Q_r-SEMIGROUPS

Stojan Bogdanović

(Communicated December 12, 1979.)

T. E. Nordahl, in [5], considered the commutative Q-semigroups. C. S. H. Nagore, [4] extended Nordahl’s results on quasi-commutative semigroups. A. Cherubini-Spoletini and A. Varisco consider Putcha’s Q-semigroups. The definition of weakly commutative semigroup has given by M. Petrich in [6]. Here, we give the definition of Q_r-semigroup i.e. a semigroup in which every proper right ideal is a power joined semigroup and we give as well some characterizations of weakly commutative Q_r-semigroups, (Theorem 3.1.).

In section 1, we characterize semilattices of groups. In section 2, we consider archimedean weakly commutative semigroups. A weakly commutative semigroup which does not have prime ideals is characterized by Theorem 2.1. This theorem is a generalization of G. Thierrin’s result, [11]. By Theorem 2.3, are characterized weakly commutative semigroups with an idempotent which are archimedean. This theorem is an extension of T. Tamura and N. Kimura’s result in [10]. G. Thierrin and G. Thomas in [12], too, give a characterization for these semigroups. In section 3, we give the definition of Q_r-semigroup. This notion is another generalization of the notion of power joined semigroup. The description of weakly commutative Q_r-semigroups is given by Theorem 3.1.

For undefined notions we refer to [2] and [7].

1. Semilattices of groups

Here, we will characterize the semilattices of groups using the notion of weakly commutative semigroup.

Definition 1.1. [6]. A semigroup S is weakly commutative if for every $a, b \in S$ there exist $x, y \in S$ and $n \in \mathbb{N}$ such that

$$ (ab)^n = xa = by. $$
Denote with \(\pi \) the class of all weakly commutative semigroups.

Theorem 1.1. Let \(S \) be a semigroup. Then \(S \) is a semilattice of groups if and only if \(S \in \pi \) and \(S \) is a (left, right, intra-) regular.

Proof. Let \(S \) be a regular semigroup. Then for every \(a \in S \) there exists \(x \in S \) such that \(a = axa \). Hence, \(a = (ax)^n a \), for every \(n \in N \). As \(S \in \pi \), then for \(a \) and \(x \) there exist \(m \in N \) and \(z \in S \) such that \((ax)^m = za \), so \(a = (ax)^n a = za^2 \in Sa^2 \). Hence, \(S \) is a left regular semigroup. Similarly, we have that \(S \) is a right regular semigroup. By Theorem 12. [8] we have that \(S \) is a semilattice of groups.

The converse follows by Theorem 12. [8].

Corollary 1.1 Let \(S \) be a semigroup. Then \(S \) is a (left, right) simple and \(S \in \pi \) if and only if \(S \) is a group.

2. Archimedean Semigroups

Definition 2.1. [10]. A semigroup \(S \) is left (right) archimedean is for every \(a,b \in S \) there exist \(x,y \in S \) and \(n \in N \) such that \(a^n = xb \), \(b^n = ya \). \((a^n = bx, b^n = ay)\). \(S \) is an archimedean semigroup if for every \(a,b \in S \) there exist \(x,u,y,v \in S \) and \(n \in N \) such that \(a^n = xby \), \(b^n = uav \).

Lemma 2.1. Let \(S \in \pi \). Then, the following conditions are equivalent:

(i) \(S \) is left archimedean,

(ii) \(S \) is right archimedean,

(iii) \(S \) is archimedean.

Proof. (i) \(\Rightarrow \) (ii). Let for every \(a, b \in S \) exist \(x, y \in S \) and \(n \in N \) such that

\[
a^n = xb, \quad b^n = ya.
\]

As \(S \in \pi \), then for \(x \) and \(b \) there exist \(m \in N \) and \(z, u \in S \) such that

\[
(xb)^m = bz = ux.
\]

Similarly

\[
(ya)^k = av = wy
\]

for some \(k \in N \) and \(v, w \in S \). From (2.1) and (2.2) we have that

\[
a^{nm} = (xb)^m = bz.
\]

From (2.1) and (2.3) we have

\[
b^k = (ya)^k = av.
\]
From (2.4) and (2.5) it follows
\[a^{nmk} = (bz)^k, \quad b^{nmk} = (av)^m. \]

Hence, \(S \) is a right archimedean semigroup. Similarly to the previous, it can be proved that (iii) \(\Rightarrow \) (i), (ii) \(\Rightarrow \) (iii) follows immediately.

