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Abstract. The class of 2-normed real algebras, defined in [33], as shown
in [29] is either void or contains only trivial algebras. In this paper, a new
definition of real or complex 2-normed algebras and 2-Banach algebras are
proposed. Several examples of such algebras are given.

1. Introduction

Following the introductory notion of Banach algebra by Nagumo in 1936 [34],
Gelfand et al. put forward a number of fundamental results related to the the-
ory of Banach algebras [21, 22]. This has created an impetus to the study of
algebras having manifold applications in the theory of dynamical systems, particle
physics etc. Later on important contributions were made by Dunford [12, 13, 14],
Yoshida [42], Kaplansky [26, 27], Raubenheimer et al. [35], Burlando [6] and
others [2, 4, 5, 10, 11, 36, 37, 38] leading to the development of various Ba-
nach algebra techniques which have produced many new results and simplified the
theories related to matrices, integral equations and operators.

The spectral radius formula established by Gelfand gives an excellent illustra-
tion of interplay between the algebraic structure and the metric structure on the
class B(X) of all continuous linear transformations from a complex Banach space
X into X (dim X � 2).

Extensive investigations have been made for the concepts of 2-metric and 2-
normed linear spaces with different point of views [1, 3, 7, 8, 9, 15, 16, 17, 18,
19, 20, 23, 24, 25, 28, 30, 31, 32, 39, 40, 41].

Considering the concept of 2-normed algebras put forward by Noor Mohammad
and Siddiuqe [33], Lal et al. have shown that the class of 2-normed algebras with
unity as defined in [33] is either void or contains only trivial algebras [29].

A new definition of 2-normed algebras and an example satisfying this definition
is given in Section 5. In a subsequent work we are trying to show that there exist
2-normed algebras (with or without unity) which are not normable and a 2-Banach
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algebra need not be a 2-Banach space. Spectrum will be defined and some results
for spectral radius in case of 2-Banach algebras shall be given establishing that
the spectral radius formula relates the algebraic and analytical concepts. We also
intend to give the 2-norm version of the Gelfand–Mazur theorem.

2.

We recall the definition of 2-normed space [19, 30].

Definition 2.1. Let E be a linear space of dimension greater than one over the
field K, where K is the field of real or complex numbers. The real valued function
‖., .‖ on E × E is said to be a 2-norm if it satisfies the following axioms:

(i) ‖x, y‖ = 0, if and only if x and y are linearly dependent in E;
(ii) ‖x, y‖ = ‖y, x‖ for all x, y in E;
(iii) ‖αx, y‖ = |α| ‖x, y‖ for all α ∈ K and for all x, y ∈ E;
(iv) ‖x + y, z‖ � ‖x, z‖ + ‖y, z‖ for all x, y, z ∈ E.

The pair (E, ‖., .‖) is said to be a 2-normed linear space over the field K.

In [30] several examples of 2-normed complex linear spaces over K have been
given.

We note here that in a 2-normed linear space (E, ‖., .‖), the 2-norm induces a
topology which makes E a locally convex Hausdorff topological vector space. To
get this topology, define for each x in E a semi-norm ρx on E by ρx(y) = ‖x, y‖,
y in E. As dimension E � 2, for each y (�= 0) in E there exists an x in E such
that x, y are linearly independent and hence, ρx(y) = ‖x, y‖ �= 0. Thus the class
{ρx : x ∈ E} forms a family of semi-norms which separates points in E and the
topology formed by this family of semi-norms gives the required topology on E.
A typical neighborhood of origin is of the form

⋂n
1=i{y ∈ E : ρxi(y) < ε}, where

ε > 0 and {x1, x2, . . . , xn} is an arbitrary finite subset on E.
We also note here the following elementary but useful proposition [30] :

Proposition 2.1. Let (E, ‖., .‖) be a 2-normed space over K. Then
(i) ‖x + y, x‖ = ‖x, y‖ for all x, y in E, and
(ii) if for two linearly independent x and y in E, ‖z, x‖ = ‖z, y‖ = 0 for

z ∈ E, then z = 0.

3.

The following definition of a 2-normed algebra was given [33] in 1987.

Definition 3.1. Let E be a real algebra of dim � 2 with the 2-norm ‖., .‖. E
is said to be a 2-normed algebra if there is some k > 0 such that

‖xy, z‖ � k‖x, z‖ ‖y, z‖ for all x, y, z ∈ E.

The following theorem [29] establishes that such a class of algebras either does
not exist or is trivial.

