ON APPROXIMATION BY MODIFIED BERNSTEIN POLYNOMIALS

Suresh, P. Singh, Govind Prasad

Abstract. We study some theorems on the approximation of the r-th derivative of a given function f by corresponding r-th derivative of the modified Bernstein polynomials.

1. Introduction. For a function f defined on the closed interval [0,1] of the real x-axis, the expression

(1.1)
$$(B_n f)(x) = \sum_{k=0}^n p_{n,k}(x) f(k/n),$$

where $p_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k}$, is called the Bernstein polynomial of order n of the function f.

Recently Derriennic [1] studied a new kind of positive linear operators $\{L_n\}$ for a Lebesque integrable function $f \in L^1[0,1]$, defined as

(1.2)
$$(L_n f)(x) = (n+1) \sum_{k=0}^{n} p_{n,k}(x) \int_0^1 p_{n,k}(t) f(t) dt,$$

which is a modification of the polynomials (1.1).

Following [1], for $r \leq n$, we get

$$(1.3) \qquad (L_n^{(r)}f)(x) = \frac{(n+1)!n!}{(n-r)!(n+r)!} \sum_{s}^{s} p_{n-r,k}(x) \int_0^1 p_{n+r,k+r}(t) \frac{d^r f(t)}{dt^r} dt$$

We will prove some theorems on the approximation of the r-th derivative of a function f by the corresponding operators $(L_n^{(r)})$.

2. In this section we prove the following lemma which will be useful in proving the theorems.

 $AMS\ Subject\ Classification\ (1980):\ Primary\ 41\ A\ 36.$

^{*)} \sum stands for $\sum_{k=0}^{n-r}$.

Lemma 2.1. For $r \leq n$, let

$$(2.1) T_{n-r,m-r}(x) = \frac{m!}{(m-r)!} \sum_{n-r,k} p_{n-r,k}(x) \int_{0}^{1} p_{n+r,k+r}(t)(t-x)^{m-r} dt.$$

Then one has the following relation

$$(2.2) (n+m+2)\left(\frac{m-r+1}{m+1}\right)T_{n-r,m-r+1}(x)$$

$$= (m+1)(1-2x)T_{n-r,m-r}(x) + 2mx(1-x)T_{n-r,m-r-1}(x) + x(1-x)T'_{n-r,m-r}(x),$$

with $T_{n-r,0} = \frac{r!}{(n+r+1)}$. In particular we get

(2.3)
$$\frac{1}{(r+1)!}T_{n-r,1}(x) = \frac{(r+1)(1-2x)}{(n+r+2)(n+r+1)}$$

$$(2.4) \quad \frac{2}{(r+2)!} T_{u-r,2}(x) =$$

$$= \frac{(n+1)}{(n+r+3)(n+r+2)(n+r+1)} \Big\{ \frac{(r+1)(r+2)(1-2x)^2}{n+1} + 2x(1-x) \Big\}.$$

Proof. Differentiating (2.1) w. r. t. x we get

$$x(1-x)T'_{n-r,m-r}(x) = \frac{m!}{(m-r)!} \sum_{k=0}^{n-r} p'_{n-r,k}(x)x(1-x) \int_0^1 p_{n+r,k+r}(t) \cdots \cdots (t-x)^{m-r} dt - mx(1-x)T_{n-r,m-r-1}(x).$$

Using the relation $x(1-x)p'_{n-r,k}(x) = \{k-(n-r)x\}p_{n-r,k}(x)$, we get after simplification

$$\begin{split} x(1-x)T'_{n-r,m-r}(x) &= \frac{m!}{(m-r)!} \sum_{n-r,k} p_{n-r,k}(x) \int_{0}^{1} \{k - (n-r)t + (n-r)(t-x)\} \cdots \\ \cdots p_{n+r,k+r}(t)(t-x)^{m-r}dt - mx(1-x)T_{n-r,m-r-1}(x), \\ &= \frac{m!}{(m-r)!} \sum_{n-r,k} p_{n-r,k}(x) \int_{0}^{1} t(1-t)p'_{n+r,k+r}(t)(t-x)^{m-r}dt \cdots \\ \cdots - r(1-2x)T_{n-r,m-r}(x) + \left(\frac{m-r+1}{m+1}\right)(n+r)T_{n-r,m-r+1}(x) - \\ &- mx(1-x)T_{n-r,m-r-1}(x). \end{split}$$

