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Abstract. If G is an (n, m)-graph whose spectrum consists of the numbers
λ1, λ2, . . . , λn, then its Estrada index is EE(G) =

∑n
i=1 eλi . We establish

lower bounds for EE(G) in terms of n and m.

Introduction

In this paper we are concerned with simple graphs, that have no loops and no
multiple or directed edges. Let G be such a graph, and let n and m be the number
of its vertices and edges. Then we say that G is an (n,m)-graph.

The spectrum of G is the spectrum of its adjacency matrix [1], and consists of
the (real) numbers λ1, λ2, . . . , λn. The number n0 of zeros in the spectrum of the
graph G is called its nullity.

A recently introduced [3, 5] spectrum-based graph invariant is

EE = EE(G) =
n∑

i=1

eλi

which we proposed [2] to be called the Estrada index.
The Estrada index has found applications in biochemistry [3, 4, 7] and in the

theory of complex networks [5, 6]. In the paper [2] lower and upper bounds for EE
were deduced. We now obtain some further lower bounds for this graph-spectral
invariant.

The eigenvalues of an (n,m)-graph satisfy the following elementary conditions
[1]:

n∑
i=1

λi = 0(1)

n∑
i=1

(λi)2 = 2m.(2)
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The left-hand sides of equations (1) and (2) are special cases (for k = 0 and k = 1)
of the spectral moments Mk defined as

(3) Mk = Mk(G) =
n∑

i=1

(λi)k.

As usual, the complete graph on n vertices will be denoted by Kn. Its comple-
ment, Kn is the n-vertex graph without edges. Its spectrum consists solely of zeros,
and therefore EE(Kn) = n. In what follows we assume that the graphs considered
contain at least one edge (m > 0). Such graphs have at least one positive and at
least one negative eigenvalue [1].

At this point we remind the reader that the hyperbolic cosine and hyperbolic
sine are defined as

cosh(x) =
ex + e−x

2
and sinh(x) =

ex − e−x

2
respectively.

An auxiliary inequality

Define two auxiliary quantities EE− and ee as

EE− = EE−(G) =
n∑

i=1

e−λi

ee = ee(G) =
n∑

i=1

cosh(λi).(4)

In view of the power-series expansion of ex and e−x, and bearing in mind the
definition (3) of spectral moments, we have

EE =
∑
k�0

Mk

k!
and EE− =

∑
k�0

(−1)k Mk

k!

from which
EE−EE− = 2

∑
k�0

M2k+1

(2k + 1)!
.

It is known [1] that Mk is equal to the number of self-returning walks of
length k. Consequently, Mk � 0 for all graphs and for all k � 0. If the graph
G is bipartite, then it contains no odd-membered cycles and, consequently, it has
no self-returning walks of odd length, i.e., Mk(G) = 0 for k = 1, 3, 5, 7, . . .. In view
of this, we conclude that

(5) EE(G) − EE−(G) � 0

and that equality holds if and only if G is bipartite. From (5) follows that

EE(G) � 1
2
[
EE(G) + EE−(G)

]
i.e.,

(6) EE(G) � ee(G).
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Equality in (6) holds if and only if the graph G is bipartite.
In what follows we obtain several lower bounds for ee. Because of (6) these will

also be lower bounds for EE.

An (n, m)-type lower bound

A vertex of a graph, having degree zero is said to be isolated.

Theorem 1. If G is an (n,m)-graph without isolated vertices, then

(7) EE(G) � n cosh

(√
2m

n

)
.

Equality holds if and only if G is regular of degree 1.

Proof. Because of (6), in order to obtain the inequality (7) it is sufficient to
demonstrate the validity of

(8) ee(G) � n cosh

(√
2m

n

)
.

First of all, note that 2m/n is the average vertex degree of the respective graph
G. Therefore, if G has no isolated vertices, then 2m/n � 1.

We now use a Lagrange-multiplier technique to arrive at an extremal value of
ee(G). That this is a minimum will be verified at a later moment.

Consider thus the expression

(9) F = ee−1
2
α

(
m∑

i=1

(λi)2 − 2m

)

by means of which we seek for an extremal value of ee under the condition that
relation (2) is obeyed. The equations that need to be satisfied are:

∂F

∂λk
= 0 for k = 1, 2, . . . , n

i.e.,
sinh(λk) − αλk = 0 for k = 1, 2, . . . , n.

It is easy to see that if α > 1, then the equation

(10) sinh(x) − αx = 0

has three solutions: x0 > 0, 0, and −x0. Thus, in order to obtain an extremal
value ee∗ of ee we have to substitute into the right-hand side of (4) the numbers
x0, 0, and −x0 instead of the eigenvalues λi. Let the number of eigenvalues that
are replaced by 0 be p. Then the remaining n − p eigenvalues are replaced by x0

and/or −x0, resulting in

ee∗ = p + (n − p) cosh(x0).
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In order that relation (2) be obeyed, it must be (n − p)(x0)2 = 2m, from which
x0 =

√
2m/(n − p) and

(11) ee∗ = p + (n − p) cosh
(√

2m

n − p

)
.

Because 2m/n � 1, for any value of p it will be x0 � 1 and therefore cosh(x0) �
cosh(1) = 1.543080 . . .. Thus the right-hand side of (11) may be viewed as consisting
of p summands equal to 1, and n − p summands greater than 1.54. Evidently, this
expression will attain its greatest possible value for p = 0.

Therefore, if ee∗ is a lower bound for ee (which still needs to be verified), then
the best such lower bound is for p = 0, which is just the right-hand side expression
in (7).

What remains to be proven is that the Lagrange multiplier α is indeed greater
than unity, and that ee∗ for p = 0 is a minimum.

