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Abstract. We consider the AR(1) time series model Xt − βXt−1 = ξt,
β−p ∈ N � {1}, when Xt has Beta distribution B(p, q), p ∈ (0, 1], q > 1.
Special attention is given to the case p = 1 when the marginal distribution is
approximated by the power law distribution closely connected with the Ku-
maraswamy distribution Kum(p, q), p ∈ (0, 1], q > 1. Using the Laplace
transform technique, we prove that for p = 1 the distribution of the innova-
tion process is uniform discrete. For p ∈ (0, 1), the innovation process has a
continuous distribution. We also consider estimation issues of the model.

1. Introduction

In the standard time series analysis one assumes that its marginal distribu-
tion is Gaussian. However, a Gaussian distribution will not always be appropriate.
In earlier works stationary non-Gaussian time series models have been developed
for variables with positive and highly skewed distributions. There still remain
some situations where Gaussian marginals are inappropriate, i.e., where the mar-
ginal time-series variable being modeled, although not skewed or inherently pos-
itive valued, has a large kurtosis and long-tailed distributions. There are plenty
real situations that can not be modeled by Gaussian distribution like in hydrology,
meteorology, information theory, economics, etc. Simple models with exponential
marginals or mixed exponential marginals are considered in [9, 29, 1, 2, 13], while
another marginals have been discussed like Gamma [9, 19, 7], Laplace [19], uni-
form [15, 21] and Weibull [19, 7]. Finally, we point out autoregressive processes
PBAR and NBAR autoregressive process models constructed by McKenzie’s [10]
for positively and respectively, negatively correlated pairs of Beta random variables
employing certain properties of the B(p, q) distribution.
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In this paper, we introduce an autoregressive first order time series model with
the marginal Beta distribution B(p, q), p ∈ (0, 1], q > 1 of which the Laplace trans-
form is approximated when the transformation argument is large. The resulting
approximation determines a new distribution and for p = 1 results in a discrete
uniform distribution for the innovation process. For 0 < p < 1 the distribution of
the innovation process is continuous. Special attention is given to the case p = 1,
when the approximation becomes a kind of power law distribution, characterized
by the related probability density function (PDF) f(x) = q(1 − x)q−1, x ∈ [0, 1].
This distribution coincides with the Beta distribution B(1, q). On the other hand,
the B(1, q) generates Kumaraswamy distribution Kum(p, q), p ∈ (0, 1], q > 1 in-
troduced in [24]. This distribution is very important in applications when double
bounded random processes arise in practice [27, 28], e.g., it has been applied in
modelling the storage volume of a reservoir and system design [26] and turns out
to be very important in many hydrological problems. For a complete account of
the properties of the Kumaraswamy distribution, consult [16].

A random variable Xp,q defined on some standard probability space (Ω,F, P )
having the Kum(p, q) distribution possesses the PDF [8, pp. 169–170] (in its sim-
plest form):

f(x) = pqxp−1(1 − xp)q−1 · 1[0,1](x).

The cumulative distribution function’s (CDF) non-constant part is

F (x) =
(
1 − (1 − xp)q

) · 1[0,1](x),

where 1[0,1](x) stands for the indicator function of the closed unit interval. Fur-
thermore, we have

(1.1) Xp
p,q

d= Y1,q,

where Y1,q has Beta distribution B(1, q), q > 1. Note that both Kum(1, 1) and
B(1, 1) represent the uniform U(0, 1) distribution.

The technical part of the research begins with the derivation of the Laplace
transform (LT) of the autoregressive model. The resulting LT function is expressed
in terms of the Wright hypergeometric function Φ. Therefore we are faced with
extremely hard calculations in inverting the Laplace transform. So, we approxi-
mate the derived LT of the model, obtaining the inverse LT mutatis mutandis the
distribution of the innovation sequence {ξt : t ∈ Z}. The resulting approximate
distribution will be referred to as the approximated Beta (ABp,q) and as the ap-
proximated power law (APL) for p = 1. Therefore, considering initially a Linear
time series model with ABp,q, we arrive at a new model called LABp,q AR(1), which
becomes LAPLARq(1) for p = 1.