Again using $t(1-t) = -(t-x)^2 + (1-2x)(t-x) + x(1-x)$ and integrating the r. h. s. by parts, we get

$$\begin{split} &x(1-x)T'_{n-r,m-r}(x)\\ &=(m-r+2)\Big(\frac{m-r+1}{m+1}\Big)T_{n-r,m-r+1}(x)-(m-r+1)(1-2x)T_{n-r,m-r}(x)-\\ &-mx(1-x)T_{n-r,m-r-1}(x)-r(1-2x)T_{n-r,m-r}(x)+\\ &+\Big(\frac{m-r+1}{m+1}\Big)(n+r)T_{n-r,m-r+1}(x)-mx(1-x)T_{n-r,m-r-1}(x) \end{split}$$

which on further simplification leads to the required result (2.2).

Proposition 2.2. For $r \leq n$, we have

(2.5)

$$L_n^{(r)}(t-x)(x) = \frac{n!(n+1)!}{(n-r)!(n-r+2)!}(1-2x)$$

(2.6)

$$L_n^{(r)}(t-x)^2(x) = \frac{(n+1)!^2}{(n-r)!(n-r+3)!} \left\{ \frac{(r+1)(r+2)(1-2x)^2}{n+1} + 2x(1-x) \right\}$$

Proof. The proof follows easily from (1.3), (2.3) and (2.4).

Proposition 2.3. For $r \leq n$, one has,

(2.7)
$$L_n^{(r)}(t-x)^2(x) \le (r+2)/2(n+1), \quad (0 \le x \le 1).$$

Proof. We can easily show from (2.6) that,

$$L_n^{(r)}(t-x)^2(x) \le \frac{1}{n+r+2} \left\{ \frac{(r+2)(r+1)(1-2x)^2}{n+1} + 2x(1-x) \right\}$$
$$\le \frac{(r+2)(r+1)}{(n+1)(n+r+2)} \le \frac{(r+2)}{2(n+1)}, \quad r \le n.$$

3. Theorem 5.1. If $f^{(r)}$ is bounded and integrable in [0,1] and admits (r+2)-th derivative at a point $x \in [0,1]$, then

$$(3.1) \lim_{n \to \infty} n\{(L_n^{(r)}f)(x) - f^{(r)}(x)\} = (r+1)(1-2x)f^{(r+1)}(x) + x(1+x)f^{(r+2)}(x).$$

Proof. By the Taylor formula, we have

$$f^{(r)}(t) - f^{(r)}(x) = (t-x)f^{(r+1)}(x) + (t-x)^2/2 \cdot f^{(r+2)}(x) + (t-x)^2/2 \cdot \eta(t-x),$$

where $\eta(u) \to 0$ as $u \to 0$ and η is bounded in $[-x, 1-x]$ and integrable. Now, applying (1.3) to this and using the results (2.5) and (2.6), we get

$$(L_n^{(r)}f)(x) - f^{(r)}(x) = \left[(r+1)(1-2x)f^{(r+1)}(x) + \left\{ \frac{(r+1)(r+2)(1-2x)^2}{2(n+1)} + x(1-x) \right\} \frac{n+1}{n+r+3} f^{(r+2)}(x) \right] \frac{n!(n+1)!}{(n-r)!(n+r+2)!} + E_{n,e}(x)$$

where
$$E_{n,r}(x) = \frac{(n+1)!n!}{2(n-r)!(n+r)!} \sum_{n=r,k} p_{n-r,k}(x) \int_0^1 p_{n+r,k+r}(t)(t-x)^2 \eta(t-x) dt$$
.