Theorem 3.1. Let (E, ‖., .‖) be a 2-normed algebra according to Definition 3.1.
Then
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(a) the class of such algebra with unity is void and,
(b) the class of such algebra without unity is trivial

i.e., for all x, y ∈ E, xy = 0.

Proof. For a proof see [29]. �

Here we propose the following definition for 2-normed algebras.
Let E be subalgebra of dimension � 2 of an algebra B, ‖., .‖ be a 2-norm in

B and a1, a2 ∈ B be linearly independent, non-invertible and be such that for all
x, y ∈ E, ‖xy, ai‖ � ‖x, ai‖ ‖y, ai‖, i = 1, 2. Then E is called a 2-normed algebra
with respect to a1, a2.

Let E be a 2-normed algebra with respect to a1, a2. If a sequence {xn} in E
satisfying limm,n→∞ ‖xn − xm, ai‖ = 0, i = 1, 2 is such that there exists an x in
E for which limn→∞ ‖xn − x, ai‖ = 0, i = 1, 2; then E is a 2-Banach algebra with
respect to a1, a2.

Remark. Let E be a 2-normed algebra with respect to a1, a2. Then ‖xai, ai‖ �
‖x, ai‖ ‖ai, ai‖ = 0 for i = 1, 2 implying that, ‖xai, ai‖ = 0 for i = 1, 2 and so xai

and ai are linearly dependent. As a1, a2 are linearly independent, ai �= 0, i = 1, 2
and so, for all x ∈ E, there exists αi(x) ∈ K, i = 1, 2 such that xai = αi(x)ai.

Similarly, for all x ∈ E, there exists βi(x) ∈ K such that aix = βi(x)ai, i = 1, 2.

Now, for i = 1, 2 we have for all x ∈ E,

aixai = (aix)ai = βi(x)a2
i = ai(xai) = aiαi(x)ai = αi(x)a2

i

and so, (αi(x) − βi(x))a2
i = 0.

Now, if a2
i �= 0 for any of i = 1, 2, then for this i, αi(x) = βi(x) and we have

aix = xai = αi(x)ai for all x ∈ E, for this i. If for any of i = 1, 2 ai is invertible,
then for all x ∈ E, xai = αi(x)ai and E will be of dimension 1. But E being a
2-normed space, we have the trivial 2-norm on E, that is, ‖x, y‖ = 0 for all x, y ∈ E.
To avoid this and the other trivial case E = {0}, we took a1 and a2 non-invertible.
The linear independence of a1 and a2 is also needed to get a richer structure for
2-normed algebras, as we will see later on. Also note that αi and βi, i = 1, 2 are
homomorphisms. For (xy)ai = x(yai) = xαi(y)ai = αi(x)αi(y)ai = αi(xy)ai and
so, αi(xy) = αi(x) αi(y).

Again, for x, y ∈ E, α, β ∈ K

(αx + βy)ai = αi(αx + βy)ai = (ααi(x) + βαi(x))ai

and so, αi(αx + βy) = (ααi(x) + βαi(x)).
Thus αi, and similarly βi, are homomorphisms on E, i = 1, 2.
We sum up the above discussions in the following theorem.

Theorem 3.2. Let E be a 2-normed algebra with respect to a1, a2. Then there
exist four homomorphisms αi, βi on E, i = 1, 2, such that for all x ∈ E, xai =
αi(x)ai, aix = βi(x)ai and if any of ai, i = 1, 2 be such that a2

i �= 0, then we have
αi = βi, and xai = aix = αi(x)ai.
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4. Augmentation of unity

Let E be a subalgebra of an algebra B, a1, a2 ∈ B, ‖., .‖ be a 2-norm on B and
(E, ‖., .‖) be a 2-normed algebra (or a 2-Banach algebra) with respect to a1, a2 and
E be without unity. Our purpose in this section is to augment unity with E (as in
the case of 1-normed algebras).

Consider the space B′ = B ×K, in which for (x, α), (y, β) ∈ B′. Define (x, α)+
(y, β) = (x + y, α + β), γ(x, α) = (γx, γα) for γ ∈ K and (x, α)(y, β) = (xy + αy +
βx, αβ). Then B′ is an algebra with unity e = (0, 1).

Define ‖., .‖′ in B′ by [for (x, α), (y, β) ∈ B′], ‖(x, α), (y, β)‖′ = ‖x, y‖ + ‖βx −
αy, a1‖ + ‖βx − αy, a2‖. Then ‖., .‖ is a 2-norm on B′.

