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Abstract. Recently, Choi and Lu proved that the Wintgen inequality ρ �
H2 − ρ⊥ + k, (where ρ is the normalized scalar curvature and H2, respectively
ρ⊥, are the squared mean curvature and the normalized scalar normal curva-
ture) holds on any 3-dimensional submanifold M3 with arbitrary codimension
m in any real space form M̃3+m(k) of curvature k. For a given Riemannian
manifold M3, this inequality can be interpreted as follows: for all possible iso-
metric immersions of M3 in space forms M̃3+m(k), the value of the intrinsic
curvature ρ of M puts a lower bound to all possible values of the extrinsic
curvature H2 − ρ⊥ + k that M in any case can not avoid to “undergo" as a
submanifold of M̃ . From this point of view, M is called a Wintgen ideal sub-
manifold of M̃ when this extrinsic curvature H2 − ρ⊥ + k actually assumes its
theoretically smallest possible value, as given by its intrinsic curvature ρ, at all
points of M . We show that the pseudo-symmetry or, equivalently, the property
to be quasi-Einstein of such 3-dimensional Wintgen ideal submanifolds M3 of
M̃3+m(k) can be characterized in terms of the intrinsic minimal values of the
Ricci curvatures and of the Riemannian sectional curvatures of M and of the
extrinsic notions of the umbilicity, the minimality and the pseudo-umbilicity
of M in M̃ .
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1. Wintgen ideal submanifolds

For surfaces M2 in the Euclidean space E3, the Euler inequality K � H2,
where K is the (intrinsic) Gauss curvature of M2 and H2 is the (extrinsic) squared
mean curvature of M2 in E3, at once follows from the fact that K = k1k2 and
H = 1

2 (k1 + k2) where k1 and k2 are the principal curvatures of M2 in E3, and,
obviously, K = H2 everywhere on M2 if and only if the surface M2 is totally
umbilical in E3, i.e., k1 = k2 at all points of M2, or still, by a theorem of Meusnier,
if and only if M2 is a part of a plane E2 or of a round sphere S2 in E3.

For surfaces M2 in the 4-dimensional Euclidean space E4, Wintgen proved that
the Gauss curvature K and the squared mean curvature H2 and the (extrinsic) nor-
mal curvature K⊥ always satisfy the inequality K � H2 − K⊥, and that actually
the equality holds if and only if the curvature ellipse of M2 in E4 is a circle [36];
(cf. e.g. [6, 7] for studies also on the global differential geometry of submanifolds
by a.o. Smale, Lashof, Chern, Chen and Willmore concerning the Euler charac-
teristic of the normal bundle, the number of self-intersections and the total mean
curvature). This fundamental inequality between the most important intrinsic and
extrinsic scalar valued curvatures of surfaces M2 in E4 was later shown, by Rouxel
and by Guadalupe and Rodriguez, to hold more generally for all surfaces M2 of
arbitrary codimension m in the real space forms M̃2+m(k) of constant sectional
curvature k, inclusive the characterisation of the equality case [21, 29]. After these
extensions of the above Wintgen inequality for submanifolds of dimension 2 and of
codimension 2 to submanifolds of dimension 2 and arbitrary codimension m � 2, in
1999 De Smet and Dillen and Vrancken and one of the authors proved the Wintgen
inequality ρ � H2 −ρ⊥ +k, where ρ and ρ⊥ respectively are the (intrinsic) normal-
ized scalar curvature and the (extrinsic) normalized scalar normal curvature, for
2-codimensional submanifolds Mn of arbitrary dimension n � 2 in the real space
forms M̃n+2(k), and characterized the equality situation explicitly in terms of the
shape operators of Mn in M̃n+2(k) [12]. Moreover, in [12] it was conjectured that
this Wintgen inequality holds for submanifolds Mn of any dimension n � 2 and
of any codimension m � 2 in real space forms M̃n+m(k), (referring to the initials
of the authors of [12], Suceavă recently started to call this “the DDVV conjecture"
[31], and was therein followed by others, although the “conjecture on Wintgen’s
inequality" may well be a more appropriate terminology). Recently, Choi and Lu
proved that this conjecture is true for all 3-dimensional submanifolds M3 of ar-
bitrary codimension m � 2 in M̃3+m(k) and obtained characteristic expressions
for the shape operators of the submanifolds M3 in M̃3+m(k) which do realize the
equality in this general inequality [8]. Concrete descriptions of some classes of 3-
dimensional Wintgen ideal submanifolds were given by Bryant, Dillen, Fastenakels
and Van der Veken [4, 18].