Corollary 2.1. A weakly commutative archimedean semigroup has one idempotent at most.

Lemma 2.2. Let \(S \) be a weakly commutative archimedean semigroup. Then every semiprime ideal from \(S \) is two-sided.

Proof. Let \(S \in \pi \) and \(R \) be a right ideal of \(S \) and \(R \) is semiprime. For arbitrary \(a \in R, b \in S \) there exist \(x, y \in S \) and \(n \in N \) such that \((ba)^n = ax \in R\), hence \(ba \in R \). Similarly, for a left ideal of \(S \).

Theorem 2.1. Let \(S \) be a semigroup. Then \(S \) is weakly commutative and \(S \) does not have proper prime ideals if and only if \(S \) is a left and right archimedean semigroup.

Proof. Let \(S \) be a weakly commutative semigroup that does not have proper prime ideals. Let \(\langle a \rangle \) be a cyclic semigroup generated by \(a \in S \). Denote with \(S_a \) the set of all \(x \in S \) such that they divide from the left side some element from \(\langle a \rangle \). The set \(S_a \) is non-empty since \(\langle a \rangle \subset S_a \). The set \(S_a \) a subsemigroup of \(S \). For \(x, y \in S_a, u, w \in S^1 \) and \(h \in N \) such that \(wz = a^h \), \(wy = a^h \) and exist \(v \in S^1 \) and \(k \in N \) such that \(yv = a^k \), (Lemma 2.1.), so \(u(xy)v = a^{h+k} \), (Lemma 2.1.). Hence, \(xy \in S_a \). Take \(S \setminus S_a \neq \emptyset \) and \(z \in S \setminus S_a, a \in S \). The element \(az \) is not in \(S_a \), (if \(az \in S_a \), then there exist \(u \in S \) such that \(uaz \in \langle a \rangle \), so \(z \in S_a \), which is impossible). Hence, \(az \in S \setminus S_a \), so \(S \setminus S_a \) is a left ideal of \(S \). Since \(S_a \) is a subsemigroup of \(S \), so \(S \setminus S_a \) is a prime ideal of \(S \), hence it is two-sided, (Lemma 2.2.). Let \(a, b \in S \). As \(S \) does not have proper prime ideals it follows that \(S \setminus S_a = \emptyset \), i.e. \(S = S_a \) and there exist \(u \in S^1 \) and \(h \in N \) such that \(a^h = ub \). Analogously \(b^k = va \), \(k \in N, v \in S^1 \).

Hence, \(S \) is a left archimedean semigroup. If can be proved, in a similar way, that \(S \) is a right archimedean semigroup.

Conversely, let \(S \) be a left and right archimedean semigroup. Then \(S \) is weakly commutative. Let \(S \) has a proper prime ideal \(I \) and let \(a \in I, b \in S \setminus I \). Then there exist \(x \in S \) and \(n \in N \) such that \(b^n = ax \in I \), so \(b \in I \), which is impossible.

Lemma 2.3. Let \(S \in \pi \) be a archimedean semigroup with the idempotent \(e \), then \(eS \) is a group and \(eS = Se = SeS \) hold.

Proof. Let \(a \in eS \). Then \(a = ex \) for some \(x \in S \). From this we have \(ea = e^2x = ex = a \), so \(e \) is a left identity for \(eS \). \(S \) is an archimedean semigroup, then it exists \(y \in S \) such that \(e = ya \), (Lemma 2.1.) i.e. \(e = (ey)a \). Hence, \(a \) has in \(eS \) an inverse element relatively to \(e \). It follows that \(eS \) is a group with identity \(e \). For arbitrary \(a \in eS, a = ex \) holds, \(x \in S \), so \(a = eex \in SeS \). Similarly for
arbitrary $b \in S e S$ is $b = u e v$, ($u, v \in S$), i.e. $b = u(ev)e = (uev)e \in S e$, because e is an identity in $e S$. Hence,

\[(2.6)\quad e S \subset S e S \subset S e.\]

We prove that

\[(2.7)\quad S e \subset S e S \subset e S\]

analogously. From (2.6) and (2.7) we have that $e S = S e = S e S$.