Note that for (x, α), (y, β) ∈ B′, ‖(x, α), (y, β)‖′ = 0 iff ‖x, y‖ = 0 and ‖βx −
αy, ai‖ = 0, i = 1, 2 iff x and y are linearly dependent and βx− αy are also linearly
dependent to a1, a2. But as a1, a2 are linearly independent, βx = αy. If (x, α),
(y, β) are linearly dependent in B′, then for (y, β) = (0, 0), ‖(x, α), (y, β)‖ = 0 and
if (y, β) �= 0, we have for some γ ∈ K such that (x, α) = γ(y, β) that is, x = γy
and α = γβ and so, x, y are linearly dependent giving αy = (γβ)y = β(γy) = βx
and so ‖(x, α), (y, β)‖′ = 0. Conversely, if ‖(x, α), (y, β)‖ = 0, we have x, y linearly
dependent and βx = αy. Now, if y = 0 either x = 0 or β = 0. If β = 0, then
(y, β) = (0, 0) and (x, α) and (y, β) are linearly dependent. If β �= 0 but x = 0,
for α = 0, (x, α) and (y, β) are linearly dependent and for α �= 0 for some γ ∈ K,
α = γβ and we have, (x, α) = γ(y, β) and (x, α) and (y, β) are linearly dependent.
If y �= 0, then as x, y are linearly dependent there exists γ ∈ K such that x = γy.
We assume that γ �= 0, that is, x �= 0 as if x = 0, the augment above will imply that
(x, α), (y, β) are linearly dependent. x = γy and βx = αy imply that β(γy) = αy
and as y �= 0, α = γβ and so (x, α) = γ(y, β) that is (x, α) and (y, β) are linearly
dependent.

It is easy to show that ‖., .‖′ satisfies the other 2-norm axioms and consequently
(B′, ‖., .‖′) is a 2-normed space.

We claim that E′ = E × K is a 2-normed algebra with respect to b1 =
(ka1, 0), b2 = (ka2, 0) ∈ B′ with 2-norm ‖., .‖′, for some suitable k > 0 if (E′, ‖., .‖)
is a 2-normed algebra. To see this, let (x, α), (y, β) ∈ E′. Then

‖(x, α)(y, β), bi‖′ = ‖(xy + αy + βx, αβ), (kai, 0)‖′

= ‖xy + αy + βx, kai‖ + ‖0(xy + αy + βx) − αβkai, a1‖
+ ‖0(xy + αy + βx) − αβkai, a2‖

� k‖x, ai‖ ‖y, ai‖ + k|α| ‖y, ai‖ + k|β| ‖x, ai‖
+ k|αβ| [‖ai, a1‖ + ‖ai, a2‖]

and

‖(x, α), bi‖′ = ‖(x, α), (kai, 0)‖′

= k‖x, ai‖ + ‖0x − αkai, a1‖ + ‖0x − αkai, a2‖
= k‖x, ai‖ + k|α| [‖ai, a1‖ + ‖ai, a2‖],

‖(y, β), bi‖′ = k‖y, a1‖ + |β|k [‖ai, a1‖ + ‖ai, a2‖].
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For i = 1,

‖(x, α), bi‖′ ‖(y, β), bi‖′ = [k‖x, a1‖ + |α|k‖a1, a2‖] [k‖y, a1‖ + |β|k‖a1, a2‖]
= k2‖x, a1‖ ‖y, a1‖ + k2|α| ‖a1, a2‖ ‖y, a1‖

+ k2|β| ‖a1, a2‖ ‖x, a1‖ + k2|αβ| ‖a1, a2‖2.

Now, if ‖a1, a2‖ � 1, we take k = 1 and if ‖a1, a2‖ < 1, take k = 1
‖a1,a2‖

(‖a1, a2‖ �= 0 as a1, a2 are linearly independent) and we see that ‖(x, α)(y, β), b1‖′ �
‖(x, α), b1‖′ ‖(y, β), b1‖′.

Similarly, ‖(x, α)(y, β), b2‖′ � ‖(x, α), b2‖′ ‖(y, β), b2‖′ and we see that (E′, ‖., .‖′)
is a 2-normed algebra with unity e = (0, 1) with respect to bi, i = 1, 2.

That (E′, ‖., .‖′) is a 2-Banach algebra with respect to bi, i = 1, 2 if (E′, ‖., .‖)
is a 2-Banach algebra as is also easy to see.