At this stage we would like further finally to mention that De Smet, Dillen,
Fastenakels, Van der Veken, Vrancken and one of the authors studied the Wint-
gen inequality for invariant submanifolds in Kaehler, nearly Kaehler and Sasakian
spaces [11, 17], and that Gmira, Haesen, Dillen and two of the authors studied this
inequality for submanifolds in semi-Riemannian spaces [19, 20].
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2. Pseudo-symmetric spaces

Let Mn be an n-dimensional Riemannian manifold with metric (0, 2) tensor
g and Levi-Civita connection ∇. Let R denote the (0, 4) Riemann–Christoffel cur-
vature tensor of M as well as the curvature (1,1) operator R(X, Y ) := ∇X∇Y −
∇Y ∇X − ∇[X,Y ], thus having

(1) R(X, Y, Z, W ) := g(R(X, Y )Z, W ),

where X, Y , etc. denote arbitrary vector fields on M and [.,.] stands for the Lie
bracket. By the action of the curvature operator working as a derivation on the
curvature tensor R, the following (0, 6) tensor R · R is obtained:

(R · R)(X1, X2, X3, X4; X, Y ) := (R(X, Y ) · R)(X1, X2, X3, X4)
= −R(R(X, Y )X1, X2, X3, X4) − R(X1, R(X, Y )X2, X3, X4)

− R(X1, X2, R(X, Y )X3, X4) − R(X1, X2, X3, R(X, Y )X4).

As was recently shown by Haesen and one of the authors [22], the tensor R · R
can be geometrically interpreted as giving the second-order measure of the change of
the sectional curvatures K(p, π) for tangent 2-planes π at points p after the parallel
transport of π around infinitesimal co-ordinate parallelograms in M cornered at p.
Thus, the semi-symmetric or Szabó symmetric spaces [32, 33], i.e., the manifolds
M for which R · R = 0, are those Riemannian manifolds for which all sectional
curvatures remain preserved after the parallel transport of their planes around all
infinitesimal co-ordinate parallelograms. The locally symmetric or Cartan symmet-
ric spaces, i.e., the manifolds M for which ∇R = 0, constitute a proper subclass of
the class of the Szabó symmetric spaces.

We recall that the definition (1) of the curvature tensor goes back to Schouten’s
geometrical interpretation of R as the second order measure of the change of the
direction of vector fields after their parallel transport around closed infinitesimal
curves on M [30]. Then the locally flat or locally Euclidean spaces, thus the mani-
folds M for which R = 0, are those Riemannian manifolds for which all directions
remain preserved after parallel transport around all closed infinitesimal curves.
The simplest nonflat Riemannian manifolds M are the spaces of constant curvature
K = k, i.e., the spaces whose function K is isotropic (meaning that, at each point
p, the Gauss curvature K(p, π) at p of the local surface formed by the geodesics
of M which pass through p and whose tangent vector at p lies in π, has the same
value for all choices of planes π at p, thus K becoming a real function on M , which
by the lemma of Schur, for n > 2, then necessarily has to be constant). These real
space forms Mn(k), by a theorem of Beltrami, can be obtained from the locally
Euclidean spaces by projective transformations and their class is closed under such
transformations. Further, we also recall that the knowledge of the curvature tensor
R is equivalent to the knowledge of the sectional or Riemannian curvatures K, as
was shown by Cartan. Finally, as is well known, the curvature tensor R of a space
of constant curvature k is given by

(2) R(X, Y, Z, W ) = k g((X ∧g Y )Z, W ),
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where the ∧g stands for the metrical endomorphism (X ∧g Y )Z := g(Y, Z)X
− g(X, Z)Y . Thus for the real space forms Mn(k), n > 2, there exists a real
valued function K on M such that R(X, Y, Z, W ) = K G(X, Y, Z, W ), where the
(0, 4)-tensor G is defined by G(X, Y, Z, W ) := g((X ∧g Y )Z, W ).

A main interest of Riemann, Helmholtz, Lie, Klein,. . . in the spaces of constant
curvature was related to the fact that these are precisely the Riemannian manifolds
which satisfy the axiom of free mobility.