By using the Theorem of Clifford (Theorem 4; 19, [2]) it can be easily verified.

Lemma 2.4. If S is an ideal extension of a weakly commutative archimedean semigroup with identity by a nil-semigroup, then S is weakly commutative semigroup.

The following theorem is an extension of the result of T. Tamura and N. Kimura [10].

Theorem 2.3. Let S be a semigroup. Then S is a weakly commutative archimedean with an idempotent if and only if S is a group or S is an ideal extension of a group by a nil-semigroup.

Proof. Let S be a weakly commutative archimedean semigroup with the idempotent e. If S is simple, then S is a group (Corollary 1.1.). If S is not simple, take the ideal $I = S e S$ and the factor-semigroup of Rees S/I. From Lemma 2.3, I is a group. Since S is an archimedean semigroup, so for every $a \in S$, $b \in I$ there exist a natural number n and $x \in S$ such that $a^n = b x$ holds, (Lemma 2.1.). From this we have that $a^n \in I$. Hence, S/I is a nil-semigroup. If e is a zero in S then $S/I \cong S$, so S is a nil-semigroup itself, because I contains only e.

Conversely, let S be an extension of the group I by a nil-semigroup Q. From Lemma 2.4, S is a weakly commutative semigroup. Obviously, S contains only one idempotent (an identity from I). Let us prove that S is an archimedean semigroup. The semigroup S/I is a nil-semigroup, and, as $S/I \cong Q$, it follows that for arbitrary $a, b \in S$ there exist h and k such that $a^h, b^k \in I$. But, I is a group, so there exist $x, y \in I$ such that $a^h = b^k x, b^k = a^h y$. Hence, S is a right archimedean semigroup, so from Lemma 2.1. it is archimedean. The assertion follows immediacy if S is a group.

Lemma 2.5. Let S be an archimedean weakly commutative semigroup without idempotents. Then $a \neq ab$, for every $a, b \in S$.

Proof. Let S be an archimedean weakly commutative semigroup without idempotents. Assume opposite, i.e. $a = ab$. Then for a and b there exist $x \in S$ and $n \in N$ such that $b^n = ax$ holds, (Lemma 2.1.), and so $a = ab = ab^2 = \cdots = ab^n$, so $a = a^2 x$. Hence, the element a is a right regular, so it is regular, (Theorem 1.1.). It follows that S has an idempotent, which is impossible.
3. Q_r-Semigroups

Definition 3.1. [6]. A semigroup S is a power joined if for every $a, b \in S$ there exist $m, n \in N$ such that $a^m = b^n$.

Obviously, a power joined semigroup is weakly commutative.

Immediately follows

Lemma 3.1. Let S be a semigroup. Then the following conditions are equivalent:

(i) S is power joined,

(ii) Every ideal from S is a power joined semigroup,

(iii) Every right (left) ideal of S is a power joined semigroup.

T. E. NORDAHL, [5] considered commutative Q-semigroups. We give here the definition of Q_r-semigroup, which is another generalization of a power joined semigroup.

Definition 3.2. A semigroup S is Q_r-semigroup (Q_r-semigroup) if every proper right (left) ideal of S is a power joined semigroup.

Q_r-semigroup is Q-semigroup. The converse is not true. For example, the semigroup S given by

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>d</td>
</tr>
</tbody>
</table>

is a Q-semigroup. But, the right ideal $\{a, d\}$ is not a power joined semigroup, so S is not a Q_r-semigroup.

The following theorem describes weakly commutative Q_r-semigroups.

Theorem 3.1. Let S be a semigroup. Then S is a weakly commutative Q_r-semigroup if and only if one of the tree possibilities hold:

1° S is a power joined semigroup,

2° S is a group,

3° $S = M \cup G$ and the identity e of the group G is a left identity of S and M is the unique maximal prime ideal of S and M is a power joined semigroup.

