work of
M. J. Hopkins and J. R. Hunton [20, 21], whose methods yield the following theo-
rem.

Theorem 1.2. For any d ∈ Z, let Ω∞−dE�� denote the term in the Ω-spectrum
E�� which represents the elliptic cohomology group E��d( ). Then the ordinary
homology H∗(Ω∞−dE��; Z[1/6]) is torsion free. Similarly, E��∗(Ω∞−dE��) is free
over E��∗. Consequently, the spectrum E�� is a colimit of finite CW spectra Eα

each having the property that both E��∗(Eα) and E��∗(DEα) are free over E��∗.

Recall the conditions for Adams’ universal coefficient spectral sequence of [1],
Part III.

Corollary 1.3. The conditions for Adams’ universal coefficient spectral sequence
are satisfied by the spectrum E��. Hence the Künneth and Universal Coefficient
spectral sequences exist for any module spectrum over E�� and any spectrum X,
and have the usual forms:{

E2∗,∗(X) =⇒M∗(X)
E2
∗,∗(X) = Tor∗,∗

E��∗ (E��∗(X),M∗)

and {
E∗,∗

2 (X) =⇒M∗(X)
E∗,∗

2 (X) = Ext∗,∗
E��∗ (E��∗(X),M∗)

Thus, elliptic homology and cohomology possess the usual battery of computa-
tional technology. However, the fact that the coefficient ring E��∗ is not a principal
ideal domain suggests that serious calculations will usually be of greater difficulty
than they would in say K-theory. For reductions modulo invariant ideals and rela-
tions with Morava K(1) and K(2), see [8, 9, 10].

We end this section by describing a modified version of elliptic cohomology which
is 2-periodic. We take as its coefficient ring

E��∗ = E��∗[Λ]/(Λ12 −Δ),
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where Λ ∈ E��2. Then the natural homomorphism E��∗ −→ E��∗ allows us to define
the functors (on finite CW complexes or spectra)

E��∗( ) = E��∗ ⊗
MU∗

MU∗( ) ∼= E��∗ ⊗
E��∗

E��∗( ),(1.5)

E��∗( ) = E��∗ ⊗
MU∗

MU∗( ) ∼= E��∗ ⊗
E��∗

E��∗( ),(1.6)

This ring E��∗ can be interpreted as a ring of meromorphic modular forms with
character in the finite cyclic group Hom(SL2(Z),Q/Z) ∼= Z/12. In other words, the
usual modularity conditions on a holomorphic function F : V −→ C are replaced by

F (λ · {ω1, ω2}) = λ−kF ({ω1, ω2}),(1.7)

F ({aω1 + bω2, cω1 + dω2}) = χF (A)F ({ω1, ω2})∀A =
(
a b
c d

)
∈ SL2(Z),

(1.8)

for some character χF : SL2(Z) −→ Q/Z. Then Λ = η2 is the square of Dedekind’s
η-function [25] and has character of order 12 which generates the finite cyclic group
Hom(SL2(Z),Q/Z). Because of this, we may identify such a ring of ‘twisted’ mod-
ular forms with the extension E��∗ of E��∗. Although we make no use of this here,
there are advantages in having a 2-periodic cohomology theory rather than one of
period 24.

2. Elliptic curves, Weierstrass formal group laws and
complex orientations in elliptic cohomology

Given an analytic torus C/L, we can construct a Weierstrass cubic (elliptic
curve) (thought of as a projective cubic curve)

CW(L) : Y 2Z = 4X3 − 1
12
E4(L)XZ2 +

1
216

E6(L)Z3,

where the function E2n is the 2nth Eisenstein function of Section 1, regarded as a
function of the lattice L. The classical theory of the Weierstrass function gives us
an explicit uniformisation of this curve. We define an analytic isomorphism

Φ: C/L −→ CW(L)

z + L −→
{

[℘(z, L), ℘′(z, L), 1], if z �∈ L,
[0, 1, 0], otherwise.

Here the Weierstrass function is normalised as in [6], so that for the lattice L =
2πi 〈τ, 1〉 with τ ∈ H, we have

℘(z, L) =
1(

ez/2 − e−z/2
)2 +

∑
n�1

[
qnez

(1− qnez)2
+

qne−z(
1− qne−z

)2
]
.

The local parameter

T (z, L) =
−2℘(z, L)
℘′(z, L)
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is an elliptic function on CW(L) which has a simple zero at each lattice point. The
multiplication on CW(L) gives rise to a formal group law

FE��
L (T1, T2) ∈ Z[1/6][E4(L), E6(L)][[T1, T2]]

which we call the Weierstrass formal group law associated to the lattice L, and is
determined by the relation

T (z1 + z2, L) = FE��
L (T (z1, L), T (z2, L)).

Of course, the universal example for such formal group laws is furnished by the
power series

FE��(T1, T2) ∈ Z[1/6][Q,R,Δ−1][[T1, T2]] = E��∗[[T1, T2]]

which is the canonical formal group law in elliptic cohomology. The natural choice
of orientation for the canonical complex line bundle η −→ CP∞ then corresponds to
T ∈ E��∗[[T ]] ∼= E��∗(CP∞). See [6] for further details on these points. Evaluation
of q-expansions gives rise to a homomorphism

E��∗ = Z[1/6][Q,R,Δ−1] −→ KU [1/6]∗((q)) = Z[1/6][t, t−1]((q)),

in which we use the Bott generator t ∈ KU2 to keep track of the weight which
is half the topological grading. This an analogue of the classical Chern character,
essentially discussed as such in [30], which focuses on modular forms of level 2 and
uses the ring KO[1/2]∗. One major advantage to the use of level 2 modular forms
and the original definition of elliptic cohomology is that the formal group law and
its logarithm can be displayed more explicitly in terms of natural algebra generators
of the coefficient ring; see [14] for some calculational observations.

3. The Hopf algebroid E��∗E��

In this section we will give some algebraic results on the cooperation algebra
E��∗E�� = E��∗(E��). The construction of the functors E��∗( ) and E��∗( )
depends crucially on the following consequence of the Landweber Exact Functor
Theorem [27] (the last statement follows from an argument similar to one for E(n)
in [31]).

Theorem 3.1. There is an isomorphism of bimodules over E��∗

E��∗E�� ∼= E��∗ ⊗
MU∗

MU∗MU ⊗
MU∗

E��∗

where we use the natural genus MU∗ −→ E��∗ associated to the formal group law
FE�� to form tensor products. Moreover, E��∗E�� is flat as both a left and right
module over E��∗.

Corollary 3.2. The pair (E��∗E��,E��∗) is a Hopf algebroid over Z[1/6].
More generally, for any subring R of Q containing Z[1/6], the pair

(E��∗E�� ⊗
Z[1/6]

R,E��∗ ⊗
Z[1/6]

R)

is a Hopf algebroid over R.
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The term Hopf algebroid is thoroughly explained in [33]. The structure maps
of E��∗E�� are derived ultimately from those of the ‘universal’ Hopf algebroid
(MU∗MU,MU∗). Let ηL, ηR : E��∗ −→ E��∗E�� be the left and right units; we will
often abuse notation and write X = ηL(X).

Working over the rational numbers Q we have a simple description. First we
note a consequence of the Landweber Exact Functor Theorem, which implies that
multiplication by a prime p is a monomorphism on E��∗E��; this was also noted in
[14] for example.

Proposition 3.3. The rationalisation map E��∗E�� −→ E��∗E��⊗Q is injective.

Proposition 3.4. As graded Q algebras we have

E��∗E��⊗Q = Q[Q,R,Δ−1, ηR(Q), ηR(R), ηR(Δ)−1].

We also have a well known relationship between the two natural formal group
laws over E��∗E�� and E��∗E�� ⊗ Q. Let logE�� T and logE��′ T denote the loga-
rithms of the images over E��∗E��⊗Q of the canonical formal group law induced
by ηL and ηR.

Proposition 3.5. Let B(T ) =
∑

k�0 BkT
k+1 denote the strict isomorphism from

the formal group law on E��∗E�� ⊗ Q induced from ηL to that induced from ηR.
Then we have:

(1) as algebras over E��∗ ⊗Q = ηL(E��∗ ⊗Q),

E��∗E��⊗Q = E��∗ ⊗Q[ηR(Q), ηR(R), ηR(Δ)−1];

(2) logE�� T = logE��′(B(T ));
(3) for each n � 0, we have Bn ∈ E��2nE��;
(4) as an E��∗ = ηL(E��∗) algebra, E��∗E�� is generated by the elements Bn

with n � 1 together with ηR(Δ−1).

We can describe (E��∗E��,E��∗) as a universal object.

