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Abstract. We study the signless Laplacian spectral radius of graphs and
prove three conjectures of Cvetković, Rowlinson, and Simić [Eigenvalue bounds
for the signless Laplacian, Publ. Inst. Math., Nouv. Sér. 81(95) (2007),
11–27].

1. Introduction

In this paper, we consider only simple connected graphs and follow the notation
of [1]. Let 𝐺 be a simple graph with vertex set 𝑉 (𝐺) and edge set 𝐸(𝐺). The
adjacency matrix of 𝐺 is 𝐴(𝐺) = (𝑎𝑖𝑗), where 𝑎𝑖𝑗 = 1 if two vertices 𝑖 and 𝑗 are
adjacent in 𝐺 and 𝑎𝑖𝑗 = 0 otherwise. The characteristic polynomial of 𝐺 is just
𝑃𝐺(𝑥) = det(𝑥𝐼 − 𝐴(𝐺)). Let 𝐷(𝐺) be the diagonal degree matrix of 𝐺. We
call the matrix 𝐿(𝐺) = 𝐷(𝐺) − 𝐴(𝐺) the Laplacian matrix of 𝐺, and the matrix
𝑄(𝐺) = 𝐷(𝐺) +𝐴(𝐺) the signless Laplacian matrix or 𝑄-matrix of 𝐺. We denote
the largest eigenvalues of 𝐴(𝐺), 𝐿(𝐺), 𝑄(𝐺) by 𝜌(𝐺), 𝜆(𝐺), 𝜇(𝐺), respectively, and
call them the adjacency spectral radius, the Laplacian spectral radius, the signless
Laplacian spectral radius (or the 𝑄-spectral radius) of 𝐺, respectively.

The study of the signless Laplacian spectral radius has recently attracted re-
searchers’ attention. In [10], Fan et al. studied the signless Laplacian spectral
radius of bicyclic graphs with fixed order. In [9], the authors discussed the smallest
eigenvalue of 𝑄(𝐺) as a parameter reflecting the nonbipartiteness of the graph 𝐺.
In [7], the authors studied the smallest signless Laplacian eigenvalue of non-bipartite
graphs. In [11], the extremal graphs with maximal signless Laplacian spectral ra-
dius and fixed diameter were studied. More information about the signless Lapla-
cian can be found in [2], [3], [5], [6]. For more information about the spectral
radius of graphs, the reader can refer to [4].
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In [5], the authors proposed the following conjectures and in this paper we
confirm that they are true.

Theorem 1.1. [5, Conjecture 6] Let 𝐺 be a connected graph of order 𝑛 > 4.
Then

𝜇(𝐺)− 4𝑚
𝑛
6 𝑛− 4 + 4

𝑛
.

Equality holds if and only if 𝐺 = 𝐾1,𝑛−1.

Theorem 1.2. [5, Conjecture 7] Let 𝐺 be a connected graph of order 𝑛 > 5.
Then

𝜇(𝐺)− 2𝑚
𝑛
6 𝑛− 1.

Equality holds if and only if 𝐺 = 𝐾𝑛.

Theorem 1.3. [5, Conjecture 10] Let 𝐺 be a connected graph of order 𝑛 > 4.
Then

𝜇(𝐺)− 𝜆(𝐺) 6 𝑛− 2.
Equality holds if and only if 𝐺 = 𝐾𝑛.

2. Lemmas and results

Let 𝐺 be a connected graph. The degree of 𝑢 in 𝐺 is denoted by 𝑑𝑢, the average
degree of 𝑢, denoted by 𝑚𝑢, satisfies 𝑑𝑢𝑚𝑢 =

∑︀
𝑢𝑣∈𝐸 𝑑𝑣, where 𝐸 = 𝐸(𝐺).

Lemma 2.1. [8] Let 𝐺 be a graph with 𝑛 vertices, and 𝑚 edges. Then

𝑚𝑎𝑥{𝑑𝑣 +𝑚𝑣 | 𝑣 ∈ 𝑉 (𝐺)} 6 2𝑚
𝑛− 1 + 𝑛− 2,

with equality if and only if 𝐾1,𝑛−1 ⊆ 𝐺 or 𝐺 = 𝐾𝑛−1 ∪𝐾1.

Lemma 2.2. [12] Let 𝑀 = (𝑚𝑖𝑗) be an 𝑛 × 𝑛 irreducible nonnegative matrix
with spectral radius 𝜌(𝑀), and let 𝑅𝑖(𝑀) be the 𝑖th row sum of 𝑀 , i.e., 𝑅𝑖(𝑀) =∑︀𝑛
𝑗=𝑖𝑚𝑖𝑗. Then

min{𝑅𝑖(𝑀) |6 𝑖 6 𝑛} 6 𝜌(𝑀) 6 max{𝑅𝑖(𝑀) | 1 6 𝑖 6 𝑛}.
Moreover, if the row sums of M are not all equal, then both above inequalities are
strict.