We shall show that $nE_{n,r}(x) \to 0$ as $n \to \infty$. Let $M = \sup_{u \in [-x,1-x]} |\eta(u)|$ and let $\varepsilon < 0$ be arbitrary. Choose $\delta > 0$ such that $|\eta(u)| < \varepsilon$ when $|u| < \delta$. So for all

 $\varepsilon < 0$ be arbitrary. Choose $\delta > 0$ such that $|\eta(u)| < \varepsilon$ when $|u'| \le \delta$. So for all $t \in [0,1]$, we have $|\eta(t-x)| < \varepsilon + M(t-x)^2/\delta^2$. Clearly

$$nE_{n,r}(x) < \varepsilon n/2 \cdot L_e^{(r)}(t-x)^2(x) + Mn/2\delta^2 \cdot L_n^{(r)}(t-x)^4(x)$$

$$= \frac{\varepsilon n}{2} \frac{(n+1)!(n+1)!}{(n-r)!(n+r+3)!} \left\{ \frac{(r+1)(r+2)(1-2x)^2}{n+1} + 2x(1-x) \right\} + \frac{M}{2\delta^2} O\left(\frac{1}{n}\right);$$

which show that $nE_{n,r}(x) \to 0$ as $n \to \infty$. Thus, as $n \to \infty$, we get the required result from (3.2). This completes the proof.

THEOREM 3.2. Let $f \in C^{(r+1)}[0,1]$ and let $w(f^{(r+1)};\cdot)$ be the moduli of continuity of $f^{(r+1)}$. Then for n > r, $(r = 0, 1, 2, \ldots,)$, we have

$$(3.3) ||L_n^{(r)}f - f^{(r)}|| \le (r+1)/(n+r+2)||f^{(r+1)}|| + 1/\sqrt{n}\{\sqrt{\lambda}r + \lambda r/2\}\cdots \cdots w(f^{(r+1)}; 1/\sqrt{n}),$$

where the norm is sup-norm over [0, 1], and $\lambda r = 1 + r/2$.

Proof. Following [2], we write

$$f^{(r)} - f^{(r)}(x) = (t - x)f^{(r+1)}(x) + \int_{x}^{t} \{f^{(r+1)}(y) - f^{(r+1)}(x)\}dy.$$

Now, applying (1.3) to the above and using the inequality

$$|f^{(r+1)}(y) - f^{(r+1)}(x)| \le \{1 + |y - x|/\delta\} w(f^{(r+1)}; \delta),$$

and the results (2.5) and (2.6), we get

$$\begin{split} & \mid (L_{n}^{(r)}f)(x) - f^{(r)}(x) \mid \\ & \leq \mid f^{(r+1)}(x) \mid L_{n}^{(r)}(t-x)(x) \mid + w(f^{(r+1)};\delta) L_{n}^{(r)} \left[\mid \int_{x}^{t} 1 + \mid y - x \mid /\delta dy \mid \right](x), \\ & \leq \mid f^{(r+1)}(x) \mid \mid L_{n}^{(r)}(t-x)(x) \mid + w(f^{(r+1)};\delta) \left\{ \sqrt{L_{n}^{(r)}(t-x)^{2}}(x) + L_{n}^{(r)}(t-x)^{2}(x) / 2\delta \right\}. \end{split}$$

Choosing $\delta = 1/\sqrt{n}$ and using the resilt (2.7), we get the required result (3.3). This completes the proof.

Remark. By putting r = 0 in (3.1), we get Theorem 2.5 of Derriennic [1].

Acknowledgement. The authors are thankful to Prof. O. P. Varshney, University of Roorkee (U. P.). for his valuable suggestions during the preparation of the paper.

REFERENCES

- [1] M. M. Derriennic, Sur l'approxiamation de fonctions intégrables sur [0, 1] par des polynômes de Bernstein modifies, J. Approx. Theory 31 (1981), 325-343.
- [2] S. P. Singh, O. P. Varshney, A note on convergence of linear positive operators, J. Approx. Theory 39 (1983).

Department of Mathematics, University of Roorkee, Roorkee, 247667, India. (Received 14 11 1983)