Proposition 3.6. Let R∗ be any graded commutative ring, let F1, F2 be formal
group laws over R∗ induced from E��∗ by the ring homomorphisms θ1, θ2 : E��∗ −→
R∗, and let H : F1

∼= F2 be a strict isomorphism over R∗. Then there is a unique
ring homomorphism Θ: E��∗E�� −→ R∗ such that

Θ ◦ ηL = θ1 and Θ ◦ ηR = θ2

and the series Θ(B(X)) =
∑

n�0 Θ(Bn)Xn+1 satisfies

H(X) = Θ(B(X)).

This follows from the analogous universality of (MU∗MU,MU∗).
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4. Generalized modular forms

We continue to use the notation established in Section 1. Recall the left principal
bundle

V −→ L;
{ω1, ω2} −→ 〈ω1, ω2〉

with structure group SL2(Z).
For any natural number N > 0, we denote by M2(N) the set of 2 × 2 integer

matrices with determinant N and set

(1/N)M2(N) = {(1/N)A : A ∈M2(N)} .

Of course, these are isomorphic as right and left SL2(Z) sets. The associated bundle

πV(N) : V(N) = (1/N)M2(N) ×
SL2(Z)

V −→ L

has fibre (1/N)M2(N). Given an oriented basis {ω1, ω2} for a lattice L and A ∈
M2(N) with

A =
(
a b
c d

)
we have an oriented basis {

aω1 + bω2

N
,
cω1 + dω2

N

}
for the lattice

L′ =
〈
aω1 + bω2

N
,
cω1 + dω2

N

〉
which contains L with index N . Notice that each of the projection maps

V(N)
πV(N)−−−−→ L

is an infinite covering, with fibre isomorphic to the set (1/N)M2(N) ∼= M2(N).
Factoring out by the left action of any subgroup G � SL2(Z) on V(N), and we

obtain a covering V(N) −→ G\V(N). If the subgroup G contains the congruence
subgroup Γ(N), then this is a finite covering. We will be particularly interested in
the two extreme cases G = SL2(Z) and G = Γ(N). We set

L(N) = SL2(Z)\V(N),
F(N) = Γ(N)\V(N),

which admit finite covering maps

L(N)π : L(N) −→ L,
F(N)π : F(N) −→ L,

whose fibres are the sets

SL2(Z)\(1/N)M2(N) ∼= SL2(Z)\M2(N),
Γ(N)\(1/N)M2(N) ∼= Γ(N)\M2(N).
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Of course, these maps are holomorphic maps of complex analytic manifolds. The
projection maps are also equivariant with respect to the obvious action of the
complex units C× by multiplication.

The space L(N) can be viewed as the space of pairs of lattices L ⊆ L′ with in-
dex N . Similarly, we can interpret F(N) as the space of pairs (L, {ω′

1 + L, ω′
2 + L}),

where

ω′
1 =

aω1 + bω2

N
,

ω′
2 =

cω1 + dω2

N

for an oriented basis {ω1, ω2} of L and

A =
(
a b
c d

)
∈M2(N).

Thus {ω′
1, ω

′
2} is an oriented basis of the module L′/L over the ring Z/N . We will

frequently make use of these interpretations without further comment.
Now we can make the following definition of a notion of level N modular forms.

Definition 4.1. Let G � SL2(Z) be a subgroup containing Γ(N). Then a holo-
morphic map

F : G\V(N) −→ C

is a modular form of level N for G of weight k if for λ ∈ C×,

F (G[(1/N)A, {λω1, λω2}]) = λ−kF (G[(1/N)A, {ω1, ω2}]).

If G = Γ(N), then we frequently refer to such a modular form as a modular form
of level N .

Notice that for such a G and a subgroup G′ containing Γ(N), a modular form
of weight k for G is also one for G′. Holomorphic functions L(N) −→ C for which
the composite

Γ(N)\V(N) −→ L(N) −→ C

is a modular form of level N will often be met in this work; we will loosely refer to
these as level N modular forms on L(N).

Given such a modular form F of level N , we can evaluate F on the fibres over
the lattices of the form 〈τ, 1〉, where τ ∈ H. For each pair (r, s) with 0 < r, s and
rs = N , there is a function

fF,r,s : τ −→ F

(
G

[(
r/N 0
0 s/N

)
, 〈τ, 1〉

])
,

with Fourier expansion of the form∑
−∞<n<∞

aF,r,s
n qn/N where q1/N = e2πiτ/N .

We will refer to these q-expansions as the q-expansions of F along the fibres.
For each coset BG ∈ SL2(Z)/G, we also have the holomorphic function

F|B (G[(1/N)A, {ω1, ω2}]) = F (BGB−1[(1/N)BA, {ω1, ω2}]).
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Definition 4.2. The modular form F for G is holomorphic at infinity if for each
coset GB ∈ G\SL2(Z) and (r, s) as above, the functions

τ −→ F|B

(
G

[(
r/N 0
0 s/N

)
, 〈τ, 1〉

])
have q-expansions ∑

−∞<n<∞
aF,r,s,B

n qn/N

with aF,r,s,B
n = 0 for n < 0; similarly, it is meromorphic at infinity if its q-expansions

have aF,r,s,B
n = 0 for n	 0.

We will refer to the collection of q-expansions along the fibres of the functions
F|B as the q-expansions of F at the cusps .

Now let K ⊆ C be a subring which contains 1/6, and let ζN be a primitive Nth
root of 1.

Definition 4.3. The modular form F for G is defined over the ring K if all the
q-expansion coefficients of all the functions F|B , with BG ∈ SL2(Z)/G, are in the
ring K[1/N, ζN ].

We now want to define a generalized modular form as a function on all of the
spaces L(N) simultaneously in such a way that the restriction to each L(N) depends
upon N in a controlled fashion. To do this we require that for each N we have a
holomorphic function FN : L(N) −→ C which is simultaneously a modular form for
each of the two lattices associated to each point of L. Thus we will require that our
function is induced from a suitable type of function upon the product space L×L
via the product V(N)πV(N) of the two projection maps to L. Finally, we will do this
uniformly by requiring that these functions L × L −→ C are independent of N .

Remark 4.4. The following definitions may appear somewhat forced in that we
need to work with certain proper subsets of Map(X×Y,C). In fact, in the examples
we consider, the spaces X and Y can be given the structures of complex analytic
spaces Xh, Yh as discussed in [38] and also more briefly in [17], Appendix B (in fact
they are obtained as the analytic spaces associate to algebraic varieties over C).
Hence, we could characterise these sets of functions as analytic functions on the
product Xh×Yh. The case of L itself follows since there is an analytic isomorphism
between L and the affine variety{

(x, y) ∈ C2 : x3 − y2 �= 0
}
⊆ C2.

In order to avoid excessive technicalities, we proceed along the route below even
though it may seem somewhat laboured to those well versed in algebraic geometry.

Recall that given two spaces X,Y , there is an embedding

Map(X,C)⊗
C

Map(Y,C) −→ Map(X × Y,C),

which sends the element f ⊗ g to the pointwise product function

f · g : (x, y) −→ f(x)g(y).

We will identify Map(X,C)⊗C Map(Y,C) with its image in Map(X × Y,C). More
generally, given two vector subspaces A ⊆ Map(X,C) and B ⊆ Map(Y,C), we
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may identify the subspace A⊗C B ⊆ Map(X,C)⊗C Map(Y,C) with a subpace of
Map(X × Y,C).

Let MF(C)k denote the set of all weight k modular forms, i.e., holomorphic
functions L −→ C satisfying the modularity condition

F (λ · L) = λ−kF (L) ∀λ ∈ C×.

Given a subring K ⊆ C, let MF(K)k denote the set of all modular forms whose
associated q-expansions have coefficients in K.

We now make a series of definitions.

Definition 4.5. A modular form of weight k on L × L is a holomorphic map
F : L × L −→ C such that for λ ∈ C×,

F (λ · L1, λ · L2) = λ−kF (L1, L2),

and
F ∈

∑
r∈Z

MF(C)r ⊗
C

MF(C)k−r ⊆Map(L × L,C).

We can now give our definition of a generalized modular form.

Definition 4.6. A generalized modular form of level 1 and weight k is the coprod-
uct F• =

∐
N�1 FN of a family of holomorphic maps of the form

FN : L(N) V(N)π×πV(N)−−−−−−−−−→ L× L F−→ C

where F : L× L −→ C is a fixed modular form of weight k on L× L .

Notice that for each N � 1, FN is a modular form of level N for SL2(Z) of
weight k.

Definition 4.7. The generalized modular form F• is defined over K if for eachN �
1, the modular form FN of level N for SL2(Z) is defined over K.

Definition 4.8. The generalized modular form F• is holomorphic at infinity if for
each N � 1, the modular form FN of level N is holomorphic at ∞; similarly, F• is
meromorphic at infinity if each FN is meromorphic at ∞.