Now, similarly as proceeding from the locally Euclidean spaces to the real space
forms, one can proceed from the Szabó symmetric spaces to the pseudo-symmetric
or Deszcz symmetric spaces [1, 13, 22, 35]. The pseudo-symmetric spaces were
defined as the manifolds M for which the (0, 6) tensor R ·R and the (0, 6) Tachibana
tensor Q(g, R) := − ∧g ·R, where the metrical endomorphism ∧g acts on the (0, 4)
curvature tensor R as a derivation, are proportional, say R · R = L(− ∧g ·R) for
some real valued function L on M ;

Q(g, R)(X1, X2, X3, X4; X, Y ) := −((X ∧g Y ) · R)(X1, X2, X3, X4)
= R((X ∧g Y )X1, X2, X3, X4) + R(X1, (X ∧g Y )X2, X3, X4)

+ R(X1, X2, (X ∧g Y )X3, X4) + R(X1, X2, X3, (X ∧g Y )X4).

A classical result states that the identical vanishing of this Tachibana tensor,
Q(g, R) = 0, characterizes the real space forms. Further, results of Mikesh, Venzi,
Defever and Deszcz learn that pseudo-symmetric spaces are obtained by applying
projective transformations to the semi-symmetric spaces and that the class of the
pseudo-symmetric spaces is closed under such transformations. Two 2-planes π and
π̄, spanned by vectors u, v and x, y respectively, at the same point p of M , are said
to be curvature dependent if Q(g, R)(u, v, v, u; x, y) �= 0, which is independent of
the choices of bases for π and π̄. For such planes, the double sectional curvature or
the sectional curvature of Deszcz or the Riemann curvature of Deszcz L(p, π, π̄) is
defined as the real number given by

L(p, π, π̄) := (R · R)(u, v, v, u; x, y)
Q(g, R)(u, v, v, u; x, y)

,

(which is independent of the choices of bases for π and π̄); it is a scalar valued
Riemannian invariant. The knowledge of the tensor R · R is equivalent to the
knowledge of the sectional curvatures L(p, π, π̄) of Deszcz. And just like the geo-
metrical interpretation of the sectional curvatures K(p, π) of Riemann in terms of
the parallelogramoïds of Levi-Civita [27], also the sectional curvatures L(p, π, π̄) of
Deszcz can be interpreted in these terms (in this respect, we refer to [23] and [24]
where in particular such interpretations are obtained for the sectional curvatures
as well as for the Ricci and conformal Weyl curvatures of Deszcz in terms of the
squaroïds of Levi-Civita). Finally the Deszcz symmetric spaces are characterized
by the isotropy of the curvatures L(p, π, π̄), i.e., by the property that at every
point p of M the scalars L(p, π, π̄) are the same for all possible pairs of curvature
dependent tangent planes π and π̄ at p. In the present situation however there
is no lemma of Schur, which then would further force this real valued function
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L : M → R automatically to be constant; therefore, Kowalski and Sekizawa called
the pseudo-symmetric spaces for which the double sectional curvature L is indeed
a constant, independent of the planes π and π̄ as well as of the points p of M ,
the pseudo-symmetric spaces of constant type L [26]. By way of examples in this
respect we would like to mention here that the 3-dimensional Thurston geometries
[34], which in a kind of axiomatic way originated as natural anisotropic extensions
of the spaces of constant Riemannian curvature K with their typical free mobility,
all do have constant sectional curvature L of Deszcz (we set L = 0 for E3 since
(K = c = 0), S3 (K = c > 0), H3 (K = c < 0), S2 × E1 and H2 × E1; L = 1
for ˜SL(2, R) and for the 3-dimensional Heisenberg group H3; and L = −1 for the
Lie group Sol) [2].