Let {(xn, αn)} be a sequence in E′ such that limn,m ‖(xn, αn)−(xm, αm), bi‖′ =
0 for i = 1, 2. Then limn,m{k‖xn −xm, ai‖+k|αn −αm| [‖ai, a1‖+‖ai, a2‖]} = 0 for
i = 1, 2; which implies that limn,m ‖xn−xm, ai‖ = 0, i = 1, 2 and limn,m |αn−αm| =
0. But then there exists an x ∈ E such that limn ‖xn − x, ai‖ = 0, i = 1, 2 (as
(E, ‖., .‖) is a 2-Banach algebra with respect to ai, i = 1, 2) and as {αn} is Cauchy,
there exists α ∈ K such that limn |αn − α| = 0 and hence limn{k‖xn − x, ai‖ +
k|αn − α| [‖ai, a1‖ + ‖ai, a2‖]} = 0 and so limn ‖(xn, αn) − (x, α), bi‖′ = 0. This
shows that (E′, ‖., .‖′) is a 2-Banach algebra with respect to bi, i = 1, 2.

5. Examples

In this section we give examples of 2-normed algebras and 2-Banach algebras.
It is well known that a finite dimensional algebra over K is an 1-normed (and hence
1-Banach) algebra for a suitably defined 1-norm. Our first example shows that a
finite dimensional algebra with dim � 2 also becomes a 2-normed (and 2-Banach)
algebra with respect to a1, a2 (suitably chosen) with suitably defined 2-norm.

Example 5.1. Let E be a finite dimensional (dim E = n � 2) algebra over K

and let {e1, . . . , en} be a basis for E. Let a, b be two symbols (not in E) and define
B = {x + αa + βb : x ∈ E, α, β ∈ K}, with the agreement that x + αa + βb = 0, if
and only if x = 0, α = β = 0, for x ∈ E, α, β ∈ K.

For yi = xi + αia + βib ∈ B, i = 1, 2, α ∈ K, define y1 + y2 = (x1 + x2) + (α1 +
α2)a + (β1 + β2)b and αy1 = αx1 + (αα1)a + (αβ1)b, y1y2 = x1x2 + α1α2a + β1β2b.
Then B is an algebra over K and if E has unit e, then ẽ = e + a + b is the unit of
B.

For x =
∑n

i=1 αiei + s1a + s2b, y =
∑n

i=1 βiei + t1a + t2b ∈ B define ‖x, y‖ by

‖x, y‖2 =
( n∑

i=1
|αi|2+|s1|2+|s2|2

)( n∑
i=1

|βi|2+|t1|2+|t2|2
)

−
∣∣∣∣

n∑
i=1

αiβi+s1t1+s2t2

∣∣∣∣
2

Then ‖., .‖ defines a 2-norm in B (See [30]).
On E, define ‖.‖1 by ‖x‖1 = ‖x, a‖ for x ∈ E. Note that ‖.‖1 is a 1-norm on

E. Let ‖.‖ be a 1-norm on E so that (E, ‖.‖) is a 1-normed algebra. Then E being
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finite dimensional, both 1-norms, ‖.‖1 and ‖.‖ on E are equivalent and hence there
exist k1, k2 > 0 such that for every x ∈ E, ‖x‖1 � k1‖x‖ and ‖x‖ � k2‖x‖1.

For x, y ∈ E, we have

‖xy, a‖ = ‖xy‖1 � k1‖xy‖ � k1‖x‖ ‖y‖ � k1k2‖x‖1k2‖y‖1 = k1k2
2‖x, a‖ ‖y, a‖

and so for a1 = k1k2
2a, we have for all x, y ∈ E, ‖xy, a1‖ � ‖x, a1‖ ‖y, a1‖.

Similarly, for suitably chosen k3 > 0, we have for a2 = k3b, ‖xy, a2‖ �
‖x, a2‖ ‖y, a2‖ for all x, y ∈ E and (E, ‖., .‖) becomes a 2-normed algebra over
K with respect to a1, a2.

To see that (E, ‖., .‖) is a 2-Banach algebra with respect to a1, a2, let {xn} be a
sequence in E so that limn,m→∞ ‖xn−xm, ai‖ = 0, i = 1, 2. Then limn,m ‖xn−xm‖1
= 0, and E being finite dimensional (E, ‖.‖1) is a Banach space and hence there
is an x ∈ E, such that limn ‖xn − x‖1 = 0 or equivalently limn ‖xn − x, a1‖ = 0.
Now if we define for x ∈ E, ‖x‖2 = ‖x, a2‖, then (E, ‖.‖2) also becomes a 1-normed
space and the norms ‖.‖1 and ‖.‖2 on E being equivalent limn ‖xn − x‖2 = 0 or
equivalently limn ‖xn − x, a2‖ = 0, and the proof that (E, ‖., .‖) is a 2-Banach
algebra with respect to a1, a2 is complete.