Now let us consider the groups of all holomorphic (resp. meromorphic) gen-
eralized modular forms of weight k and defined over K, which we will denote
by GenS(K)k (resp. GenM(K)k). These can be combined into two graded rings
GenS(K)∗ and GenM(K)∗ which are algebras over the rings S(K)∗ and M(K)∗ of
Section 1. Since both of these rings are torsion free, we have

GenS(K)∗ ⊆ GenS(KQ)∗
GenM(K)∗ ⊆ GenM(KQ)∗,

where KQ is the smallest subring of C containing both K and Q. We can easily
prove the next result.
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Theorem 4.9. As graded algebras over the rings S(Q)∗ and M(Q)∗ we have

GenS(Q)∗ = S(Q)∗[E′
4, E

′
6]

GenM(Q)∗ = M(Q)∗[E′
4, E

′
6,Δ

′−1],

where for each N � 1,

E′
2n = E2n ◦ L(N)π,

Δ′ = Δ ◦ L(N)π

as functions L(N) −→ C.

Recall from the definition of elliptic cohomology that M(Z[1/6])∗ = E��∗. By
Proposition 3.4, we obtain the following.

Corollary 4.10. As graded algebras over E��Q∗ ∼= E��∗ ⊗Q,

GenM(Q)∗ ∼= E��Q∗E�� ∼= E��∗E��⊗Q.

This suggests that we ought to be able to describe E��∗E�� in terms of the ring
GenM(Z[1/6])∗. The crucial question is of course what effect integrality conditions
have on the existence of generalized modular forms. The complete algebraic cal-
culations of GenS(Z[1/6])∗ and GenM(Z[1/6])∗ will be given later, using work of
N. Katz [23].

We will now discuss a multiplicative structure on the space
∐

n�1 L(N), which
induces coproducts on the rings of generalized modular forms.

For M,N � 1, there is a partial product map

(1/M)M2(M) ×
SL2(Z)

V ×
L

(1/N)M2(N) ×
SL2(Z)

V −→ (1/MN)M2(MN) ×
SL2(Z)

V
(4.1)

which is defined on elements by the formula

([A, {ω′
1, ω

′
2}] , [B, {ω1, ω2}]) −→ [ATB, {ω1, ω2}] ,(4.2)

where we have
{ω′

1, ω
′
2} = TB{ω1, ω2}

for some T ∈ SL2(Z). Here the symbol ×
L

implies that we form the pullback of the

diagram
(1/M)M2(M) ×

SL2(Z)
V πV−−→ L Vπ←−− (1/N)M2(N) ×

SL2(Z)
V .

It is easily verified that this partial product is then compatible with the action of
SL2(Z) in the sense that it passes down to a partial product

L(M)×
L
L(N) −→ L(MN).

This product can be viewed as making the space

L• =
∐
N�1

L(N)
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into a ‘monoid over L’. It is clearly associative and the space L(1) acts via the
identity. Taking functions on this space we obtain a coproduct which sends the
function F : L• −→ C to the function

L•×
L
L• −→ L• F−→ C.

The space L• over L appears to play a rôle in elliptic cohomology analogous
to that of the non-zero integers in K-theory, where they index (stable) Adams
operations. We will make this more explicit in future work, but in this paper we
will only demonstrate its connections with stable operations. In Section 5, we will
describe the space L• in a more algebraic fashion.

5. Isogenies of elliptic curves and cooperation algebras

By an elliptic curve C over the complex numbers C we will mean a non-singular
Riemann surface of genus 1 with a distinguished basepoint OC. It is known that
this can be uniformised, i.e., there is an analytic isomorphism

Φ: C ∼= C/L

Φ(OC) = 0 + L,

where L ⊆ C is a lattice. Particular examples are furnished by the Weierstrass cu-
bics of Section 5. Moreover, the torus C/L is unique up to an analytic isomorphism
of the form

[λ] : C/L −→ C/L′

where [λ] is induced by multiplication by λ and λ ·L = L′. We can scale L so that
it has the form L = 〈τ, 1〉 for some τ ∈ H (the upper half plane); then Φ is unique
up to analytic automorphism of C/L. Of course, there is a canonical abelian group
structure on C/L which is transferred to C by Φ, and C is an analytic group with
OC as its zero element.

Given two elliptic curves C1, C2 over C, an isogeny from C1 to C2 is an analytic
homomorphism of groups Θ: C1 −→ C2 such that kerΘ is finite (it is then necessarily
surjective). Let deg Θ = |kerΘ|, the degree of Θ, and KΘ ⊆ C be the unique lattice
such that KΘ/L1 = kerΘ. For C1 = C/L1 and C2 = C/L2 such an isogeny has to
be of the form [λ] with

λ ·KΘ = L2,

and thus there is a unique factorisation

C/L1 −→ C/KΘ
[λ]−→ C/L2(5.1)

where the first map is induced by the canonical inclusion L1 −→ KΘ. We will say
that an isogeny is strict if λ = 1. Notice that for a strict isogeny,

L1 ⊆ L2

has finite index and also

L2/L1 = ker([1] : C/L1 −→ C/L2).

From the above discussion, we see that the category of elliptic curves over C

with isogenies as morphisms, is naturally equivalent to the category of tori C/L
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and isogenies, which will denote by IsoC. We will restrict attention to elliptic
curves of the form C/L and work with the category SIsoC of all such elliptic curves
together with their strict isogenies as morphisms.

We can decompose these categories IsoC and SIsoC into disjoint unions

IsoC =
∐
N�1

IsoC(N)

SIsoC =
∐
N�1

SIsoC(N)

where IsoC(N) consists of isogenies with degree N and we have the equation
SIsoC(N) = IsoC(N) ∩ SIsoC. Of course, the set SIsoC(1) can be viewed as
the set of objects in the categories IsoC and SIsoC.

We can identify the morphism sets SIsoC(N) with the underlying sets of the
spaces L(N) defined in Section 4, since by construction a point of L(N) is equivalent
to an inclusion of lattices L ⊆ L′ of index N . Moreover, the two projections
πL(N), L(N)π : L(N) −→ L simply pick out these two lattices, which are the domain
and codomain of a unique morphism in SIsoC(N) ⊆ SIsoC. Thus, we have the
following result.

Proposition 5.1. There is an isomorphism of small categories

SIsoC
∼= L•

under which
SIsoC(N) ∼= L(N)

for each N � 1. The category SIsoC is therefore naturally topologised and is the
union of countably infinitely many complex manifolds SIsoC(N).

This result together with the ideas of Section 4 gives us an interesting class of
functions on SIsoC, which are analytic when restricted to the spaces SIsoC(N) ∼=
L(N). We will freely interpret generalized modular forms as functions on the cat-
egory SIsoC. Of course, the structure maps of the category SIsoC correspond to
the partial monoid structure on L•; thus there will be a coproduct structure on
the ring of generalized modular forms. This structure becomes interesting when
we tensor up with a subring R ⊆ Q and force morphisms to become invertible; we
then obtain the structure of a Hopf algebroid on an appropriate ring of generalized
modular forms.

Now most of the morphisms in IsoC and SIsoC are not invertible and we will
need to form various categories of fractions for these. Let R ⊆ Q be a subring of
the rational numbers and let R×

+ denote the subgroup R×∩Q+ of all positive units
in R. We wish to invert the strict isogenies [1] : C/L1 −→ C/L2 with |L2/L1| ∈ R×

+.
To do this we replace the Z lattices L1 and L2 by the R lattices RL1

∼= R⊗Z L1

and RL2
∼= R⊗Z L2, and consider ‘isogenies’ of the form

[u] : C/RL1 −→ C/RL2

where u ∈ R×
+. Notice that such an isogeny has trivial kernel, and has inverse

[u−1] : C/RL2 −→ C/RL1.
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Such morphisms lie in a category Iso
R×

+
C

whose objects are those of IsoC and where
for any two lattices L1 and L2 for which RL1 = RL2, there is unique morphism
[u] : C/L1 −→ C/L2 whenever u ∈ R×

+. We will call such a morphism an R-isogeny;
furthermore, if u = 1, then we say that it is a strict R-isogeny. The strict R-

isogenies form a subcategory SIso
R×

+
C

of Iso
R×

+
C

. If two lattices L1 and L2 satisfy
RL1 = RL2, then we will say that they are R-commensurable. It is easy to see that
the notion of being R-commensurable is an equivalence relation. Notice that if L1

and L2 are R-commensurable, then the lattice L1 ∩ L2 is R-commensurable with
both L1 and L2; moreover, the unique diagram

C/L1 ←− C/L1 ∩ L2 −→ C/L2

in SIsoC gives rise to a unique diagram

C/L1 −→ C/L1 ∩ L2 −→ C/L2

in SIso
R×

+
C

.

Theorem 5.2. The functor SIsoC −→ SIso
R×

+
C

which is the identity on objects and
sends the strict isogeny C/L1 −→ C/L2 to the strict R isogeny [1] : C/L1 −→ C/L2 is
the localization of SIsoC with respect to all morphisms [1] : C/L′ −→ C/L′ for which
| ker[1]| ∈ R×

+.