A similar study concerning the geometrical meaning of Ricci pseudo-symmetry
in the sense of Deszcz, i.e., of the manifolds M satisfying the curvature condition
R ·S = LSQ(g, S) = LS(−∧g ·S), where S denotes the (0, 2) Ricci curvature tensor
and Q(g, S) = − ∧g ·S the Ricci–Tachibana tensor of M and LS is a real valued
function on M , was carried out by Jahanara, Haesen and two of the authors in [25],
(in this respect, see also [9] and [15]). As shown in [16], a 3-dimensional Riemannian
manifold M is pseudo-symmetric if and only if it is quasi-Einstein, i.e., if its Ricci
tensor S has an eigenvalue of multiplicity � 2. The class of the Riemannian mani-
folds M with pseudo-symmetric Ricci tensor S as such is considerably larger in gen-
eral than the class of the manifolds M with pseudo-symmetric Riemann–Christoffel
tensor R, (which it obviously contains as a subclass). However, as shown in [10],
for manifolds of dimension 3, these two pseudo-symmetry conditions are equivalent.
As is well known, Schouten and Struik showed that the 3-dimensional Riemannian
manifolds M are Einstein if and only if they have constant curvature K. In [28]
two of the authors made a study of the pseudo-symmetry in the sense of Deszcz of
the tensors R and S of the Wintgen ideal submanifolds Mn of dimension n > 3
and of codimension 2 in the real space forms M̃n+2(k). In particular, they showed
that for those Wintgen ideal submanifolds these two, a priori distinct, curvature
conditions are equivalent and occur if and only if those submanifolds are either
totally umbilical or minimal. In comparison, the 3-dimensional case will show to
offer two additional kinds of pseudo-symmetric Wintgen ideal submanifolds.

3. On the symmetry of ideal submanifolds

Let Mn be a submanifold of a real space form M̃n+m(k) of constant curvature k.
Let g, ∇ and R, and, respectively, g̃, ∇̃ and R̃, denote the Riemannian metric, the
Levi-Civita connection and the Riemann–Cristoffel (0, 4) curvature tensor of M
and M̃ .

The formulae of Gauss and Weingarten then are

(3) ∇̃XY = ∇XY + h(X, Y ), and ∇̃Xξ = −AξX + ∇⊥
Xξ,

where h, Aξ and ∇⊥ denote the second fundamental form, the shape operator or
the Weingarten map with respect to ξ and the normal connection of M in M̃ ,
respectively, systematically using here and hereafter X, Y , etc. for tangent vector
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fields on M and ξ etc. for normal vector fields on M in M̃ , (as basic references for
Riemannian submanifolds, see [5] and [7]).

From (3) it follows that g̃(h(X, Y ), ξ) = g(Aξ(X), Y ), such that, for any or-
thonormal local normal frame ξα on M in M̃ , (α etc. running from 1 till the codi-
mension m),

(4) h(X, Y ) =
∑

α

g(Aα(X), Y ) ξα,

where Aα = Aξα . The mean curvature vector field �H of M in M̃ is defined as
�H = 1

n trace h and its length H = ‖ �H‖ is the mean curvature of M in M̃ . By the
equation of Ricci, the normal curvature tensor R⊥ of M in M̃ is given as follows:

(5) R⊥(X, Y ; ξ, η) := g̃(R⊥(X, Y )ξ, η) = g([Aξ, Aη](X), Y ),

where

R⊥(X, Y ) := ∇⊥
X∇⊥

Y − ∇⊥
Y ∇⊥

X − ∇⊥
[X,Y ] and [Aξ, Aη] := AξAη − AηAξ.

The normalized scalar normal curvature ρ⊥ of M in M̃ is then defined by

ρ⊥ :=
2

n(n − 1)

{ ∑
i<j

∑
α<β

[
R⊥(Ei, Ej ; ξα, ξβ)

]2
}1/2

,

for any normal frame ξα and for any orthonormal local tangent frame Ei on M , (i
etc. running from 1 till the dimension n).

We remark that ρ⊥ = 0 if and only if the normal connection is flat, which,
as follows from (5) and as was already observed by Cartan, is equivalent to the
simultaneous diagonalizability of all shape operators Aξ. The equation of Gauss of
M in M̃ is given by

R(X, Y, Z, W ) = g̃(h(Y, Z), h(X, W )) − g̃(h(X, Z), h(Y, W ))(6)
+ k {g(Y, Z) g(X, W ) − g(X, Z) g(Y, W )}.

Let S be the (0, 2)-Ricci tensor of M : S(X, Y ) =
∑

i R(Ei, X, Y, Ei). Then
from (2), (4) and (6), we obtain that

S(X, Y ) = (n − 1)k g(X, Y ) +
∑

α

trace Aα g(Aα(X), Y )(7)

−
∑

α

∑
i

g(Aα(X), Ei) g(Aα(Y ), Ei),

for any choice of frames Ei and ξα. And the normalized scalar curvature ρ of M is
defined by

ρ := 2
n(n − 1)

∑
i<j

R(Ei, Ej , Ej , Ei).