From (10) we obtain that

α =
sinh(x0)

x0
.

and we recall that x0 � 1. Because(
sinh(x)

x

)′
=

(x − 1)ex + (x + 1)e−x

2x

it is evident that for x � 1 the function sinh(x)/x is monotonically increasing.
Since for x = 1, sinh(x)/x = 1.175201 . . ., it must be α > 1.

In order to show that the right-hand side of Eq. (8) is a minimum, we have to
examine the Hessian matrix of the function F , Eq. (9). Direct calculation yields:

∂2F

∂λ2
k

= cosh(λk) − α

∂2F

∂λk∂λk′
= 0 for k �= k′.

Thus, the Hessian matrix is diagonal and all its diagonal elements are equal to

cosh(λk) − α = cosh(x0) − sinh(x0)
x0

=
(x0 − 1)ex0 + (x0 + 1)e−x0

2x0

which for x0 � 1 is evidently positive-valued. Therefore ee∗ is a minimum, and
inequality (8) is obeyed. Then also inequality (7) holds.

Equality in (7) will be attained if the underlying graph is bipartite and if all
its eigenvalues are equal by absolute value. This latter condition is satisfied only
the regular graph of degree one, i. e., by the graph consisting of n/2 copies of K2.
For this graph 2m/n = 1 and therefore EE = n cosh(1).

This completes the proof of Theorem 1. �

Remark 2. It is interesting to note that in the proof of Theorem 1, the condi-
tion (1) has not been taken into account. Taking into account condition (1), or any
other condition that the graph eigenvalues satisfy, was possible, but not necessary.
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It was our (successful) choice to pursue a Lagrange-multiplier approach based solely
on condition (2). If condition (1) would be included into the test-function (9), a
better bound for EE could be expected, but then a much more complicated situ-
ation would occur: the equation analogous to (10) would have either two positive
and one negative solution, or one positive and two negative solutions. Finding the
respective expression for ee∗ would become a difficult and infeasible task.

Theorem 1 can be somewhat strengthened. Namely, in its proof not the absence
of isolated vertices, but the condition 2m/n � 1 was used. In view of this we have:

Theorem 3. If G is an (n,m)-graph for which 2m/n � 1, then

EE(G) � n cosh

(√
2m

n

)
.

Equality holds if and only if G is regular of degree 1.

If the number of isolated vertices in the (n,m)-graph G is known, and is, say,
equal to q, then G = G∗ ∪ Kq, where G∗ is an (n − q,m)-graph to which Theorem
1 is applicable. Because EE(G) = q + EE(G∗), we immediately arrive at:

Corollary 4. If G is an (n,m)-graph with exactly q isolated vertices (q < n),
then

EE(G) � q + (n − q) cosh
(√

2m

n − q

)
.

Equality holds if and only if G consists of a regular graph of degree 1 and q isolated
vertices.

The case 2m/n < 1

If the average vertex degree 2m/n is less than unity, then the graph G neces-
sarily possesses isolated vertices. If the number of isolated vertices is known, then
Corollary 3 is applicable. Otherwise we may proceed as follows.

If 2m/n < 1, then the number of isolated vertices in G is at least n − 2m,
so that G can be written as G = G† ∪ Kn−2m. The graph G† may still possess
isolated vertices. However, G† possesses exactly 2m vertices, and therefore its
average vertex degree is unity. Consequently, by Theorem 2,

EE(G†) � 2m cosh(1)

and we arrive at:

Theorem 5. If G is an (n,m)-graph for which 2m/n < 1, then

EE(G) � n − 2m + 2m cosh(1).

Equality is attained if and only if G consists of n − 2m isolated vertices and a
regular graph of degree 1 on 2m vertices.
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An (n, m, n0)-type lower bound

Suppose that in addition to the parameters n and m we know also the nullity n0

of the graph G. If n0 = 0, then G does not possess isolated vertices, and Theorem 1
is applicable. We therefore assume that n0 > 0. Then we have:

Theorem 6. If G is an (n,m)-graph with at least one edge and nullity n0 > 0,
then

(12) EE(G) � n0 + (n − n0) cosh
(√

2m

n − n0

)
.

Equality holds if and only if G consists either of isolated vertices and copies of K2,
or of isolated vertices and copies of various complete bipartite graphs Ka,b, such
that the product a · b is constant.

Remark 7. An example of a graph for which equality in (12) holds is the graph
consisting of a copy of K1,12, two copies of K2,6, three copies of K3,4, and four
isolated vertices. Its spectrum consists of the numbers

√
12 (with multiplicity 6),

0 (with multiplicity 42), and −√
12 (with multiplicity 6). Therefore

EE = 42 + 6e
√

12 + 6−
√

12

which coincides with the right-hand side of (12) for n = 54, m = 72, and n0 = 42.

Proof. The proof of Theorem 5 is analogous to the proof of Theorem 1 and
we point out only the main differences. Label the eigenvalues of G so that λi = 0
for n − n0 + 1 � i � n. Then

EE(G) � n0 + ee0(G)

and the auxiliary quantity to be minimized is

ee0(G) =
n−n0∑
i=1

cosh(λi).

At a pertinent point of the proof one needs to show that for any graph G with at
least one edge, 2m/(n−n0) � 1. To see this, suppose that the graph G has exactly
q isolated vertices. Then G = G∗ ∪ Kq and

m(G) = m(G∗)

n(G) = n(G∗) + q

n0(G) = n0(G∗) + q.

Bearing in mind that G∗ possesses at least one edge and therefore at least one
positive eigenvalue, we have

2m(G)
n(G) − n0(G)

=
2m(G∗)

n(G∗) − n0(G∗)
>

2m(G∗)
n(G∗)

� 1.

The rest of the proof is same as in Theorem 1. �
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