Notice that in particular this means that a strict isogeny C/L −→ C/(1/N)L for

which N ∈ R×
+ ∩N always has an inverse in SIso

R×
+

C
.

In practise, we will work with rings R for which Z[1/6] ⊆ R, although this
restriction is only important when we consider rings of modular forms as rings of

functions on IsoC and Iso
R×

+
C

.

We end this section by introducing another collection of categories. Let SLIso
R×

+
C

denote the category whose objects are lattices L ∈ L, and where whenever RL1 =
RL2, the morphisms from L1 to L2 are the orientation preserving monomorphisms
L1 −→ L2 which induce R-linear isomorphismsRL1

∼= RL2. In particular, whenR =
Z, there are morphisms L1 −→ L2 if and only if L1 = L2; on the other hand,
when R = Q, there are morphisms L1 −→ L2 if and only if QL1 = QL2. In the case

R = Z, we may identify SLIsoC = SLIso
R×

+
C

with the space

V• =
∐
N�1

V(N).

6. The action of isogenies on Weierstrass formal groups and
operations in elliptic cohomology

Given a strict isogeny [1] : C/L1 −→ C/L2 of degree N , together with a modular
form F of level 1, the function

([1] : C/L1 −→ C/L2) −→ F (L2)
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is a modular form in the variable L2. If we choose an oriented basis for L1 and use
this to make the identifications

SL(L1) ∼= SL2(Z)(6.1)

and

SL((1/N)L1) ∼= SL2(Z),(6.2)

then we can interpret this function as a modular form for the subgroup of SL2(Z)
corresponding to

SL(L1) ∩ SL(L2) ⊆ SL((1/N)L1) ∼= SL2(Z)

under the isomorphism of (6.2). The proof of the following key result is similar to
arguments of [6, 9].

Proposition 6.1. The formal group laws FE��
L1

and FE��
L2

are strictly isomorphic
over the ring of level N modular forms on L(N) defined over the ring Z[1/6].

Proof. The coefficients of FE��
L1

and FE��
L2

considered as functions of the pair
L1 ⊆ L2 are level N modular forms. In fact they lie in the rational subalgebra
Q[E4(L1), E6(L1), E4(L2), E6(L2)] ⊆ C generated by the complex numbers Er(Ls).
The series T (X,L1) and T (X,L2) provide strict isomorphisms from the additive
group law to FE��

L1
and FE��

L2
, hence there is a strict isomorphism

ϕL1,L2 : FE��
L1
−→ FE��

L2

with coefficients in the latter ring. Now by specialising to the case where L1 = 〈τ, 1〉
(τ ∈ H) the series ϕL1,L2(X) gives a q-expansion

ϕ〈τ,1〉,L2(X) ∈ Q[ζN ][[q1/N ]][[X ]].

Following [6], we can use the theory of Tate curves described in [22] to deduce
that the coefficients of FE��

〈τ,1〉 and FE��
L2

actually lie in the rings Z[1/6][[q]] and
Z[1/6N, ζN ][[q1/N ]]. Hence

ϕ〈τ,1〉,L2(X) ∈ Z[1/6N, ζN ][[q1/N ]][[X ]],

showing that the coefficients of ϕL1,L2(X) are level N modular forms on L(N)
defined over Z[1/6N ].

Let ϕL1,L2(X) be the unique strict isomorphism from FE��
L1

to FE��
L2

used in
the proof of this result; we will write ϕ when the isogeny is understood. The
following Corollary makes use of the fact that the considerations of the above proof
are essentially independent of L ⊆ L′. Indeed, the coefficients of ϕL1,L2(X) are
rational polynomials in the coefficients of the formal group laws FE��

L1
and FE��

L2
,

independently of the lattices L1 ⊆ L2 and the index N .

Corollary 6.2. The coefficient of Xn+1 in ϕL1,L2(X) when considered as a func-
tion of pairs L1 ⊆ L2 for arbitrary N � 1, is a holomorphic generalized modular
form of weight n, i.e., is contained in GenS(Z[1/6])n ⊆ GenM(Z[1/6])n.
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Now given any R isogeny [u] : C/L1 −→ C/L2, we can assume that L2 ⊆ (1/N)L1

for some N ∈ R×
+ and then an easy calculation gives

T (uz, L2) = [u]F E��
L2

(T (z, L2))(6.3)

= ϕ
(
[u]F E��

(1/N)L1
T (z, (1/N)L1)

)
= ϕ

(
(1/N)[uN ]F E��

L1
T (z, L1)

)
.

But this is a power series in T (z, L1) with coefficients in the ring of level N modular
forms on L(N) defined over R. Hence, any strict isogeny [u] as above induces an
isomorphism between the formal group law associated with the elliptic curve C/L1

and a ‘twisted version’ of that associated to C/L2. In the case where [u] = [1] is
strict, so is the induced isomorphism of formal group laws. Notice that this implies
that for each strict R-isogeny [1] : C/L1 −→ L2, there is a ring homomorphism
ΨL1,L2 with domain MU∗MU and extending the two homomorphisms

MU∗
ϕL1−−→ R[1/6][E4(L1), E6(L1)],

MU∗
ϕL2−−→ R[1/6][E4(L2), E6(L2)]

which classify the formal group laws FE��
L1

and FE��
L2

; this takes values which are
level N modular forms when considered as functions of L1 ⊆ L2.

It is now immediate that there is a unique homomorphism

E��∗ ⊗
MU∗

MU∗MU ⊗
MU∗

E��∗ −→ E��∗E�� −→ GenM(R)∗

which specialises for each pair L1 ⊆ L2 to give ΨL1,L2 , using Corollary 6.2. In the
case of a strict R-isogeny of the form [1] : L −→ (1/N)L, we find that the left unit
on an element F ∈ E��2n is sent to NnF by this homomorphism; in this case we
can produce a multiplicative stable operation in elliptic cohomology:

ψN : E��∗( ) ∼= (S0 ∧E��)∗( ) −→ (E�� ∧ E��)∗( )(6.4)
∼=−→ E��∗E�� ⊗

E��∗
E��∗( )

ΨL1,L2−−−−→ E��R∗ ⊗
E��∗

E��∗( )

−−−−→ E��R∗( ),

which makes use of the above homomorphism E��∗E��R −→ E��R∗. This is the
Adams operation ψN mentioned in [6], and has a unique extension to a stable
operation

ψN : E��R∗( ) −→ E��R∗( ).

For a fixed L and N ∈ R×
+, we can take all of the induced ring homomorphisms

E��∗ −→ E��R∗ and average them (i.e., sum up and divide by N). This gives rise
to a left E��∗-linear homomorphism

T̃: E��∗E�� −→ E��R∗
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which yields a stable operation

TN : E��∗( ) ∼= (S0 ∧ E��)∗( ) ∼= E��∗E�� ⊗
E��∗

E��∗( )(6.5)

T̃−→ E��R∗ ⊗
E��∗

E��∗( )

∼= E��R∗( )

that is merely additive; again there is a unique extension to a stable operation
TN : E��R∗( ) −→ E��R∗( ). This is the extension of the Nth Hecke operator
constructed in [6]. This type of operation requires that we use not just the ring
E��R∗ but the larger ring of modular forms of levelN to build enough multiplicative
operations over which we symmetrise to get an operation within the theoryE��R∗( )
itself. This sort of consideration is not necessary in K-theory, and represents a
considerable complication in understanding the operations in elliptic cohomology.

Of course, the above discussion can also be interpreted in the light of the observa-
tion in Section 5 that the rings of generalized modular forms may be viewed as func-

tions on the categories Iso
R×

+
C

and SIso
R×

+
C

. Indeed, given an R-isogeny [u] : C/L1 −→
C/L2, the coefficients of the power series discussed above can be viewed as functions

on the category Iso
R×

+
C

and hence as elements of GenS(C)∗ ⊆ GenM(C)∗. A careful
consideration of q-expansions actually shows that they lie in GenS(R)∗ ⊆ GenM(R)∗
provided that we make the standard assumption that Z[1/6] ⊆ R. This provides us
with a natural homomorphism E��∗E�� −→ GenM(R)∗. Later we will demonstrate
the following theorem.

Theorem 6.3. For each subring R ⊆ Q containing 1/6, there is an isomorphism
of graded rings

E��∗E��R ∼= E��∗E��⊗R −→ GenM(R)∗,

and moreover this is an isomorphism of Hopf algebroids over R.

The antipode in GenM(R)∗ is induced by the inverse map in the category Iso
R×

+
C

,
and corresponds under this isomorphism to the antipode in E��∗E��R.

7. Some rings of numerical Laurent polynomials and
K-theory cooperations

In this section we review the properties of some rings of numerical (Laurent)
polynomials in sufficient detail for our purposes in calculating the rings of gen-
eralized modular forms contained in Section 9. The present section owes much to
previous joint work with Francis Clarke, see [11] and [4]; for more on the topological
connections, see [3, 2].