Proof. Let S be an archimedean weakly commutative Q_r-semigroup. Then S has one idempotent at most, (Corollary 2.1). If S does not have an idempotent, then from Lemma 2.5. for every $a \in S$ is $a \not\in aS$. From this, we have that aS is a proper right ideal of S. Hence, aS is a power joined semigroup. For $b \in S$ there exists $n \in N$ such that $b^n \in aS$, (Lemma 2.1) and Obviously there exists
$m \in N$ such that $a^m \in aS$. aS is a power joined semigroup, then there exist r, $s \in N$ such that $a^{mr} = b^{ns}$. Hence, in this case S is a power joined semigroup. If S has an idempotent e, then from Lemma 2.3. eS is a group-ideal of S. If $eS \neq S$, then eS is a proper ideal of S, eS is power joined, so eS is a periodic group. So, S is a nil-extension of a periodic group, (Theorem 2.3.). From this eS is a power joined semigroup with one idempotent. If $es = S$, then S is a group. If S is not an archimedean semigroup then from Theorem 2.1. S has a proper prime ideal. Denote with M the union of all proper prime ideals of S. Then M is a maximal prime ideal of S and M is a power joined semigroup. If $M = S$, then S is a power joined semigroup. If $M \not= S$, then for $x \in S \setminus M$ is $x^2 \in S \setminus M$ and as M is a maximal ideal of S, $M \cup J(x) = M \cup J(x^2) = S$, so $x = x^2$ or $x = x^2t$ or $x = t_1x^2$ or $x = t_2x^2t_3$, for some $t_1, t_2, t_3 \in S \setminus M$. From the Theorem 1.1 we have that in each of these cases x is a regular element, i.e. $S \setminus M$ is a regular semigroup, so it contains idempotents. It can be easily verified that $S \setminus M$ has only one idempotent. Hence, $S \setminus M$ is a group. So if $M \not\subseteq S$, then

(*)

$$S = M \cup G$$

where M is a unique maximal prime ideal which is a power joined semigroup and G is a group. We distinguish now two cases:

(i) $eS = S$. Then for each $x \in S$ is $x = es$, for some $z \in S$ and $ex = e(es) = x$. Hence, e is a left identity of S, and in this case S is of the type 3^0.

(ii) $eS \not\subseteq S$. Then eS is a power joined semigroup. From (*) we have that

$$eS = eM \cup eG = eM \cup G.$$

It follows that $G \subseteq eS$, so $S = M \cup eS$ which means that in this case S is a power joined semigroup.

Conversely, let 30 holds. If $a, b \in M$ then there exist $x, y \in M$ and $n \in N$ such that $(ab)^n = xa = by$, because M is power joined. If $a, b \in G$ then $(ab)^n = xa = by$ for some $x, y \in G$ and $n \in N$. If $a \in M, b \in G$, then $bab \in M$, so

$$(ab)^{2k} = [a(bab)]^k = xa = baby, \text{ for some } k \in N \text{ and some } x, y \in M.$$

Hence, S is a weakly commutative semigroup. Take an arbitrary proper right ideal R from S. If $R \subset M$, then R is a power joined semigroup, so S is a Q_r-semigroup. If $R \cap G \neq \emptyset$, then $G \subset R$ and we have that $e \in R$. Hence, $R = S$, which is impossible. In the other cases the assertion immediately follows.

Note that Lemma 3.1, holds if we change the term “ideal” with the term “quasi-ideal” (“bi-ideal”), (for definitions of a quasi-ideal and bi-ideal see [2] or [9]). Hence, the notion of a power joined semigroup could be generalised in the following way:

Definition 3.3. A semigroup S is a Q_r-semigroup (Q_r-semigroup) if every proper quasi-ideal (bi-ideal) of S is a power joined semigroup.
Denote with \(P, Q_b, Q_r, Q_l, Q_q, Q \) the classes of all power joined, \(Q_{br}, Q_{r-}, Q_{l-}, Q_{q-}, Q \)-semigroups. The we have

Lemma 3.2. \(P \subset Q_b \subset Q_q \subset Q_r \cup Q_l \subset Q \).

From the Theorem 3.1, its dual theorem and lemma 3.2, immediately follows

Theorem 3.2. Let \(S \) be a weakly commutative archimedean semigroup with no idempotents, then the following conditions are equivalent:

(i) \(S \) is power joined,
(ii) \(S \) is \(Q_b \)-semigroup,
(iii) \(S \) is \(Q_r \)-semigroup,
(iv) \(S \) is \(Q_l \)-semigroup,
(v) \(S \) is \(Q_q \)-semigroup.

References