Before we proceed further, we note the following: for x, y ∈ E, we say x ⊥B y
(that is x is orthogonal to y in Birkhoff’s sense) if ‖x‖ � ‖x + αy‖ for all α ∈ K.

Lemma 5.1. There exists, for an 0 �= x ∈ E, a φ ∈ E∗ such that ‖φ‖ = 1 and
φ(x) = ‖x‖.

Lemma 5.2. [25] Let x, y ∈ E, x �= 0. Then x ⊥B y if and only if there exists
a φ ∈ E∗ such that ‖φ‖ = 1, φ(x) = ‖x‖ and φ(y) = 0.

Lemma 5.3. For x, y ∈ E, both nonzero, there exists an α ∈ K such that
x ⊥B (αx + y).

Proof. From Lemma 5.1, there exists a φ ∈ E∗ such that ‖φ‖ = 1 and
φ(x) = ‖x‖. Now, let α = −φ(y)/φ(x). Then φ(αx + y) = 0 and the lemma follows
by Lemma 5.2. �

Lemma 5.4. [28] Let (E, ‖.‖) be a 1-normed linear space over K. For x, y ∈ E,
define ‖x, y‖ by

‖x, y‖ = sup
φ,Ψ∈E∗‖φ‖=‖Ψ‖=1

|φ(x)Ψ(y) − φ(y)Ψ(x)|.

Then (E, ‖., .‖) is a 2-normed linear space over K.

The above lemma leads us to the following: let (E, ‖., .‖) be a 1-normed linear
space over K. The 2-norm defined above is called the induced 2-norm.

We also note the following:

Lemma 5.5. [28] Let (E, ‖.‖) be a 1-normed linear space over K and let (E, ‖., .‖)
be the corresponding induced 2-normed linear space. Then for all x, y ∈ E, ‖x, y‖ �
2‖x‖ ‖y‖. If further x ⊥B y or y ⊥B x, then ‖x‖ ‖y‖ � ‖x, y‖.

Let E be an algebra over K, φ : E → K be such that φ is linear and for all
x, y ∈ E, φ(xy) = φ(x)φ(y), we say φ is a K-homomorphism on E.
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Before we give our next example as the following theorem, we note that from
Theorem 3.2 it is obvious that not all 1-normed algebras (or 1-Banach algebras)
can be made into a 2-normed algebra (or 2-Banach algebra) respectively as the
existence of K-homomorphism on a 1-normed algebra is not guaranteed though
Theorem 3.2 states that K-homomorphism on a 2-normed algebra (or 2-Banach
algebra) (E, ‖., .‖) with respect to a1, a2 is guaranteed.

Theorem 5.1. Let (E, ‖.‖) (dim E � 2) be a 1-normed algebra (or 1-Banach
algebra) over K with or without unity, over which a nontrivial K-homomorphism
θ exists. Then there exist an algebra A over K of which E is a subalgebra and a
2-norm ‖., .‖ on A, a1, a2 ∈ A such that (E, ‖., .‖) becomes a 2-normed algebra (or
a 2-Banach algebra respectively) with respect to a1, a2.

Proof. We prove the theorem for the case of 1-normed algebras. In the course
of the proof, we will see that the case of 1-Banach algebras is also proved.

Let (E, ‖ . ‖) be a 1-normed algebra over K. If E is without unity, we augment
the unity in the usual way and extend θ over the extended 1-normed algebra E ×K.
For (x, α), (y, β) ∈ E × K, we define (x, α) + (y, β) = (x + y, α + β), (x, α)(y, β) =
xy + αy + β and ‖(x, α)‖ = ‖x‖ + |α|.