Let K ⊆ Q be a subring. Then we define the ring of numerical polynomials
over K to be

A(w;K) = {f(w) ∈ Q[w] : f(r) ∈ K ∀r ∈ Z}.
Similarly, we define the ring of stably numerical (Laurent) polynomials over K to
be

AS(w;K) = {f(w) ∈ Q[w,w−1] : f(r) ∈ K[1/r] ∀r ∈ Z, 0 �= r}.
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Finally we define the subring of semistable numerical polynomials over K by

AS
0(w;K) = AS(w;K) ∩Q[w].

We set A(w) = A(w; Z), AS(w) = AS(w; Z) and AS
0(w) = AS

0(w; Z).

Proposition 7.1. As a module over K, A(w;K) has a basis consisting of the bi-

nomial coefficient polynomials Cn(w) =
(
w

n

)
for n � 0. Hence we have an iso-

morphism of algebras over K,

A(w;K) ∼= A(w)⊗
Z

K.

As algebras over K,
AS(w;K) = A(w;K)[w−1].

Proofs of these results are given in [11].
Let us now assume that K = Z(p), the ring of p-local integers for a prime p.

Let ordp(h(w)) be the minimum value of ordp on the coefficients of a Laurent
polynomial h(w), or equivalently

ordp(h(w)) = min{ordp(h(a)) : a ∈ Z×
(p)}.

We define increasing filtrations on AS(w; Z(p)) and AS
0(w; Z(p)) as follows. Let

Mk = {f(w) ∈ AS(w; Z(p)) : pkf(w) ∈ Z(p)[w,w−1]},
Mk

0 = {f(w) ∈ AS
0(w; Z(p)) : pkf(w) ∈ Z(p)[w]} = Mk ∩AS

0(w; Z(p)).

Clearly we have M0 = Z(p)[w,w−1] and M0
0 = Z(p)[w]; also the two filtrations

M0 ⊆M1 ⊆ · · · ⊆Mk ⊆ · · · ⊆M∞ = AS(w; Z(p))

M0
0 ⊆M1

0 ⊆ · · · ⊆Mk
0 ⊆ · · · ⊆M∞

0 = AS
0(w; Z(p))

are exhaustive. Let us investigate the successive quotientsMk/Mk−1 andMk
0 /M

k−1
0

for k � 1.
By Proposition (7.1), any element f(w) ∈ AS(w; Z(p)) has the form

f(w) =
∑

0�i�d(f)

hi(w)Ci(w)(7.1)

where hi(w) ∈ Z(p)[w,w−1] and we assume that hd(f)(w) �= 0. The p-adic ordinal
of n! is given by

ordp(n!) =
n− αp(n)
p− 1

,(7.2)

where αp(n) is the sum of the p-adic digits of n. In particular,

ordp(pr!) =
pr − 1
p− 1

= 1 + p+ · · ·+ pr−1.(7.3)

Now Cn(w) represents non-zero elements in the quotients

Mordp(n!)/Mordp(n!)−1 and M
ordp(n!)
0 /M

ordp(n!)−1
0 .
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Thus for a general element f(w), we see that f(w) ∈Mk if and only if

k � max{ordp(n!)− ordp(hn(w)) : 0 � n � d(f)}

and moreover it represents a non-zero element in Mk/Mk−1 if and only if the last
inequality is actually an equality.

It will be convenient to use a different basis for the p-local numerical polynomial
ring A(w; Z(p)). We require the following results taken from [4].

Proposition 7.2. Define the following sequence of polynomials in Q[w]:

θ0(w) = w,

θ1(w) =
(θ0(w) − θ0(w)p)

p
,

θ2(w) =
(θ0(w) − pθ1(w)p − θ0(w)p2

)
p2

,

...

θr(w) =
θ0(w)− pr−1θr−1(w)p − pr−2θr−2(w)p2 − · · · − θ0(w)pr

pr
,

...

Then

(1) for each r � 0, θr(w) ∈ A(w; Z(p)) and moreover defines a function θr : Z(p) −→
Z(p);

(2) we have

ordp(θr(w)) =
pr − 1
p− 1

= 1 + p+ p2 + · · ·+ pr−1;

(3) the monomials

θ0(w)s0θ1(w)s1 · · · θd(w)sd for 0 � sr < p

form a Z(p)-basis for A(w; Z(p));
(4) the monomials

θ1(w)s1 · · · θd(w)sd for 0 � sr < p

span AS(w; Z(p)) as a module over Z(p)[w,w−1];
(5) for each k � 1, the monomials

θ0(w)s0θ1(w)s1 · · · θd(w)sd for 0 � sr < p and 0 � s0 < p− 1

form a Z/pk-basis for AS(w; Z(p))/(pk), which can also be identified with
the ring of functions Z×

(p) −→ Z/pk which are continuous with respect the
p-adic norm on the domain and the discrete topology on the range.

We will set θr(w) = w−1θr(w) ∈ AS
0(w; Z(p)) for r � 1.

Now consider an element of AS
0(w; Z(p)) of the form

f(w) = cθ0(w)s0θ1(w)s1 · · · θd(w)sd
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where 0 � sr < p, 0 � s0 < p − 1 and c ∈ Z(p). Then the p-adic ordinal of this
polynomial is

ordp(f(w)) = ordp(c)−
∑

1�j�d

sj
(pj − 1)
(p− 1)

,

and so f(w) ∈Mk
0 if and only if

k �
∑

1�j�d

sj
(pj − 1)
(p− 1)

− ordp(c),

and represents a non-zero element of Mk
0 /M

k−1
0 if and only if this is actually an

equality.
We end this section by recalling the topological significance of the ring of stably

numerical polynomials. This involves the determination of the cooperation algebra
for complex K-theory, KU∗KU , discussed in [3, 11].

Theorem 7.3. Let u = ηL(t) and v = ηR(t) be the images of the Bott generator
t ∈ KU2 under the left and right units KU∗ −→ KU∗KU , and let w = vu−1 ∈
KU0KU . Then the image of the (monomorphic) rationalisation map

KU0KU −→ KU0KUQ ∼= KU0KU ⊗Q

is equal to the ring of stably numerical polynomials AS(w). More generally, if R ⊆ Q

is any subring, then the image of the localization KU0KUR ∼= KU0KU ⊗R under
the rationalisation map

KU0KUR −→ KU0KU ⊗Q

is equal to the ring of stably R-numerical polynomials AS(w;R).
The natural Hopf algebroid structure on the pair (KU∗KU,KU∗) is then induced

by the left and right units together with the maps

u −→ u⊗ 1; v −→ 1⊗ v; w −→ w ⊗ w;
(coproduct)

u −→ v; v −→ u; w −→ w−1,(antipode)

where the coproduct is a ring homomorphism

KU∗KU −→ KU∗KU ⊗
KU∗

KU∗KU

into the tensor product of bimodules obtain using the right-left KU∗ module struc-
tures.

This result provides a model for our description of the cooperation algebra
E��∗E��.
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8. Katz’s work on divided congruences amongst modular
forms

In this section we will describe briefly results from N. Katz’s paper [23], especially
section 5. These will be applied to determine the rings of generalized modular forms.

Let p > 3 be a prime. We will work with the ring S(Z(p))∗ of holomorphic
modular forms defined over the ring of p-local integers Z(p). For the remainder of
this section we let S(Z(p))⊕ denote the subring of Z(p)[[q]] generated by the images
of all of the individual gradings S(Z(p))k under the homomorphism

S(Z(p))k
eval−−→ Z(p)[[q]]; F −→ F̃ (q)

which assigns to each modular form its q-expansion. Clearly this is a polynomial
subring Z(p)[Q̃, R̃] of Z(p)[[q]]. However, it is not a direct summand as a Z(p)-
module, as the congruence 1 − Ẽp−1 ≡ 0 (mod p) shows. For each k � 1, we will
describe the kernel of the composition

evalpk : S(Z(p))⊕
eval−−→ Z(p)[[q]]

red−−→ Z/pk[[q]].

Definition 8.1. Define the numerical function h by

h(r) =
pr − 1
p− 1

if r � 1,

and h(0) = 0.

Theorem 8.2. There is sequence of elements R0 = p,R1, . . . , Rk, . . . in S(Z(p))⊕
such that

(1) each Rk is a sum of the q-expansions of modular forms of weight at most
pk − 1;

(2) for each k � 1 there is a element R′
k ∈ Z(p)[[q]] such that

Rk = ph(k)R′
k

in Z(p)[[q]];
(3) the evaluation modulo pk map, evalpk , has as its the kernel the ideal Ik �

S(Z(p))⊕ generated by the elements

Rr0
0 R

r1
1 · · ·Rrd

d

for which

r0 +
∑

1�j�d

rjh(j) � k.