Lemma 2.3. Let 𝐺 be a connected graph. Then 𝜇(𝐺) 6 𝑚𝑎𝑥{𝑑𝑣 + 𝑚𝑣 | 𝑣 ∈
𝑉 (𝐺)}, with equality holding if and only if 𝐺 is either semiregular bipartite or
regular.

Proof. We consider the matrix 𝐾 = 𝐷−1𝑄𝐷, where the row sum correspond-
ing to the vertex 𝑢 is 𝑑𝑢 + 𝑚𝑢. From Lemma 2.2, we obtain the required upper
bound for 𝜇(𝐺).

If equality holds, then by Lemma 2.2, for a neighbor 𝑣 of 𝑢, 𝑑𝑢+𝑚𝑢 = 𝑑𝑣+𝑚𝑣,
thus
∑︀
𝑢𝑣∈𝐸(𝑑𝑢+𝑚𝑢) =

∑︀
𝑢𝑣∈𝐸(𝑑𝑣+𝑚𝑣), that is 𝑑2𝑢+𝑑𝑢𝑚𝑢 = 𝑑𝑢𝑚𝑢+

∑︀
𝑢𝑣∈𝐸𝑚𝑣.

So we get
𝑑2𝑢 =

∑︁
𝑢𝑣∈𝐸
𝑚𝑣.
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Suppose 𝑑𝑢 is the maximum degree. Then 𝑑𝑣𝑚𝑣 =
∑︀
𝑤𝑣∈𝐸 𝑑𝑤 6 𝑑𝑢𝑑𝑣, whence

𝑚𝑣 6 𝑑𝑢 for all 𝑣 ∈ 𝑉 (𝐺). Since 𝑑2𝑢 =
∑︀
𝑢𝑣∈𝐸𝑚𝑣 6 𝑑

2
𝑢, we have for any edge

𝑢𝑣, 𝑑𝑢 = 𝑚𝑣, and 𝑑𝑢𝑑𝑣 = 𝑑𝑣𝑚𝑣, that is,
∑︀
𝑤𝑣∈𝐸(𝑑𝑢 − 𝑑𝑤) = 0. Since 𝑑𝑢 is the

maximum degree, we have 𝑑𝑢 = 𝑑𝑤 whenever there exists a vertex 𝑣 such that
𝑢𝑣, 𝑣𝑤 ∈ 𝐸.

If 𝐺 does not contain odd cycles, then 𝐺 is bipartite. Suppose 𝑉 = 𝑆 ∪ 𝑇 is a
bipartion and 𝑢 ∈ 𝑇 ; then 𝑣 ∈ 𝑆, 𝑤 ∈ 𝑇 . This implies that the vertices in 𝑇 have
the same degree. Similarly, the vertices in 𝑆 also have the same degree. So 𝐺 is
semiregular bipartite.

If 𝐺 contains odd cycles, then 𝐺 must be regular.
The converse is easy to check. �

Lemma 2.4. Let 𝐺 be a connected graph with 𝑛 vertices and 𝑚 edges. Then

𝜇(𝐺) 6 2𝑚
𝑛− 1 + 𝑛− 2,

with equality if and only if 𝐺 is 𝐾1,𝑛−1 or 𝐾𝑛.

Proof. By Lemmas 2.1 and 2.3, we can get the result. Note that 𝐾1,𝑛−1 is
the only semiregular bipartite graph and 𝐾𝑛 is the only regular graph that arises
in the case of equality. �

Now we can present the proof of the main results of this paper.

Proof of Theorem 1.1. By Lemma 2.4, we have

𝜇(𝐺)− 4𝑚
𝑛
6

2𝑚
𝑛− 1 + 𝑛− 2− 4𝑚

𝑛
= (𝑛− 2)

(︁
1− 2𝑚
𝑛(𝑛− 1)

)︁
6 (𝑛− 2)

(︁
1− 2(𝑛− 1)
𝑛(𝑛− 1)

)︁
= 𝑛− 4 + 4

𝑛
.

The last inequality holds since 𝐺 is connected and so has at least 𝑛− 1 edges. The
equality case is easy to see from Lemma 2.4. �

Proof of Theorem 1.2. By Lemma 2.4, we have

𝜇(𝐺)− 2𝑚
𝑛
6

2𝑚
𝑛− 1 + 𝑛− 2− 2𝑚

𝑛
= 2𝑚
𝑛(𝑛− 1) + 𝑛− 2 6 1 + 𝑛− 2 = 𝑛− 1.

The last inequality holds since 𝐺 has at most 1
2𝑛(𝑛 − 1) edges. When this bound

is attained, 𝐺 = 𝐾𝑛. �

Proof of Theorem 1.3. Note that the sum of all the Laplacian eigenvalues
is 2𝑚, so we have (𝑛 − 1)𝜆(𝐺) > 2𝑚 and hence 𝜆(𝐺) > 2𝑚

𝑛−1 . By Lemma 2.4, we
have

𝜇(𝐺)− 𝜆(𝐺) 6 2𝑚
𝑛− 1 + 𝑛− 2− 2𝑚

𝑛− 1 = 𝑛− 2.

The equality case is easy to see from Lemma 2.4. �
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