Unit of E ×K is given by e = (0, 1) and θ(x, α) = θ(x) + α over E ×K becomes
a K-homomorphism. We can now without any loss of generality assume that 1-
normed algebra (E, ‖.‖) is with unity. Let Ẽ be the completion of E. Now, let
a ∈ E be such that ‖a‖ < 1 and |θ(a)| � 1. Then θ(e − α−1a) = 0 where α = θ(a).
Write b = e − α−1a. Then θ(b) = 0 and as ‖α−1a‖ < 1, b is invertible in Ẽ and
hence is invertible in E itself. But θ being a nontrivial K-homomorphism, θ(b) �= 0.
Hence |θ(a)| < 1 and we conclude that θ is continuous over E and hence θ can be
extended continuously to θ̃ over Ẽ and θ̃ is a nontrivial K-homomorphism over Ẽ
with ‖θ̃‖ = ‖θ‖ = 1. Therefore (Ẽ, ‖.‖) is a 1-Banach algebra, with unity e and θ̃
is a nontrivial K-homomorphism over Ẽ. Then Ẽ is isometrically isomorphic to a
closed subalgebra M of B(X), the 1-Banach algebra of all bounded linear operators
on a 1-Banach-space (X, ‖.‖x) over K. Now, let a, b be two symbols (not in X) and
consider the space X1 = {x + αa + βb : x ∈ X, α, β ∈ K}, with the agreement that
x + αa + βb = 0 if and only if x = 0, α = β = 0. For, yi = xi + αia + βib ∈ X1,
i = 1, 2 define y1 + y2 = (x1 + x2) + (α1 + α2)a + (β1 + β2)b ∈ X1 and αy1 =
(αx1) + (αα1)a + (αβ1)b ∈ X1, for α ∈ K.

X1 is a linear space over K. In X1 define ‖.‖x1 by ‖x + αa + βb‖x1 = ‖x‖x +
|α|+ |β| for x+αa+βb ∈ X1. ‖.‖x1 defines a 1-norm in X1 with ‖a‖x1 = ‖b‖x1 = 1,
and ‖x‖x1 = ‖x‖x for x ∈ X .

Let {xn + αna + βnb} be a Cauchy sequence in X1. Then {xn} is Cauchy in X
and {αn}, {βn} are also Cauchy in K and so {xn}, {αn}, {βn} converge to x ∈ X
and α, β ∈ K respectively and {xn + αna + βnb} to x + αa + βb in X1 and so,
(X1, ‖x‖x1) is a 1-Banach space.

For T ∈ M , let T̃ be defined on X1 by

T̃ (x + αa + βb) = T (x) + θ̃1(T )[αa + βb] for all x + αa + βb in X1,
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where θ̃1 is the K-homomorphism over M corresponding to θ̃ over Ẽ. For x+αa+βb
∈ X1, T ∈ M , we have

‖T̃ (x + αa + βb)‖x1 = ‖T (x)‖x + |θ̃1(T )| (|α| + |β|)
� ‖T ‖x‖x‖x + ‖T ‖x(|α| + |β|)
= ‖T ‖x‖(x + αa + βb)‖x1 for all x + αa + βb ∈ X1

and so, T̃ ∈ B(X1) and as ‖T̃‖x1 � ‖T ‖x we have ‖T̃‖x1 = ‖T ‖x.
Let M̃ = {T̃ ∈ B(X1) : T̃ as defined above for T ∈ M}. Then M̃ is a 1-Banach

algebra with unity, a closed subalgebra of B(X1).
Let Ta, Tb ∈ B(X1) be defined as Ta(x+αa+βb) = αa and Tb(x+αa+βb) = βb,

for x+αa+βb ∈ X1. Then, ‖Ta‖x1 = ‖Tb‖x1 = 1. For T̃ ∈ M̃ , and x+αa+βb ∈ X1,
we have
T̃ Ta(x + αa + βb) = T̃ (αa) = θ̃1(T )αa = θ̃1(T )Ta(x + αa + βb) = TaT̃ (x + αa + βb)
and so T̃ Ta = TaT̃ = θ̃1(T )Ta. Similarly T̃ Tb = TbT̃ = θ̃1(T )Tb and T 2

a = Ta,
T 2

b = Tb.
Now, if we identify B(X1) with the 1-Banach algebra B of which Ẽ is a closed

1-normed subalgebra, (writing ‖.‖B for the norm in B) and Ta, Tb be identified
with a, b respectively in B, then we have, for each x ∈ Ẽ, xa = ax = θ̃(x)a and
xb = bx = θ̃(x)b, and a2 = a, b2 = b, ‖a‖B = ‖b‖B = 1.

Let us equip B with the induced 2-norm. We claim that (Ẽ, ‖., .‖), ‖., .‖ is the
induced 2-norm on B, is a 2-Banach algebra with respect to 2a, 2b. To prove the
claim, we first prove that (Ẽ, ‖., .‖) is a 2-normed algebra with respect to 2a, 2b.
We begin by showing that for every x, y ∈ Ẽ, ‖xy, a‖ � 2‖x, a‖ ‖y, a‖.