In fact, in his theorem 5.5, Katz gives gives an explicit construction for the
elements R′

k and Rk, and we will make use of this in Section 9. We define the ring
of (p-local) divided congruences to be

DCp =
{
Θ ∈ Q[Q̃, R̃] : Θ(q) ∈ Z(p)[[q]]

}
.
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Theorem 8.3. The Z(p)-algebra DCp is generated by the elements Q̃, R̃ and the
R′

k (k > 0). As a Z(p)[Q̃, R̃]-module, it is spanned by the elements

R′r0
0 R′r1

1 · · ·R
′rd

d

for which
r0 +

∑
1�j�d

rjh(j) � k.

There is an action of the p-local units Z×
(p) on the ungraded ring of modular

forms Q[Q̃, R̃] ⊆ Q[[q]], namely that given by

a ·
(∑

k

F̃k

)
=
∑

k

akF̃k,

where Fk has weight k. This action ultimately comes from the operation of including
each lattice L into (1/N)L, for any natural number N , and is related to the elliptic
cohomology Adams operations of [6].

Proposition 8.4. The action of Z×
(p) on Q[Q̃, R̃] restricts to an action on the sub-

ring DCp. Moreover, the eigenspaces of this action are the submodules of homoge-
neous weight modular forms.

This is implicitly demonstrated by Katz in [23]. The second statement means
that for X ∈ Q[Q̃, R̃],

∀a ∈ Z×
(p), a ·X = akX ⇐⇒ X is the image of a weight k modular form over Q.

We may view each element Θ ∈ DCp as defining a function

Z×
(p) −→ Z(p)[[q]],

and thus we have
(a ·Θ)(q) =

∑
n�0

cn(a)qn,

where the coefficient functions cn are rational polynomial functions in a taking val-
ues in Z(p), i.e., each cn lies in the ring of semi-numerical polynomials AS

0(w; Z(p)).
One interpretation of this is in terms of the embedding DCp −→ Q[w][[q]] which
sends Θ to

∑
n�1 cn(w)qn, and has image in the subring AS

0(w; Z(p))[[q]]. Thus
there is an embedding of rings

DCp −→ AS
0(w; Z(p))[[q]].(8.1)

Notice that we can modify the definition of the ring of divided congruences to
give a global version, namely

DC =
{
Θ ∈ Q[Q̃, R̃] : ∀a ∈ Z− {0}, (a ·Θ)(q) ∈ Z[1/6a][[q]]

}
,

where we define the action of a ∈ Z−{0} similarly to the above action of Z×
(p). By

viewing each Θ as a function Z− {0} −→ Q[[q]], we see that there is an embedding
of rings

DC −→ AS
0(w; Z[1/6])[[q]].(8.2)
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Of course, for either of rings DCp and DC, we can get back from subrings of
AS

0(w; Q)[[q]] to subrings of Q[[q]] by evaluating w at 1.
We end this section by remarking that although the element θ1(w) = (1−wp−1)/p

can appear as the constant term of an element of DCp, there is no element whose
constant term is

w−1 (w − wp)/p− ((w − wp)/p)p

p
.

This is related to the fact that

(1 − Ep−1)/p− ((1− Ep−1)/p)
p

p

is not a modular form modulo p in the sense of Serre, see [40].
We suspect that a direct proof of Katz’s results (and equivalently of ours) should

be possible making use of the ring of stably numerical polynomials, however at
present this eludes us.

9. Calculation of the rings of generalized modular forms

In this section we determine the algebraic structure of the two rings of generalized
modular forms

GenS(Z[1/6])∗ and GenM(Z[1/6])∗.

Our approach to this makes use of Katz’s work which we have described in Section 8.
We are primarily interested in the (graded) ring GenM(Z[1/6])∗, but it clearly

suffices to consider the subring GenS(Z[1/6])∗ consisting of holomorphic general-
ized modular forms. Now by Corollary 4.10, it suffices to determine the subring
of Q[Q,R,Q′, R′] consisting of those homogeneous elements whose q-expansions lie
in Z[1/6N, ζN ][[q, q′]] whenever we evaluate on a pair of the form L = 〈τ, 1〉 ⊆ L′

with index N . Here Q(L ⊆ L′) = E4(L), R(L ⊆ L′) = E6(L) (a modular form in L
alone), Q′(L ⊆ L′)) = E4(L′) and R′(L ⊆ L′)) = E6(L′) (a modular form in L′

alone). Let us examine these conditions in more detail.
Now let Φ ∈ GenS(Z[1/6])n and N � 1. Let us evaluate Φ at a pair of lattices

L = 〈τ, 1〉 ⊆ L′ with [L;L′] = N and τ ∈ H; notice that L′ ⊆ 〈τ/N, 1/N〉. Our
data gives rise to an element of Z[1/6N, ζN ]((q1/N )). It is easily seen that

L′ =
〈
rτ + t

N
,
s

N

〉
for 0 � r, s, t ∈ Z satisfying rs = N and 0 � t < s. Notice that given L, τ is
unique to within an integer summand, and hence the element τ ′ = (rτ + t)/N ∈ H
is unique up to a summand of the form kr/N . Now suppose that we have the
following expression for Φ ∈ Q[Q,R,Q′, R′]n,

Φ =
∑

m,a,b

cm,a,bFm,aF
′
n−m,b,(9.1)

with cm,a,b ∈ Q, and Fm,a ∈M(Z[1/6])m, F ′
n−m,b ∈ S(Z[1/6])n−m being taken from

the standard basis of Section 1 evaluated on L and L′. Then we have

Φ(L ⊆ L′) =
∑

m,a,b

cm,a,br
n−mevalq(Fm,a)evalq′(F ′

n−m,b),
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where

q′ = e2πiτ ′ .

Thus our integrality condition on Φ amounts to the requirement that this series in
q, q′ has coefficients in Z[1/6N ] for all r|N .

For a modular form F : L −→ C, let F̃ : H −→ C denote the q-series of the corre-
sponding function on the upper half plane. Thus we have

Φ(〈τ, 1〉 ⊆ L′) =
∑

m,a,b

cm,a,br
n−mF̃m,a(q)F̃n−m,b(q′).(9.2)

Notice that τ and q vary over infinite sets, and given τ , we may vary τ ′, and hence q′,
over infinite sets. Thus we can view Φ(L,L′) as an element of Z[1/6N ][[q, q′]]. The
coefficients of monomials qiq′j are rational polynomials gi,j(r) in r which also live in
Z[1/6N ] for all r|N . Since N (hence r) ranges over an infinite set, the polynomials
gi,j(w) ∈ Q[w] are uniquely determined by Φ; in fact they are in AS

0(w; Z[1/6])
(consider the case r = N). We have established the next theorem.

Theorem 9.1. Evaluation at pairs L ⊆ L′ of index N and having the form

L = 〈τ, 1〉 ⊆ L′ =
〈
rτ + t

N
,
s

N

〉
⊆ 〈τ/N, 1/N〉 (0 � r, s, t, rs = N, 0 � t < s),

induces embeddings of (ungraded) rings

GenS(Z[1/6])∗ −→ AS
0(w; Z[1/6])[[q, q′]],

GenM(Z[1/6])∗ −→ AS(w; Z[1/6])((q, q′)),

which in weight n yield embeddings

GenS(Z[1/6])n −→ AS
0(w; Z[1/6])[[q, q′]],

GenM(Z[1/6])n −→ AS(w; Z[1/6])((q, q′)).

Setting the variable q equal to zero gives homomorphisms into the ring of divided
congruences DC of Section 8. After localizing at a prime p > 3, we obtain Z(p)-
module homomorphisms

GenS(Z(p))n −→ DCp ⊆ AS
0(w; Z(p))[[q′]],(9.3)

GenM(Z(p))n −→ DCp[Δ̃−1] ⊆ AS(w; Z(p))((q′)).(9.4)

The rings generated by the images of all these maps are equal to the ring of divided
congruences and its localization at powers of Δ̃−1, as we shall see.

Now from Section 2, we see that there is a unique ring homomorphism

MU∗MU −→ GenS(Z[1/6])∗ ⊆ GenM(Z[1/6])∗

extending the two homomorphisms

MU∗ −→ S(Z[1/6])∗
ηL−→
−→
ηR

GenS(Z[1/6])∗ ⊆ GenM(Z[1/6])∗
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and classifying the universal isomorphism H(T ) ∈ GenS(Z[1/6])∗[[T ]] between the
two Weierstrass formal group laws induced by the latter. Let

logE�� T =
∑
n�1

Ln

n+ 1
T n+1,

logE��′ T =
∑
n�1

L′
n

n+ 1
T n+1

be the logarithms of these two formal group laws over GenS(Z[1/6])∗. It is well-
known that Ln and L′

n lie in GenS(Z[1/6])n.
Now there is a unique expression

B(T ) =
E��′∑
k�1

HkT
k+1 ∈ GenS(Z[1/6])∗[[T ]],(9.5)

with Hk having weight k. The Hk can be determined inductively using the equation

logE��′ H(T ) = logE�� T,

which yields

Ln−1 =
∑
m|n

n

m
L′

m−1H
m
n/m−1.(9.6)

In particular, if p is a prime, we have

Lpr−1 =
∑

0�s�r

pr−sL′
ps−1H

ps

pr−s−1(9.7)

in GenS(Z[1/6])∗ ⊆ GenS(Z(p))∗.
This motivates us to define (for given prime p > 3)

Ar = Lpr−1,

A′
r = L′

pr−1,

Dr = Hpr−1.

