THE LEVITZKI RADICAL FOR Ω-GROUPS

A. Buys and G. K. Gerber

Abstract. The concept locally nilpotent ideal of an Ω-group is defined. The class of locally nilpotent Ω-groups is a Kurosh-Amitsur radical class. Furthermore, the Levitzki radical of an Ω-group is the intersection of all Ω-prime ideals P such that G/P is Levitzki semi-simple.

1. Notations and definitions. The notation and definitions of Higgins [4] and Buys and Gerber [2] will be used. For the sake of convenience we define the basic concepts. By $a = (a_1, a_2, \ldots, a_n) \in G$ we mean that $a_i \in G$, $i = 1, 2, \ldots, n$. Higgins [4] called words which involve only the operations $\omega \in \Omega$, monomials. We shall call such words Ω-words. If $f(x) = f(x_1, x_2, \ldots, x_n)$ is an Ω-word in the indeterminates x_1, x_2, \ldots, x_n then $f(a) = f(a, a, \ldots, a)$. Let Ω be a fixed set of operations.

1.1 Definition. $\omega \in \Omega$ will be called a trivial operation in the variety K of Ω-groups if $x\omega = 0$ is satisfied in K. That is for all $G \in K$ and $a \in G$, $a\omega = 0$ holds. $\omega \in \Omega$ is a non-trivial operation if it is not trivial. An Ω-word which involves only non-trivial operations will be called a non-trivial Ω-word.

In Buys and Gerber [2], we defined the concept of an Ω-prime ideal for an Ω-group. That definition should actually be:

1.2 Definition. An ideal P of the Ω-group G is called an Ω-prime ideal if for all non-trivial $\omega \in \Omega$ and ideals A_1, A_2, \ldots, A_n of G such that $A_1 \ldots A_n\omega^G \subseteq P$ it follows that $A_i \subseteq P$ for some $i = 1, 2, \ldots, n$. All the results of Buys and Gerber [2] carries over with this slight alteration.

2. Locally nilpotent Ω-groups. Bhandari and Sexana [1] called an ideal I of a near-ring N locally nilpotent if any finite subset of I is nilpotent. They have shown that their definition coincides with the well-known definition of Levitzki defined for associative rings.

AMS Subject Classification (1980): Primary 20N99, Secondary 16A12, 16A22, 08A99.
2.1 Definition. A subset S of the Ω-group G is nilpotent if there exists a non-trivial Ω-word $f(x)$ such that $f(S) = \{f(s) | s \in S\}$ is zero.

2.2 Definition. Let A be a subset of the Ω-group G. A is called locally nilpotent if any finite subset of A is nilpotent.

2.3 Corollary. If $A \subseteq B \subseteq G$ and B is locally nilpotent then A is locally nilpotent. If $A \subseteq G$ is nilpotent then A is locally nilpotent.

2.4 Lemma. Let I be an ideal of the Ω-group G. G is locally nilpotent if and only if I and G/I are locally nilpotent.

Proof. From 2.3 it follows that I is locally nilpotent. Let $\{g_1 + I, g_2 + I, \ldots, g_n + I\}$ be any finite subset of G/I. Since G is locally nilpotent there exists a non-trivial Ω-word $f(x)$ such that $f(a) = 0$ for all $a \in \{g_1, g_2, \ldots, g_n\}$. It follows that

$$f(a + I) = f(a) + I \quad \text{(Higgins [4, Theorem 3A])}$$

$$= I \quad \text{for all } a + I \in \{g_1 + I, g_2 + I, \ldots, g_n + I\}.$$ Thus G/I is locally nilpotent.

For the converse let $\{g_1, g_2, \ldots, g_n\}$ be any finite subset of G. Since G/I is locally nilpotent, there exists a non-trivial Ω-word $f(x)$ such that $f(a) = 0$ for all $a + I \in \{g_1 + I, g_2 + I, \ldots, g_n + I\}$. It follows that $f(a) \in I$ for all $a \in \{g_1, g_2, \ldots, g_n\}$. Let $A = \{f(a) | a \in \{g_1, g_2, \ldots, g_n\}\}$. A is finite. Since $A \subseteq I$ there exists a non-trivial Ω-word $f_1(y)$ such that $f_1(b) = 0$ for all $b \in A$. In particular, $f_1(f(a)) = 0$ for all $a \in \{g_1, g_2, \ldots, g_n\}$. Since $f_1(f(x))$ is a non-trivial Ω-word, the lemma follows.

2.5 Lemma. Let I and J be locally nilpotent ideals of the Ω-group G. $I + J$ is a locally nilpotent ideal of G.

Proof. The lemma follows from Higgins [4, Theorem 3C] and 2.4.

2.6 Corollary. A finite sum of locally nilpotent ideals of G is a locally nilpotent ideal of G.

2.7 Lemma. If $I_\alpha, \alpha \in A$, are locally nilpotent ideals of G then $\sum I_\alpha$ is a locally nilpotent ideal of G.

Proof. Since any finite subset of $\sum I_\alpha$ is contained in a finite sum of locally nilpotent ideals, the result follows from 2.6.

2.8 Theorem. The class $\mathcal{G} = \{G | G$ is a locally nilpotent Ω-group$\}$ is an absolutely hereditary radical class.

Proof. Properties R3, R5 and R7 of Rjabuhin [5] respectively follow from 2.4, 2.7 and 2.4. From Rjabuhin [5], Theorem 1.2 it follows that G is a radical class.
From 2.3 it follows that \(G \) is an absolutely hereditary class (Rjabuhi [5, Definition p. 151]).