Let x, y ∈ Ẽ, x �= 0 �= y. Then by Lemma 5.3 there exist α1, α2 ∈ K such that
a ⊥B (α1a + x) and a ⊥B (α2a + y) and let x1 = α1a + x, x2 = α2a + y, then
x1x2 = α1α2a2 +α1ay +α2xa+xy = α1α2a+α1θ̃(y)a+α2θ̃(x)a+xy and we have,
by Proposition 2.1, ‖x1x2, a‖ = ‖xy, a‖. Now

‖xy, a‖ = ‖x1x2, a‖
� 2‖x1x2‖B‖a‖B (by Lemma 5.5)
� 2‖x1‖B‖x2‖B.1 (as (B, ‖.‖B) is a 1-normed algebra)
� 2‖x1, a‖ ‖x2, a‖ (by Lemma 5.5 as a ⊥B x1, a ⊥B x2)
= 2‖x, a‖ ‖y, a‖ (again by Proposition 2.1).

If either of x or y in Ẽ is zero, then ‖xy, a‖ = 0 = ‖x, a‖ ‖y, a‖, and we
have, for every x, y ∈ Ẽ, ‖xy, a‖ � 2‖x, a‖ ‖y, a‖. This proves that ‖xy, 2a‖ �
‖x, 2a‖ ‖y, 2a‖, and similarly it can be shown that ‖xy, 2b‖ � ‖x, 2b‖ ‖y, 2b‖.

Now to complete the proof of the claim, which proves the theorem also, it
remains to be shown that (Ẽ, ‖., .‖) is a 2-Banach algebra with respect to 2a, 2b.
To prove this let {xn} be a sequence in Ẽ satisfying limm,n→∞ ‖xm − xn, 2a‖ =
limm,n→∞ ‖xm −xn, 2b‖ = 0. By Lemma 5.1, there exists a φ ∈ B∗ such that ‖φ‖ =
1 and φ(a) = ‖a‖B = 1. We define a sequence {xn} in B by, xn = xn − φ(xn)a.
Then φ(xn) = φ(xn) − φ(xn)φ(a) = 0, for each n ∈ N, and so, for each m, n ∈ N,
φ(xm − xn) = 0 and so a ⊥B (xm − xn) using Lemma 5.2.
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Now, by Lemma 5.5, and Proposition 2.1, we have for each m, n ∈ N,

‖xm − xn‖B = ‖xm − xn‖B‖a‖B � ‖xm − xn, a‖ → 0 as m, n → ∞
which implies that {xn} is a Cauchy sequence in (B, ‖.‖B). �

Now we consider the following cases:
Case 1. Let the sequence {φ(xn)} be bounded. There is a subsequence of

{φ(xn)} which is convergent in K, to say s. Then the corresponding subsequence
of {xn} in B converges to some x0 − sa in B. But {xn} being Cauchy in B, it
converges to x0 − sa in B, and as the subsequence of {φ(xn)} converges to s, it
follows that {xn} converges to x0 in B. Since {xn} is in Ẽ and Ẽ closed in B, we
conclude that {xn} converges to x0 in Ẽ in ‖.‖B norm. Using Lemma 5.5, we now
have ‖xn − x0, 2a‖ � 2‖xn − x0‖B‖2a‖B → 0 as n → ∞ and we have an x0 ∈ Ẽ
such that limn→∞ ‖xn − x0, 2a‖ = 0.

Similarly it can be shown that limn→∞ ‖xn − x0, 2b‖ = 0, and our claim is
proved in this case.

Case 2. Let the sequence {φ(xn)} be unbounded and for infinitely many n’s
say for n1 < n2 < . . . , φ(xni ) = 0. In this case xni = xni and as we have observed
in the Case 1, {xni} = {xni } is a Cauchy sequence in B and hence converges to
some x0 ∈ B. But Ẽ is closed in B and {xni } is in Ẽ and hence {xni } converges
to x0 in Ẽ. Again as observed above, {xn} is Cauchy in B. Hence, {xn} converges
to x0 ∈ Ẽ. Then we conclude that, as in the Case 1, limn→∞ ‖xn − x0, 2a‖ =
limn→∞ ‖xn − x0, 2b‖ = 0 and the claim is proved in this case also.