Thus we have in GenS(Z[1/6])∗ ⊆ GenS(Q)∗,

D0 = 1,

D1 =
A1 −A′

1

p
,

D2 =
A2 − pA′

1D
p
1 −A′

2

p2
,

...

Dr =
Ar − pr−1A′

1D
p
r−1 − pr−2A′

2D
p2

r−2 − · · · −A′
r

pr
,

...(9.8)
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The following is closely related to Katz [23], theorem 5.5, and is easily established
by induction on r.

Proposition 9.2. For r � 1,

D′
r = ph(r)Dr ∈ Z[1/6][Q,R,Q′, R′] ⊆ GenS(Z[1/6])∗.

Notice also that if we expand Dr(〈τ, 1〉 ⊆ L′) where 〈τ, 1〉 ⊆ L′ with index N as
above, in the form of Equation 9.2, we obtain∑

0�n�pr−1

cpr−1−n,0,0w
n = θr(w).(9.9)

and we also obtain a series in Z[1/6N ][[q, q′]] which on setting q = 0 yields an
element of Z[1/6N ][[q′]]. This maps each Dr to an element R′

r which is Katz’s
choice of generator as explained in Section 8 (with q replaced by q′).

We will prove the following theorem.

Theorem 9.3. For each prime p > 3, the ring GenS(Z(p))∗ is generated as an
algebra over S(Z(p))∗ by the elements Dr, r � 1, together with Q′ and R′. Similarly,
as an algebra over M(Z(p))∗, GenM(Z(p))∗ is generated by the elements Dr, r � 1
together with Q′, R′ and Δ′−1, i.e.,

GenM(Z(p))∗ = GenS(Z(p))∗[Q′, R′,Δ−1,Δ′−1].

Proof. We will prove Theorem 9.3 for GenS(Z(p))∗ by induction upon the weight
wtΦ of an element. Clearly the weight 0 case is true, so assume that whenever
wtΦ < n, Φ is expressible as a polynomial in the generators indicated.

Now assume that wtΦ = n. Then Φ can be expressed in the form indicated in
Equation 9.1 and 9.2:

Φ =
∑

m,a,b

cm,a,bFm,aF
′
n−m,b.

On taking q-expansions in the manner of Theorem 9.1, we have

Φ̃ =
∑

m,a,b

cm,a,bw
n−mF̃m,aF̃

′
n−m,b.

By setting q = 0, we obtain a q′-expansion

Φ̃(0, q′) =
∑

m,a,b

cm,a,bF̃
′
n−m,b

lying in DCp ⊆ AS
0(w; Z(p))[[q′]]. Now by Theorem 8.3, this can be expressed as a

polynomial in the elements Q̃, R̃ and R̃′
k (k � 1) (evaluated at q′ rather than q).

Now construct a (non-homogeneous) element of GenS(Z(p))∗ as follows.
First replace each occurrence of R′

k in Φ̃(0, q′) by the element Dk ∈ GenS(Z(p))∗
defined in Equation 9.8. This will be a sum of homogeneous terms Θd of weights
d in the range 0 � d � n. Now multiply Θd by the basis element Fn−d,0 to get an
element Fn−d,0Θd which has weight n. Let

Φ0 =
∑

0�d�n

Fn−d,0Θd.
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Notice that we have
Φ̃(0, q′)− Φ̃0(0, q′) = 0,

and hence we have
Φ = Φ0 + ΔΦ′

in the ring GenS(Z(p))∗. Hence, we can appeal to the inductive assumption to
express Φ′ ∈ GenS(Z(p))n−12 in the required form. Thus, Φ is also of the required
form and we have completed the inductive step.

This completes the proof of Theorem 9.3.

As an immediate consequence we obtain our desired global result.

Theorem 9.4. As an algebra over S(Z[1/6])∗, the ring GenS(Z[1/6])∗ is generated
by the elements Hn, n � 1; similarly, as an algebra over M(Z[1/6])∗, GenM(Z[1/6])∗
is generated by the elements Hn, n � 1 together with Δ′−1, i.e.,

GenM(Z[1/6])∗ = GenS(Z[1/6])∗[Δ−1,Δ′−1].

Hence there is an isomorphism of algebras over E��∗ ∼= M(Z[1/6])∗,

E��∗E�� ∼= GenM(Z[1/6])∗.

The proof of Theorem 9.3 actually shows the following, which should be com-
pared with the result of Katz, Theorem 8.2. Recall the element D′

r = ph(r)Dr of
Proposition 9.2.

Theorem 9.5. An element Φ ∈ E��∗E��(p) has q, q′-expansion in pkZ((q, q′)) if
and only if Φ is in the ideal generated by

pr0D′
1
r1 · · ·D′

d
rd

for which

r0 +
∑

1�j�d

rjh(j) � k.

10. The cooperation algebra as a Hopf algebroid

In this section we complete our description of the cooperation algebra by de-
scribing the Hopf algebroid structure in terms of generalized modular forms. The
existence of the Hopf algebroid structure over Z[1/6] follows the topological result
for E��∗E��. An element Φ ∈ E��2nE�� is equivalent to a generalized modular
form

(F• : L• −→ C) ∈ GenM(Z[1/6])n

with certain properties. At the end of Section 4, a partial monoid structure

μ : L•×
L
L• −→ L•

was described. This induces a coproduct

F• −→ F• ◦ μ
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which is actually a ring homomorphism

ψ : GenM(Z[1/6])∗ −→ GenM(Z[1/6])∗ ⊗
M(Z[1/6])∗

GenM(Z[1/6])∗,

where the tensor product involves the right and left M(Z[1/6])∗-module structures.
This is derived ultimately from the composition of lattice inclusions L ⊆ L′ and
L′ ⊆ L′′ to give L ⊆ L′′; then

F•μ(L′ ⊆ L′′, L ⊆ L′) = F•(L ⊆ L′′).

There is also an antipode map, which arises as follows. Let L ⊆ L′ with index N .
Then there is a dual isogeny L′ ⊆ (1/N)L, also of index N , and this can be scaled
to give the inclusion N · L′ ⊆ L. We can evaluate a generalized modular form F•
of weight n on this inclusion to obtain a function of the form

(L ⊆ L′) −→ F•(N · L′ ⊆ L).

Writing
F• =

∑
r

FrF
′
n−r,

where
F•(L,L′) =

∑
r

Fr(L)F ′
n−r(L

′),

this is the same as the function

(L ⊆ L′) −→
∑

r

N−rFr(L′)F ′
n−r(L).

We then define action of the antipode χ on F• by

χF•(L,L′) = F•(N · L′ ⊆ L).

Thus we may loosely say that the antipode is induced by inverting each inclusion
L ⊆ L′ and evaluating on its inverse.

It would be interesting to give a purely algebraic proof that the coproduct ψ
actually lands in the tensor product over M(Z[1/6])∗, since although it is clear that
the rationalisation behaves correctly, the arithmetic conditions appear subtle. Of
course, we can appeal to the topological fact that E��∗E�� is a Hopf algebroid to
obtain this. A similar problem occurs with the ring of stably numerical polynomials
AS(w; Z), which is a Hopf algebra over Z, but the easiest proof of this uses the
topological gadget KU∗KU .

We can interpret this Hopf algebroid as a Hopf algebroid of functions on the
category IsoC, see Proposition 5.1. More generally, we have the following (see
Theorem 5.2 for the categorical localization result).

Theorem 10.1. Let R be a subring of Q containing 1/6. Then we may identify
GenM(R)∗ with the ring of generalized modular forms on L• which extend to func-

tions on SIso
R×

+
C
⊇ SIsoC which have q-expansions defined over R. Morover, com-

position and inversion in SIso
R×

+
C

give rise to the natural Hopf algebroid structure
on GenM(R)∗.
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It is interesting to compare this with the corresponding situation for stably
numerical polynomials; there we have

Proposition 10.2. For any subring K ⊆ Q,

AS(w,K) ⊆ {f(w) ∈ Q[w,w−1] : ∀u ∈ K×, f(u) ∈ K}.

In particular, for any prime p,

AS(w,Z(p)) = {f(w) ∈ Q[w,w−1] : ∀u ∈ Z×
(p), f(u) ∈ Z(p)}.

Of course, Theorem 10.1 gives a similar interpretation for the Hopf algebroid
E��∗E��R.