2.9 THEOREM. Let \(L(G) \) be the Levitzki radical of \(G \) that is \(L(G) \) is the sum of all locally nilpotent ideals of \(G \). \(L(G) = \cap \{ P_\alpha | P_\alpha \) is an \(\Omega \)-prime ideal of \(G \) such that \(L(G/P_\alpha) = 0 \).

Proof. Every locally nilpotent ideal in \(G \) and thus also \(L(G) \) is contained in \(P_\alpha \) for each \(\Omega \)-prime ideal \(P_\alpha \) with \(L(G/P_\alpha) = 0 \). It follows that \(L(G) \subseteq \cap \{ P_\alpha | P_\alpha \) is an \(\Omega \)-prime ideal of \(G \) such that \(L(G/P_\alpha) = 0 \) = \(P \) (say).

Assume there exists an \(a \in P \) such that \(a \notin L(G) \). Since \(a \notin L(G) \) every ideal \(I \) of \(G \) such that \(a \in I \) is not locally nilpotent. This holds for \(a \in G \). Thus there exists an \(A = \{ a_1, a_2, \ldots, a_n \} \subseteq a \) such that \(A \) is not nilpotent. Furthermore, \(\{ f(a) | a \in A \} \) is not nilpotent for any nontrivial \(\Omega \)-word \(f(x) \). Otherwise there would exist a non-trivial \(\Omega \)-word \(f_1(y) \) such that \(f_1(\{ f(a) | a \in A \}) = 0 \) and thus \(f_1(f(a)) = 0 \) for all \(a \in A \) contradicting the fact that \(A \) is not nilpotent. Let \(J = \{ I \} \) be an ideal of \(G \) such that \(L(G) \subseteq I \) and \(\{ f(a) | a \in A \} \subseteq I \) for any non-trivial \(\Omega \)-word \(f(x) \). \(J \neq \emptyset \) since \(L(G) \in J \). Applying Zorn’s lemma \(J \) has a maximal element \(Q \) (say). Thus \(L(G) \subseteq Q \) and \(\{ f(a) | a \in A \} \subseteq Q \) for any non-trivial \(\Omega \)-word \(f(x) \). We show that \(Q \) is an \(\Omega \)-prime ideal with \(L(G/Q) = 0 \). We need only show that \(G/Q \) is an \(\Omega \)-prime \(\Omega \)-group (Buys and Gerber). Let \(\omega \in \Omega \) be non-trivial and \(I_1/Q, I_2/Q, \ldots, I_n/Q \) ideals of \(G/Q \) such that \((I_1/Q I_2/Q \ldots I_n/Q) \omega = 0 \). From Higgins it follows that \(I_1 I_2 \ldots I_n \omega \subseteq Q \). If \(I_j/Q \neq 0 \) for each \(j = 1, 2, \ldots, n \) then \(I_j \supseteq Q \). Since \(Q \) is maximal there exist non-trivial \(\Omega \)-words \(f_1(x_1), f_2(x_2), \ldots, f_n(x_n) \) such that \(\{ f(a) | a \in A \} \subseteq I_j \) \(j = 1, 2, \ldots, n \). Therefore

\[
\{ f_1(a) | a \in A \} \ldots \{ f_n(a) | a \in A \} \omega \subseteq I_1 I_2 \ldots I_n \omega \subseteq Q.
\]

In particular we have \((f_1(a) f_2(a) \ldots f_n(a)) \omega \in Q \) for each \(a \in A \). Thus there exists a non-trivial \(\Omega \)-word \(g(x) \) defined by \(g(x) = (f_1(x) f_2(x) \ldots f_n(x)) \) such that \(\{ g(a) | a \in A \} \subseteq Q \). This is a contradiction. It follows that \(I_j/Q = 0 \) for some \(j \) and thus that \(G/Q \) is an \(\Omega \)-prime \(\Omega \)-group.

Suppose that \(W/Q \neq 0 \) is a locally nilpotent ideal of \(G/Q \). Then \(W \supseteq Q \) and there exists a non-trivial \(\Omega \)-word \(f(x) \) such that \(\{ f(a) | a \in A \} \subseteq W \) since \(Q \) is maximal. The family of cosets \(\{ f(a) + Q | a \in A \} \) is a finite set in \(W/Q \). Since \(W/Q \) is locally nilpotent, \(\{ f(a) + Q | a \in A \} \) is nilpotent. Thus there exists a non-trivial \(\Omega \)-word \(f_1(x) \) such that \(f_1(b) = 0 \) for every \(b \in \{ f(a) + Q | a \in A \} \). It follows that \(\{ f_1(f(a)) | b \subseteq A \} \subseteq Q \) which is a contradiction. Therefore \(L(G/Q) = 0 \). We have proved that \(Q \) is one of the ideals \(P_\alpha \) such that \(L(G/P_\alpha) = 0 \) and, therefore \(P \subseteq Q \). But \(A \subseteq P \) and \(\{ f(a) | a \in A \} \subseteq P \) for every \(\Omega \)-word and in particular for non-trivial \(\Omega \)-words. Since \(P \subseteq Q \) it also holds for \(Q \) and this is a contradiction. Therefore \(P \subseteq L(G) \).

As a result of the definition of Rjabuhi [5, p. 156], we have

2.10 THEOREM. Every Levitzki semi-simple \(\Omega \)-group is isomorphic to a subdirect sum of \(\Omega \) prime Levitzki semi-simple \(\Omega \)-groups.
REFERENCES

Department of Mathematics
University of Port Elizabeth
6000 Port Elizabeth
South Africa

(Received 12 11 1982)