Choi and Lu gave the following affirmative solution of the conjecture concerning the
inequality of Wintgen for the 3-dimensional submanifolds of the real space forms.
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Theorem 1. [8] For any M3 in M̃3+m(k), with m � 3:

(8) ρ � H2 − ρ⊥ + k,

and the equality holds if and only if, with respect to suitably chosen local orthonormal
tangent and normal frames E1, E2, E3 and ξ1, . . . ξm, the shape operators Aα of M

in M̃ take the forms:

(9) A1 =

⎛
⎝c μ 0

μ c 0
0 0 c

⎞
⎠ , A2 =

⎛
⎝b + μ 0 0

0 b − μ 0
0 0 b

⎞
⎠ , A3 =

⎛
⎝a 0 0

0 a 0
0 0 a

⎞
⎠ ,

A4 = · · · = Am = 0,

for some real valued functions a, b, c and μ on M .

On the other hand, from the paper of De Smet, Dillen, Vrancken and one of
the authors on Wintgen’s inequality, we have the following.

Theorem 2. [12] For any M3 in M̃5(k), (8) is satisfied and the equality holds
if and only if, with respect to suitably chosen local orthonormal frames E1, E2, E3
and ξ1, ξ2, the shape operators A1 and A2 of M in M̃ are given by

A1 =

⎛
⎝c μ 0

μ c 0
0 0 c

⎞
⎠ , A2 =

⎛
⎝μ 0 0

0 −μ 0
0 0 0

⎞
⎠ .

So, for what follows and which concerns essentially dealing with the above shape
operators filled into the Gauss equation of M3 in M̃3+m(k), the latter situation
(m = 2) is in some sense algebraically included in the former one (m > 2) by
considering a = b = 0. And, in the case of codimension 1 there is no question
about a normal curvature, we can carry out a general study of the 3-dimensional
Wintgen ideal submanifolds M3 in arbitrary space forms M̃3+m(k), m � 2, by
dealing with the forms of the shape operators as given in (9). Frames E1, E2, E3
and ξ1, . . . , ξm for which the corresponding shape operators Aα assume such forms
which further on will be called Choi–Lu frames of Wintgen ideal M3 in M̃3+m.

From (7) and (9), the (1, 1) Ricci operator S which is metrically related to the
(0, 2) Ricci tensor S by g(S(X), Y ) = S(X, Y ), with respect to Choi–Lu frames Ei

and ξα is readily found to be given by

(10) S =

⎛
⎝S11 cμ 0

cμ S22 0
0 0 S33

⎞
⎠ ,

where

S11 = 2(a2 + b2 + c2 + k) + μ(b − 2μ),
S22 = 2(a2 + b2 + c2 + k) − μ(b + 2μ),(11)
S33 = 2(a2 + b2 + c2 + k).
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Hence E3 always determines a Ricci principal direction, with a corresponding Ricci
curvature
(12) ρ3 = 2 (a2 + b2 + c2 + k).
And, from (10) and (11), the other two Ricci curvatures, ρ1 and ρ2, corresponding
to some orthogonal eigendirections Ẽ1 and Ẽ2 in the plane field E1 ∧ E2, are easily
derived as

(13)
ρ1 = ρ3 − 2μ2 + |μ|

√
b2 + c2,

ρ2 = ρ3 − 2μ2 − |μ|
√

b2 + c2.

Since M3 is pseudo-symmetric or still, symmetric in the sense of Deszcz, if and
only if its Ricci tensor has an eigenvalue of multiplicity � 2, from (13) we have the
following.

Lemma 1. A Wintgen ideal 3-dimensional submanifold in a real space form is
Deszcz symmetric if and only if

(I) μ = 0 or (II) μ �= 0, b = c = 0 or (III) μ �= 0, b2 + c2 = 4μ2.

Proceeding more straightforwardly, from (6) and (9) the components, with
respect to Choi–Lu frames, of the (0, 4) curvature tensor R of a Wintgen ideal M3

in M̃3+m(k) are readily found to be either zero or else to be completely determined,
via the algebraic symmetries of R, by the following ones:

(14)