Finally, the unknown parameter will be estimated using conditional least squares
estimator.



AR(1) TIME SERIES WITH APPROXIMATED BETA MARGINAL 89

2. Approximated Laplace transform of B(p, q)

Consider a random variable Yp,q defined on a standard probability space (Ω,F, P );
having the B(p, q) distribution. The related PDF is

(2.1) f(x) = Γ(p + q)
Γ(p) Γ(q)

xp−1(1 − x)q−11[0,1](x) .

In what follows Γ(p) stands for the familiar Euler’s gamma function. We write the
Laplace transform of some suitable function f as

Lλ[f ] =
∫ ∞

0
e−λxf(x) dx =: ϕ(λ),

while

L−1
x [ϕ] = 1

2πi

∫ i∞

−i∞
exλϕ(λ) dλ =: f(x)

stands for the inverse Laplace-transform pair of ϕ(λ).
The Laplace transform of the PDF (2.1) equals

ϕYp,q (λ) = Ee−λYp,q =
Γ(p + q)
Γ(p) Γ(q)

∫ 1

0
e−λxxp−1(1 − x)q−1dx = F (p, q + p, −λ),

where F denotes the familiar Kummer function of the first kind, that is, the con-
fluent hypergeometric function 1F1 defined by the series

F (a, b, z) :=
∞∑

n=0

(a)n

(b)n

zn

n!
.

Here (a)n = a(a + 1) · · · (a + n − 1) = Γ(a + n)/Γ(a), (a)0 = 1 is the Pochhammer
symbol.

Let us prove the formula

(2.2) ϕYp,q (λ) ∼ Γ(p + q)
Γ(q)λp

(
1 − e−p(q−1)λp )

, λ → ∞,

for all q > 1, where ∼ denotes the asymptotic equality. Indeed, considering the
transformation of the integrand in

ϕYp,q (λ) = Γ(p + q)
Γ(p) Γ(q)

∫ 1

0
e−λxxp−1(1 − x)q−1dx

= λ−p

B(p, q)

∫ λ

0
e−xxp−1

(
1 − x

λ

)q−1
dx,

gives the asymptotics

ϕYp,q (λ) ∼ Γ(p + q)
Γ(p) Γ(q)λp

∫ ∞

0
e−xxp−1

(
1 − (q − 1)x

λ

)
dx(2.3)

= Γ(p + q)
Γ(q)λp

(
1 − p(q − 1)

λ

)
∼ Γ(p + q)

Γ(q)λp
exp

{
− p(q − 1)

λp

}
∼ Γ(p + q)

Γ(q)λp

(
1 − exp

{ − p(q − 1)λp
})

,
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for λ large enough. Hence the asserted result (2.2).
An important special case p = 1 of (2.2) is ϕY1,q (λ) ∼ q

λ

(
1−e−(q−1)λ

)
, λ → ∞.

3. The LAPLARq(1) and LABp,q(1) models

In this section we introduce a new autoregressive model of the first order. Since
the LT of Beta distribution one expresses as special function, for the derivation of
distribution of innovation sequence {ξt : t ∈ Z}, we will use approximated LT (2.2).
In this way, marginal distribution of the model (3.1) is replaced by the ABp,q such
that is generated by the model. The LABp,qAR(1) model is given with the following
equations:
(3.1) Xt − βXt−1 = ξt, β−p ∈ N� {1}, p ∈ (0, 1].
Here Xt is B(p, q), p ∈ (0, 1], q > 1. Also, we make the following assumptions:

(i) Xt is stationary; (ii) {Xt} and {ξs} are independent for t < s,
where stationarity is ensured by β ∈ (0, 1).

Let us define a positive integer κ(p) =
[
β−p

]
, where [A] stands for the integer

part of some A. In what follows, we consider such parameters p ∈ (0, 1] and
β ∈ (0, 1) that κ(p) ∈ N.