Case 3. Let the sequence {φ(xn)} be unbounded and φ(xn) = 0 for finitely
many n’s only. We shed xn’s for which φ(xn) = 0 and writing the remaining
sequence by {xn} again, we have {xn} in Ẽ such that φ(xn) �= 0 for all n ∈ N.

Now, as {φ(xn)} is unbounded, {1/φ(xn)} is bounded. Let sn = 1/φ(xn),
yn = snxn − a, for all n ∈ N. Then φ(yn) = snφ(xn) − φ(a) = 1 − 1 = 0 and so, for
all m, n ∈ N, φ(ym −yn) = 0, and we have by Lemmas 5.2, 5.5 and Proposition 2.1,

‖ym − yn‖B = ‖a‖B‖ym − yn‖B � ‖ym − yn, a‖
� ‖snxn − snxm, a‖ + ‖(sn − sm)xm, a‖
� |sn| ‖xn − xm, a‖ + |sn − sm| ‖xm, a‖

Note that limm,n→∞ ‖xm − xn, a‖ = 0 implies that {‖xn, a‖} is bounded, for
there exists N such that ‖xm − xn, a‖ < 1, for all m, n � N and this implies that
‖xm−xN , a‖ < 1, for all m � N . Consequently ‖xm, a‖−‖xN , a‖ � ‖xm−xN , a‖ <
1 for all m � N and we get ‖xm, a‖ < 1 + ‖xN , a‖ for all m � N and this proves
that ‖xm, a‖ is bounded.

Again {sn} being bounded, there is a subsequence of sn, say {sni}, converg-
ing to some s ∈ K. Then, as limm,n→∞ ‖xm − xn, a‖ = 0, the above inequality
shows that the sequence {yni} is a Cauchy sequence in B and hence, converges in
(B, ‖.‖B). But as for all m, n ∈ N, ‖smxm − snxn‖B = ‖ym − yn‖B and {yni} is
Cauchy in B, {snixni} converges in B and as {snixni } is in Ẽ and Ẽ is closed,
{snixni } converges to say sy in Ẽ.
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Now, for x ∈ Ẽ, define ‖x‖1 = max{‖x, a‖, ‖x, b‖}. Observe that for x ∈ Ẽ,
‖x‖1 = 0 if and only if x is linearly dependent on both a and b, that is if and only
if x = 0 as both a, b /∈ Ẽ. Thus ‖.‖1 defines a 1-norm in Ẽ.

Let ( ˜̃E, ‖.‖1) be the completion of (Ẽ, ‖.‖). Since for j = 1, 2, a1 = 2a, a2 = 2b,
we have limm,n→∞ ‖xm−xn, aj‖ = 0, and therefore, limm,n→∞ ‖xm−xn‖1 = 0, that
is, {xn} is Cauchy in ( ˜̃E, ‖.‖1). Hence, there is an x0 ∈ ˜̃E such that limn→∞ ‖xn −
x0‖1 = 0, and as {sni} converges to s in K, limn→∞ ‖snixni − sx0‖1 = 0. But by
Lemma 5.5, we have for j = 1, 2 ‖snixni − sy, aj‖ � 2‖snixni − sy‖B‖aj‖B → 0 as
ni → ∞. As {snixxi } converges to sy in B, it follows that limni→∞ ‖snixni −sy‖1 =
0, which implies that x0 = y ∈ Ẽ, and we conclude that, there exists an x0 ∈ Ẽ,
s ∈ K, such that for j = 1, 2 limni→∞ ‖snixni − sx0, aj‖ = 0.

Now observe that ‖snixni − sx0, aj‖ � |sni | ‖xni − x0, aj‖ − |sni − s| ‖x0, aj‖
and therefore as ni → ∞ we have |s| limni→∞ ‖xni − x0, aj‖ � 0 which implies
that limni→∞ ‖xni − x0, aj‖ = 0 for j = 1, 2. Now limm,n ‖xm − xn, aj‖ = 0
and limni→∞ ‖xni − x0, aj‖ = 0 imply that for ε > 0 there exists N such that
‖xn+p − xn, aj‖ < ε for all n � N , p � 0, and ‖xni − x0, aj‖ < ε for all ni � N .

For all n > N , let ni > N and then ‖xn−x0, aj‖ � ‖xn−xni , aj‖+‖xni −x0, aj‖
< ε + ε, and so, limn→∞ ‖xn − x0, aj‖ = 0 for j = 1, 2. This establishes our claim
and the theorem is completely established.
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