α := K12 = R1221 = a2 + b2 + c2 − 2μ2 + k,

β := K13 = R1331 = a2 + b2 + c2 + bμ + k,

γ := K23 = R2332 = a2 + b2 + c2 − bμ + k,

δ := R1332 = cμ,

(Kij = K(Ei ∧ Ej) are the sectional curvatures of M for the 2-planes Ei ∧ Ej

determined by a Choi–Lu frame E1, E2, E3). And then also the components of the
(0, 6) tensors R ·R and ∧g ·R are readily computable, and turn out either to be zero
“together" or, when at least a priori non-zero, they appear in pairs which are, via
algebraic symmetries of both these (0, 6) tensors (cf. [22]), completely determined
by the following ones:

(15)

(R · R)(E1, E3, E1, E3; E1, E2) = −2αδ,

(∧g · R)(E1, E3, E1, E3; E1, E2) = −2δ;

(R · R)(E1, E3, E2, E3; E1, E2) = α(β − γ),
(∧g · R)(E1, E3, E2, E3; E1, E2) = β − γ;

(R · R)(E1, E2, E2, E3; E1, E3) = −αβ + βγ − δ2,

(∧g · R)(E1, E2, E2, E3; E1, E3) = γ − α.

Then, by (14) and (15), the condition for the pseudo-symmetry of R, i.e., of the
existence of a function L : M → R for which R ·R = L (−∧g ·R), for Wintgen ideal
submanifolds M3 in M̃3+m(k), yields, of course, the previous cases (I, II, and III)
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of Lemma 1, but moreover in each case at the point p gives the double sectional
curvature function L as stated in the following.

Lemma 2. We have

L = 0 in case (I),
L = a2 + k in case (II),
L = a2 + 2μ2 + k in case (III).

In case (I), M3 is Einstein and thus a real space form and so, in particular, M3

is then semi-symmetric and hence (also without calculations, one could know that)
L = 0. In cases (II) and (III), according to the general theory in this respect, if M3

is quasi-Einstein and has λ as an eigenvalue of the Ricci tensor S of multiplicity 1,
then L = λ

2 , which allows to obtain Lemma 2 also from the consideration of (12)
and (13).

Now we aim to geometrically characterize the cases (I), (II), and (III). Clearly,
from (9), we see that (I) corresponds to the totally umbilical Wintgen ideal sub-
manifolds M3 in real space forms M̃3+m(k); such M3 are intrinsically itself spaces
of constant curvature K = a2 + b2 + c2 + k. We recall that a submanifold Mn

in a Riemannian manifold M̃n+m is said to be pseudo-umbilical if its mean curva-
ture vector field �H determines an umbilical normal direction on M in M̃ . When
hereafter we call a submanifold pseudo-umbilical we mean it to be properly pseudo-
umbilical, i.e., we exclude from it the trivial cases when it is minimal ( �H = �0), or
when it is totally umbilical (i.e., when every normal direction ξ is umbilical). The
mean curvature vector field �H for the submanifolds M3 under consideration being
given by �H = cξ1 + bξ2 + aξ3, it further follows from (9) that the shape operator
of M in M̃ with respect to �H is given by

(16) A �H =

⎛
⎝a2 + b2 + c2 + bμ cμ 0

cμ a2 + b2 + c2 − bμ 0
0 0 a2 + b2 + c2

⎞
⎠ .

In case M is not totally umbilical in M̃ , i.e., in case μ �= 0, and in case M is not
minimal in M̃ , i.e., in case not a = b = c = 0 (cf. (9)), then (16) shows that
�H determines an umbilical normal direction of M in M̃ if and only if b = c =
0. In summary, from the above we know that cases (I) and (II) correspond to
the Wintgen ideal submanifolds which are totally umbilical or minimal or pseudo-
umbilical. Finally, we next aim for a geometrical characterisation of case (III):
b2 + c2 = 4μ2 where μ �= 0. To simplify a bit the discussion, we will assume
from now on that μ > 0, which we can do without loss of generality, being always
realizable in view of (9) by eventual changing orientations of ξα’s and orderings of
E1 and E2). From (12) and (13) we recall that the eigenvalues of the Ricci tensor
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are given by