Now, we derive our principal result-the distribution (or a related approxima-
tion) of the innovation sequence ξt.

Theorem 3.1. Consider the LAPLARq(1) times series model

Xt − βXt−1 = ξt, β = 1
n

, n ∈ N� {1},

such that possesses marginal APL distribution, let q > 1. Then the distribution of
the i.i.d. sequence {ξt : t ∈ Z} is approximated by the uniform discrete distribution

P
{

ξt = (q − 1)j
n

}
= 1/n, j = 0, n − 1.

Proof. Let us find the LT of the model (3.1). Using the assumption (ii) upon
the independent Xt and ξs, t < s, we have:

ϕXt(λ) = Ee−λXt = Ee−(βXt−1+ξt)λ = Ee−βXt−1λEe−ξtλ = ϕXt−1 (βλ) ϕξt (λ).
With regard to the assumed stationarity (i) of Xt we can conclude ϕX(λ) =
ϕX(βλ)ϕξ(λ). Using asymptotic formula (2.2), we obtain

ϕξ(λ) = ϕX(λ)
ϕX(βλ)

∼ 1
n

· 1 − e−(q−1)λ

1 − e−(q−1)βλ
= 1

n
· 1 − (e−(q−1) 1

n λ)n

1 − e−(q−1) 1
n λ

=
1
n

·
n−1∑
j=0

e−(q−1) j
n λ =: Aλ(ϕξ), λ → ∞.

Now, by inverse LT we easily deduce that the distribution of i.i.d. sequence {ξt :
t ∈ Z}. The inverse LT of the approximation Aλ(ϕξ) we calculate directly:

L−1
x

[
Aλ(ϕξ)

]
=

1
n

L−1
x

[ n−1∑
j=0

e−(q−1) j
n λ

]
=

1
n

n−1∑
j=0

δ
(

x − (q − 1)j
n

)
,
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where δ is the well-known Dirac function. Hence, we conclude that the distribution
of ξt is approximated by discrete probability law

(3.2)
(

0 (q − 1)/n · · · (q − 1)(n − 1)/n
n−1 n−1 · · · n−1︸ ︷︷ ︸

n

)
,

which is the assertion of the theorem. �
Remark 3.1. The same model, (3.1), but with the uniform U(0, 1) marginal

distribution has been studied in [15]. In this case it has been proved that innovation
sequence of (3.1) coincides with discrete distribution (3.2) for q = 2.

Remark 3.2. By equality (1.1) one deduces Xt : Kum(p, q) d= X
1/p
t : B(1, q),

that links our results to Kumaraswamy Kum(p, q), q > 1 distribution.
Let us introduce the hypergeometric function Φ(a, α; z) by E. M. Wright defined

in the whole complex plane C, for complex a ∈ C and real 0 < α < 1, by the series

(3.3) Φ(a, −α; z) =
∞∑

n=0

zn

Γ(a − αn) n!
,

see e.g. [6]. It is not hard to show that
(3.4) L−1

x

[
λ−τ e−T λp]

= xτ−1Φ
(
τ, −p ; −T x−p

)
, T > 0,

is equivalent to the Humbert–Pollard inverse LT formula [23], [11, Eq. (4)]. Indeed,
taking certain p ∈ (0, 1), we deduce (3.4) having

λ−τ e−T λp

=
∞∑

n=0

(−T )n λ−τ+np

n!
=

∞∑
n=0

(−T )n

n!
· 1

Γ(τ − np)

∫ ∞

0
e−λxxτ−np−1dx

=
∫ ∞

0
e−λxxτ−1

{ ∞∑
n=0

(−T x−p)n

Γ(τ − np) n!

}
dx

=
∫ ∞

0
e−λxxτ−1 Φ

(
τ, −p ; −T x−p

)
dx.