11. Operations dual to cooperations

In this section we will briefly describe how our knowledge of E��∗E�� gives infor-
mation about stable operations in elliptic cohomology. For any subring R ⊆ Q con-
taining 1/6, the Universal Coefficient spectral sequence described in Equation 1.3
applied to the case where M = E��R and X = E�� gives

E∗,∗
2 (E��) = Ext∗,∗

E��∗ (E��∗(E��), E��R∗) =⇒ E��R∗(E��).(11.1)

As E��∗ is a ring of dimension 2, we know that

Extk,∗
E��∗ = 0 if k > 2.

Hopkins and Hunton’s work as described in 1.2 together with the Milnor exact
sequence yields

E��R∗(E��) ∼= lim
α
E��R∗(Eα),

where the Eα form a cofinal collection of finite CW subspectra of E��. Thus
stable operations E��∗( ) −→ E��R∗( ) determine unique morphisms of spectra
E�� −→ E��R from their values on finite CW spectra.

Now to construct stable operations it suffices to write down natural transforma-
tions E��∗( ) −→ E��R∗( ) defined on the category of finite CW spectra; the most
accessible type of these arise as follows. We use the coaction map

ψ : E��∗E�� −→ E��∗E�� ⊗
E��∗

E��∗E��

which is left E��∗ linear. Given any left E��∗-linear mapping

Θ: E��∗E�� −→ E��R∗

we obtain an operation as the composite

Θ: E��∗( ) ∼= (S0 ∧ E��)∗( ) −→ (E�� ∧ E��)∗( )(11.2)
∼=−→ E��∗E�� ⊗

E��∗
E��∗( )

Θ−→ E��R∗ ⊗
E��∗

E��∗( )

−→ E��R∗( ).

This is the construction underlying the Adams and Hecke operations described in
Equations 6.4 and 6.5, based on [6]. We will return to this in Part II, where we will



70 Andrew Baker

view E��∗E�� as a kind of dual object to a Hecke algebra. Once again, this closely
follows the situation for KU∗KU , which can be thought of as a sort of dual to the
monoid ring Z[Z− {0}].

This approach to stable operations in elliptic cohomology becomes more man-
ageable if we reduce modulo an invariant ideal in the coefficient ring E��∗. Such
ideals were considered in [7]. The most interesting examples are of the form

Jp,1 = (p) and Jr
p,1, r � 1

Jp,2 = (p,Ep−1) and Js
p,2, s � 1,(11.3)

where p > 3 is a prime. Actually the second example consists of ideals in the
p-localization (E��∗)(p) since E(p−1) may only exist p-locally. We can form comple-
tions with respect to such ideals, and the reductions E��∗E��/I and their comple-
tions E��∗E��̂I have interpretations as rings of continuous functions on completions
of Hecke algebras and their underlying monoids. Again, this is parallel to known
constructions for reduction modulo pk and p-adic completion of KU∗KU which
gives spaces of continuous functions on the group of p-adic units Z×

(p) and its pro-
group ring Zp[Z×

(p)].
We end this section with some remarks on the Adams spectral sequence in elliptic

homology. As usual for good homology theories, there is a spectral sequence of the
form {

E∗,∗
2 (X) =⇒ π∗(LE��X);

E∗,∗
2 (X) = Ext ∗,∗

E��∗E�� (E��∗, E��∗(X)) ,
(11.4)

where the Ext functor is defined on the category of comodules over E��∗E��. Using
the above families of ideals there are various ‘chromatic’ approaches to calculating
this E2-term and these may be interesting to pursue. For example, in [14], Clarke
and Johnson have made some observations on the K-theoretic part of the 1-line
E1,∗

2 , using Serre’s theory of p-adic modular forms. This p-adic theory is discussed
in [41] and its elliptic cohomology version in [5]. For the supersingular theory of
modular forms, see [34], and also [7] for the topological version.

12. The operator of
Halphen–Fricke–Ramanujan–Swinnerton-Dyer–Serre

The operator of the title has an interesting history; it plays a central rôle in the
algebraic theory of the ring of modular forms. For our present purposes, it is an
operator ∂ on the ring of modular forms which raises weight by 2, is a derivation and
annihilates the discriminant Δ. For an early reference see [16], and for more recent
descriptions see [24, 40, 22]. The congruence conditions in Section 9 ultimately rely
upon arguments making use of ∂.

We have the following formulæ for the action of ∂:

∂(Q) = R,(12.1)

∂(R) =
3
2
Q2,(12.2)

∂(Δ) = 0,(12.3)
∂(AB) = ∂(A)B +A∂(B) if A,B ∈ E��∗.(12.4)
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Notice that multiplication by Δ (the periodicity operator in elliptic cohomology)
commutes with ∂. Thus the following conjecture may seem reasonable.

Conjecture 12.1. The derivation ∂ extends to a stable operation on elliptic co-
homology E��∗( ).

The fact that ∂ plays a major rôle in the algebraic theory of the rings e��∗ and
E��∗ also make this conjecture interesting. However, Conjecture 12.1 is actually
false.

Theorem 12.2. Let p > 3 be a prime. Then there is no stable operation E��∗( ) −→
E��∗(p)( ) raising degree by 4 and extending ∂ on the coefficient ring E��−∗. Hence
there is no stable operation E��∗( ) −→ E��∗( ) raising degree by 4 and extending ∂
on E��−∗.

Proof. Suppose that such a stable operation ∂ exists; then there is a corresponding
morphism of spectra ∂ : E�� −→ Σ−4E��(p) inducing ∂ as a natural transformation
of representable functors E��∗( ) −→ E��∗(p)( ). We can extend ∂ to a morphism of
E�� module spectra

∂† : E�� ∧ E�� 1∧∂−−→ E�� ∧ Σ−4E��(p)
μE��−−−→ E��(p)

where μE�� : E�� ∧ E�� −→ E�� is the product map and its localization. Hence, we
obtain a homomorphism of E��∗ modules

∂†∗ : E��∗(E��) −→ (E��∗)(p).

Notice that we also have a commutative diagram

S0 ∧ E�� �−−−−→ E��

η∧1

⏐⏐� ∂

⏐⏐�
E�� ∧E�� ∂†

−−−−→ E��(p)

where η : S0 −→ E�� is the unit for the ring spectrum E��. But this means that the
composite

E��∗
ηR−→ E��∗(E��)

∂†
∗−→ (E��∗)(p)

agrees with ∂.
Now in the ring E��∗(E��)(p) we have an element of the form(

Ep−1 − E′
p−1

p

)
∈ E��2(p−1)(E��)(p)

⊆ E��2(p−1)(E��)⊗Q,

where E′
p−1 = ηR(Ep−1). This follows from the well known fact that working

modulo p in (E��∗)(p), Ep−1 agrees with the image of Hazewinkel generator v1 ∈
(MU2(p−1))(p) under the elliptic genus (MU∗)(p) −→ (E��∗)(p) (see [29] for example).
But now applying the homomorphism ∂†∗ and we see that

∂†∗

(
Ep−1 − E′

p−1

p

)
=
∂(Ep−1)

p
∈ (E��∗)(p) ⊆ E��∗ ⊗Q,

since
∂†∗(Ep−1) = Ep−1∂

†
∗(1) = 0.
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However, from [41] we have

∂(Ep−1) ≡
1
12
Ep+1 mod p

�≡ 0 mod p.

Hence, this is an element of E��∗ ⊗Q which is not in (E��∗)(p).

However, there is still the possibility of unstable extensions and we make the mod-
ified conjecture:

Conjecture 12.3. There are extensions of ∂ to unstable operations in elliptic co-
homology E��∗( ).

What is really meant here is that for a given n ∈ Z, there might be a map

Ω∞−nE�� −→ Ω∞−n+4E��

inducing the operator ∂ in homotopy; however, such a map need not deloop.
An alternative approach is to try to construct a suitable stable operation locally

at each prime. An obvious candidate would be an extension of the derivation ∂p

which raises weight by p+ 1 and is given by

∂p(F ) = Ep−1∂(F )− wt(F )
p− 1

∂(Ep−1)F,

which has the property that ∂p(Ep−1) = 0 and avoids the difficulties encountered
with ∂. In fact, on q-expansions taken modulo p, ∂p agrees with the action of qd/dq;
it is thus the same as the operation θ studied by Serre and Swinnerton-Dyer on
modular forms modulo p. However, it is still not clear if this extends to an oper-
ation taking values in elliptic cohomology modulo p; it also fails to commute with
multiplication by Δ.

Finally, we note that in [18, 19], Gross and Hopkins have explored deformation
theory for Lubin–Tate formal group laws; in particular they consider certain Gauss–
Manin connections. Now it is known from [22, 24] that ∂ is also a Gauss–Manin
connection, so there may well be some relationship between their work and the
above discussion. We hope to return to these matters in future work.
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