ρ1 = 2 (a2 + b2 + c2 + k) − 2μ2 + μ
√

b2 + c2,

ρ2 = 2 (a2 + b2 + c2 + k) − 2μ2 − μ
√

b2 + c2,(17)
ρ3 = 2 (a2 + b2 + c2 + k),

where ρ3 is the one in the E3-direction of M and that ρ1 and ρ2 are the eigenvalues
corresponding to certain eigendirections in the plane π = E1 ∧ E2 perpendicular
to E3 and of which the special character is reflected obviously, having μ �= 0, in
the form of the shape operators given in (9), and which we further will call the
Choi–Lu plane of M3. Studying at present M3’s which are not totally umbilical, in
particular, these submanifolds are not Einstein, and so, at every point, they have
a smallest Ricci curvature, which we’ll denote by inf Ric. From (17) it is clear this
is ρ2:

inf Ric = 2(a2 + b2 + c2 + k) − 2μ2 − μ
√

b2 + c2,

attained by a particular direction in the Choi–Lu plane of M3. On the other hand,
we recall from (14) that the sectional curvature KChoi–Lu of the Choi–Lu plane is
given by

KChoi–Lu = K12 = a2 + b2 + c2 + k − 2μ2.

Hence inf Ric = 2 KChoi–Lu if and only if −2μ2 − μ
√

b2 + c2 = −4μ2, i.e., if and
only if (III) holds, namely when b2 + c2 = 4μ2. From (14) we moreover see that, in
this case,

K12 = KChoi–Lu = a2 + 2μ2 + k,

K13 = KChoi–Lu + μ(2μ + b),
K23 = KChoi–Lu + μ(2μ − b),

which implies, obviously having also that b2 � 4μ2 and so, since μ > 0, that

−2μ � b � 2μ,

and thus that as well 0 � 2μ + b as 0 � 2μ − b, together with the equation of Gauss
and (9), that in case (III) the sectional curvature K12 actually equals inf K, the
function on M giving the minimum of the sectional curvatures K at each point of
M3. So, in this situation we can observe on the side that the δ(2)-curvature of
Chen [7], δ(2) := τ − inf K, where τ :=

∑
i<j Kij is the scalar curvature of M3, is

given by δ(2) = τ − K12 = K13 + K23 = ρ3 = ρ1 which, in this case, is sup Ric,
the real valued function on M giving the maximum Ricci curvature at each point
of M3. Once more, in accordance with the general theory of Deszcz symmetric 3-
dimensional Riemannian manifolds M3, for the properly quasi-Einstein manifolds
M3 the sectional curvature L of Deszcz satisfies L = λ

2 , where λ is the principal
curvature with multiplicity 1, so actually λ = ρ2 = 2(a2 + 2μ2 + k), such that

L = KChoi–Lu = inf K.
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In this respect, coming back to case (II), from (14) and taking further into account
(9) and the equation of Gauss, it follows that in this case, since K12 = a2 +k −2μ2,

L = a2 + k = K23 = K13 = sup K,

sup K denoting the maximum of the sectional curvature function on M , i.e., the
function on M which value at each point is the maximum of all the sectional
curvatures of M at this point. Taking into account at last also the case (III) of
Lemma 2, in summary we can formulate the following.

Theorem 3. A Wintgen ideal submanifold M3 in a real space form M̃3+m(k)
is Deszcz symmetric if and only if (I) M3 is a totally umbilical submanifold with
Deszcz sectional curvature L = 0 (M3 then being a space of constant sectional
curvature K), or, (II) M3 is a minimal submanifold or a pseudo-umbilical subman-
ifold, with Deszcz sectional curvature L = sup K, or else, (III) M3 is characterized
by the curvature condition inf Ric = 2 KChoi–Lu = 2 inf K, with Deszcz sectional
curvature L = inf K.

4. Further comments and remarks

(1) We would like to refer again to the references mentioned in Section 1 for
explicit descriptions of several examples of Wintgen ideal 3-dimensional submani-
folds.

(2) Refering amongst others to Berger’s discussion in his “Panorama" [3] per-
taining to the extremal values of the sectional curvature function K of Riemannian
manifolds, we observe from Theorem 3 that for the nontrivial Wintgen ideal sub-
manifolds M3 in M̃3+m(k), i.e., the nontotally umbilical ones, the isotropic Deszcz
sectional curvatures L are either given by the maximum or by the minimum values
of K at each point. The Deszcz symmetry of those submanifolds M3 being equiva-
lent to being quasi-Einstein, in the above nontrivial case, L = sup K or L = inf K
according to the geometrical fact that the eigendirection of the Ricci tensor whose
eigenvalue has multiplicity 1 is either perpendicular to the plane of Choi–Lu of these
Wintgen ideal submanifolds M3 or belongs to this plane.

(3) Concerning the origin of the Ricci tensor of 3-dimensional Riemannian
manifolds and some related views on the δ-curvatures of Chen, see [25].
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