Theorem 3.2. Consider the LABp,q AR(1) times series model

Xt − βXt−1 = ξt βp = 1
n

, n ∈ N � {1},

that possesses the marginal ABp,q. Assume that p ∈ (0, 1), q > 1 and κ(p) ∈
N. Then the distribution of the i.i.d. sequence {ξt : t ∈ Z} is approximated by
continious distribution having PDF

(3.5) fξ(p; x) = x−1

‖Φp‖
κ(p)−1∑

j=0
Φ

(
0, −p ; −p(q − 1)βpj

xp

)
,

where

(3.6) ‖Φp‖ :=
κ(p)−1∑

j=0

∫ ∞

0
x−1Φ

(
0, −p ; −p(q − 1)βpj

xp

)
dx.
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Proof. Using similar lines to the proof of Theorem 3.1, with the aid of the
asymptotic identity (2.3) for large enough λ, we conclude that

(3.7) ϕξ(λ) = ϕX(λ)
ϕX(βλ)

∼ βp

κ(p)−1∑
j=0

exp{−p(q − 1)βpjλp}.

Denote the right-hand side of this expression by Bλ,p(ϕξ), say. Now, setting τ = 0
in the Humbert–Pollard formula (3.4) and employing it to the addends in (3.7),
one deduces

(3.8) L−1
x

[
Bλ,p(ϕξ)

]
= βp

κ(p)−1∑
j=0

x−1Φ
(

0, −p ; −p(q − 1)βpj

xp

)
,

where the Wright function series converges, because p ∈ (0, 1).
The behavior of L−1

x

[
Bλ,p(ϕξ)

]
near the origin is controlled by the upper bound

∣∣x−1Φ(0, −p ; −x−p)
∣∣ � 1

pπ

Γ(1/p)
cos1/p(pπ/2)

, x � 0,

such that is the special case of the majorant reported in [6, Eq. (32)].
It remains only to show the non-negativity of L−1

x

[
Bλ,p

(
ϕξ

)]
. Indeed, in [11]

it was shown that x−1Φ
(
0, −p ; −T x−p

)
> 0, T > 0, p ∈ (0, 1), almost everywhere,

when x > 0. [6, Theorem 8] strengthened his result to the strict positivity.
Finally, normalizing (3.8), hence the proof of the assertion (3.5). �

Asymptotic behavior of the PDF of the ABp,q, p ∈ (0, 1), when x approaches
nil or infinity, follows from the adopted Mikusiński’s results [14, Eqs (4), (5)]

x−1Φ
(

0, −p ; − T

xp

)
∼

⎧⎪⎪⎨
⎪⎪⎩

QT

xp/(2(1−p)) exp
{ − RT x−p/(1−p)}, x → 0+

p

Γ(1 − p)
T x−p−1, x → ∞.

where

QT := (pT )1/(2(1−p))√
2π(1 − p)

, RT := (1 − p)(ppT )1/(1−p), T := p(q − 1)βpj.

Let us denote by X0 the initial value of the time series {Xt : t ∈ Z}, and thereafter
we can formulate the following result:

Theorem 3.3. Let {ξt : t ∈ Z} be an i.i.d. sequence of random variables having
distribution (3.5). If q > 1, p ∈ (0, 1), βp = 1

n , n ∈ N � {1}, κ(p) ∈ N and X0 is
from ABp,q, then relation (3.1) defines the time series {Xt : t ∈ Z} whose marginal
distribution is ABp,q.

Remark 3.3. For p = 1 Theorem 3.3 is valid for LAPLARq(1) model.

Remark 3.4. Since Wright hypergeometric function (3.3) is not defined for
α > 1, it is not possible to consider the case p > 1.
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3.1. Simulation study. Histograms of beta distribution B(p, q), as well as
histogram of ABp,q, for given values of p and q, will be presented in Example
3.1. Having in mind that ABp,q is determined by the model, there was a problem
of generating random numbers from ABp,q. The solution is to use the algorithm
described in [20]. This algorithm is implemented, by Ridout, in software R [25].

In Example 3.2, we give graphical representation of PDF (3.5) together with
PDF of beta distribution for certain parameter values. The normalizing constant
‖Φp‖ is calculated using adaptive Simpson quadrature. Since integral (3.6) is im-
proper, we apply use the technique from [22, pp. 618–621].

The sample path of the model (3.1) will be simulated in Example 3.3. For
this purpose Theorem 3.3 was used. Since the PDF (3.5) is given in the form of
special function, it is impossible to build random number generator from PDF. So
the initial value X0 and random numbers from the distribution whose PDF is (3.5)
is generated using the same idea as in Example 3.1.

Example 3.1. Sample of size 5.000 was drawn from B(1/3, 4). Using the
algorithm described in [20], a set of 5000 elements from AB1/3, 4 is generated.
Figure 1 represents histograms of beta distribution and its approximation.
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Figure 1. Histogram of Beta distribution and its approximation ABp,q.

Example 3.2. The density function of Beta distribution and PDF of its ap-
proximation (3.5), when Laplace transform argument s is large enough, will be
presented in Figure 2 for two sets of different parameters.

Example 3.3. In this example we give the sample paths of LABp,q AR(1)
model for different sample sizes Figure 3. Parameters values are: p = 1/3, q = 4
and β = 1/8.
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Figure 2. PDF of Beta distribution and of (3.5) for two different
parameter arrays near the origin.
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Figure 3. Sample paths.

4. Some properties of the LABp,qAR(1) model

Following the lines of the similar result for linear AR(1) processes by Hamilton
[12, pp. 53–56], it is very easy to derive the autocovariance and autocorrelation
function of the model (3.1), with lag τ ∈ Z. The autocovariance and autocorrelation
function are given with the following expressions, respectively:

γ(τ) = β|τ | Var X

ρ(τ) = β|τ |(4.1)
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Theorem 4.1. Process Xt is not time reversible.

Proof. Using (3.1) and Markov properties of the process Xt, it is easy to show
that the joint Laplace transform of Xt and Xt−1, is not symmetric with respect to
λ1 and λ2. So the assertion of the theorem is proved. �

Theorem 4.2. Difference equation (3.1) has a unique, strictly stationary, Ft-
measurable and ergodic solution: Xt =

∑∞
j=0 βjξt−j.

Proof. See [17], [18]. �

5. Parameter estimation in LABp,qAR(1) model

In this section, we estimate the parameters q and β of the LAPLARq(1) model
using estimated autocorrelation function with lag 1, and estimated expectation
of random variable X . Also we estimate the β appearing in the LABp,qAR(1),
p ∈ (0, 1] model by a conditional least squares. The properties of this estimator are
proved.

5.1. Parameter estimation in LAPLARq(1). The parameter β can be
estimated using (4.1) for p = 1. Thus β = ρ(1), where autocorrelation ρ(1) with
lag 1 can be estimated using the following formula:

ρ̂(1) =
∑n

t=2
(
Xt − X

)(
Xt−1 − X

)
∑n

t=1
(
Xt − X

)2 ,

Since Xt is B(1, q), and stationarity condition is fulfilled, the expectation of random
variable X is

(5.1) EX =
1

1 + q

From (5.1) parameter q can be estimated using q = X−1
X

, where the mean value of
the generated sequence {Xt} is X.

5.2. Conditional least squares in LABp,qAR(1) model. Model (3.1) can
be rewritten in the form:

Yt = βYt−1 + Ct, Ct = (β − 1)m + ξt,

where Yt = Xt − m and EXt = m. We will assume that parameter m is known.
Let us denote by Ft−1, σ-algebra defined by r.v. Xs, s � t−1. The conditional

least squares estimator β̂ of parameter β, based on the sample (Y1, . . . , YN ), is
obtained by minimizing the following function:

(5.2)
N∑

t=2

(
Yt − E(Yt | Ft−1)

)2 =
N∑

t=2

(
Yt − βYt−1

)2
,
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with respect to β. If we equate the first derivative of (5.2) to 0, we get the estima-
tor β̂:

(5.3) β̂ =
∑N

t=2 Yt−1Yt∑N
t=2 Y 2

t−1

Theorem 5.1. The estimator β̂ is strongly consistent estimator of β. Further-
more,

√
N − 1(β̂ − β) has an asymptotic N (0, (1 − β2)) distribution.

Proof. We will consider the difference:

β̂ − β =
(N − 1)−1 ∑N

t=2 utYt−1

(N − 1)−1 ∑N
t=2 Y 2

t−1

Stationarity and ergodicity of {Y 2
t } and {Yt−1ut}, followed by the stationarity and

ergodicity of {Xt}. Expectation V = EY 2
t is finite.

Since E(Rt | Ft−1) = 0 and {Yt−1} is Ft measurable, it is valid:

(5.4) E(utYt−1) = 0

Ergodicity of {Y 2
t } and {Yt−1ut} implies:

(5.5) 1
N − 1

N∑
t=2

Y 2
t−1

a.s.−→ V,
1

N − 1

N∑
t=2

Yt−1ut
a.s.−→ 0.

From (5.4) and (5.5) it can be concluded that (β̂ − β) a.s.−→ 0. Let us denote by
ut = Yt − E(Yt | Ft−1) = Yt − βYt−1 and vt = u2

t . It can be proved that

E(vt | Ft−1) =
(
1 − β2)(

M − m2)
,

where EX2
t = M . Let parameter α be an arbitrary constant from R. Then, we

have:

E(αYt−1ut)2 = E
{

α2Y 2
t−1E(vt | Ft−1)

}
= E

{
α2Y 2

t−1
(
1 − β2)(

M − m2)}
Since E(αYt−1ut | Ft−1) = 0, from the Lindeberg–Levy central limit theorem for
martingales [3], it follows that (N − 1)−1/2 ∑n

t=2 αYt−1ut converges to the normal
distributed r.v. with mean 0 and variance α2(1 − β2)(M − m2)EY 2

t−1. Bearing in
mind that α is an arbitrary constant, we can conclude that (N −1)−1/2 ∑N

t=2 Yt−1ut

converges in distribution to the r.v. from normal distribution with mean 0 and
variance (1 − β2)(M − m2)EY 2

t−1 Now, we will consider the following expression:

(5.6) (N − 1)1/2(β̂ − β) =
(N − 1)−1/2 ∑N

t=2 Yt−1ut

(N − 1)−1 ∑N
t=2 Y 2

t−1
.

From (5.6) we can conclude that (N − 1)1/2(β̂ − β) converges in distribution to r.v.
from normal distribution with mean 0 and variance (1 − β2). So the assertion of
the theorem is proved. �
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Since Xt = βXt−1 + ξt > βXt−1, parameter β can be estimated using the
following estimator:

(5.7) β̃ = min
2�t�N

{ Xt

Xt−1

}
Estimator (5.7) is a consistent estimator and it was analyzed in [4].

5.2.1. Numerical Example. Finally, let us present a numerical simulation of the
parameter estimation based on previously given formulae (5.3) and (5.7). It will
be assumed that parameters p = 1/3, q = 4 and β = 0.125 are known. Bearing in
mind all earlier considerations, 100 samples of sizes 100, 1 000, 5 000, 10 000 and
20 000 were drawn using (3.1), and parameter β was estimated using (5.3) and (5.7).
Since we had 100 samples for each size, the mean value of all 100 estimates per each
sample size is reported in table [1]. The mean value of estimates which are the result
of applying estimators (5.3) and (5.7) are denoted by βCLS and βCON respectively,
and their standards deviations are STDEV(βCLS) and STDEV(βCON). More details
about application of numerical simulations to different stochastic models, can be
found in [5].

Table 1. Values of estimated parameter β

Sample size βCLS STDEV(βCLS) βCON STDEV(βCON)
100 0.1138 0.0923 0.1229 0.0027

1 000 0.1223 0.0309 0.125 0
5 000 0.1245 0.0137 0.125 0
10 000 0.1241 0.0099 0.125 0
20 000 0.1259 0.0066 0.125 0

The simulation shows that the estimator βCON is much better than the estima-
tor βCLS. The estimator βCLS converges very slowly to the true value. It is needed
to generate huge samples for better accuracy of βCON.
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